
ESE 650: Learning in Robotics

Spring 2023

Instructor
Pratik Chaudhari pratikac@seas.upenn.edu

Teaching Assistants
Jianning Cui (cuĳn)
Swati Gupta (gswati)

Chris Hsu (chsu8)
Gaurav Kuppa (gakuppa)
Alice Kate Li (alicekl)

Pankti Parekh (pankti81)
Aditya Singh (adiprs)

Haoxiang You (youhaox)

April 19, 2023

Contents

1 What is Robotics? 5
1.1 Perception-Learning-Control 6
1.2 Goals of this course 7
1.3 Some of my favorite robots 7

2 Introduction to State Estimation 9
2.1 A review of probability 9

2.1.1 Random variables 12
2.2 Using Bayes rule for combining evidence 16

2.2.1 Coherence of Bayes rule 18
2.3 Markov Chains 19
2.4 Hidden Markov Models (HMMs) 21

2.4.1 The forward algorithm 24
2.4.2 The backward algorithm 25
2.4.3 Bayes filter 26
2.4.4 Smoothing 27
2.4.5 Prediction 28
2.4.6 Decoding: Viterbi’s Algorithm 28
2.4.7 Shortest path on a Trellis graph 32

2.5 Learning an HMM from observations 33

3 Kalman Filter and its variants 37
3.1 Background 37
3.2 Linear state estimation 39

3.2.1 One-dimensional Gaussian random variables 40
3.2.2 General case 41
3.2.3 Incorporating Gaussian observations of a state 42
3.2.4 An example 45

3.3 Background on linear and nonlinear dynamical systems 45
3.3.1 Linear systems 46
3.3.2 Linear Time-Invariant (LTI) systems 47
3.3.3 Nonlinear systems 48

3.4 Markov Decision Processes (MDPs) 48
3.4.1 Back to Hidden Markov Models 51

3.5 Kalman Filter (KF) 52
3.5.1 Step 0: Observing that the state estimate at any timestep should be a Gaussian 53
3.5.2 Step 1: Propagating the dynamics by one timestep 53

1

2

3.5.3 Step 2: Incorporating the observation 54
3.5.4 Discussion 55

3.6 Extended-Kalman Filter (EKF) 56
3.6.1 Propagation of statistics through a nonlinear transformation 57
3.6.2 Extended Kalman Filter 59

3.7 Unscented Kalman Filter (UKF) 61
3.7.1 Unscented Transform 63
3.7.2 The UT with tuning parameters 65
3.7.3 Unscented Kalman Filter (UKF) 66
3.7.4 UKF vs. EKF 67

3.8 Particle Filters (PFs) 68
3.8.1 Importance sampling 68
3.8.2 Resampling particles to make the weights equal 70
3.8.3 Particle filtering: the algorithm 72
3.8.4 Example: Localization using particle filter 73
3.8.5 Theoretical insight into particle filtering 74

3.9 Discussion 77

4 Rigid-body transforms and mapping 78
4.1 Rigid-Body Transformations 79

4.1.1 3D transformations 81
4.1.2 Rodrigues’ formula: an alternate view of rotations 83

4.2 Quaternions 84
4.3 Occupancy Grids 87

4.3.1 Estimating the map from the data 90
4.3.2 Sensor models 91
4.3.3 Back to sensor modeling 93

4.4 3D occupancy grids 95
4.5 Local Map 97
4.6 Discussion 98

5 Dynamic Programming 100
5.1 Formulating the optimal control problem 101
5.2 Dĳkstra’s algorithm 102

5.2.1 Dĳkstra’s algorithm in the backwards direction 104
5.3 Principle of Dynamic Programming 104

5.3.1 Q-factor 106
5.4 Stochastic dynamic programming: Value Iteration 107

5.4.1 Infinite-horizon problems 110
5.4.2 Dynamic programming for infinite-horizon problems 113
5.4.3 An example 114
5.4.4 Some theoretical results on value iteration 115

5.5 Stochastic dynamic programming: Policy Iteration 117
5.5.1 An example 119

3

6 Linear Quadratic Regulator (LQR) 121
6.1 Discrete-time LQR 121

6.1.1 Solution of the discrete-time LQR problem 124
6.2 Hamilton-Jacobi-Bellman equation 126

6.2.1 Infinite-horizon HJB 128
6.2.2 Solving the HJB equation 129
6.2.3 Continuous-time LQR 130

6.3 Stochastic LQR 132
6.4 Linear Quadratic Gaussian (LQG) 133

6.4.1 (Optional material) The duality between the Kalman Filter and LQR 135
6.5 Iterative LQR (iLQR) 136

6.5.1 Iterative LQR (iLQR) 138

7 Imitation Learning 141
7.1 A crash course in supervised learning 143

7.1.1 Fitting a machine learning model 145
7.1.2 Deep Neural Networks 146

7.2 Behavior Cloning 149
7.2.1 Behavior cloning with a stochastic controller 151
7.2.2 KL-divergence form of Behavior Cloning 152
7.2.3 Some remarks on Behavior Cloning 153

7.3 DAgger: Dataset Aggregation 154

8 Policy Gradient Methods 157
8.1 Standard problem setup in RL 158
8.2 Cross-Entropy Method (CEM) 159

8.2.1 Some remarks on sample complexity of simulation-based methods 161
8.3 The Policy Gradient 162

8.3.1 Reducing the variance of the policy gradient 164
8.4 An alternative expression for the policy gradient 166

8.4.1 Implementing the new expression 168
8.5 Actor-Critic methods 168

8.5.1 Advantage function 170
8.6 Discussion 171

9 Q-Learning 173
9.1 Tabular Q-Learning 173

9.1.1 How to perform exploration in Q-Learning 176
9.2 Function approximation (Deep Q Networks) 177

9.2.1 Embellishments to Q-Learning 179
9.3 Q-Learning for continuous control spaces 183

10 Model-based Reinforcement Learning 186
10.1 Learning a model of the dynamics 187
10.2 Some model-based methods 188

10.2.1 Bagging multiple models of the dynamics 188
10.2.2 Model-based RL in the latent space 190

4

11 Offline Reinforcement Learning 191
11.1 Why is offline reinforcement learning difficult? 192
11.2 Regularized Bellman iteration 194

11.2.1 Changing the fixed point of the Bellman iteration to be more conservative 194
11.2.2 Estimating the uncertainty of the value function 195

12 Meta-Learning 196
12.1 Problem formulation for image classification 198

12.1.1 Fine-tuning 199
12.1.2 Prototypical networks 199
12.1.3 Model-agnostic meta-learning (MAML) 201

12.2 Problem formulation for meta-RL 203
12.2.1 A context variable 204
12.2.2 Discussion 205

Bibliography 207

Chapter 11

What is Robotics?2

Reading
1. Computing machinery and intelligence, Turing (2009)

2. Thrun Chapter 1

3. Barfoot Chapter 1

The word robotics was first used by a Czech writer Karel Capek3

in a play named “Rossum’s Universal Robots” where the owner of this4

company Mr. Rossum builds robots, i.e., agents who do forced labor, and5

effectively an artificial man. The word was popularized by Issac Asimov6

in one of his short stories named Liar!. This is about a robot named7

RB-34 which, through a manufacturing fault, happens to be able to read8

the minds of humans around it. Around 1942, Isaac Asimov started using9

the word robot in his writings. This is also when he introduced the Three10

Laws of Robotics as the theme for how robots would interact with others11

in his stories/books. These are as follows.12

1. A robot may not injure a human being or, through inaction, allow a13

human being to come to harm.14

2. A robot must obey the orders given it by human beings except where15

such orders would conflict with the First Law.16

3. A robot must protect its own existence as long as such protection17

does not conflict with the First or Second Law.18

Asimov would go on to base his stories on the counter-intuitive ways in19

which robots could apply these laws. In this case, RB-34 adheres to the20

First Law and in order to not hurt the feelings of humans and make them21

happy, it deliberately lies to them. It tells the robopsychologist Susan22

Colins that one of her co-workers is infatuated with her. However, when23

5

https://en.wikipedia.org/wiki/Liar!_(short_story)

6

she confronts RB-34 later by pointing out that lying to people can end up1

hurting them, the robot experiences a logical conflict within its laws and2

becomes unresponsive.3

This is, after all, science fiction but these laws give us insight into4

what robots are. Let’s see what modern roboticists have to say.5

“Robotics is the science of perceiving and manipulating6

the physical world through computer-controlled mechanical7

devices.” — Sebastian Thrun in Probabilistic Robotics8

“EVERYTHING comes together in the field of robotics. The9

design of an autonomous robots involves: the choice of10

the mechanical platform, the choice of actuators, the choice11

of sensors, the choice of the energy source, the choices of12

algorithms (perception, planning, and control). Each of13

these subproblems corresponds to a discipline in itself, with14

its design trade-offs of achievable performance vs limited15

resources.” — Andrea Censi in Censi (2016).16

I find the Third Law really insightful to understand intelligence as well.17

Let us define intelligence as the ability of an organism to survive1. We18

will all agree that trees are less intelligent than animals, an ant is less than19

intelligent than a dog, which is less intelligent than a human. A program20

like AlphaGo is not very intelligent because you can disable it by simply21

switching it off. A key indicator of intelligence is the ability to sense22

possible harm and take actions to change the outcome.23

Robotics is Embodied Artificial Intelligence.24

A robot is a machine that senses its environment using sensors,25

interacts with this environment using actuators to perform a26

given task and does so efficiently using previous experience27

of performing similar tasks.28

We will cover the fundamentals of these three aspects of robotics:29

perception, planning and learning.30

1.1 Perception-Learning-Control31

Perception refers to the sensory mechanisms to gain information about the32

environment (eyes, ears, tactile input etc.). Action refers to your hands,33

legs, or motors/engines in machines that help you move on the basis of34

this information. Learning is kind of the glue in between. It helps crunch35

information of your sensors quickly, compare it with past data, guesses36

what future data may look like and computes actions that are likely to37

succeed. The three facets of intelligence are not sequential and robotics is38

not merely a feed-forward process. Your sensory inputs depend on the39

previous action you took.40

1feel free to come up with another definition

7

1.2 Goals of this course1

The goals of this course is to develop the main ideas in robotic perception,2

learning and control. Robotics is everything, so we will focus on under-3

standing how they are combined together to build a typical robot. After4

this course, we expect you to be able to choose one among the different5

robotics algorithms to perform a particular task, think critically about6

these algorithms and build new ones.7

Other courses Some other courses at Penn that address various aspects8

of this picture above are9

• Perception: CIS 580, CIS 581, CIS 68010

• Learning: CIS 520, CIS 521, CIS 522, CIS 620, CIS 700, ESE 545,11

ESE 54612

• Control: ESE 650, MEAM 520, MEAM 620, ESE 500, ESE 505,13

ESE 61914

1.3 Some of my favorite robots15

16

17

8

These videos should give you an idea of how the everyday life of a1

roboticist looks like: Kiva’s robots, Waymo’s 360 experience, Boston2

Dynamics’ Spot, JPL-MIT team at the DARPA Sub-T Challenge, Romeo3

and Juliet at Ferrari’s factory, Anki’s Vector, and the DARPA Humanoid4

Challenge.5

https://youtu.be/6KRjuuEVEZs
https://youtu.be/B8R148hFxPw
https://youtu.be/wlkCQXHEgjA
https://youtu.be/wlkCQXHEgjA
https://youtu.be/wlkCQXHEgjA
https://www.youtube.com/watch?v=poJLq9TxKt4
https://youtu.be/tpDnQoqGB0o
https://youtu.be/tpDnQoqGB0o
https://youtu.be/tpDnQoqGB0o
https://www.youtube.com/watch?v=4INH3w2rzTg
https://youtu.be/g0TaYhjpOfo
https://youtu.be/g0TaYhjpOfo
https://youtu.be/g0TaYhjpOfo

Chapter 21

Introduction to State2

Estimation3

Reading
1. Barfoot, Chapter 2.1-2.2

2. Thrun, Chapter 2

3. Russell Chapter 15.1-15.3

2.1 A review of probability4

Probability is a very useful construct to reason about real systems which5

we cannot model at all scales. It is a fundamental part of robotics. No6

matter how sophisticated your camera, it will have noise in how it measures7

the real world around it. No matter how good your model for a motor is,8

there will be unmodeled effects which make it move a little differently9

than how you expect. We begin with a quick review of probability, you10

can read more at many sources, e.g., MIT’s OCW.11

An experiment is a procedure which can be repeated infinitely and12

has a well-defined set of possible outcomes, e.g., the toss of a coin or the13

roll of dice. The outcome itself need not always be deterministic, e.g.,14

depending upon your experiment, the coin may come up heads or tails.15

We call the set Ω the sample space, it is the set of all possible outcomes16

of an experiment. For two coins, this set would be17

Ω = {HH,HT, TH, TT} .

We want to pick this set to be right granularity to answer relevant questions,18

e.g., it is correct but not very useful for Ω to be the position of all the19

9

https://ocw.mit.edu/resources/res-6-012-introduction-to-probability-spring-2018

10

molecules in the coin. After every experiment, in this case tossing the two1

coins once each, we obtain an event, it is a subset event A ⊂ Ω from the2

sample space.3

A = {HH} .

Probability theory is a mathematical framework that allows us to4

reason about phenomena or experiments whose outcome is uncertain.5

Probability of an event6

P(A)

is a function that maps each event A to a number between 0 and 1: closer7

to 1 this number, stronger our belief that the outcome of the experiment is8

going to be A.9

Axioms Probability is formalized using a set of three basic axioms that10

are intuitive and yet very powerful. They are known as Kolmogorov’s11

axioms:12

• Non-negativity: P(A) ≥ 013

• Normalization: P(Ω) = 114

• Additivity: If two events A,B are such that A ∩B = ∅, then15

P(A ∪B) = P(A) + P(B).

You can use these axioms to say things like P(∅) = 0, P(Ac) = 1− P(A),16

or if A ⊆ B then P(A) ≤ P(B).17

Conditioning on events Conditioning helps us answer questions like

18

P(A | B) := probability of A given that B occurred.

Effectively, the sample space has now shrunk from Ω to the event B. It19

would be silly to have a null sample-space, so let’s say that P(B) ̸= 0. We20

define conditional probability as21

P(A | B) =
P(A ∩B)

P(B)
; (2.1)

the probability is undefined if P(B) = 0. Using this definition, we can22

compute the probability of events like “what is the probability of rolling a23

2 on a die given that an even number was rolled”.24

 Partitioning the sample spaceWe can use this trick to get the law of total probability: if a finite25

number of events {Ai} form a partition of Ω, i.e.,26

Ai ∩Aj = ∅ ∀i, j, and
⋃
i

Ai = Ω

27

P(B) =
∑
i

P(B | Ai) P(Ai). (2.2)

11

Bayes’ rule Imagine that instead of someone telling us that the condi-1

tioning event actually happened, we simply had a belief2

P(Ai)

about the possibility of such events {Ai}. For each of Ai, we can3

compute the conditional probability P(B | Ai) using (2.1). Say we run4

our experiment and observe that B occurred, how would our belief on the5

events Ai change? In other words, we wish to compute6

P(Ai | B).

This is the subject of Bayes’ rule.7

P(Ai | B) =
P(Ai ∩B)

P(B)

=
P(Ai)P(B|Ai)

P(B)

=
P(Ai)P(B|Ai)∑
i P(Aj) P(B | Aj)

.

(2.3)

Bayes’ rule naturally leads to the concept of independent events. Two8

events A,B ⊂ Ω are independent if observing one does not give us any9

information about the other10

P(A ∩B) = P(A)P(B). (2.4)

This is different from disjoint events. Disjoint events never co-occur, i.e.,11

observing one tells us that the other one did not occur.12

Probability for experiments with real-valued outcomes We need some13

more work in defining probability for events with real-valued outcomes.14

The sample space is easy enough to understand, e.g., Ω = [0, 1] for your15

score at the end of this course. We however run into difficulties if we16

define the probability of general subsets of Ω in terms of the probabilities17

of elementary outcomes (elements of Ω). For instance, if we wish to18

model all elements ω ∈ Ω to be equally likely, we are forced to assign each19

element ω a probability of zero (to be consistent with the second axiom of20

probability). This is not very helpful in determining the probability of the21

score being 0.9. If you instead assigned some small non-zero number to22

P(ωi), then we have undesirable conclusions such as23

P({1, 1/2, 1/3, . . .}) =∞.

The way to fix this is to avoid defining the probability of a set in terms24

of the probability of elementary outcomes and work with more general25

sets. While we would ideally like to be able to specify the probability of26

every subset of Ω, it turns out that we cannot do so in a mathematically27

consistent way. The trick then is to work with a smaller object known as a28

σ-algebra, that is the set of “nice” subsets of Ω.29

12

Given a sample space Ω, a σ-algebra F (also called a σ-field) is a1

collection of subsets of Ω such that2

• ∅ ∈ F3

• If A ∈ F , then Ac ∈ F .4

• If Ai ∈ F for every i ∈ N, then ∪∞i=1Ai ∈ F .5

In short, σ-algebra is a collection of subsets of Ω that is closed under com-6

plement and countable unions. The pair (Ω,F), also called a measurable7

space, is now used to define probability of events. A set A that belongs to8

F is called an event. The probability measure9

P : F → [0, 1].

assigns a probability to events in F . We cannot take F to be too small,10

e.g., elements of F = {∅,Ω} are easy to construct our P but are not very11

useful. For technical reasons, the σ-algebra cannot be too large; notice12

that we used this concept to avoid considering every subset of the sample13

space F = 2Ω. Modern probability is defined using a Borel σ-algebra.14

Roughly speaking, this is an F that is just large enough to do interesting15

things but small enough that mathematical technicalities do not occur.16

2.1.1 Random variables17

A random variable is an assignment of a value to every possible outcome.18

 Random variables are typically denoted
using capital letters, X,Y, Z although we will
be sloppy and not always do so in this course
to avoid complicated notation. The distinction
between a random variable and the value that
it takes will be clear from context.

Mathematically, in our new language of a measurable space, a random19

variable is a function20

X : Ω→ R

if the set {ω : X(ω) ≤ c} is F -measurable for every number c ∈ R. This21

is equivalent to saying that every preimage of the Borel σ-algebra on reals22

B(R) is in F . A statement X(ω) = x = 5 means that the outcome of our23

experiment happens to be ω ∈ Ω when the realized value of the random24

variable is a particular number x equal to 5.25

We can now define functions of random variables, e.g., if X is a26

random variable, the function Y = X3(ω) for every ω ∈ Ω, or Y = X3
27

for short, is a new random variable. ? Let us check that Y satisfies our definition
of a random variable. If {ω : X(ω) ≤ c} lies
in F then the set

{
ω : Y (ω) ≤ c1/3

}
also lies

in F .

An indicator random variable is28

special. If A ⊂ Ω, let IA : Ω→ {0, 1} be the indicator function of this29

set A, i.e., IA(ω) = 1 if ω ∈ A and zero otherwise. If our set A ∈ F ,30

then IA is an indicator random variable.

 The function IA is not a random variable if
A /∈ F , but this is, as we said in the previous
section, a mathematical corner case. Most
subsets of Ω belong to F .

31

Probability mass functions The probability law, or a probability distri-32

bution, of a random variable X is denoted by33

pX(x) := P(X = x) = P ({ω ∈ Ω : X(ω) = x}) .

We denote probability distribution using a lower-case p. It is a function34

of the realized value x in the range of a random variable, and pX(x) ≥ 035

(the probability is non-zero) and
∑
x pX(x) = 1 if X takes on a discrete36

13

number of values. For instance, if X is the number of coin tosses until the1

first head, if we assume that our tosses are independent P(H) = p > 0,2

then we have3

pX(k) = P(X = k) = P(TT · · ·TH) = (1− p)k−1p

for all k = 1, 2, This is what is called a geometric probability mass4

function.5

Cumulative distribution function A cumulative distribution function6

(CDF) is the probability of a random variable X taking a value less than7

an particular x ∈ R, i.e.,8

FX(x) = P(X ≤ x).

 The CDF of a geometric random variable
for different values of p

Note that CDFs need not be continuous: in
the case of a geometric random variable,
since the values that X takes belong to the set
of integers, the CDF is constant between any
two integers.

The CDF FX(x) is a non-decreasing function of x. It converges to zero9

as x→ −∞ and goes to 1 as x→∞.10

Probability density functions A continuous random variable, i.e., one11

that takes values in R is described by a probability density function.12

13

If FX(x) is the CDF of an r.v. X and X takes values in R, the14

probability density function (PDF) fX(x) (or sometimes also denoted by15

pX(x)) is defined to be16

P(a ≤ X ≤ b) =
∫ b

a

fX(x) dx .

We also have the following relationship between the CDF and the PDF,17

the former is the integral of the latter:18

P(−∞ ≤ X ≤ x) = FX(x) =

∫ x

−∞
fX(x) dx .

This leads to the following interpretation of the probability density func-19

tion:20

P(x ≤ X ≤ x+ δ) ≈ fX(x) δ.

Expectation and Variance The expected value of a random variable X21

is22

E[X] =
∑
x

x pX(x)

14

and denotes the center of gravity of the probability mass function. Roughly1

speaking, it is the average of a large number of repetitions of the same2

experiment. Expectation is a linear, i.e.,3

E[aX + b] = aE[X] + b

for any constants a, b. For two independent random variables X,Y we4

have5

E[XY] = E[X]E[Y].

We can also compute the expected value of any function g(X) using6

the same formula7

E[g(X)] =
∑
x

g(x) pX(x).

In particular, if g(x) = x2 we have the second moment E[X2]. The8

variance is defined to be9

Var(X) = E
[
(X − E[X])2

]
=
∑
x

(x− E[X])
2
pX(x)

= E[X2]− (E[X])
2
.

The variance is always non-negative Var(X) ≥ 0. For an affine function10

of X , we have11

Var(aX + b) = a2 Var(X).

For continuous-valued random variables, the expectation is defined as12

E[X] =

∫ ∞

−∞
xpX(x) dx ;

the definition of variance remains the same.13

Joint distributions We often wish to think of the joint probability distri-14

bution of multiple random variables, say the location of an autonomous car15

in all three dimensions. The cumulative distribution function associated16

with this is therefore17

FX,Y,Z(x, y, z) = P(X ≤ x, Y ≤ y, Z ≤ z).

Just like we have the probability density of a single random variable, we18

can also write the joint probability density of multiple random variables19

fX,Y,Z(x, y, z). In this case we have20

FX,Y,Z(x, y, z) =

∫ x

−∞

∫ y

−∞

∫ z

−∞
fX,Y,Z(x, y, z) dz dy dx .

15

The joint probability density factorizes if two random variables are1

independent:2

fX,Y (x, y) = fX(x)fY (y) for all x, y.

Two random variables are uncorrelated if and only if3

E[XY] = E[X]E[Y].

Note that independence implies uncorrelatedness, they are not equivalent.4

The covariance is defined as5

Cov(X,Y) = E[XY]− E[X]E[Y].

Conditioning As we saw before, for a single random variable X we6

have7

P(x ≤ X ≤ x+ δ) ≈ fX(x) δ.

For two random variables, by analogy we would like8

P(x ≤ X ≤ x+ δ | Y ≈ y) ≈ fX|Y (x | y)δ.

The conditional probability density function ofX given Y is defined to be9

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
if fY (y) > 0.

For any given y, the conditional PDF is a normalized section of the joint10

PDF, as shown below.11

12

16

Continuous form of Bayes rule We can show using the definition of1

conditional probability that2

fY |X(y | x) =
fX|Y (x | y)
fX(x)

. (2.5)

Similarly we also have the law of total probability in the continuous form3

fX(x) =

∫ ∞

−∞
fX|Y (x | y) fY (y) dy .

2.2 Using Bayes rule for combining evidence4

We now study a prototypical state estimation problem. Let us consider a5

robot that is trying to check whether the door to a room is open or not.6

7

We will abstract each observation by the sensors of the robot as a8

random variable Y . This could be the image from its camera after running9

some algorithm to check the state of the door, the reading from a laser10

sensor (if the time-of-flight of the laser is very large then the door is open),11

or any other mechanism. We have two kinds of conditional probabilities12

in this problem13

P(open | Y) is a diagnostic quantity, while
P(Y | open) is a causal quantity.

The second one is called a causal quantity because the specific Y we14

observe depends upon whether the door is open or not. The first one is15

called a diagnostic quantity because using this observation Y we can infer16

the state of the environment, i.e., whether the door is open or not. Next17

imagine how you would calibrate the sensor in a lab: for each value of18

the state of the door open, not open you would record all the different19

observations received Y and calculate the conditional probabilities. The20

causal probability is much easier to calculate in this context, one may21

even use some knowledge of elementary physics to model the probability22

P(Y | open), or one may count the number of times the observation is23

Y = y for a given state of the door.24

Bayes rule allows us to transform causal knowledge into diagnostic25

17

knowledge1

P(open | Y) =
P(Y | open)P(open)

P(Y)
.

Remember that the left hand side (diagnostic) is typically something that2

we desire to calculate. Let us put some numbers in this formula. Let3

P(Y | open) = 0.6 and P(Y | not open) = 0.3. We will imagine that the4

door is open or closed with equal probability: P(open) = P(not open) =5

0.5. We then have6

P(open | Y) =
P(Y | open)P(open)

P(Y)

=
P(Y | open)P(open)

P(Y | open)P(open) + P(Y | not open)P(not open)

=
0.6× 0.5

0.6× 0.5 + 0.3× 0.5
=

2

3
.

Notice something very important, the original (prior) probability of the7

state of the door was 0.5. If we have a sensor that fires with higher8

likelihood if the door is open, i.e., if9

P(Y | open)
P(Y | not open)

> 1

then the probability of the door being open after receiving an observation10

increases. If the likelihood were less than 1, then observing a realization11

of Y would reduce our estimate of the probability of the door being open.12

 The denominator in Bayes rule, i.e., P(Y)

is called the evidence in statistics.
Combining evidence for Markov observations Say we updated the13

prior probability using our first observation Y1, let us take another ob-14

servation Y2. How can we integrate this new observation? It is again an15

application of Bayes rule using two observations, or in general multiple16

observations Y1, . . . , Yn. Let us imagine this time that X = open.17

P(X | Y1, . . . , Yn) =
P(Yn | X,Y1, . . . , Yn−1)P(X | Y1, . . . , Yn−1)

P(Yn | Y1, . . . , Yn−1)
.

Let us make the very natural assumption that says that our observations18

from the sensor Y1, . . . , Yn are independent given the state of the door X .19

This is known as the Markov assumption.20

We now have21

P(X | Y1, . . . , Yn) =
P(Yn | X)P(X | Y1, . . . , Yn−1)

P(Yn | Y1, . . . , Yn−1)

= η P(Yn | X)P(X | Y1, . . . , Yn−1)

where22

η−1 = P(Yn | Y1, . . . , Yn−1)

is the denominator. We can now expand the diagnostic probability on the23

18

right-hand side recursively to get1

P(X | Y1, . . . , Yn) =
n∏
i=1

ηi P(Yi | X) P(X). (2.6)

where η−1
i = P(Yi | Y1, . . . , Yi−1).2

The calculation in (2.6) is very neat and you should always
remember it. Given multiple observations Y1, . . . , Yn of the same
quantity X , we can compute the conditional probability P(X |
Y1, . . . , Yn) if we code up two functions to compute

• the causal probability (also called the likelihood of an observa-
tion) P(Yi | X), and

• the denominator η−1
i .

Given these two functions, we can use the recursion to update multiple
observations. The same basic idea also holds if you have two quantities
to estimate, e.g., X1 = open door and X2 = color of the door. The
recursive application of Bayes rule lies at the heart of all state
estimation methods.

Let us again put some numbers into these formulae, imagine that the3

observation Y2 was taken using a different sensor which now has4

P(Y2 | open) = 0.5 and P(Y2 | not open) = 0.6.

We have from our previous calculation that P(open | Y1) = 2/3 and5

P(open | Y1, Y2) =
P(Y2 | open)P(open | Y1)

P(Y2 | open)P(open | Y1) + P(Y2 | not open)P(not open | Y1)

=
0.5× 2/3

0.5× 2/3 + 0.6× 1/3
=

5

8
= 0.625.

Notice in this case that the probability that the door is open has reduced6

from P(open | Y1) = 2/3.7

2.2.1 Coherence of Bayes rule8

Would the probability change if we used sensor Y2 before using Y1? In9

this case, the answer to this question is no and you are encouraged to10

perform this computation for yourselves. Bayes rule is coherent, it will11

give the same result regardless of the order of observations. ? Can you think of a situation where the
order of incorporating observations matters?

12

The order of incorporating observation matters if the state of the13

world changes while we make observations, e.g., if we have a sensor that14

tracks the location of a car, the car presumably moves in between two15

observations and we would get the wrong answer if our question was “is16

there a car at this location”.17

19

As we motivated in the previous chapter, movement is quite funda-1

mental to robotics and we are typically concerned with estimating the2

state of a dynamic world around us using our observations. We will next3

study the concept of a Markov Chain which is a mathematical abstraction4

for the evolution of the state of the world.5

2.3 Markov Chains6

Consider the Whack-The-Mole game: a mole has burrowed a network of7

three holes x1, x2, x3 into the ground. It keeps going in and out of the8

holes and we are interested in finding which hole it will show up next so9

that we can give it a nice whack.10

11

This is an example of a Markov chain. There is a transition matrix T12

which determines the probability Tij of the mole resurfacing on a given13

hole xj given that it resurfaced at hole xi the last time. The matrix T k is14

the k-step transition matrix15

T kij = P(Xk = xj | X0 = xi).

You can see the animations at https://setosa.io/ev/markov-chains to build16

more intuition.17

The key property of a Markov chain is that the next state Xk+1

is independent of all the past states X1, . . . , Xk−1 given the current
state Xk.

Xk+1 ⊥⊥ X1, . . . , Xk−1 | Xk

This is known as the Markov property and all systems where we
can define a “state” which governs their evolution have this property.
Markov chains form a very broad class of systems. For example, all
of Newtonian physics fits this assumption.

? Does a deterministic dynamical system,
e.g., a simple pendulum, also satisfy the
Markov assumption? What is the transition
matrix in this case?

What is the state of the following systems?

? Can you think of a system which does not
have the Markov property?

https://setosa.io/ev/markov-chains

20

Consider the paramecium above. Its position depends upon a large1

number of factors: its own motion from the previous time-step but also2

the viscosity of the material in which it is floating around. One may3

model the state of the environment around the paramecium as a liquid4

whose molecules hit thousands of times a second, essentially randomly,5

and cause disturbances in how the paramecium moves. Let us call this6

disturbance “noise in the dynamics”. If the motion of the molecules of the7

liquid has some correlations (does it, usually?), this induces correlations in8

the position of the paramecium. The position of the organism is no longer9

Markov. This example is important to remember, the Markov property10

defined above also implies that the noise in the state transition matrix is11

independent.12

Evolution of a Markov chain The probability of being in a state xi at13

time k + 1 can be written as14

P(Xk+1 = xi) =

N∑
j=1

P(Xk+1 = xi | Xk = xj) P(Xk = xj).

This equation governs how the probabilities P(Xk = xi) change with time15

k. Let’s do the calculations for the Whack-The-Mole example. Say the16

mole was at hole x1 at the beginning. So the probability distribution of its17

presence18

π(k) =

P(Xk = x1)

P(Xk = x2)

P(Xk = x3)

is such that19

π(1) = [1, 0, 0]⊤.

We can now write the above formula as20

π(k+1) = T ′π(k) (2.7)

1 and compute the distribution π(t) for all times21

π(2) = T ′π(1) = [0.1, 0.4, 0.5]⊤;

π(3) = T ′π(2) = [0.17, 0.34, 0.49]⊤;

π(4) = T ′π(3) = [0.153, 0.362, 0.485]⊤;

...

π(∞) = lim
k→∞

T ′k π(1)

= [0.158, 0.355, 0.487]⊤.

The numbers P(Xk = xi) stop changing with time k. Under certain tech-22

nical conditions, the distribution π(∞) is unique (single communicating23

1Let us denote the transpose of the matrix T using the Matlab notation T ′ instead of T⊤

for clarity.

21

class for a Markov chain with a finite number states). We can compute1

this invariant distribution by writing2

π(∞) = T ′π(∞).

We can also compute the distribution π(∞) directly: the invariant dis-3

tribution is the right-eigenvector of the matrix T ′ corresponding to the4

eigenvalue 1. ? Do we always know that the transition
matrix has an eigenvalue that is 1?

5

Example 2.1. Consider a Markov chain on two states where the transition6

matrix is given by7

T =

[
0.5 0.5

0.4 0.6

]
.

The invariant distribution is8

π(1) = 0.5π(1) + 0.4π(2)

π(2) = 0.5π(1) + 0.6π(2).

Note that the constraint for π being a probability distribution, i.e., π(1) +9

π(2) = 1 is automatically satisfied by the two equations. We can solve for10

π(1), π(2) to get11

π(1) = 4/9 π(2) = 5/9.

2.4 Hidden Markov Models (HMMs)12

213

Markov chains are a good model for how the state of the world14

evolves with time. We may not always know the exact state of these15

systems and only have sensors, e.g., cameras, LiDARs, and radars, to16

record observations. These sensors are typically noisy. So we model the17

observations as random variables.18

Hidden Markov Models (HMMs) are an abstraction to reason about19

observations of the state of a Markov chain. An HMM is a sequence20

of random variables Y1, Y2, . . . , Yn such that the distribution of Yk only21

depends upon the hidden state Xk of the associated Markov chain.22

2Parts of this section closely follow Emilio Frazzoli’s course notes at
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-
autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec20.pdf
and https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-
autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec21.pdf

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec20.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec20.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec21.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec21.pdf

22

Figure 2.1: A Hidden Markov Model with the underlying Markov chain, the
observation at time k only depends upon the hidden state at that time instant.
Ignore the notation Z1, . . . , Zt we will denote the observations by Yk.

Notice that an HMM always has an underlying Markov chain behind1

it. For example, if we model the position of a car Xk as a Markov chain,2

our observation of the position at time k would be Yk. In our example3

of the robot sensing whether the door is open or closed using multiple4

observations across time, the Markov chain is trivial, it is simply the5

transition matrix P(not open | not open) = P(open | open) = 1. Just like6

Markov chains, HMMs are a very general class of mathematical models7

that allow us to think about multiple observations across time of a Markov8

chain.9

Let us imagine that the observations of our HMM are also finite in10

number, e.g., your score in this course ∈ [0, 100] where the associated11

state of the Markov chain is your expertise in the subject matter. We will12

write a matrix of observation probabilities13

Mij = P(Yk = yj | Xk = xi). (2.8)

The matrixM has non-negative entries, after all, each entry is a probability.14

Since each state has to result in some observation, we also have15 ∑
j

Mij = 1.

The state transition probabilities of the associated Markov chain are16

Tij = P(Xk+1 = xj | Xk = xi).

Given the abstraction of an HMM, we may be interested in solving17

a number of problems. We will consider the problem where the state18

Xk is the position of a car (which could be stationary or moving) and19

observations Yk give us some estimate of the position.20

1. Filtering: Given observations up to time k, compute the distribution21

of the state at time k22

P(Xk | Y1, . . . , Yk).

This is the most natural problem to understand: we want to find the23

probability of the car being at a location at time k given all previous24

observations. This is a temporally causal prediction, i.e., we are not25

using any information from the future to reason about the present.26

23

2. Smoothing: Given observations up to time k, compute the distribu-1

tion of the state at any time j < k2

P(Xj | Y1, . . . , Yk) for j < k.

The observation at a future time Yk+1 gives us some indication3

of where the car might have been at time k. In this case we are4

interested in using the entire set of observations from the past5

Y1, . . . , Yj , the future Yj+1, . . . , Yk to estimate the position of the6

car. Of course, this problem can only be solved ex post facto, i.e.,7

after the time instant j. An important thing to remember is that we8

are interested in the position of the car for all j < k in smoothing.9

3. Prediction: Given observations up to time k, compute the distribu-10

tion of the state at a time j > k11

P(Xj | Y1, . . . , Yk) for j > k.

This is the case when we wish to make predictions about the state12

of the car j > k given only observations until time k. If we knew13

the underlying Markov chain for the HMM and its transition matrix14

T , this would amount to running (2.7) forward using the output of15

the filtering problem as the initial distribution of the state. ? Why is this true?16

4. Decoding: Find the most likely state trajectory X1, . . . , Xk that17

maximizes the probability18

P(X1, . . . , Xk | Y1, . . . , Yk)

given observations Y1, . . . , Yk. Observe that the smoothing problem19

is essentially solved independently for all time-steps j < k. It stands20

to reason that if we knew a certain state (say car made a right turn)21

was likely given observations at time k + 1 and that the traffic22

light was green at time k (given our observations of the traffic23

light), then we know that the car did not stop at the intersection at24

time k. The decoding problem allows us to reason about the joint25

probability of the states and outputs the most likely trajectory given26

all observations.27

5. Likelihood of observations: Given the observation trajectory,28

Y1, . . . , Yk, compute the probability29

P(Y1, . . . , Yk).

As you may recall, this is the denominator that we need for the30

recursive application of Bayes rule. It is made difficult by the fact31

that we do not know the state trajectory X1, . . . , Xk corresponding32

to these observations.33

These problems are closely related with each other and we will next dig34

deeper into them. We will first discuss two building blocks, called the35

24

forward and backward algorithm that together help solve all the above1

problems.2

2.4.1 The forward algorithm3

Consider the problem of computing the likelihood of observations. We4

can certainly write5

P(Y1, . . . , Yk)

=
∑

all (x1,...,xk)

P(Y1, . . . , Yk | X1, . . . , Xk) P(X1, . . . , Xk)

=
∑

all (x1,...,xk)

k∏
i=1

P(Yi = yi | Xi = xi) P(X1 = x1)

k∏
i=2

P(Xk = xk | Xk−1 = xk−1)

=
∑

all (x1,...,xk)

Mx1y1 Mx2y2 . . .Mxkyk πx1
Tx1x2

. . . Txk−1xk .

But this is a very large computation, for each possible trajectory (x1, . . . , xk)6

the states could have taken, we need to perform 2k matrix multiplications.7

? How many possible state trajectories are
there? What is the total cost of computing the
likelihood of observations?

8

Forward algorithm We can simplify the above computation using
the Markov property of the HMM as follows. We will define a
quantity known as the forward variable

αk(x) = P(Y1, . . . , Yk, Xk = x) (2.9)

where Y1, . . . , Yk is our observation sequence up to time k. Observe
now that

1. We can initialize

α1(x) = πx Mx,y1 for all x.

2. For each time i = 1, . . . , k−1, for all states x, we can compute

αk+1(x) =Mxyk+1

∑
x′

αk(x
′) Tx′x.

using the law of total probability.

3. Finally, we have

P(Y1, . . . , Yk) =
∑
x

αk(x)

by marginalizing over the state variables Xk.

25

This recursion in the forward algorithm is a powerful idea and is much1

faster than our naive summation above. ? What is the computational complexity of
the Forward algorithm?

2

2.4.2 The backward algorithm3

Just like the forward algorithm performs the computation recursively4

in the forward direction, we can also perform a backward recursion to5

obtain the probability of the observations. Let us imagine that we have an6

observation trajectory7

Y1, . . . , Yt

up to some time t. We first define the so-called backward variables which8

are the probability of a future trajectory given the state of the Markov9

chain at a particular time instant10

βk(x) = P(Yk+1, Yk+2, . . . , Yt | Xk = x). (2.10)

Notice that the backward variables βk with the conditioning on Xk = x11

are slightly different than the forward variables αk which are the joint12

probability of the observation trajectory and Xk = x.13

Backward algorithm We can compute the variables βk(x) recur-
sively again as follows.

1. Initialize
βt(x) = 1 for all x.

This simply indicates that since we are at the end of the
trajectory, the future trajectory Yt+1, . . . does not exist.

2. For all k = t− 1, t− 2, . . . , 1, for all x, update

βk(x) =
∑
x′

βk+1(x
′) Txx′Mx′yk+1

.

3. We can now compute

P(Y1, . . . , Yt) =
∑
x

β1(x) πx Mxy1 .

? What is the computational complexity of
running the backward algorithm?

Implementing the forward and backward algorithms in practice The14

update equations for both αk and βk can be written using a matrix vector15

multiplication. We maintain the vectors16

αk := [αk(x1), αk(x2), . . . , αk(xN)]

βk := [βk(x1), βk(x2), . . . , βk(xN)]

26

and can write the updates as1

α⊤
k+1 =M⊤

·,yk+1
⊙
(
α⊤
k T

)
where⊙ denotes the element-wise product andM·,yk+1

is the yth
k+1 column2

of the matrix M . The update equation for the backward variables is3

βk = T
(
βk+1 ⊙M·,yk+1

)
.

You must be careful about directly implement these recursions however,4

because we are iteratively multiplying by matrices T,M whose entries5

are all smaller than 1 (they are all probabilities after all), we can quickly6

run into difficulties where αk, βk become too small for some states and7

we get numerical underflow. You can implement these algorithms in the8

log-space by writing similar update equations for logαk and log βk to9

avoid such numerical issues.10

2.4.3 Bayes filter11

Let us now use the forward and backward algorithms to solve the filtering12

problem. We want to compute13

P(Xk = x | Y1, . . . , Yk)

for all states x in the Markov chain. We have that14

P(Xk = x | Y1, . . . , Yk) =
P(Xk = x, Y1, . . . , Yk)

P(Y1, . . . , Yk)
= η αk(x) (2.11)

where since P(Xk = x | Y1, . . . , Yk) is a legitimate probability distribu-15

tion on x, we have16

η =

(∑
x

αk(x)

)−1

.

As simple as that. In order to estimate the state at time k, we run the17

forward algorithm to update variables αi(x) from i = 1, . . . , k. We can18

implement this using the matrix-vector multiplication in the previous19

section.20

This is a commonly used algorithm known as the Bayes filter and is21

our first insight into state estimation.22

An important fact Even if the filtering estimate is computed recursively23

using each observation as it arrives, the estimate is actually the probability24

of the current state given all past observations.25

P(Xk = x | Y1, . . . , Yk) ̸= P(Xk = x | Yk)

This is an extremely important concept to remember, in state-estimation we26

are always interested in computing the state given all available observations.27

27

In the same context, is the following statement true?1

P(Xk = x | Y1, . . . , Yk) = P(Xk = x | Yk, Xk−1)

2.4.4 Smoothing2

Given observations till time t, we would like to compute3

P(Xk = x | Y1, . . . , Yt)

for all time instants k = 1, . . . , t. Observe the filtering4

P(Xk = x | Y1, . . . , Yt) =
P(Xk = x, Y1, . . . , Yt)

P(Y1, . . . , Yt)

=
P(Xk = x, Y1, . . . , Yk, Yk+1, . . . , Yt)

P(Y1, . . . , Yt)

=
P(Yk+1, . . . , Yt | Xk = x, Y1, . . . , Yk) P(Xk = x, Y1, . . . , Yk)

P(Y1, . . . , Yt)

=
P(Yk+1, . . . , Yt | Xk = x) P(Xk = x, Y1, . . . , Yk)

P(Y1, . . . , Yt)

=
βk(x) αk(x)

P(Y1, . . . , Yt)
(2.12)

Study the first step carefully, the numerator is not equal to αk(x) because5

observations go all the way till time t. The final step uses both the Markov6

and the HMM properties: future observations Yk+1, . . . , Yt depend only7

upon future states Xk+1, . . . , Xt (HMM property) which are independent8

of the past observations and states give the current state Xk = x (Markov9

property).10

Smoothing can therefore be implemented by running the forward11

algorithm to update αk from k = 1, . . . , t and the backward algorithm to12

update βk from time k = t, . . . , 1.

? Both the filtering problem and the
smoothing problem give us the probability of
the state given observations. Discuss which
one should we should use in practice and
why?13

To see an example of smoothing in action, see ORB-SLAM 2. What14

do you think is the state of the Markov chain in this video?15

Example for the Whack-the-mole problem Let us assume that we do16

not see which hole the mole surfaces from (say it is dark outside) but we17

can hear it. Our hearing is not very precise so we have an observation18

probabilities19

M =

0.6 0.2 0.2

0.2 0.6 0.2

0.2 0.2 0.6

 .
Assume that the mole surfaces three times and we make the measurements20

Y1 = 1, Y2 = 3, Y3 = 3.

We want to compute the distribution of the states the mole could be in at21

each time. Assume that we know that the mole was in hole 1 at the first22

step, i.e., π1 = (1, 0, 0) for the Markov chain, like we had in Section 2.3.23

https://www.youtube.com/watch?v=IuBGKxgaxS0

28

Run the forward backward algorithm and see that1

α1 = (0.6, 0, 0) , α2 = (0.012, 0.048, 0.18) , α3 = (0.0041, 0.0226, 0.0641) ,

and2

β3 = (1, 1, 1) , β2 = (0.4, 0.44, 0.36) , β1 = (0.1512, 0.1616, 0.1392) .

Using these, we can now compute the filtering and the smoothing state3

distributions, let us denote them by πf and πs respectively.4

πf1 = (1, 0, 0) , πf2 = (0.05, 0.2, 0.75), πf3 = (0.045, 0.2487, 0.7063)

and5

πs1 = (0.999, 0, 0) , πs2 = (0.0529, 0.2328, 0.7143), πs3 = (0.045, 0.2487, 0.7063).

? Do you notice any pattern in the solution
returned by the filtering and the smoothing
problem? Explain why that is the case.

6

2.4.5 Prediction7

We would like to compute the future probability of the state give observa-8

tions up to some time9

P(Xk = x | Y1, . . . , Yt) for t < k.

Here is a typical scenario when you would need this estimate. Imagine10

that you are tracking the position of a car using images from your camera.11

You are using a deep network to detect the car in each image Yk and since12

the neural network is quite slow, the car moves multiple time steps forward13

before you get the next observation. As you can appreciate, it would help14

us compute a more accurate estimate of the conditional probability of15

Xk = x if we propagated the position of the car in between successive16

observations using our Markov chain. This is easy to do.17

1. We compute the filtering estimate πft = P(Xt = x | Y1, . . . , Yt),18

using the forward algorithm.19

2. Propagate the Markov chain forward for k − t time-steps using πft20

as the initial condition using21

πi+1 = T ′πi.

2.4.6 Decoding: Viterbi’s Algorithm22

Both filtering and smoothing calculate the probability distribution of the23

state at time k. For instance, after recording a few observations, we can24

compute the probability distribution of the position of the car at each time25

instant. How do we get the most likely trajectory of the car? One option26

is to choose27

X̂k = argmax
x

P(Xk = x | Y1, . . . , Yt)

29

at each instant and output1

(X̂1, . . . , X̂t)

as the answer. This is however only the point-wise best estimate of the2

state. This sequence may not be the most likely trajectory of the Markov3

chain underlying our HMM. In the decoding problem, we are interested in4

computing the most likely state trajectory, not the point-wise most likely5

sequence of states. Let us take an example of the Whack-the-mole again.6

We will use a slightly different Markov chain shown below.7

8

There are three states x1, x2, x3 with known initial distribution π =9

(1, 0, 0) and transition probabilities and observations given by matrices10

T,M respectively. Let us say that we only have two observations {y2, y3}11

this time and get the observation sequence12

(2, 3, 3, 2, 2, 2, 3, 2, 3)

from our sensor. The filtering estimates are as follows.13

14

The most likely state at each instant is marked in blue. The point-wise15

most likely sequence of states is16

(1, 3, 3, 3, 3, 2, 3, 2, 3).

Observe that this is not even feasible for the Markov chain. The transition17

from x3 → x2 is not even possible, so this answer is clearly wrong. Let18

us look at the smoothing estimates.19

30

1

The point-wise most likely states in this case are feasible2

(1, 2, 2, 2, 2, 2, 3, 3, 3).

Because the smoothing estimate at time k also takes into account the3

observations from the future t > k, it effectively eliminates the impossible4

transition from x3 → x2. This is still not however the most likely5

trajectory.6

We will exploit the Markov property again to calculate the most likely7

state trajectory recursively. Let us define the “decoding variables” as8

δk(x) = max
(x1,...,xk−1)

P(X1 = x1, . . . , Xk−1 = xk−1, Xk = x, Y1, . . . , Yk);

(2.13)
this is the joint probability of the most likely state trajectory that ends at9

the state x at time k while generating observations Y1, . . . , Yk. We can10

now see that11

δk+1(x) = max
x′

δk(x
′) Tx′x Mx,yk+1

; (2.14)

the joint probability that the most likely trajectory ends up at state x at12

time k + 1 is the maximum of among the joint probabilities that end up13

at any state x′ at time k multiplied by the one-step state transition Tx′x14

and observation Mxyk+1
probabilities. We would like to iterate upon this15

identity to find the most likely path. The key idea is to maintain a pointer16

to the parent state parentk(x) of the most likely trajectory, i.e., the state17

from which you could have reached Xk = x given observations. Let us18

see how.19

Viterbi’s algorithm First initialize

31

δ1(x) = πx Mxy1

parentk(x) = null.

for all states x. For all times k = 1, . . . , t− 1, for all states x, update

δk+1(x) = max
x′

δk(x
′) Tx′x Mx,yk+1

parentk+1(x) = argmax
x′

(δk(x
′) Tx′x) .

The most likely final state is

x̂t = argmax
x′

δt(x
′)

and we can now backtrack using our parent pointers to find the most
likely trajectory that leads to this state

x̂k = parentk+1(x̂k+1).

The most likely trajectory given observations is

x̂1, x̂2, . . . , x̂t

and the joint probability of this trajectory and all observations is

P(X1 = x̂1, . . . , Xt = x̂t, Y1 = y1, . . . , Yt = yt) = δt(x̂t).

This is a very widely used algorithm, both in robotics and in other1

areas such as speech recognition (given audio, find the most likely sentence2

spoken by the person), wireless transmission and reception, DNA analysis3

(e.g., the state of the Markov chain is the sequence ACTG. . . and our4

observations are functions of these states at periodic intervals). Its name5

comes from Andrew Viterbi who developed the algorithm in the late 60s,6

he is one of the founders of Qualcomm Inc.7

Here is how Viterbi’s algorithm would look like for our whack-the-8

model example.9

δ1 = (0.6, 0, 0), δ2 = (0.012, 0.048, 0.18), δ3 = (0.0038, 0.0216, 0.0432)

parent1 = (null, null, null), parent2 = (1, 1, 1), parent3 = (2, 3, 3).

The most likely path is the one that ends in 3 with joint probability 0.0432.10

This path is (1, 3, 3).11

Let us also compute Viterbi’s algorithm for a longer observation12

sequence.13

32

1

The most likely trajectory is2

(1, 3, 3, 3, 3, 3, 3, 3, 3).

Notice that if we had only 8 observations, the most likely trajectory would3

be4

(1, 2, 2, 2, 2, 2, 2, 2, 2).

 Just like the Bayes filter, Viterbi’s
algorithm is typically implemented using
log δk(x) to avoid numerical underflows.
This is particularly important for Viterbi’s
algorithm: since δk(x) is the probability of an
entire state and observation trajectory it can
get small very quickly for unlikely states (as
we see in this example).

5

What is the computational complexity of Viterbi’s algorithm? It is6

linear in the time-horizon t and quadratic in the number of states in the7

Markov chain. We are plucking out the most likely trajectory out of8

card(X)t possible trajectories using the δk variables. Does this remind9

you of some other problem that you may have seen before?10

2.4.7 Shortest path on a Trellis graph11

You may have seen Dĳkstra’s algorithm before that computes the shortest12

path to reach a node in the graph given costs of traversing every edge.13

Figure 2.2: A graph with costs assigned to every edge. Dĳkstra’s algorithm finds
the shortest path in this graph between nodes A and B using dynamic programming.

In the case of Viterbi’s algorithm, we are also interested in finding the14

33

most likely path. For example we can write our joint probabilities as1

P(X1, X2, X3 | Y1, Y2, Y3) =
P(Y1 | X1) P(Y2 | X2) P(Y3 | X3) P(X1)P(X2 | X1)P(X3 | X2)

P(Y1, Y2, Y3)
.

⇒ log P(X1, X2, X3 | Y1, Y2, Y3) = log P(Y1 | X1) + log P(Y2 | X2) + log P(Y3 | X3)

+ log P(X1) + log P(X2 | X1) + log P(X3 | X2)− log P(Y1, Y2, Y3).

To find the most likely trajectory, we want to minimize− log P(X1, X2, X3 |2

Y1, Y2, Y3). The term log P(Y1, Y2, Y3) does not depend on X1, X2, X33

and is a constant as far as the most likely path given observations is4

concerned. We can now write down the “Trellis” graph as shown below.5

Figure 2.3: A Trellis graph for a 3-state HMM for a sequence of three observations.
Disregard the subscript x0.

Each edge is either the log-probability of the transition of the Markov6

chain, or it is the log-probability of the receiving the observation given a7

state. We create a dummy initial node A and a dummy terminal node B.8

The edge-costs of the final three states, in this case sunny/cloudy/rainy,9

are zero. The costs from node A to the respective states are the log-10

probabilities of the initial state distribution. Dĳkstra’s algorithm, which11

we will study in Module 2 in more detail, now gives the shortest path on the12

Trellis graph. This approach is the same as that of the Viterbi’s algorithm:13

our parent pointers parentk(x) are the parent nodes in Dĳkstra’s algorithm14

and our delta variables δk(x) is the cost of each node in the Trellis graph15

maintained by the Dĳkstra’s algorithm.16

2.5 Learning an HMM from observations17

In the previous sections, given an HMM that had an initial distribution π18

for the Markov chain, a transition matrix T for the Markov chain and an19

observation matrix M20

λ = (π, T,M)

we computed various quantities such as21

P(Y1, . . . , Yt; λ)

34

for an observation sequence Y1, . . . , Yt of the HMM. Given an observation1

sequence, we can also go back and update our HMM to make this2

observation sequence more likely. This is the simplest instance of learning3

an HMM. The prototypical problem to imagine that our original HMM λ4

comes from is our knowledge of the original problem (say a physics model5

of the dynamics of a robot and its sensors). Given more data, namely6

the observations, we want to update this model. The most natural way to7

update the model is to maximize the likelihood of observations given our8

model, i.e.,9

λ∗ = argmax
λ

P(Y1, . . . , Yt; λ).

This is known as maximum-likelihood estimation (MLE). In this section10

we will look at the Baum-Welch algorithm which solves the MLE problem11

iteratively. Given λ, it finds a new HMM λ′ = (π′, T ′,M ′) (the ′ denotes12

a new matrix, not the transpose here) such that13

P(Y1, . . . , Yt; λ′) > P(Y1, . . . , Yt; λ).

Let us consider a simple problem. We are going to imagine that the14

FBI is trying to catch the dangerous criminal Keyser Soze who is known15

to travel between two cities Los Angeles (LA) which will be state x1 and16

New York City (NY) which will be state x2. The FBI initially have no clue17

about his whereabouts, so their initial belief on his location is uniform18

π = [0.5, 0.5]. His movements are modeled using a Markov chain19

T =

[
0.5 0.5

0.5 0.5

]
,

e.g., if Soze is in LA, he is likely to stay in LA or go to NY with equal20

probability. The FBI can make observations about him, they either observe21

him to be in LA (y1), NY (y2) or do not observe anything at all (null, y3).22

M =

[
0.4 0.1 0.5

0.1 0.5 0.4

]
.

Say that they received an observation sequence of 20 periods23

(null, LA, LA, null, NY, null, NY, NY, NY, null, NY, NY, NY, NY, NY, null, null, LA, LA, NY).

Can we say something about the probability of Soze’s movements? At24

each time k we can compute25

γk(x) := P(Xk = x | Y1, . . . , Yt)

the smoothing probability. We can also compute the most likely state26

trajectory he could have taken given our observations using decoding. Let27

us focus on the smoothing probabilities γk(x) as shown below.28

35

1

The point-wise most likely sequence of states after doing so turns out to be2

(LA, LA, LA, LA, NY, LA, NY, NY, NY, LA, NY, NY, NY, NY, NY, LA, LA, LA, LA, NY).

Notice how smoothing fills in the missing observations above.3

Expected state visitation counts The next question we should ask is4

how should we update the model λ given this data. We are going to learn5

the entries of the state-transition using6

T ′
x,x′ =

E[number of transitions from x to x′]
E[number of times the Markov chain was in state x]

.

What is the denominator, it is simply the sum of the probabilities that the7

Markov chain was at state x at time 1, 2, . . . , t− 1 given our observations,8

i.e.,9

E[number of times the Markov chain was in state x] =
t−1∑
k=1

γk(x).

The numerator is given in a similar fashion. We will define a quantity10

ξk(x, x
′) := P(Xk = x,Xk+1 = x′ | Y1, . . . , Yt)
= η αk(x)Tx,x′Mx′,yk+1

βk+1(x
′);

(2.15)

where η is a normalizing constant such that
∑
x,x′ ξk(x, x

′) = 1.

? Derive the expression for ξk(x, x′) for
yourself.

Observe11

that ξk is the joint probability of Xk and Xk+112

ξk(x, x
′) = P(Xk+1 = x′ | Xk = x, Y1, . . . , Yt) γk(x)

̸= Tx,x′ γk(x)

= P(Xk+1 = x′ | Xk = x) P(Xk = x | Y1, . . . , Yt).

The expected value of transitioning between states x and x′ is13

E[number of transitions from x to x′] =
t−1∑
k=1

ξk(x, x
′).

36

This gives us our new state transition matrix, you will see in the homework1

that it comes to be2

T ′ =

[
0.47023 0.52976

0.35260 0.64739

]
.

This is a much better informed FBI than the other we had before beginning3

the problem where the transition matrix was all 0.5s.4

The new initial distribution What is the new initial distribution for5

the HMM? Recall that we are trying to compute the best HMM given the6

observations, so if the initial distribution was7

π = P(X1)

before receiving any observations from the HMM, it is now8

π′ = P(X1 | Y1, . . . , Yt) = γ1(x);

the smoothing estimate at the first time-step.9

Updating the observation matrix We can use a similar logic at the10

expected state visitation counts to write11

M ′
x,y =

E[number of times in state x, when observation was y]
E[number of times the Markov chain was in state x]

=

∑t
k=1 γk(x)1{yk=y}∑t

k=1 γk(x)
.

You will see in your homework problem that this matrix comes up to be12

M ′ =

[
0.39024 0.20325 0.40650

0.06779 0.706214 0.2259

]
.

Notice how the observation probabilities for the unknown state y3 have13

gone down because the Markov chain does not have those states.14

The ability to start with a rudimentary model of the HMM and update15

it using observations is quite revolutionary. Baum et al. proved in the16

paper Baum, Leonard E., et al. "A maximization technique occurring17

in the statistical analysis of probabilistic functions of Markov chains."18

The annals of mathematical statistics 41.1 (1970): 164-171. Discuss the19

following questions:20

• When do we stop in our iterated application of the Baum-Welch21

algorithm?22

• Are we always guaranteed to find the same HMM irrespective of23

our initial HMM?24

• If our initial HMM λ is the same, are we guaranteed to find the25

same HMM λ′ across two different iterations of the Baum-Welch26

algorithm?27

• How many observations should we use to update the HMM?28

Chapter 31

Kalman Filter and its2

variants3

Reading
1. Barfoot, Chapter 3, 4 for Kalman filter

2. Thrun, Chapter 3 for Kalman filter, Chapter 4 for particle filters

3. Russell Chapter 15.4 for Kalman filter

Hidden Markov Models (HMMs) which we discussed in the previous4

chapter were a very general class of models. As a consequence algorithms5

for filtering, smoothing and decoding that we prescribed for the HMM are6

also very general. In this chapter we will consider the situation when we7

have a little more information about our system. Instead of writing the8

state transition and observation matrices as arbitrary matrices, we will use9

the framework of linear dynamical systems to model them better. Since10

we know the system a bit better, algorithms that we prescribe for these11

models for solving filtering, smoothing and decoding will also be more12

efficient. We will almost exclusively focus on the filtering problem in13

this chapter. The other two, namely smoothing and decoding, can also14

be solved easily using these ideas but are less commonly used for these15

systems.16

3.1 Background17

Multi-variate random variables and linear algebra For d-dimensional18

random variables X,Y ∈ Rd we have19

E[X + Y] = E[X] + E[Y];

37

38

this is actually more surprising than it looks, it is true regardless of1

whether X,Y are correlated. The covariance matrix of a random variable2

is defined as3

Cov(X) = E[(X − E[X]) (X − E[X])⊤];

we will usually denote this by Σ ∈ Rd×d. Note that the covariance matrix4

is, by construction, symmetric and positive semi-definite. This means it5

can be factorized as6

Σ = UΛU⊤

where U ∈ Rd×d is an orthonormal matrix (i.e., UU⊤ = I) and Λ is a7

diagonal matrix with non-negative entries. The trace of a matrix is the8

sum of its diagonal entries. It is also equal to the sum of its eigenvalues,9

i.e.,10

tr(Σ) =
d∑
i=1

Σii =
d∑
i=1

λi(Σ)

where λi(S) ≥ 0 is the ith eigenvalue of the covariance matrix S. The11

trace is a measure of the uncertainty in the multi-variate random variable12

X , if X is a scalar and takes values in the reals then the covariance matrix13

is also, of course, a scalar Σ = σ2.14

A few more identities about the matrix trace that we will often use in15

this chapter are as follows.16

• For matrices A,B we have17

tr(AB) = tr(BA);

the two matrices need not be square themselves, only their product18

does.19

• For A,B ∈ Rm×n
20

tr
(
A⊤B

)
= tr

(
B⊤A

)
=

m∑
i=1

n∑
j=1

BijAij .

This operation can be thought of as taking the inner product between21

two matrices.22

Gaussian/Normal distribution We will spend a lot of time working23

with the Gaussian/Normal distribution ? Why is it so ubiquitous?. The multi-variate d-dimensional24

Normal distribution has the probability density25

f(x) =
1√

det(2πΣ)
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
where µ ∈ Rd,Σ ∈ Rd×d denote the mean and covariance respectively.26

You should commit this formula to memory. In particular remember that27 ∫
x∈Rd

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
dx =

√
det(2πΣ)

39

which is simply expressing the fact that the probability density function1

integrates to 1.2

Figure 3.1: Probability density (left) and iso-probability contours (right) of a
bi-variate Normal distribution. Warm colors denote regions of high probability.

Given two Gaussian rvs. X,Y ∈ Rd and Z = X + Y we have3

E[Z] = E[X + Y] = E[X] + E[Y]

with covariance4

Cov(Z) = ΣZ = ΣX +ΣY +ΣXY +ΣY X

where5

Rd×d ∋ ΣXY = E
[
(X − E[X]) (Y − E[Y])⊤

]
;

the matrix SY X is defined similarly. If X,Y are independent (or uncorre-6

lated) the covariance simplifies to7

ΣZ = ΣX +ΣY .

If we have a linear function of a Gaussian random variableX given by8

Y = AX for some deterministic matrix A then Y is also Gaussian with9

mean10

E[Y] = E[AX] = AE[X] = AµX

and covariance11

Cov(Y) = E[(AX −AµX)(AX −AµX)⊤]

= E[A(X − µX)(X − µX)⊤A⊤]

= AE[(X − µX)(X − µX)⊤]A⊤

= AΣXA
⊤.

(3.1)

This is an important result that you should remember.12

3.2 Linear state estimation13

With that background, let us now look at the basic estimation problem.14

Let X ∈ Rd denote the true state of a system. We would like to build an15

40

estimator for this state, this is denote by1

X̂.

An estimator is any quantity that indicates our belief of what X is. The2

estimator is created on the basis of observations and we will therefore3

model it as a random variable. We would like the estimator to be unbiased,4

i.e.,5

E[X̂] = X;

this expresses the concept that if we were to measure the state of the6

system many times, say using many sensors or multiple observations from7

the same sensor, the resultant estimator X̂ is correct on average. The error8

in our belief is9

X̃ = X̂ −X.

The error is zero-mean E[X̃] = 0 and its covariance ΣX̃ is called the10

covariance of the estimator.11

Optimally combining two estimators Let us now imagine that we have12

two estimators X̂1 and X̂2 for the same true state X . We will assume that13

the two estimators were created independently (say different sensors) and14

therefore are conditionally independent random variables given the true15

state X

 Conditionally independent observations
from one true state

Say both of them are unbiased but each of them have a certain16

covariance of the error17

ΣX̃1
and ΣX̃2

.

We would like to combine the two to obtain a better estimate of what the18

state could be. Better can mean many different quantities depending upon19

the problem but in general in this course we are interested in improving20

the error covariance. Our goal is then21

Given two estimators X̂1 and X̂2 of the true state X combine
them to obtain a new estimator

X̂ = some function(X̂1, X̂2)

which has the best error covariance tr(ΣX̃).

3.2.1 One-dimensional Gaussian random variables22

Consider the case when X̂1, X̂2 ∈ R are Gaussian random variables with23

means µ1, µ2 and variances σ2
1 , σ

2
2 respectively. Assume that both are24

unbiased estimators of X ∈ R. Let us combine them linearly to obtain a25

new estimator26

X̂ = k1X̂1 + k2X̂2.

41

How should we pick the coefficients k1, k2? We would of course like the1

new estimator to be unbiased, so2

E[X̂] = E[k1X̂1 + k2X̂2] = (k1 + k2)X = X

⇒ k1 + k2 = 1.

The variance of the X̂ is3

Var(X̂) = k21σ
2
1 + k22σ

2
2 = k21σ

2
1 + (1− k1)2σ2

2 .

The optimal k1 that leads to the smallest variance is thus given by4

k1 =
σ2
2

σ2
1 + σ2

2

.

We set the derivative of Var(X̂) with respect to k1 to zero to get this. The5

final estimator is6

X̂ =
σ2
2

σ2
1 + σ2

2

X̂1 +
σ2
1

σ2
1 + σ2

2

X̂2. (3.2)

It is unbiased of course and has variance7

σ2
X̃

=
σ2
1σ

2
2

σ2
1 + σ2

2

.

Notice that since σ2
2/(σ

2
1 + σ2

2) < 1, the variance of the new estimator is8

smaller than either of the original estimators. This is an important fact to9

remember, combining two estimators always results in a better estimator.10

Some comments about the optimal combination.11

• It is easy to see that if σ2 ≫ σ1 then the corresponding estimator,12

namely X̂2 gets less weight in the combination. This is easy to13

understand, if one of our estimates is very noisy, we should rely less14

upon it to obtain the new estimate. In the limit that σ2 →∞, the15

second estimator is not considered at all in the combination.16

• If σ1 = σ2, the two estimators are weighted equally and since17

σ2
X̃

= σ2
1/2 the variance reduces by half after combination.18

• The minimal variance of the combined estimator is not zero. This19

is easy to see because if we have two noisy estimates of the state,20

combining them need not lead to us knowing the true state with21

certainty.22

3.2.2 General case23

Let us now perform the same exercise for multi-variate Gaussian random24

variables. We will again combine the two estimators linearly to get25

X̂ = K1X̂1 +K2X̂2

42

whereK1,K2 ∈ Rd×d are matrices that we would like to choose. In order1

for the estimator to be unbiased we again have the condition2

E[X̂] = E[K1X̂1 +K2X̂2] = (K1 +K2)X = X

⇒K1 +K2 = Id×d.

The covariance of X̂ is3

ΣX̃ = K1Σ1K
⊤
1 +K2Σ2K

⊤
2

= K1Σ1K
⊤
1 + (I −K1)Σ2(I −K1)

⊤.

Just like the minimized the variance in the scalar case, we will minimize4

the trace of this covariance matrix. We know that the original covariances5

Σ1 and Σ2 are symmetric. We will use the following identity for the6

partial derivative of a matrix product7

∂

∂A
tr
(
ABA⊤) = 2AB (3.3)

for a symmetric matrixB. Minimizing tr(ΣX̃)with respect toK1 amounts8

to setting9

∂

∂K1
tr(ΣX̃) = 0

which yields10

0 = K1Σ1 − (I −K1)Σ2

⇒ K1 = Σ2(Σ1 +Σ2)
−1 and K2 = Σ1(Σ1 +Σ2)

−1.

The optimal way to combine the two estimators is thus11

X̂ = Σ2(Σ1 +Σ2)
−1X̂1 +Σ1(Σ1 +Σ2)

−1X̂2. (3.4)

You should consider the similarities of this expression with the one for the12

scalar case in (3.2). The same broad comments hold, i.e., if one of the13

estimators has a very large variance, that estimator is weighted less in the14

combination.15

3.2.3 Incorporating Gaussian observations of a state16

Let us now imagine that we have a sensor that can give us observations of17

the state. The development in this section is analogous to our calculations18

in Chapter 2 with the recursive application of Bayes rule or the observation19

matrix of the HMM. We will consider a special type of sensor that gives20

observations21

Rp ∋ Y = CX + ν (3.5)

which is a linear function of the true state X ∈ Rd with the matrix22

C ∈ Rp×d being something that is unique to the particular sensor. This23

observation is not precise and we will model the sensor as having zero-24

mean Gaussian noise25

ν ∼ N(0, Q)

43

of covariance Q ∈ Rp×p. Notice something important here, the dimen-1

sionality of the observations need not be the same as the dimensionality2

of the state. This should not be surprising, after all the the number of3

observations in the HMM need not be the same as the number of the states4

in the Markov chain.5

We will solve the following problem. Given an existing estimator X̂ ′
6

we want to combine it with the observation Y to update the estimator to7

X̂ , in the best way, i.e., in a way that gives the minimal variance. We will8

again use a linear combination9

X̂ = K ′X̂ ′ +KY.

Again we want the estimator to be unbiased, so we set10

E[X̂] = E[K ′X̂ ′ +KY]

= K ′X +K E[Y]

= K ′X +K E[CX + ν]

= K ′X +KCX

= X.

to get that11

I = K ′ +KC.

⇒ X̂ = (I −KC)X̂ ′ +KY

= X̂ ′ +K(Y − CX̂ ′).

(3.6)

This is special form which you will do well to remember. The old12

estimator X̂ ′ gets an additive term K(Y − CX̂ ′). For reasons that will13

soon become clear, we call this term14

innovation = Y − CX̂ ′.

Let us now optimize K as before to compute the estimator with minimal15

variance. We will make the following important assumption in this case.16

We will assume that the observation Y is independent of the esti-
mator X̂ ′ given X . This is a natural assumption because presumably
our original estimator X̂ ′ was created using past observations and the
present observation Y is therefore independent of it given the state
X .

The covariance of X̂ is17

ΣX̃ = (I −KC)ΣX̃′(I −KC)⊤ +KQK⊤.

44

We optimize the trace of ΣX̃ with respect to K to get

0 =
∂

∂K
tr(ΣX̃)

0 = −2(I −KC)ΣX̃′C
⊤ + 2KQ

⇒ ΣX̃′C
⊤ = K(CΣX̃′C

⊤ +Q)

⇒ K = ΣX̃′C
⊤(CΣX̃′C

⊤ +Q)−1.

The matrix K ∈ Rd×p is called the “Kalman gain” after Rudoph Kalman1

who developed this method in the 1960s.2

Kalman gain This is an important formula and it helps to have a
mnemonic and a slightly simpler notation to remember it by. If Σ′ is
the covariance of the previous estimator, Q is the covariance of the
zero-mean observation and C is the matrix that gives the observation
from the state, then the Kalman gain is

K = ΣX̃′C
⊤(CΣX̃′C

⊤ +Q)−1. (3.7)

and the new estimator for the state is

X̂ = X̂ ′ +K(Y − CX̂ ′).

The covariance of the updated estimator X̂ is given by

ΣX̃ = (I −KC)ΣX̃′(I −KC)⊤ +KQK⊤

=
(
Σ−1

X̃′ + C⊤Q−1C
)−1

.
(3.8)

If C = I , the Kalman gain is the same expression as the optimal
coefficient in (3.4). This should not be surprising because the
observation is an estimator for the state.

The second expression for ΣX̃ follows by substituting the value of
the Kalman gain K. Yet another way of remembering this equation
equation is to notice that

Σ−1

X̃
= Σ−1

X̃′ + C⊤Q−1C

K = Σ−1

X̃
C⊤Q−1

X̂ = X̂ ′ +Σ−1

X̃
C⊤Q−1

(
Y − CX̂ ′

)
.

(3.9)

 Derive these expressions for the Kalman
gain and the covariance yourself.

https://en.wikipedia.org/wiki/Rudolf_E._K%C3%A1lm%C3%A1n

45

3.2.4 An example1

Consider the scalar case when we have multiple measurements of some2

scalar quantity x ∈ R corrupted by noise.3

yi = x+ νi

where yi ∈ R and the scalar noise νi ∼ N(0, 1) is zero-mean and4

standard Gaussian. Find the updated estimate of the state x after k such5

measurements; this means both the mean and the covariance of the state.6

You can solve this in two ways, you can either use the measurement7

matrix C to be 1k = [1, . . . , 1] to be a vector of all ones and apply the8

formula in (3.7) and (3.8) Show that the estimate x̂k after k measurements9

has mean and covariance10

E[x̂k] =
1

k

k∑
i=1

yi.

Cov(x̂k) = C⊤C
−1

=
1

k
.

If we take one more measurement yk+1 = x+ νk+1 with noise νk+1 ∼11

N(0, σ2), show using (3.9) that12

Cov(x̂k+1)
−1 = Cov(x̂k)−1 +

1

σ2

⇒ Cov(x̂k+1) =
σ2

σ2k + 1
.

The updated mean using (3.9) again13

E[x̂k+1] = x̂k + Cov(x̂k+1)
1

σ2
(yk+1 − x̂k)

= x̂k +
yk+1 − x̂k
σ2k + 1

.

You will notice that if the noise on the k + 1th observation is very small,14

even after k observations, the new estimate fixates on the latest observation15

σ → 0⇒ x̂k+1 → yk+1.

Similarly, if the latest observation is very noisy, the estimate does not16

change much17

σ →∞⇒ x̂k+1 → x̂k.

3.3 Background on linear and nonlinear dy-18

namical systems19

The true stateX need not be static. We will next talk about models
for how the state of the world evolves using ideas in dynamical systems.

46

A continuous-time signal is a function that associates to each time t ∈ R1

a real number y(t). We denote signals by2

y : t 7→ y(t).

Similarly a discrete-time signal is a function that associates to each integer3

k a real number y(k), we have been denoting quantities like this by yk.

 A continuous-time signal y(t) and
discrete-time signal yk.

4

A dynamical system is an operator (a box) that transforms an input5

signal u(t) or uk to an output y(t) or yk respectively. We call the former6

a continuous-time system and the latter a discrete-time system.7

8

Almost always in robotics, we will be interested in systems that
are temporally causal, i.e., the output at time t0 is only a function
the input up to time t0. Analogously, the output at time k0 for a
discrete-time system is dependent only on the input up to time k0.
Most systems in the physical world at temporally causal. ? Can you give an example of a dynamical

system that is non-causal? Think of how a
DVD Ripper, or a pre-programmed acrobatic
maneuver on a plane works.State of a system We know that if the system is causal, in order to9

compute its output at a time t0, we only need to know all the input from10

time t = (−∞, t0]. This is a lot of information. The concept of a state,11

about which we have been cavalier until now helps with this. The state12

x(t1) of a causal system at time t1 is the information needed, together13

with the input u between times t1 and t2 to uniquely compute the output14

y(t2) at time t2, for all times t2 ≥ t1. In other words, the state of a system15

summarizes the whole history of what happened between (−∞, t1).16

Typically the state of a system is a d-dimensional vector in Rd. ? Discuss some examples of the state.

Is the state of a system uniquely defined?

The17

dimension of a system is the minimum d required to define a state.18

3.3.1 Linear systems19

A system is called a linear system if for any two input signals u1 and u220

and any two real numbers a, b21

u1 → y1

u2 → y2

au1 + bu2 → ay1 + by2.

47

Linearity is a very powerful property. For instance, it suggests that if1

we can decompose a complicated input into the sum of simple signals,2

then the output of the system is also a sum of the outputs of these simple3

signals. For example, if we can write the input as a Fourier series4

u(t) =
∑∞
i=0 ai cos(it) + bi sin(it) we can pass each of the terms in5

this summation to system and get the output of u(t) by summing up the6

individual outputs.7

Finite-dimensional systems can be written using a set of differential8

equations as follows. Consider the spring-mass system. If z(t) denotes9

the position of the mass at time t and u(t) is the force that we are applying10

upon it at time t, the position of the mass satisfies the differential equation

 A second-order spring mass system

11

m
d2z(t)

dt2
+ c

dz(t)

dt
+ kx(t) = u(t)

or mz̈ + cż + kz = u

in short. Here m is the mass of the block, c is the damping coefficient of12

the spring and k is the spring force constant. Let us define13

z1(t) := z(t)

z2(t) :=
dz(t)

dt
.

We can now rewrite the dynamics as14 [
ż1
ż2

]
=

[
0 1

−k/m −c/m

] [
z1
z2

]
+

[
0

1/m

]
u

3.3.2 Linear Time-Invariant (LTI) systems15

If we define the state x(t) =

[
z1(t)

z2(t)

]
, then the above equation can be16

written as17

ẋ(t) = Ax(t) +Bu(t). (3.10)

This is a linear system that takes in the input u(t) and has a state x(t).18

You can check the conditions for linearity to be sure. It is also a linear19

time-invariant (LTI) system because the matrices A,B do not change with20

time t. The input u(t) is also typically called the control (or action,21

or the control input) and essentially the second half of the course is22

about computing good controls.23

Since the state at time t encapsulates everything that happened to24

the system due to the inputs {u(−∞), u(t)}, we can say that the system25

computes its output y(t) as a function of the state x(t) and the latest input26

u(t)27

y(t) = function(x(t), u(t))

If this function is linear we have28

y(t) = Cx(t) +Du(t). (3.11)

48

The pair of equations (3.10) and (3.11) together are the so-called state-1

space model of an LTI system. The development for discrete-time systems2

is completely analogous, we will have3

xk+1 = A∆txk +B∆tuk

yk = Cxk +Duk.
(3.12)

We have used the subscript ∆t to denote that these are discrete-
time matrices and are different from the continuous-time ones in (3.10)
and (3.11). This is an important point to keep in mind.

If the dynamics matrices A,B,C,D change with time, we have a4

time-varying system.5

3.3.3 Nonlinear systems6

Nonlinear systems are defined entirely analogously as linear systems.7

Imagine if we had a non-linear spring in the spring-mass system whereby8

the dynamics of the block was given by9

mz̈ + cż + (k1z + k2z
2) = u.

The state of the system is still x = [z1, z2]
⊤. But we cannot write this10

second-order differential equation as two first-order linear differential11

equations. We are forced to write12

ẋ =

[
ż1
ż2

]
=

[
0 1

−k1/m−k2z1/m −c/m

] [
z1
z2

]
+

[
0

1/m

]
u.

Such systems are called nonlinear systems. We will write them succinctly13

as14

ẋ = f(x, u)

y = g(x, u).
(3.13)

The function f : X × U → X that maps the state-space and the input15

space to the state-space is called the dynamics of the system. Analogously,16

for discrete-time nonlinear systems we will have17

xk+1 = f∆t(xk, uk)

yk = g(xk, uk).

? Is the nonlinear spring-mass system
time-invariant?

Again the discrete-time nonlinear dynamics has a different equation than18

the corresponding one in (3.13).19

3.4 Markov Decision Processes (MDPs)20

Let us now introduce a concept called MDPs which is very close to21

Markov chains that we saw in the previous chapter. In fact, you are already22

implementing an MDP in your HW 1 problem on the Bayes filter.23

49

MDPs are a model for the scenario when we do not completely
know the dynamics f(xk, uk).

This may happen for a number of reasons and it is important to1

appreciate them in order to understand the widespread usage of MDPs.2

1. We did not do a good job of identifying the function f : X×U → X .3

This may happen when you are driving a car on an icy road, if you4

undertake the same control as you do on a clean road, you might5

reach a different future state xk+1.6

2. We did not use the correct state-space X . You could write down7

the state of the car as given by (x, y, θ, ẋ, ẏ, θ̇) where x, y are the8

Euclidean co-ordinates of the car and θ is its orientation. This is9

not a good model for studying high-speed turns, which are affect by10

other quantities like wheel slip, the quality of the suspension etc.11

We may not even know the full state sometimes. This occurs when12

you are modeling how users interact with an online website like13

Amazon.com, you’d like to model the change in state of the user14

from “perusing stuff” to “looking stuff to buy it” to “buying it”15

but there are certainly many other variables that affect the user’s16

behavior. As another example, consider the path that an airplane17

takes to go from Philadelphia to Los Angeles. This path is affected18

by the weather at all places along the route, it’d be cumbersome19

to incorporate the weather to find the shortest-time path for the20

airplane.21

3. We did not use the correct control-space U for the controller. This22

is akin to the second point above. The gas pedal which one may23

think of as the control input to a car is only one out of the large24

number of variables that affect the running of the car’s engine.25

MDPs are a drastic abstraction of all the above situations. We

50

write
xk+1 = f(xk, uk) + ϵk (3.14)

where the “noise” ϵk is not under our control. The quantity ϵk is not
arbitrary however, we will assume that

1. noise ϵk is a random variable and we know its distribution.
For example, you ran your car lots of times on icy road and
measured how the state xk+1 deviates from similar runs on a
clean road. The difference between the two is modeled as ϵk.
Note that the distribution of ϵk may be a function of time k.

2. noise at different timesteps ϵ1, ϵ2, . . . , is independent.

Instead of a deterministic transition for our system from xk to xk+1,
we now have

xk+1 ∼ P(xk+1 | xk, uk).

which is just another way of writing (3.14).
The latter is a probability table of size |X | × |U| × |X | akin to

the transition matrix of a Markov chain except that there is a different
transition matrix for every control u ∈ U .

? You should think about the state-space,
control-space and the noise in the MDP for
the Bayes filter problem in HW 1. Where do
we find MDPs in real-life? There are lots of
expensive robots in GRASP, e.g., a Kuka
manipulator such as this
https://www.youtube.com/watch?v=ym64NFCWORY
costs upwards of $100,000. Would you model
it as a stochastic dynamical system?

The former version (3.14)
is more amenable to analysis. MDPs can be alternatively called
stochastic dynamical systems, we will use either names for them in
this course. For completeness, let us note down that linear stochastic
systems will be written as

xk+1 = Axk +Buk + ϵk.

The moral of this section is to remember that as pervasive as noise
seems in all problem formulations in this course, it models different
situations depending upon the specific problem. Understanding where
noise comes from is important for real-world applications.

Noise in continuous-time systems You will notice that we only talked1

about discrete-time systems with noise in (3.14). We can also certainly2

talk about continuous-time systems whose dynamics f we do not know3

precisely4

ẋ(t) = f(x(t), u(t)) + ϵ(t) (3.15)

and model the gap in our knowledge as noise ϵ(t). While this may seem5

quite natural, it is mathematically very problematic. The hurdle stems6

from the fact that if we want ϵ(t) to be a random variable at each time7

instant, then the signal ϵ(t) may not actually exist, e.g., it may not even8

be continuous. Signals like ϵ(t) exist only in very special cases, one of9

them is called “Brownian motion” where the increment of the signal after10

https://www.youtube.com/watch?v=ym64NFCWORY

51

infinitesimal time ∆t is a Gaussian random variable1

ϵ(t+∆t)− ϵ(t) = N(0,∆t).

Figure 3.2: A typical Brownian motion signal ϵ(t). You can also see an animation
at https://en.wikipedia.org/wiki/File:Brownian_Motion.ogv

We will not worry about this technicality in this course. We will2

talk about continuous-time systems with noise but with the implicit3

understanding that there is some underlying real-world discrete-time4

system and the continuous-time system is only an abstraction of it.

? Do continuous-time systems, stochastic or
non-stochastic, exist in the real world?
Consider the Kuka manipulator again, do you
think the dynamics of this robot is a
continuous-time system? Would you model it
so?

5

3.4.1 Back to Hidden Markov Models6

Since our sensors measure the state x of the world, it will be useful to think7

of the output y of a dynamical system as the observations from Chapter8

2. This idea neatly ties back our development of dynamical systems9

to observations. Just like we considered an HMM with observation10

probability11

P(Yk = y | Xk = x)

we will consider dynamical systems for which we do not precisely know12

how the output computation. We will model the gap in our knowledge of13

the exact observation mechanism as the output being a noisy function of14

the state. This is denoted as15

yk = g(xk) + νk. (3.16)

The noise νk is similar to the noise in the dynamics ϵk in (3.14).

 Observation noise and dynamics noise are
different in subtle ways. The former may not
always be due to our poor modeling. For
instance, the process by which a camera
acquires its images has some inherent noise.
You may have seen a side-by-side comparison
of different cameras using their ISOs

An image taken from a camera with low
lighting has a lot of “noise”. What causes this
noise?

Analo-16

gously, we can also have noise in the observations of a linear system17

yk = Cxk +Duk + νk.

Hidden Markov Models with underlying MDPs/Markov chains

https://en.wikipedia.org/wiki/File:Brownian_Motion.ogv

52

and stochastic dynamical systems with noisy observations are two dif-
ferent ways to think of the same concept, namely getting observations
across time about the true state of a dynamic world.

In the former we have

(state transition matrix) P(Xk+1 = x′ | Xk = x, uk = u)

(observation matrix) P(Yk = y | Xk = x),

while in the latter we have

(nonlinear dynamics) xk+1 = f(xk, uk) + ϵk

(nonlinear observation model) yk = g(xk) + νk,

or

(linear dynamics) xk+1 = Axk +Buk + ϵk

(linear observation model) yk = Cxk +Duk + νk.

HMMs are easy to use for certain kinds of problems, e.g., speech-
to-text, or a robot wandering in a grid world (like the Bayes filter
problem in HW 1). Dynamical systems are more useful for certain
other kinds of problems, e.g., a Kuka manipulator where you can use
Newton’s laws to simply write down the functions f, g.

 You will agree that creating the
state-transition matrix for the Bayes filter
problem in HW 1 was really the hardest part
of the problem. If the state-space were
continuous and not a discrete cell-based
world, you could have written the dynamics
very easily in one line of code.

3.5 Kalman Filter (KF)1

We will now introduce the Kalman Filter. It is the analog of the Bayes filter2

from the previous chapter. This is by far the most important algorithm in3

robotics and it is hard to imagine running any robot without the Kalman4

fiter or some variant of it.5

Consider a linear dynamical system with linear observations6

xk+1 = Axk +Buk + ϵk

yk = Cxk + νk.
(3.17)

where the noise vectors7

ϵk ∼ N(0, R)

νk ∼ N(0, Q)

are both zero-mean and Gaussian with covariances R and Q respectively.8

 We will assume that the distribution of
noise ϵk, νk does not change with time k. If it
does change in your problem, you will see that
following equations are quite easy to modify.

We have also assumed that D = 0 because typically the observations do9

not depend on the control.10

Our goal is to compute the best estimate of the state after multiple

53

observations
P(xk | y1, . . . , yk).

This is the same as the filtering problem that we solved for Hidden
Markov Models. Just like we used the forward algorithm to compute
the filtering estimate recursively, we are going to use our development
of the Kalman gain to incorporate a new observation recursively.

3.5.1 Step 0: Observing that the state estimate at any1

timestep should be a Gaussian2

Maintaining the entire probability distribution P(xk | y1, . . . , yk) is3

difficult now, as opposed to the HMM with a finite number of states. We4

will exploit the following important fact. If we assume that the initial5

distribution of x0 was a Gaussian, since all operations in (3.17) are linear,6

our new estimate of the state x̂k at time k is also a Gaussian7

x̂k|k ∼ P(xk | y1, . . . , yk) ≡ N(µk|k,Σk|k).

The subscript8

x̂k+1|k

denotes that the quantity being talked about, i.e., x̂k+1|k, or others like9

µk+1|k, is of the (k + 1)th timestep and was calculated on the basis of10

observations up to (and including) the kth timestep. We will therefore11

devise recursive updates to obtain µk+1|k+1,Σk+1|k+1 using their old12

values µk|k,Σk|k. We will imagine that our initial estimate for the state13

x̂0|0 has a known distribution14

x̂0|0 ∼ N(µ0|0,Σ0|0).

15

3.5.2 Step 1: Propagating the dynamics by one timestep16

Suppose we had an estimate x̂k|k after k observations/time-steps. Since17

the dynamics is linear, we can use the prediction problem to compute the18

estimate of the state at time k + 1 before the next observation arrives19

P(xk+1 | y1, . . . , yk).

From the first equation of (3.17), this is given by20

x̂k+1|k = Ax̂k|k +Buk + ϵk

54

Notice that the subscript on the left-hand side is k + 1 | k because we did1

not take into account the observation at timestep k+ 1 yet. The mean and2

covariance of this estimate are given by3

µk+1|k = E[x̂k+1|k] = E[Ax̂k|k +Buk + ϵk]

= Aµk|k +Buk.
(3.18)

We can also calculate the covariance of the estimate x̂k+1|k to see that4

Σk+1|k = Cov(x̂k+1|k) = Cov(Ax̂k|k +Buk + ϵk)

= AΣk|kA
⊤ +R,

(3.19)

using our calculation in (3.1). Observe that even if we knew the state
dynamics precisely, i.e., if R = 0, we still
have a non-trivial propagation equation for
Σk+1|k.

5

3.5.3 Step 2: Incorporating the observation6

After the dynamics propagation step, our estimate of the state is x̂k+1|k,7

this is the state of the system that we believe is true after k observations.8

We should now incorporate the latest observation yk+1 to update this9

estimate to get10

P(xk+1 | y1, . . . , yk, yk+1).

This is exactly the same problem that we saw in Section 3.2.3. Given the11

measurement12

yk+1 = Cxk+1 + νk+1

we first compute the Kalman gain Kk+1 and the updated mean of the13

estimate as14

Kk+1 = Σk+1|kC
⊤ (CΣk+1|kC

⊤ +Q
)−1

µk+1|k+1 = µk+1|k +Kk+1

(
yk+1 − Cµk+1|k

)
.

(3.20)

The covariance is given by our same calculation again15

Σk+1|k+1 = (I −Kk+1C) Σk+1|k, or

= (I −Kk+1C) Σk+1|k (I −Kk+1C)
⊤
+Kk+1QK

⊤
k+1, or

=
(
Σ−1
k+1|k + C⊤Q−1C

)−1

.

(3.21)
The second expression is known as Joeseph’s form and is numerically16

more stable than the other expressions.17

The new estimate of the state is

x̂k+1|k+1 ∼ P(xk+1 | y1, . . . , yk+1) ≡ N(µk+1|k+1,Σk+1|k+1).

and we can again proceed to Step 1 for the next timestep.

55

3.5.4 Discussion1

There are several important observations to make and remember about2

the Kalman Filter (KF).3

• Recursive updates to compute the best estimate given all past4

observations. The KF is a recursive filter (just like the forward5

algorithm for HMMs) and incorporates observations one by one.6

The estimate that it maintains, namely x̂k+1|k+1, depends upon all7

past observations8

x̂k+1|k+1 ∼ P(xk+1 | y1, . . . , yk+1).

We have simply computed the estimate recursively.9

• Optimality of the KF for linear systems with Gaussian noise.10

The KF is optimal in the following sense. Imagine if we had access11

to all the observations y1, . . . , yk beforehand and computed some12

other estimate13

x̂fancy filter
k|k = some function(x̂0|0, y1, . . . , yk).

We use some other fancy method to design this estimator, e.g.,14

nonlinear combination of the observations or incorporating obser-15

vations across multiple timesteps together etc. to obtain something16

that has the smallest error with respect to the true state xk17

tr

(
E

ϵ1,...,ϵk,ν1,...,νk

[
(x̂fancy filter
k|k − xk)(x̂fancy filter

k|k − xk)⊤
])

.

(3.22)
Then this estimate would be exactly the same as that of the KF18

x̂fancy filter
k|k = x̂KF

k|k.

This is a deep fact. First, the KF estimate was created recursively19

and yet we can do no better than it with our fancy estimator. This20

is analogous to the fact that the forward algorithm computes the21

correct filtering estimate even if it incorporates observations one by22

one recursively. Second, the KF combines the new observation and23

the old estimate linearly in (3.20). You could imagine that there is24

some other way to incorporate new observations, but it turns out25

that for linear dynamical systems with Gaussian noise, the KF is26

the best solution, we can do no better.27

• The KF is the best linear filter. If we had a nonlinear dynamical28

system or a non-Gaussian noise with a linear dynamics/observations,29

there are other filters that can give a smaller error (3.22) than the30

KF. In the next section, we will take a look at one such example.31

However, even in these cases, the KF is the best linear filter.32

• Assumptions that are implicit in the KF. We assumed that both the33

dynamics noise ϵκ and the observation noise νk+1 are uncorrelated34

56

with the estimate x̂k+1|k computed prior to them (where did we use1

these assumptions?). This implicitly assumes that dynamics and2

observation noise are “white”, i.e., uncorrelated in time3

E[ϵk ϵ⊤k′] = 0 for all k, k′

E[νk ν⊤k′] = 0 for all k, k′.

? How should one modify the KF equations
if we have multiple sensors in a robot, each
coming in at different frequencies?

The Wikipedia webpage at https://en.wikipedia.org/wiki/Kalman_filter#Example_application,_technical4

gives a simple example of a Kalman Filter.5

3.6 Extended-Kalman Filter (EKF)6

The KF heavily exploits the fact that our dynamics/measurements are7

linear. For most robots, both of these are nonlinear. The Extended-Kalman8

Filter (EKF) is a modification of the KF to handle such situations.9

Example of a nonlinear dynamical system The state of most real10

problems evolves as a nonlinear function of their current state and control.11

This is a the same for sensors such as cameras measure a nonlinear function12

of the state. We will first see how to linearize a given nonlinear system13

shown below.14

15

We have a radar sensor that measures the distance of the plane r from the16

radar trans-receiver up to noise ν. We would like to measure its distance17

x and height h. If the plane travels with a constant velocity, we have18

ẋ = v, and v̇ = 0,

and19

r =
√
x2 + h2.

Since we do not really know how the plane might change its altitude, let’s20

assume that it maintains a constant altitude21

ḣ = 0.

The above equations are our model for how the state of the airplane evolves22

and could of course be wrong. As we discussed, we will model the23

https://en.wikipedia.org/wiki/Kalman_filter#Example_application,_technical

57

discrepancy as noise.1 ẋ1ẋ2
ẋ3

 =

0 1 0

0 0 0

0 0 0

 x1x2
x3

+ ϵ;

r =
√
x21 + x23 + ν;

here x1 ≡ x, x2 ≡ v and x3 = h, and ϵ ∈ R3, ν ∈ R are zero-mean2

Gaussian noise. The dynamics in this case is linear but the observations3

are a nonlinear function of the state.4

One way to use the Kalman Filter for this problem is to linearize the5

observation equation around some state, say x1 = x2 = x3 = 0 using the6

Taylor series7

rlinearized = r(0, 0, 0) +
∂r

∂x1

∣∣∣∣
x1=0,x3=0

(x1 − 0) +
∂r

∂x3

∣∣∣∣
x1=0,x3=0

(x3 − 0)

= 0 +
2x1

2
√
x21 + x23

∣∣∣∣
x1=0,x3=0

x1 +
2x3

2
√
x21 + x23

∣∣∣∣
x1=0,x3=0

x3

= x1 + x3.

In other words, upto first order in x1, x3, the observations are linear and8

we can therefore run the KF for computing the state estimate after k9

observations.

? You can try to perform a similar
linearization for a simple model of a car

ẋ = cos θ

ẏ = sin θ

θ̇ = u.

where x, y, θ are the XY-coordinates and the
angle of the steering wheel respectively. This
model is known as a Dubins car.

10

3.6.1 Propagation of statistics through a nonlinear trans-11

formation12

Given a Gaussian random variable Rd ∋ x ∼ N(µx,Σx), we saw how to13

compute the mean and covariance after an affine transformation y = Ax14

E[y] = AE[x], and Σy = AΣxA
⊤.

If we had a nonlinear function of x15

Rp ∋ y = f(x)

we can use the Taylor series by linearizing around the mean of x to16

approximate the first and second moments of y as follows.17

y = f(x) ≈ f(µx) +
df

dx

∣∣∣∣
x=µx

(x− µx)

= Jx+ (f(µx)− Jµx).

where we have defined the Jacobian matrix18

Rp×d ∋ J =
df

dx

∣∣∣∣
x=µx

. (3.23)

58

This gives1

E[y] ≈ E[Jx+ (f(µx)− Jµx)] = f(µx)

Σy = E[(y − E[y])(y − E[y])⊤] ≈ JΣxJ⊤.
(3.24)

Observe how, up to first order, the mean µx is directly transformed by the2

nonlinear function f while the covariance Σx is transformed as if there3

were a linear operation y ≈ Jx.4

A simple example

y =

[
y1
y2

]
= f

x1x2
x3

 =

[
x21 + x2x3

sinx2 + cosx3

]
.

We have5

df

dx
= ∇f(x) =

[
2x1 x3 x2

0 cosx2 − sinx3

]
.

The Jacobian at µx = [µx1
, µx2

, µx3
]
⊤ is6

J = ∇f(x)
∣∣∣∣
x=µx

=

[
2µx1

µx3
µx2

0 cosµx2
− sinµx3

]
.

It is very important to remember that we are approximating the
distribution of P(f(x)) as a Gaussian. Even if x is a Gaussian random
variable, the distribution of y = f(x) need not be Gaussian. Indeed
y is only Gaussian if f is an affine function of x.

59

3.6.2 Extended Kalman Filter1

The above approach of linearizing the observations of the plane around2

the origin may lead to a lot of errors. ? Can you say where will our linearized
observation equation incur most error?

This is because the point about3

which we linearize the system is fixed. We can do better by linearizing the4

system at each timestep. Let us say that we are given a nonlinear system5

xk+1 = f(xk, uk) + ϵ

yk = g(xk) + ν.

The central idea of the Extended Kalman Filter (EKF) is to
linearize a nonlinear system at each timestep k around the latest state
estimate given by the Kalman Filter and use the resultant linearized
dynamical system in the KF equations for the next timestep.

Step 1: Propagating the dynamics by one timestep6

We will linearize the dynamics equation around the mean of the previous7

state estimate µk|k8

xk+1 = f(xk, uk) + ϵ

≈ f(µk|k, uk) +
∂f

∂x

∣∣∣∣
x=µk|k

(
xk − µk|k

)
+ ϵk.

Let the Jacobian be9

A(µk|k) =
∂f

∂x

∣∣∣∣
x=µk|k

. (3.25)

The mean and covariance of the EKF after the dynamics propagation step10

is therefore given by11

µk+1|k = f(µk|k, uk)

Σk+1|k = AΣk|kA
⊤ +R.

(3.26)

It is worthwhile to notice the similarities of the above set of equations12

with (3.18) and (3.19). The mean µk|k is propagated using a nonlinear13

function f to get µk+1|k, the covariance is propagated using the Jacobian14

A(µk|k) which is recomputed using (3.25) at each timestep.15

Step 2: Incorporating the observation16

We have access to µk+1|k after Step 1, so we can linearize the nonlinear17

observations at this state.18

yk+1 = g(xk+1) + ν

≈ g(µk+1|k) +
dg

dx

∣∣∣∣
x=µk+1|k

(xk+1 − µk+1|k) + ν

60

Again define the Jacobian1

C(µk+1|k) =
∂g

∂x

∣∣∣∣
x=µk+1|k

. (3.27)

Consider the fake observation which is a transformed version of the actual2

observation yk+1 (think of this as a new sensor or a post-processed version3

of the original sensor)4

y′k+1 = yk+1 − g(µk+1|k) + Cµk+1|k ≈ Cxk+1.

Our fake observation is a nice linear function of the state xk+1 and we5

can therefore use the Kalman Filter equations to incorporate this fake6

observation7

µk+1|k+1 = µk+1|k +K(y′k+1 − C µk+1|k)

where K = Σk+1|kC
⊤ (CΣk+1|kC

⊤ +Q
)−1

.

Let us resubstitute our fake observation in terms of the actual observation8

yk+1.9

y′k+1 − C µk+1|k = yk+1 − g(µk+1|k),

to get the EKF equations for incorporating one observation10

µk+1|k+1 = µk+1|k +K(yk+1 − g(µk+1|k))

Σk+1|k+1 = (I −KC) Σk+1|k.
(3.28)

The Extended Kalman Filter estimates the state of a nonlinear
system by linearizing the dynamics and observation equations at each
timestep.

1. Say we have the current estimate µk|k and Σk|k.
2. After a control input uk the new estimate is

µk+1|k = f(µk|k, uk)

Σk+1|k = AΣk|kA
⊤ +R.

where A depends on µk|k.
3. We next incorporate an observation by linearizing the observa-

tion equations around µk+1|k

K = Σk+1|kC
⊤ (CΣk+1|kC

⊤ +Q
)−1

µk+1|k+1 = µk+1|k +K(yk+1 − g(µk+1|k))

Σk+1|k+1 = (I −KC) Σk+1|k

where again C depends on µk+1|k

61

Discussion1

1. The EKF dramatically expands the applicability of the Kalman2

Filter. It can be used for most real systems, even with very com-3

plex models f, h. It is very commonly used in robotics and can4

handle nonlinear observations from complex sensors such as a5

LiDAR and camera easily. For instance, sophisticated augment-6

ed/virtual reality systems like Google ARCore/Snapchat/iPhone7

etc. (https://www.youtube.com/watch?v=cape_Af9j7w) run EKF8

to track the motion of the phone or of the objects in the image.9

2. The KF was special because it is the optimal linear filter, i.e., KF10

estimates have the smallest mean squared error with respect to the11

true state for linear dynamical systems with Gaussian. The EKF is12

a clever application of KF to nonlinear systems but it no longer has13

this property. There do exist filters for nonlinear systems that will14

have a smaller mean-squared error than the EKF. We will look at15

some of them in the next section.16

3. Linearization is the critical step in the implementation of the EKF17

and EKF state estimate can be quite inaccurate if the system is at18

a state where the linearized matrix A and the nonlinear dynamics19

f(xk, uk) differ significantly. A common trick for handling this is to20

perform multiple steps of dynamics propagation using a continuous-21

time model of the system between successive observations. Say we22

have a system23

ẋ = f(x(t), u(t)) + ϵ(t)

where ϵ(t+ δt)− ϵ(t) is a Gaussian random variable N(0, Rδt) as24

δ → 0; see the section on Brownian motion for how to interpret25

noise in continuous-time systems. We can construct a discrete-time26

system from this as27

xt+∆t = x(t) + f(x(t), u(t)) ∆t+ ϵ

≡ f discrete-time(x(t), u(t)) + ϵ.

where ϵ ∼ N(0, R∆t) is noise. This is now a discrete-time28

dynamics and we can perform Step 1 of the EKF multiple times to29

obtain a more accurate estimate of µk+1|k and Σk+1|k.30

3.7 Unscented Kalman Filter (UKF)31

Linearization of the dynamics in the EKF is a neat trick to use the KF32

equations. But as we said, this can cause severe issues in problems33

where the dynamics is very nonlinear. In this section, we will take a look34

at a powerful method to handle nonlinear dynamics that is better than35

linearization.36

Let us focus on Step 1 which propagates the dynamics in the EKF.37

https://www.youtube.com/watch?v=cape_Af9j7w

62

1

We know that even if x is Gaussian (faint blue points in top left
picture), the transformed variable y = f(x) need not be Gaussian
(faint blue points in bottom left). The EKF is really approximating
the probability distribution P(xk+1 | y1, . . . , yk) as a Gaussian;
this distribution could be very different from a Gaussian. This is
really the crux of the issue in filtering for nonlinear systems. This
approximation, which happens because we are linearizing about the
mean µk|k.

Let us instead do the following:2

1. Sample a few points from the Gaussian N(µk|k,Σk|k) (red points3

in top right).4

2. Transform each of the points using the nonlinear dynamics f (red5

points in bottom right).6

3. Compute their mean and covariance to get µk+1|k and Σk+1|k.7

Notice how the green ellipse is slightly different than the black8

ellipse (which is the true mean and covariance). Both of these would9

be different from the mean and covariance obtained by linearization10

of f (middle column) but the green one is more accurate.11

In general, we would need a large number of sample points (red) to

63

accurately get the mean and covariance of y = f(x). The Unscented
Transform (UT) uses a special set of points known as “sigma points”
(these are the ones actually shown in red above) and transforms those
points. Sigma points have the special property that the empirical
mean of the transformed distribution (UT mean in the above picture)
is close to the true mean up to third order; linearization is only
accurate up to first order. The covariance (UT covariance) and true
covariance also match up to third order.

3.7.1 Unscented Transform1

Given a random variable x ∼ N(µx,Σx), the Unscented Transform2

(UT) uses sigma points to compute an approximation of the probability3

distribution of the random variable y = f(x).4

Preliminaries: matrix square root. Given a symmetric matrix Σ ∈5

Rn×n, the matrix square root of Σ is a matrix S ∈ Rn×n such that6

Σ = SS.

We can compute this via diagonalization as follows.7

Σ = V DV −1

= V

d11 · · · 0

0

· · · 0

0 · · · dnn

V −1

= V

√
d11 · · · 0

0

· · · 0

0 · · ·
√
dnn

2

V −1.

We can therefore define8

S = V

√
d11 · · · 0

0

· · · 0

0 · · ·
√
dnn

V −1.

Notice that9

SS = (V D1/2V −1) (V D1/2V −1) = V DV −1 = Σ.

We can also define the matrix square root using the Cholesky decompo-10

sition Σ = LL⊤ which is numerically more stable than computing the11

square root using the above expression. Recall that matrices L and Σ have12

the same eigenvectors. Typical applications of the Unscented Transform13

will use this method.14

64

Given a random variable Rn ∋ x ∼ N(µ,Σ), we will use the matrix1

square root to compute the sigma points as2

x(i) = µ+
√
nΣ

⊤
i

x(n+i) = µ−
√
nΣ

⊤
i

for i = 1, . . . , n,

(3.29)

where
√
nΣi is the ith row of the matrix

√
nΣ. There are 2n sigma points3 {

x(1), . . . , x(2n)
}

for an n-dimensional Gaussian. Each sigma point is assigned a weight4

w(i) =
1

2n
. (3.30)

We then transform each sigma point to get the transformed sigma points5

y(i) = f(x(i)).

The mean and covariance of the transformed random variable y can now6

be computed as7

µy =

2n∑
i=1

w(i)y(i)

Σy =

2n∑
i=1

w(i)
(
y(i) − µy

)(
y(i) − µy

)⊤
.

(3.31)

Example Say we have x =

[
r

θ

]
with µx = [1, π/2] and Σx =8 [

σ2
r 0

0 σ2
θ

]
. We would like to compute the probability distribution of9

y = f(x) =

[
r cos θ

r sin θ

]
which is a polar transformation.

? Compute the mean and covariance of y by
linearizing the function f(x).

Since x is two-10

dimensional, we will have 4 sigma points with equal weights w(i) = 0.25.11

The square root in the sigma point expression is12

√
nΣ =

[√
2σr 0

0
√
2σθ

]
and the sigma points are13

x(1) =

[
1

π/2

]
+

[√
2σr
0

]
, x(3) =

[
1

π/2

]
−
[√

2σr
0

]
x(2) =

[
1

π/2

]
+

[
0√
2σθ

]
, x(4) =

[
1

π/2

]
−
[

0√
2σθ

]
.

65

The transformed sigma points are1

y(1) =

[
r(1) cos θ(1)

r(1) sin θ(1)

]
=

[
0

1 +
√
2σr

]
y(2) =

[
r(2) cos θ(2)

r(2) sin θ(2)

]
=

[
cos
(
π/2 +

√
2σθ
)

sin
(
π/2 +

√
2σθ
)]

y(3) =

[
0

1−
√
2σr

]
y(4) =

[
cos
(
π/2−

√
2σθ
)

sin
(
π/2−

√
2σθ
)] .

Figure 3.3: Note that the true mean is being predicted very well by the UT and is
clearly a better estimate than the linearized mean.

3.7.2 The UT with tuning parameters2

The UT is a basic template for a large suite of techniques that capture3

the covariance Σx as a set of points and transform those points through4

the nonlinearity. You will see many alternative implementations of the5

UT that allow for user-tunable parameters. For instance, sometimes6

the UT is implemented with an additional sigma point x(0) = µ with7

weight w(0) = λ
n+λ and the weights of the other points are adjusted to be8

w(i) = 1
2(n+λ) for a user-chosen parameter λ. You may also see people9

using one set of weights w(i) for computing the mean µy and and another10

set of weights for computing the covariance Σy .11

? Are the transformed sigma points y(i) the
sigma points of P(y) = N(µy,Σy)?

? We are left with a big lingering question.
Why do you think this method is called the
“unscented transform”?

66

3.7.3 Unscented Kalman Filter (UKF)1

The Unscented Transform gives us a way to accurately estimate the mean2

and covariance of the transformed distribution through a nonlinearity.3

We can use the UT to modify the EKF to make it a more accurate state4

estimator. The resultant algorithm is called the Unscented Kalman Filter5

(UKF).6

Step 1: Propagating the dynamics by one timestep Given our current7

state estimate µk|k andΣk|k, we use the UT to obtain the updated estimates8

µk+1|k andΣk+1|k. Ifx(i) are the sigma points with corresponding weights9

w(i) for the Gaussian N(µk|k,Σk|k), we set10

µk+1|k :=

2n∑
i=1

w(i)f(x(i), uk)

Σk+1|k := R+

2n∑
i=1

w(i)
(
f(x(i))− µk+1|k

)(
f(x(i))− µk+1|k

)⊤
(3.32)

Step 2.1: Incorporating one observation The observation step is also11

modified using the UT. The key issue in this case is that we need a way12

to compute the Kalman gain in terms of the sigma points in the UT. We13

proceed as follows.14

Using new sigma pointsx(i) for the updated state distributionN(µk+1|k,Σk+1|k)15

with equal weights w(i) = 1/2n, we first compute their mean after the16

transformation17

ŷ =

2n∑
i=1

w(i)g(x(i)) (3.33)

and covariances18

Σyy := Q+

2n∑
i=1

w(i)
(
g(x(i))− ŷ

)(
g(x(i))− ŷ

)⊤
Σxy :=

2n∑
i=1

w(i)
(
x(i) − µk+1|k

)(
g(x(i))− ŷ

)⊤
.

(3.34)

Step 2.2: Computing the Kalman gain Until now we have written the19

Kalman gain using the measurement matrix C. We will now discuss a20

more abstract formulation that gives the same expression.21

Say we have a random variable x with known µx,Σx and get a new22

observation y. We saw how to incorporate this new observation to obtain23

a better estimator for x in Section 3.2.3. We will go through a similar24

analysis as before but in a slightly different fashion, one that does not25

involve the matrix C. Let26

z =

[
x

y

]

67

and µz =
[
µx µy

]
and1

Σz =

[
Σxx Σxy
Σyx Σyy

]
.

Finding the best (minimum variance estimator) x̂ = µx + K(y − µy)2

amounts to minimizing3

min
K

E
[
tr
{
(x̂− x) (x̂− x)⊤

}]
.

This is called the least squares problem, which you have seen before4

perhaps in slightly different notation. You can solve this problem to see5

that the best gain K is given by6

K∗ = ΣxyΣ
−1
yy . (3.35)

and this gain leads to the new covariance7

(x̂− x) (x̂− x)⊤ = Σxx − ΣxyΣ
−1
yy Σyx = Σxx −K∗ΣyyK

∗⊤.

The nice thing about the Kalman gain in (3.35) is that we can compute it8

now using expressions of Σxy and Σyy in terms of the sigma points. This9

goes as as follows:10

K∗ = ΣxyΣ
−1
yy

µk+1|k+1 = µk+1|k +K (yk+1 − ŷ)
Σk+1|k+1 = Σk+1|k − ΣxyΣ

−1
yy Σyx

= Σk+1|k −K∗ΣyyK
∗⊤.

(3.36)

Summary of UKF

1. The Unscented Transform (UT) is an alternative to linearization.
It gives a better approximation of the mean and covariance of
the random variable after being transformed using a nonlinear
function than taking the Taylor series approximation.

2. The UKF uses the UT and its sigma points for propagation
of uncertainty through the dynamics (3.32) and observation
nonlinearities (3.36).

3.7.4 UKF vs. EKF11

As compared to the Extended Kalman Filter, the UKF is a better approxi-12

mation for nonlinear systems. Of course, if the system is linear, both EKF13

and UKF are equivalent to a Kalman Filter.14

In practice, we typically use the UKF with some tuning parameters in15

68

the Unscented Transform as discussed in Section 3.7.2. In practice, the1

EKF also has tuning parameters where we may wish to perform multiple2

updates of the dynamics equations with a smaller time-discretization3

before the next observation comes in to alleviate the effect of linearizing4

the dynamics. A well-tuned EKF is often only marginally worse than an5

UKF: the former requires us to compute Jacobians at each step which the6

latter does not, but the latter is often a more involved implementation.7

UKF/EKF approximate filtering distribution as a Gaussian An
important point to remember about both the UKF and EKF is that
even if they can handle nonlinear systems, they still approximate the
filtering distribution

P(xk | y1, . . . , yk)

as a Gaussian.

3.8 Particle Filters (PFs)8

We next look at particle filters (PFs) which are a generalization of the9

UKF and can handle non-Gaussian filtering distributions. Just like the UT10

forms the building block of the UKF, the building block of a particle filter11

is the idea of importance sampling.12

3.8.1 Importance sampling13

Consider the following problem, given a probability distribution p(x), we14

want to approximate it as a sum of Dirac-delta distributions at points x(i),15

also called “particles”, each with weight w(i)
16

p(x) ≈
n∑
i=1

w(i)δx(i)(x).

Say all weights are equal 1/n. Depending upon how we pick the samples17

x(i), we can get very different approximations18

69

Figure 3.4: Black lines denote particles x(i), while red and blue curves denote the
approximations obtained using them. If there are a large number of particles in a
given region, the approximated probability density of that region is higher.

We see in Figure 3.4 that depending upon the samples, the
approximated probability distributions p̂(x) can be quite different.
Importance sampling is a technique to sample the particles to ap-
proximate a given probability distribution p(x). The main idea is
to use another known probability distribution, let us call it q(x) to
generate particles x(i) and account for the differences between the
two by assigning weights to each particle

For i = 1, . . . , n,

x(i) ∼ q

w(i) =
p(x(i))

q(x(i))
.

The original distribution p(x) is called the “target” and our chosen
distribution q(x) is called the “proposal”. If the number of particles
n is large, we can expect a better approximation of the target density
p(x).

1

70

3.8.2 Resampling particles to make the weights equal1

A particle filter modifies the weights of each particle as it goes through the2

dynamics and observation update steps. This often causes some particles3

to have very low weights and some others to have very high weights.4

Figure 3.5: An example run of a particle filter. The robot is shown by the green
dot in the top right. Observations from a laser sensor (blue rays) attached to the
robot measure its distance in a 360-degree field of view around it. Red dots are
particles, i.e., possible locations of the robot that we need in order to compute
the filtering density P(xk | y1, . . . , yk). You should think of this picture as being
similar to Problem 1 in Homework 1 where the robot was traveling on a grid. Just
like the the filtering density in Problem 1 was essentially zero in some parts of the
domain, the particles, say in the bottom left, will have essentially zero weights in
a particle filter once we incorporate multiple observations from the robot in top
right. Instead of having to carry around these null particles with small weights,
the resampling step is used to remove them and sample more particles, say in
the top right, where we can benefit from a more accurate approximation of the
filtering density.

The resampling step takes particles
{
w(i), x(i)

}n
i=1

which ap-

71

proximate a probability density p(x)

p(x) =

n∑
i=1

w(i)δx(i)(x)

and returns a new set of particles x′(i) with equal weightsw′(i) = 1/n

that approximate the same probability density

p(x) =
1

n

n∑
i=1

δx′(i)(x).

The goal of the resampling step is to avoid particle degeneracy, i.e.,
remove unlikely particles with very low weights and effectively split
the particles with very large weights into multiple particles.

1

Consider the weights of particles
{
w(i)

}
arranged in a roulette wheel as2

shown above. We perform the following procedure: we start at some3

location, say θ = 0, and move along the wheel in random increments4

of the angle. After each random increment, we add the corresponding5

particle into our set
{
x′

(i)
}

. Since particles with higher weights take up6

a larger angle in the circle, this procedure will often pick those particles7

and quickly move across particles with small weights without picking8

them too often. We perform this procedure n times for n particles. As an9

algorithm10

1. Let r be a uniform random variable in interval [0, 1/n]. Pick11

c = w(1) and initialize i = 1.12

2. For each m = 1, . . . , n, let u = r + (m − 1)/n. Increment13

i ← i + 1 and c ← c + w(i) while u > c and set new particle14

location x′(m)
= x(i).15

It is important to notice that the resampling procedure does not actually16

change the locations of particles. Particles with weights much lower than17

1/n will be eliminated while particles with weights much higher than 1/n18

will be “cloned” into multiple particles each of weight 1/n.19

 There are many other methods of
resampling. We have discussed here,
something known as “low variance
resampling”, which is easy to remember and
code up. Fancier resampling methods also
change the locations of the particles. The goal
remains the same, namely to eliminate
particles with low weights.

72

Figure 3.6: A cartoon depicting resampling. Disregard the different notation in
this cartoon. Resampling does not change the probability distribution that we wish
to approximate; it simply changes the particles and their weights.

3.8.3 Particle filtering: the algorithm1

The basic template of a PF is similar to that of the UKF and involves2

two steps, the first where we propagate particles using the dynamics to3

estimate P(xk+1 | y1, . . . , yk) and a second step where we incorporate the4

observation to compute the updated distribution P(xk+1 | y1, . . . , yk+1).5

Before we look at the theoretical derivation of a particle filter, it will6

help to go through the algorithm as you would implement on a computer.7

We assume that we have access to particles x(i)k|k8

P(xk | y1, . . . , yk) =
1

n

n∑
i=1

δ
x
(i)

k|k
(x),

all with equal weights w(i)
k|k = 1/n.9

1. Step 1: Propagating the dynamics. Each particle i =

73

1, . . . , n is updated by one timestep

x
(i)
k+1|k = f(x

(i)
k|k, uk) + ϵk

where f is the system dynamics using Gaussian noise
ϵk ∼ N(0, R). Weights of particles are unchanged w(i)

k+1|k =

w
(i)
k|k = 1/n.

2. Step 2: Incorporating the observation. Given a new obser-
vation yk+1, we update the weight of each particle using the
likelihood of receiving that observation

w
(i)
k+1|k+1 ∝ P(yk+1 | x(i)k+1|k) w

(i)
k+1|k.

Note that P(yk+1 | x(i)k+1|k) is a Gaussian and depends upon
the Gaussian observation noise νk. The mean of this Gaussian
is g(x(i)k+1|k) and its variance is equal to Q, i.e.,

P(yk+1 | x(i)k+1|k) = P(νk+1 ≡ yk+1 − g(x(i)k+1|k))

=
1√

(2π)p det(Q)
exp

(
−
ν⊤k+1Q

−1νk+1

2

)
.

Normalize the weights w(i)
k+1|k+1 to sum up to 1.

3. Step 3: Resampling step Perform the resampling step to
obtain new particle locations x(i)k+1|k+1 with uniform weights
w

(i)
k+1|k+1 = 1/n.

3.8.4 Example: Localization using particle filter1

18
initialization

19
observation

20
resampling

2

74

21
motion update

22
measurement

23
weight update

1

24
resampling

25
motion update

26
measurement

2

27
weight update

28
resampling

29
motion update

3

30
measurement

31
weight update

32
resampling

4

33
motion update

34
measurement

5

3.8.5 Theoretical insight into particle filtering6

Step 1: Propagating the dynamics As we introduced in the section on7

Markov Decision Processes (MDPs), a stochastic dynamical system8

xk+1 = f(xk, uk) + ϵk

is equivalent to a probability transition matrix xk+1 ∼ P(xk+1 | xk, uk).
Our goal is to approximate the distribution of xk+1|k using particles.

75

What proposal distribution show we choose? The “closest” probability
distribution to xk+1|k that we have available is xk|k. So we set

target :P(xk+1 | y1, . . . , yk)
proposal :P(xk | y1, . . . , yk)

 In this sense, picking a proposal
distribution to draw particles from is like
linearization. Better the match between the
proposal and the target, fewer samples we
need to approximate the target.1

Suppose we had performed resampling on our particle set from the2

distribution xk|k and have a set of n particles
{
x
(i)
k|k

}
with equal weights3

1/n4

P(xk | y1, . . . , yk) ≈
1

n

n∑
i=1

δ
x
(i)

k|k
(x).

Propagating the dynamics in a PF involves computing importance sam-5

pling weights. If we had a particle at location x that was supposed to6

approximate the distribution of xk+1|k, as we saw for importance sampling,7

its importance weight is the ratio of the target and proposal densities at8

that location9

wk+1|k(x) =
P(xk+1 = x | y1, . . . , yk)
P(xk = x | y1, . . . , yk)

.

Let us focus on the numerator. We have10

P(xk+1 = x | y1, . . . , yk) =
∫

P(xk+1 = x, xk = x′ | y1, . . . , yk) dxk

=

∫
P(xk+1 = x | xk = x′, y1, . . . , yk) P(xk = x′ | y1, . . . , yk)dxk

=

∫
P(xk+1 = x | xk = x′) P(xk = x′ | y1, . . . , yk) dx′

≈ 1

n

∫
P(xk+1 = x | xk = x′)

n∑
i=1

δ
x
(i)

k|k
(x′) dx′

=
1

n

n∑
i=1

P(xk+1 = x | xk = x
(i)
k|k, u = uk),

where the system dynamics is f(xk, uk) + ϵk and uk is the control at11

time k. The denominator P(xk = x
(i)
k|k | y1, . . . , yk) when evaluated at12

particles x(i)k|k is simply 1/n. This gives us weights13

wk+1|k(x) =

n∑
i=1

P(xk+1 = x | xk = x
(i)
k|k, u = uk). (3.37)

Let us now think about what particles we should pick for xk+1|k. We14

have from (3.37) a function that lets us compute the correct weight for any15

particle we may choose to approximate xk+1|k.16

Say we keep the particle locations unchanged, i.e., x(i)k+1|k = x
(i)
k|k.17

76

We then have1

P(xk+1 = x | y1, . . . , yk) ≈
n∑
i=1

wk+1|k(x
(i)
k|k) δx(i)

k|k
(x). (3.38)

 Draw a picture of how this approximation
looks.

You will notice that keeping the particle locations unchanged may be a very2

poor approximation. After all, the probability density P(xk+1 | y1, . . . , yk)3

is large, not at the particles x(i)k|k (that were a good approximation of xk|k),4

but rather at the transformed locations of these particles5

f(x
(i)
k|k, uk).

We will therefore update the locations of the particles to be6

x
(i)
k+1|k = f(x

(i)
k|k, uk) (3.39)

with weight of the ith particle given by7

w
(i)
k+1|k := wk+1|k(x

(i)
k+1|k) =

n∑
j=1

P(xk+1 = x
(i)
k+1|k | xk = x

(j)
k|k, u = uk)

≈ P(xk+1 = x
(i)
k+1|k | xk = x

(i)
k|k, u = uk).

(3.40)
The approximation in the above equation is very crude: we are essentially8

saying that each particle x(i)k|k is transformed independently of the other9

particles to a new location x(i)k+1|k = f(x
(i)
k|k, uk). This completes the first10

step of a particle filter and we have11

P(xk+1 = x | y1, . . . , yk) ≈
n∑
i=1

w
(i)
k+1|kδx(i)

k+1|k
(x).

Step 2: Incorporating the observation The target and proposal distri-12

butions in this case are13

target :P(xk+1 | y1, . . . , yk, yk+1)

proposal :P(xk+1 | y1, . . . , yk).

Since we have particles x(i)k+1|k with weights w(i)
k+1|k for the proposal14

distribution obtained from the propagation step, we now like to update15

them to incorporate the latest observation yk+1. Let us imagine for a16

moment that the weights w(i)
k+1|k are uniform. We would then set weights17

w(x) =
P(xk+1 = x | y1, . . . , yk, yk+1)

P(xk+1 = x | y1, . . . , yk)

∝ P(yk+1| xk+1 = x)P(xk+1 = x | y1, . . . , yk)
P(xk+1 = x | y1, . . . , yk)

(by Bayes rule)

= P(yk+1| xk+1 = x).

77

for each particle x = x
(i)
k+1|k to get the approximated distribution as1

P(xk+1 = x | y1, . . . , yk+1) ≈
n∑
i=1

P(yk+1 | x(i)k+1|k) w
(i)
k+1|kδx(i)

k+1|k
(x)

(3.41)
You will notice that the right hand side is not normalized and the distribution2

does not integrate to 1 (why? because we did not write the proportionality3

constant in the Bayes rule above). This is easily fixed by normalizing the4

coefficients P(yk+1 | x(i)k+1|k) w
(i)
k+1|k to sum to 1 as follows5

w
(i)
k+1|k+1 :=

P(yk+1 | x(i)k+1|k) w
(i)
k+1|k∑

j P(yk+1 | x(j)k+1|k) w
(j)
k+1|k

.

Step 3: Resampling step As we discussed in the previous section, after6

incorporating the observation, some particles may have very small weights.7

The resampling procedure resamples particles so that all of them have8

equal weights 1/n.9 {
x
(i)
k+1|k+1, 1/n

}n
i=1

= resample
({
x
(i)
k+1|k+1, w

(i)
k+1|k+1

}n
i=1

)
.

3.9 Discussion10

This brings our study of filtering to a close. We have looked at some of11

the most important algorithms for a variety of dynamical systems, both12

linear and nonlinear. Although, we focused on filtering in this chapter,13

all these algorithms have their corresponding “smoothing” variants, e.g.,14

you can read about how a typical Kalman smoother is implemented at15

https://en.wikipedia.org/wiki/Kalman_filter#Fixed-lag_smoother. Filter-16

ing, and state estimation, is a very wide area of research even today and17

you will find variants of these algorithms in almost every device which18

senses the environment.19

https://en.wikipedia.org/wiki/Kalman_filter#Fixed-lag_smoother

Chapter 41

Rigid-body transforms and2

mapping3

Reading
1. LaValle Chapter 3.2 for rotation matrices, Chapter 4.1-4.2 for

quaternions

2. Thrun Chapter 9.1-9.2 for occupancy grids

3. OctoMap: An Efficient Probabilistic 3D Mapping Framework
Based on Octrees
http://www.arminhornung.de/Research/pub/hornung13auro.pdf,
also see https://octomap.github.io.

4. Robot Operating System
http://www.willowgarage.com/sites/default/files/icraoss09-
ROS.pdf, Optional: Lightweight Communications and
Marshalling (LCM) system
https://people.csail.mit.edu/albert/pubs/2010-huang-olson-
moore-lcm-iros.pdf

5. A Perception-Driven Autonomous Urban Vehicle
https://april.eecs.umich.edu/media/pdfs/mitduc2009.pdf

6. Optional reading: Thrun Chapter 10 for simultaneous localiza-
tion and mapping

In the previous chapter, we looked at ways to estimate the state of4

the robot in the physical world. We kept our formulation abstract, e.g.,5

the way the robot moves was captured by an abstract expression like6

xk+1 = f(xk, uk) + ϵ and observations yk = g(xk) + ν were similarly7

opaque. In other to actually implement state estimation algorithms on real8

robots, we need to put concrete functions in place of f, g.9

78

http://www.arminhornung.de/Research/pub/hornung13auro.pdf
https://octomap.github.io
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
http://www.willowgarage.com/sites/default/files/icraoss09-ROS.pdf
https://people.csail.mit.edu/albert/pubs/2010-huang-olson-moore-lcm-iros.pdf
https://people.csail.mit.edu/albert/pubs/2010-huang-olson-moore-lcm-iros.pdf
https://april.eecs.umich.edu/media/pdfs/mitduc2009.pdf

79

This is easy to do for some robots, e.g., the robot in Problem 1 in1

Homework 1 moved across cells. Of course real robots are a bit more2

complicated, e.g., a car cannot move sideways (which is a huge headache3

when you parallel park). In the first half of this chapter, we will look at4

how to model the dynamics f using rigid-body transforms.5

The story of measurement models and sensors is similar. Although we6

need to write explicit formulae in place of the abstract function g. In the7

second half, we will study occupancy grids and dig deeper into a typical8

state-estimation problem in robotics, namely that of mapping the location9

of objects in the world around the robot.10

4.1 Rigid-Body Transformations11

Let us imagine that the robot has a rigid body, we think of this as a subset12

A ⊂ R2. Say the robot is a disc13

A =
{
(x, y) ∈ R2 : x2 + y2 ≤ 1

}
.

This set A changes as the robot moves around, e.g., if the center of mass14

of the robot is translated by xt, yt ∈ R the set A changes to15

A′ = {(x+ xt, y + yt) : (x, y) ∈ A} .

The concept of “degrees of freedom” denotes the maximum number of16

independent parameters needed to completely characterize the transfor-17

mation applied to a robot. Since the set of allowed values (xt, yt) is a18

two-dimensional subset of R2, then the degrees of freedom available to a19

translating robot is two.20

21

As the above figure shows, there are two ways of thinking about this22

transformation. We can either think of the robot transforming while the23

co-ordinate frame of the world is fixed, or we can think of it as the robot24

remaining stationary and the co-ordinate frame undergoing a translation.25

The second style is useful if you want to imagine things from the robot’s26

perspective. But the first one feels much more natural and we will therefore27

exclusively use the first notion.28

If the same robot if it where rotated counterclockwise by some angle29

θ ∈ [0, 2π], we would map30

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ).

80

Such a map can be written as multiplication by a 2×2 rotation matrix1

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
. (4.1)

to get2 [
x cos θ − y sin θ
x sin θ + y cos θ

]
= R(θ)

[
x

y

]
.

The transformed robot is thus given by3

A′ =

{
R

[
x

y

]
: (x, y) ∈ A

}
.

If we perform both rotation and translation, we can the transformation4

using a single matrix5

T =

cos θ − sin θ xt
sin θ cos θ yt
0 0 1

 (4.2)

and this transformation looks like6 x cos θ − y sin θ + xt
x sin θ + y cos θ + yt

1

 = T

xy
1

 .
The point (x, y, 1) ∈ R3 is called homogeneous coordinate space cor-7

responding to (x, y) ∈ R3 and the matrix T is called a homogeneous8

transformation matrix. The peculiar names comes from the fact that even9

if the matrix T maps rotations and translations of rigid bodies A ⊂ R2, it10

is just a linear transformation of the point (x, y, 1) if viewed in the larger11

space R3.

 It is important to remember that T
represents rotation followed by a translation,
not the other way around.12

Rigid-body transformations The transformations R ∈ R2×2 or T ∈13

R3×3 are called rigid-body transformations. Mathematically, it means14

that they do not cause the distance between any two points inside the set A15

to change. Rigid-body transformations are what are called an orthogonal16

group in mathematics.17

A group is a mathematical object which imposes certain conditions18

upon how two operations, e.g., rotations, can be composed together. For19

instance, if G is the group of rotations, then (i) the composition of two20

rotations is a rotation, we say that it satisfies closure R(θ1)R(θ2) ∈ G,21

(ii) rotations are associative22

R(θ1) {R(θ2)R(θ3)} = {R(θ1)R(θ2)}R(θ3),

and, (iii) there exists an identity and inverse rotation23

R(0), R(−θ) ∈ G.

81

An orthogonal group is a group whose operations preserve distances1

in Euclidean space, i.e., g ∈ G is an element of the group that acts on two2

points x, y ∈ Rd then3

∥g(x)− g(y)∥ = ∥x− y∥.

If we identify the basis in Euclidean space to be the set of orthonormal4

vectors {e1, . . . , ed}, then equivalently, the orthogonal group O(d) is the5

set of orthogonal matrices6

O(d) :=
{
O ∈ Rd×d : OO⊤ = O⊤O = I

}
.

This implies that the square of the determinant of any element a ∈ O(d)7

is 1, i.e., det(a) = ±1. ? Check that any rotation matrix R belongs
to an orthogonal group.

8

The Special Orthogonal Group is a sub-group of the orthogonal group9

where the determinant of each element is +1. You can see that rotations10

are a special orthogonal group. We denote rotations of objects in R2 as11

SO(2) :=
{
R ∈ R2×2 : R⊤R = RR⊤ = I, det(R) = 1

}
. (4.3)

Each group element g ∈ SO(2) denotes a rotation of theXY -plane about12

the Z-axis. The group of 3D rotations is called the Special Orthogonal13

Group SO(3) and is defined similarly14

SO(3) :=
{
R ∈ R3×3 : R⊤R = RR⊤ = I, det(R) = 1

}
. (4.4)

The Special Euclidean Group SE(2) is simply a composition of a 2D15

rotation R ∈ SO(2) and a 2D translation R2 ∋ v ≡ (xt, yt)16

SE(2) =

{[
R v

0 1

]
: R ∈ SO(2), v ∈ R2

}
⊂ R3×3. (4.5)

The Special Euclidean Group SE(3) is defined similarly as17

SE(3) =

{[
R v

0 1

]
: R ∈ SO(3), v ∈ R3

}
⊂ R4×4; (4.6)

again, remember that it is rotation followed by a translation.18

4.1.1 3D transformations19

Translations and rotations in 3D are conceptually similar to the two-20

dimensional case; however the details appear a bit more difficult because21

rotations in 3D are more complicated.22

82

Figure 4.1: Any three-dimensional rotation can be described as a sequence of
rotations about each of the cardinal axes. We usually give these specific names:
rotation about the Z-axis is called yaw, rotation about the X-axis is called roll and
rotation about Y -axis is called pitch. You should commit this picture and these
names to memory because it will be of enormous to think about these rotations
intuitively.

 Here is how I remember these names. Say
you are driving a car, usually in robotics we
take the X-axis to be longitudinally forward,
the Y -axis is your left hand if you are in the
driver’s seat and the Z-axis points up by the
right-hand thumb rule. Roll

is what a dog does when it rolls, it rotates
about the X-axis. Pitch is what a plane

does when it takes off, its nose lifts up and it
rotates about the Y -axis. Yaw is the one
which is not these two.

Euler angles We know that a pure counter-clockwise rotation about one1

of the axes is written in terms of a matrix, say yaw of α-radians about the2

Z-axis3

Rz(α) =

cosα − sinα 0

sinα cosα 0

0 0 1

 .
Notice that this is a 3×3 matrix that keeps the Z-coordinate unchanged4

and only affects the other two coordinates. Similarly we have for pitch (β5

about the Y -axis) and roll (γ about the X-axis)6

Ry(β) =

 cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

 , Rx(γ) =
1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 .
By convention, a rotation matrix in three dimensions is understood as a7

sequential application of rotations, first roll, then pitch, and then yaw8

R3×3 = R(γ, β, α) = Rz(α)Ry(β)Rx(γ). (4.7)

The angles (γ, β, α) (in order: roll, pitch, yaw) are called Euler angles.9

Imagine how the body frame of the robot changes as successive rotations10

are applied. If you were sitting in a car, a pure yaw would be similar to11

the car turning left; the Z-axis corresponding to this yaw would however12

only be pointing straight up perpendicular to the ground if you had not13

performed a roll/pitch before. If you had done so, the Z-axis of the body14

frame with respect to the world will be tiled.15

Another important thing to note is that one single parameter determines16

all possible rotations about one axis, i.e., SO(2). But three Euler angles17

are used to parameterize general rotations in three-dimensions. You18

can watch https://www.youtube.com/watch?v=3Zjf95Jw2UE to get more19

intuition about Euler angles.20

https://www.youtube.com/watch?v=3Zjf95Jw2UE

83

Rotation matrices to Euler angles We can back-calculate the Euler1

angles from a rotation matrix as follows. Given an arbitrary matrix2

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 ,
we set3

α = tan−1(r21/r11)

β = tan−1

(
−r31/

√
r232 + r233

)
γ = tan−1(r32/r33).

(4.8)

For each angle, the corresponding quadrant for the Euler angle is de-4

termined using the signs of the numerator and the denominator. So5

you should use the function atan2 in Python/C++ to implement these6

expressions correctly. Notice that some of the expressions have r11 and7

r33 in the denominator, this means that we need r11 = cosα cosβ ̸= 08

and r33 = cosβ cos γ ̸= 0. A particular physical rotation can be parame-9

terized in many different ways using Euler angles (depending upon the10

order in which roll, pitch and yaw are applied), so the map from rotation11

matrices to Euler angles is not unique.12

 In practice, e.g., if we run a Kalman filter
to estimate the Euler angles, we need be
careful in cases when α , β or γ ≈ π/2.

Consider when β crosses π/2, i.e., it goes
from π/2− ϵ to π/2 + ϵ for some small value
of ϵ. In this case, α = tan−1(r21/r11),
assuming r21 > 0, will jump from
tan−1(∞) = π/2 to
tan−1(−∞) = −π/2—a jump of 180
degrees.

Another classic problem when using Euler
angles occurs in what is called “Gimbal lock”.
This refers to the situation when one of the
angles, say β = π/2 (pitch up by 90 degrees).
In this case, the SO(3) rotation matrix is

R =

 0 0 1

sin(α+ γ) cos(α+ γ) 0

− cos(α+ γ) sin(α+ γ) 0

 .
Notice here that changing α (yaw) and γ (roll)
have the same effect on the rotation. We
cannot distinguish the effect of yaw from roll
if the pitch is 90 degrees. And such a “lock”
persists until β = π/2. Such a gimbal lock
happened on Apollo 11; the mechanism that
the engineers had designed to flip the
orientation by 180 degrees and escape this
degeneracy did not work.

These kind of things make it very
cumbersome to work with Euler angles in
computer code. They are best used for
visualization.

Homogeneous coordinates in three dimensions Just like the 2D case,13

we can define a 4×4 matrix that transforms points (x, y, z) ∈ R3 to their14

new locations after a rotation by Euler angles (γ, β, α) and a translation15

by a vector v = (xt, yt, zt) ∈ R3
16

T =

[
R(γ, β, α) v

0 1

]
.

4.1.2 Rodrigues’ formula: an alternate view of rotations17

Consider a point r(t) ∈ R3 that is being rotated about an axis denoted18

by a unit vector ω ∈ R3 with an angular velocity of 1 radian/sec. The19

instantaneous linear velocity of the head of the vector is20

ṙ(t) = ω × r(t) ≡ ω̂r(t) (4.9)

where the × denotes the cross-product of the two vectors a, b ∈ R3
21

a× b =

a2b3 − a3b2a3b1 − a1b3
a1b2 − a2b1

84

which we can equivalently denote as a matrix vector multiplication1

a× b = âb where2

â =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (4.10)

is a skew-symmetric matrix. The solution of the differential equation (4.9)3

at time t = θ is4

r(θ) = exp(ω̂θ) r(0)

where the matrix exponential of a matrix A is defined as5

exp(A) = I +A+
A2

2!
+
A3

3!
+ . . . =

∞∑
k=0

Ak

k!
.

This is an interesting observation: a rotation about a fixed axis ω by an6

angle θ can represented by the matrix7

R = exp(ω̂ θ). (4.11)

 Groups such as SO(2) and SO(3) are
topological spaces (viewed as a subset of
Rn2) and operations such as multiplication
and inverses are continuous functions on
these groups. These groups are also smooth
manifolds (a manifold is a generalization of a
curved surface) and that is why they are called
Lie groups (after Sophus Lie). Associated to
each Lie group is a Lie algebra which is the
tangent space of the manifold at identity. The
Lie algebra of SO(3) is denoted by so(3) and
likewise we have so(2). In a sense, the Lie
algebra achieves a “linearization” of the Lie
group. And the exponential map unlinearizes,
i.e., it takes objects in the Lie algebra to
objects in the Lie group

exp : so(3) 7→ SO(3).

What we have written in (4.11) is really just
this map:

so(n) ∋ ω ≡ ω̂θ
SO(n) ∋ R = exp(ω) = exp(ω̂θ).

Therefore, if an object whose frame had a
rotation matrix R with respect to the origin
were rotating with an angular velocity ω
(remember that angular velocity is a vector
whose magnitude is the rate of rotation and
direction is axis about which the object is
rotation), then the rate of change of R would
be given by

Ṙ = ω̂R.

If we were to implement a Kalman filter
whose state is the rotation matrix R, then this
would be the dynamics equation and one
would typically have an observation for the
velocity ω using a gyroscope.

You can check that this matrix is indeed a rotation by showing that8

R⊤R = I and that det(R) = +1. We can expand the matrix exponential9

and collect odd and even powers of ω̂ to get10

R = I + sin θ ω̂ + (1− cos θ)ω̂2. (4.12)

which is the Rodrigues’ formula that relates the angle θ and the axis ω to11

the rotation matrix. We can also go in the opposite direction, i.e., given a12

matrix R calculate what angle θ and axis ω it corresponds to using13

cos θ =
tr(R)− 1

2

ω̂ =
R−R⊤

2 sin θ
.

(4.13)

Note that both the above formulae make sense only for θ ̸= 0.14

4.2 Quaternions15

We know two ways to think about rotations: we can either think in terms16

of the three Euler angles (γ, β, α), or we can consider a rotation matrix17

R ∈ R3×3. We also know ways to go back and forth between these two18

forms with the caveat that solving for Euler angles using (4.8) may be19

degenerate in some cases. While rotation matrices are the most general20

representation of rotations, using them in computer code is cumbersome21

(it is, after all, a matrix of 9 elements). So while we can build an EKF22

where the state is a rotation matrix, it would be a bit more expensive to23

run. We can also implement the same filter using Euler angles but doing24

so will require special care due to the degeneracies.25

 Quaternions were invented by British
mathematician William Rowan Hamilton
while walking along a bridge with his wife.
He was quite excited by this discovery and
promptly graffitied the expression into the
stone of the bridge

85

Quaternions are a neat way to avoid the problems with both
the rotation matrix and Euler angles, they parametrize the space of
rotations using 4 numbers. The central idea behind quaternions is
Euler’s theorem which says that any 3D rotation can be considered
as a pure rotation by an angle θ ∈ R about an axis given by the
unit vector ω. This is the result that we also exploited in Rodrigues’
formula.

Figure 4.2: Any rotation in 3D can be represented using a unit vector ω and an
angle θ ∈ R. Notice that there are two ways to encode the same rotation, the unit
vector −ω and angle 2π − θ would give the same rotation. Mathematicians say
this as quaternions being a double-cover of SO(3).

 As you see in the adjoining figure,
quaternions also have degeneracies but they
are rather easy ones.

A quaternion q as a four-dimensional vector q ≡ (u0, u1, u2, u3) and1

we write it as2

q ≡ (u0, u), or
q = u0 + u1i+ u2j + u3k,

(4.14)

with i, j, k being three “imaginary” components of the quaternion with3

“complex-numbers like” relationships4

i2 = j2 = k2 = ijk = −1. (4.15)

It follows from these relationships that5

ij = −ji = k, ki = −ik = j, and jk = −jk = i.

Although you may be tempted to think about this, these imaginary6

components i, j, k have no relationship with the square roots of negative7

unity used to define standard complex numbers. You should simply think8

of the quaternion as a four-dimensional vector. A unit quaternion, i.e., one9

with10

u20 + u21 + u22 + u23 = 1,

is special: unit quaternions can be used to represent rotations in 3D.11

Quaternion to axis-angle representation The quaternion q = (u0, u)12

corresponds to to a counterclockwise rotation of angle θ about a unit13

vector ω where θ and ω are such that14

u0 = cos(θ/2), and u = ω sin (θ/2) . (4.16)

86

So given an axis-angle representation of rotation like in Rodrigues’ formula1

(θ, ω) we can write the quaternion as2

q = (cos(θ/2), ω sin(θ/2)) .

Using this, we can also compute the inverse of a quaternion (rotation of3

angle θ about the opposite axis −ω) as4

q−1 := (cos(θ/2), −ω sin(θ/2)) .

The inverse quaternion is therefore the quaternion where all entries except5

the first have their signs flipped.6

Multiplication of quaternions Just like two rotation matrices multiply7

together to give a new rotation, quaternions are also a representation8

for the group of rotations and we can also multiply two quaternions9

q1 = (u0, u), q2 = (v0, v) together using the quaternion identities for10

i, j, k in (4.15) to get a new quaternion11

q1q2 ≡ (u0, u) · (v0, v) = (u0v0 − u⊤v, u0v + v0u+ u× v).
 Quaternions belong to a larger group than
rotations called the Symplectic Group Sp(1).

12

Pure quaternions A pure quaternion is a quaternion with a zero scalar13

value u0 = 0. This is very useful to simply store a standard 3D vector14

u ∈ R3 as a quaternion (0, u). We can then rotate points easily between15

different frames as follows. Given a vector x ∈ R3 we can form a16

quaternion (0, x). It turns out that17

q · (0, x) · q∗ = (0, R(q)x). (4.17)

where q∗ = (u0,−u) is the conjugate quaternion of q = (u0, u); the18

conjugate is the same as the inverse for unit quaternions. Notice how19

the right-hand side is the vector R(q)x corresponding to the vector x20

rotation by a matrix R(q). This is a very useful trick to transform points21

across coordinate frames instead of multiplying each point x ∈ R3 by the22

corresponding SE(3) matrix element.23

Quaternions to rotation matrix The rotation matrix corresponding to24

a quaternion is25

R(q) = (u20 − u⊤u)I3×3 + 2
u0u

∥u∥
+ 2uu⊤

=

 2(u20 + u21)− 1 2(u1u2 − u0u3) 2(u1u3 + u0u2)

2(u1u2 + u0u3) 2(u20 + u22)− 1 2(u2u3 − u0u1)
2(u1u3 − u0u2) 2(u2u3 − u0u1) 2(u20 + u23)− 1

 .
(4.18)

Using this you can show the identity that rotation matrix corresponding to26

the product of two quaternions is the product of the individual rotation27

87

matrices1

R(q1q2) = R(q1)R(q2).

Rotation matrix to quaternion We can also go in the reverse direction.2

Given a rotation matrix R, the quaternion is3

u0 =
1

2

√
r11 + r22 + r33 + 1

if u0 ̸= 0, u1 =
r32 − r23

4u0

u2 =
r13 − r31

4u0

u3 =
r21 − r12

4u0

if u0 = 0, u1 =
r13r12√

r212r
2
13 + r212r

2
23 + r213r

3
23

u2 =
r12r23√

r212r
2
13 + r212r

2
23 + r213r

3
23

u3 =
r13r23√

r212r
2
13 + r212r

2
23 + r213r

3
23

.

(4.19)

 There is little need to memorize these
expressions or trying to understand patterns
between them. While building a new code
base for your robot, you will usually code up
these formulae once and all your code will
use them again and again.

4

4.3 Occupancy Grids5

Rotation matrices and quaternions let us capture the dynamics of a rigid6

robot body. We will next look at how to better understand observations.7

What is location and what is mapping? Imagine a robot that is8

moving around in a house. A natural representation of the state of this9

robot is the 3D location of all the interesting objects in the room, e.g.,10

https://www.youtube.com/watch?v=Qe10ExwzCqk. At each time-instant,11

we record an observation from our sensor (in this case, a camera) that12

indicates how far an object is from the robot. This helps us discover the13

location of the objects in the room. After gathering enough observations,14

we would have created a map of the entire house. This map is the set of15

positions of all interesting objects in the room. Such a map is called a16

“feature map”, these are all the green points in the image below17

https://www.youtube.com/watch?v=Qe10ExwzCqk

88

1

The main point to understand about feature map is that we can hand2

over this map to another robot that comes to the same house. The robot3

compares images from its camera and if it finds one of the objects inside4

the map, it can get an estimate of its location/orientation in the room with5

respect to the known location of the object in the map. The map is just6

a set of “features” that help identify salient objects in the room (objects7

which can be easily detected in images and relatively uniquely determine8

the location inside the room). The second robot using this map to estimate9

its position/orientation in the room is called the localization problem. We10

already know how to solve the localization problem using filtering.11

The first robot was solving a harder problem called Simultaneous12

Localization And Mapping (SLAM): namely that of discovering the location13

of both itself and the objects in the house. This is a very important and14

challenging problem in robots but we will not discuss it further. MEAM15

620 digs deeper into it.16

In this section, we will solve a part of the SLAM problem,
namely the mapping problem. We will assume that we know the
position/orientation of the robot in the 3D world, and want to build a
map of the objects in the world. We will discuss grid maps, which
are a more crude way of representing maps than feature maps but can
be used easily even if there are lots of objects.

Grid maps We will first discuss two-dimensional grid maps, they look17

as follows.18

89

Figure 4.3: A grid map (also called an occupancy grid) is a large gray-scale image,
each pixel represents a cell in the physical world. In this picture, cells that are
occupied are colored black and empty cells represent free space. A grid map is a
useful representation for a robot to localize in this house using observations from
its sensors and comparing those to the map.

To get a quick idea of what we want to do, you can watch the mapping1

being performed in https://www.youtube.com/watch?v=JJhEkIA1xSE.2

We are interested in learning such maps from the observations that a3

robot collects as it moves around the physical space. Let us make two4

simplifying assumptions.5

Assumption 1: each cell is either free or occupied6

7

This is neat: we can now model each cell as a binary random variable that8

indicates occupancy. Let the probability that the cell mi be occupied be9

p(mi)10

11

If we have p(mi) = 0, then the cell is not occupied and if we have12

p(mi) = 1, then the cell is occupied. A priori, we do not know the state13

of the cell so we will set the prior probability to be p(mi) = 0.5.14

Assumption 2: the world is static Objects in the world do not move.15

This is reasonable if we are interested in estimating in building a map of16

the walls inside the room. Note that it is not a reasonable assumption if17

https://www.youtube.com/watch?v=JJhEkIA1xSE

90

there are moving people inside the room. We will see a clever hack where1

the Bayes rule helps automatically disregard such moving objects in this2

section.3

Assumption 3: cells are independent of each other This is another4

drastic simplification. The state of our system is the occupancy of each cell5

in the grid map. We assume that before receiving any observations, the6

occupancy of each individual cell is independent; it is a Bernoulli variable7

with probability 1/2 since we have assumed the prior to be uniform in8

Assumption 1.9

10

This means that if cells in the map are denoted by a vectorm = (m1, . . . ,),11

then the probability of the cells being occupied/not-occupied can be written12

as13

p(m) =
∏
i

p(mi). (4.20)

14

4.3.1 Estimating the map from the data15

Say that the robot pose (position and orientation) is given by the sequence16

x1, . . . , xk. While proceeding along this sequence, the robot receives17

observations y1, . . . , yk. Our goal is to estimate the state of each cell18

mi ∈ {0, 1} (aka “the map” m = (m1,m2, . . . ,))19

P(m | x1, . . . , xk, y1 . . . , yk) =
∏
i

P(mi | x1, . . . , xk, y1 . . . , yk).

(4.21)
This is called the “static state” Bayes filter and is conceptually exactly the20

same as the recursive application of Bayes rule in Chapter 2 for detecting21

whether the door was open or closed.22

We will use a short form to keep the notation clear23

y1:k = (y1, y2, . . . , yk);

the quantity x1:k is defined similarly. As usual we will use a recursive24

91

Bayes filter to compute this probability as follows.1

P(mi | x1:k, y1:k)
Bayes rule

=
P(yk | mi, y1:k−1, x1:k)P(mi | y1:k−1, x1:k)

P(yk | y1:k−1, x1:k)

Markov
=

P(yk | mi, xk)P(mi | y1:k−1, x1:k−1)

P(yk | y1:k−1, x1:k)

Bayes rule
=

P(mi | yk, xk)P(yk | xk)P(mi | y1:k−1, x1:k−1)

P(mi | xk)P(yk | y1:k−1, x1:k)

Independence
=

P(mi | yk, xk)P(yk | xk)P(mi | y1:k−1, x1:k−1)

P(mi)P(yk | y1:k−1, x1:k)
.

(4.22)
We have a similar expression for the opposite probability2

P(¬mi | x1:k, y1:k) =
P(¬mi | yk, xk)P(yk | xk)P(¬mi | y1:k−1, x1:k−1)

P(¬mi)P(yk | y1:k−1, x1:k)
.

Let us take the ratio of the two to get3

P(mi | x1:k, y1:k)
P(¬mi | x1:k, y1:k)

=
P(mi | yk, xk)

P(¬mi | yk, xk)
P(mi | y1:k−1, x1:k−1)

P(¬mi | y1:k−1, x1:k−1)

P(¬mi)

P(mi)

=
P(mi | yk, xk)

1− P(mi | yk, xk)︸ ︷︷ ︸
uses observation yk

P(mi | y1:k−1, x1:k−1)

1− P(mi | y1:k−1, x1:k−1)︸ ︷︷ ︸
recursive term

1− P(mi)

P(mi)︸ ︷︷ ︸
prior

.

(4.23)
This is called the odds ratio. Notice that the first term uses the latest4

observation yk, the second term can be updated recursively because it5

is a similar expression as the left-hand side and the third term is a prior6

probability of the cell being occupied/non-occupied. Let us rewrite this7

formula using the log-odds-ratio that makes implementing it particularly8

easy. The log-odds-ratio of the probability p(x) of a binary variable x is9

defined as10

l(x) = log
p(x)

1− p(x)
, and p(x) = 1− 1

1 + el(x)
.

The product in (4.23) now turns into a sum as11

l(mi | y1:k, x1:k) = l(mi | yk, xk) + l(mi | y1:k−1, x1:k−1)− l(mi).

(4.24)
This expression is used to update the occupancy of each cell. The term12

sensor model = l(mi | yk, xk)

is different for different sensors and we will investigate it next.13
? We assumed that the map was static. Can
you think of why (4.24) automatically lets us
handle some moving objects? Think of what
the prior odds l(mi) does to the
log-odds-ratio l(mi | y1:k, x1:k).4.3.2 Sensor models14

Sonar This works by sending out an ultrasonic chirp and measuring the15

time between emission and reception of the signal. The time gives an16

92

estimate of the distance of an object to the robot.1

2

The figure above shows a typical sonar sensor (the two “eyes”) on a3

low-cost robot. Data from the sensor is shown on the right, a sonar is a4

very low resolution sensor and has a wide field of view, say 15 degrees,5

i.e., it cannot differentiate between objects that are within 15 degrees6

of each other and registers them as the same point. Sophisticated sonar7

technology is used today in marine environments (submarines, fish finders,8

detecting mines etc.).9

Radar works in much the same way as a sonar except that it uses10

pulses of radio waves and measures the phase difference between the11

transmitted and the received signal. This is a very versatile sensor12

(it was invented by the US army to track planes and missiles during13

World War II) but is typically noisy and requires sophisticated process-14

ing to be used for mainstream robotics. Autonomous cars, collision15

warning systems on human-driven cars, weather sensing, and certainly16

the military use the radar today. The following picture and the video17

https://www.youtube.com/watch?v=hwKUcu_7F9E will give you an ap-18

preciation of the kind of data that a radar records. Radar is a very long19

range sensor (typically 150 m) and works primarily to detect metallic20

objects.21

22

LiDAR LiDAR, which is short for Light Detection and Ranging,23

(https://en.wikipedia.org/wiki/Lidar) is a portmanteau of light and radar.24

It is a sensor that uses a pulsed laser as the source of illumination and25

records the time it takes (nanoseconds typically) for the signal to return26

to the source. See https://www.youtube.com/watch?v=NZKvf1cXe8s27

for how the data from a typical LiDAR (Velodyne) looks like. While a28

https://www.youtube.com/watch?v=hwKUcu_7F9E
https://en.wikipedia.org/wiki/Lidar
https://www.youtube.com/watch?v=NZKvf1cXe8s

93

Velodyne contains an intricate system of rotating mirrors and circuitry to1

measure time elapsed, there are new solid state LiDARs that are rapidly2

evolving to match the needs of the autonomous driving industry. Most3

LiDARs have a usable range of about 100 m.4

 Basic Driving
• Safe driving by default for various driving conditions
• Behaviors naturally emerge from the planning system:
–Slow down near turns, yield and merge into traffic
–Passing other vehicles, 3 point turn to change direction, park, etc.

5

A typical autonomous car This is a picture of MIT’s entry named Talos6

to the DARPA Urban Challenge (https://en.wikipedia.org/wiki/DARPA_Grand_Challenge_(2007))7

which was a competition where teams had to traverse a 60 mile urban8

route within 6 hours, while obeying traffic laws, understanding incoming9

vehicles etc. Successful demonstrations by multiple teams led by (CMU,10

Stanford, Odin College, MIT, Penn and Cornell) in this competition jump-11

started the wave of autonomous driving. While the number of sensors12

necessary to drive well has come down (Tesla famously does not like13

to use LiDARs and rely exclusively on cameras and radars), the type of14

sensors and challenges associated with them remain essentially the same.

 Waymo’s autonomous car

15

16

4.3.3 Back to sensor modeling17

Let us go back to understanding our sensor model l(mi | yk, xk)wheremi18

is a particular cell of the occupancy grid, yk and xk are the observations19

and robot position/orientation at time k.20

https://en.wikipedia.org/wiki/DARPA_Grand_Challenge_(2007)

94

Figure 4.4: Model for sonar data. (Top) A sonar gives one real-valued reading
corresponding to the distance measured along the red axis. (Bottom) if we travel
along the optical axis, the occupancy probability P(mi | yk = z, xk) can be
modeled as a spike around the measured value z. It is very important to remember
that range sensors such as sonar gives us three kinds of information about this ray:
(i) all parts of the environment up to ≈ z are unoccupied (otherwise we would
not have recorded z), (ii) there is some object at z which resulted in the return,
(iii) but we do not know anything about what is behind z. So incorporating a
measurement yk from a sonar/radar/lidar involves not just updating the cell which
corresponds to the return, but also updating the occupancy probabilities of every
grid call along the axis.

Figure 4.5: (Left) A typical occupancy grid created using a sonar sensor by
updating the log-odds-ratio l(mi | x1:k, y1:k) for all cells i for multiple time-steps
k. At the end of the map building process, if l(mi | x1:k, y1:k) > 0 for a particular
cell, we set its occupancy to 1 and to zero otherwise, to get the maximum-likelihood
estimate of the occupancy grid on the right.

LiDAR model When we say that a LiDAR is a more accurate sensor1

than the sonar, what we really mean is that the sensor model P(mi | yk, xk)2

looks as follows.3

95

1

As a result, we can create high-resolution occupancy grids using a LiDAR.2

3

4

? How will you solve the localization
problem given the map? In other words, if we
know the occupancy grid of a building as
estimated in a prior run, and we now want to
find the position/orientation of the robot
traveling in this building, how should we use
these sensors?

4.4 3D occupancy grids5

Two-dimensional occupancy grids are a fine representation for toy problems6

but they run into some obvious issues. Since the occupancy grid is a “top7

view” of the world, we cannot represent non-trivial objects in it correctly8

(a large tree with a thin trunk eats up all the free space). We often desire a9

fundamentally three-dimensional representation of the physical world.10

96

1

We could simply create cells in 3D space and our method for occupancy2

grid would work but this is no longer computationally cheap. For instance,3

if we want to build a map of Levine Hall (say 100 m × 100 m area and4

height of 25 m), a 3D grid map with a resolution of 5 cm × 5 cm × cm5

would have about 2 billion cells (if we store a float in each cell this map will6

require about 8 GB memory). It would be cumbersome to carry around7

so many cells and update their probabilities after each sensor reading (a8

Velodyne gives data at about 30 Hz). More importantly, observe that most9

of the volume inside Levine is free space (inside of offices, inner courtyard10

etc.) so we do not really need fine resolution in those regions.11

Octrees We would ideally have an occupancy grid whose resolution12

adapts with the kind of objects that are detected by the sensors. If nearby13

cells are empty we want to collapse them together to save on memory and14

computation, on the other hand, if nearby cells are all occupied, we want15

to refine the resolution in that area so has to more accurately discern the16

shape of the underlying objects. Octrees are an efficient representation for17

3D volumes.18

19

An octree is a hierarchical data structure that recursively sub-divides the20

3D space into octants and allocates volumes as needed for a particular data21

point observed by a range sensor. It is analogous to a kd-tree. Imagine if22

the entire space in the above picture were empty (the tree only has a root23

node), and we receive a reading corresponding to the dark shaded region.24

An octree would sub-divide the space starting from the root (each node25

in the tree populates is the parent of its eight child octants) recursively26

until some pre-determined minimum resolution is reached. This leaf27

97

node is grid cell; notice how different cells in the octree have different1

resolutions. Occupancy probabilities of each leaf node are updated using2

the same formula as that of (4.24). A key point here is that octrees are3

designed for accurate sensors (LiDARs) where there is not much noise4

in the observations returned by the sensor (and thereby we do not refine5

unnecessary parts of the space)6

Octrees are very efficient at storing large map, I expect you can store7

the entire campus of Penn in about a gigabyte.

 You can find LiDAR maps of the entire
United States (taken from a plane) at
https://www.usgs.gov/core-science-
systems/ngp/3dep

Ray tracing (following all8

the cells mi in tree along the axis of the sensor in Figure 4.4) is harder9

in this case but there are efficient algorithms devised for this purpose.10

An example OctoMap (an occupancy map created using an Octree) of a11

building on the campus of the University of Freiburg is shown below.

12

4.5 Local Map13

In this chapter, we primarily discussed occupancy grids of static environ-14

ments as the robot moves around in the environment. The purpose of doing15

so is localization, namely, finding the pose of the robot by comparing16

the observations of the sensors with the map (think of the particle filter17

localization example in Chapter 3). In typical problems, we often maintain18

two kinds of maps, (i) a large occupancy grid for localization (say as big19

as city), and (ii) another smaller map, called the local map, that is used to20

maintain the locations of objects (typically objects that can move) in the21

vicinity of the robot, say a 100 m × 100 m area.22

The local map is used for planning and control purposes, e.g., to check23

if the planned trajectory of the robot does not collide with any known24

obstacles. See an example of the local map at the 1:42 min mark at25

https://www.youtube.com/watch?v=2va15BE-7lQ. Some people also call26

the local map a “cost map” because occupied cells in the local map indicate27

a high collision cost of moving through that cell. The local map is typically28

https://www.usgs.gov/core-science-systems/ngp/3dep
https://www.usgs.gov/core-science-systems/ngp/3dep
https://www.youtube.com/watch?v=2va15BE-7lQ

98

constructed in the body frame and evolves as the robot moves around1

(objects appear in the front of the robot and are spawned in the local map2

and disappear from the map at the back as the robot moves forward).3

You should think of the map (and especially the local map) as the
filtering estimate of the locations of various objects in the vicinity of
the robot computed on the basis of multiple observations received
from the robot’s sensors.

Figure 4.6: The output of perception modules for a typical autonomous vehicle
(taken from https://www.youtube.com/watch?v=tiwVMrTLUWg. The global
occupancy grid is shown in gray (see the sides of the road). The local map is
not shown in this picture but you can imagine that it has occupied voxels at all
places where there are vehicles (purple boxes) and other stationary objects such
as traffic light, nearby buildings etc. Typically, if we know that so and so voxel
corresponds to a vehicle, we run an Extended Kalman Filter for that particular
vehicle to estimate the voxels in the local map that it is likely to be in, in the
next time-instant. The local map is a highly dynamic data structure that is rich in
information necessary for planning trajectories of the robot.

4.6 Discussion4

Occupancy grids are a very popular approach to represent the environment5

given the poses of the robot as it travels in this environment. We can also6

use occupancy grids to localize the robot in a future run (which is usually7

the purpose of creating them). Each cell in an occupancy grid stores the8

posterior probability of the cell being occupied on the basis of multiple9

observations {y1, . . . , yk} from respective poses {x1, . . . , xk}. This is10

a very efficient representation of the 3D world around us with the one11

caveat that each cell is updated independently of the others. But since12

one gets a large amount of data from typical range senors (a 64 beam13

Velodyne (https://velodynelidar.com/products/hdl-64e) returns about a14

2 million points/sec and cheaper versions of this sensor will cost about15

$100), this caveat does not hurt us much in practice. You can watch this talk16

https://www.youtube.com/watch?v=tiwVMrTLUWg
https://velodynelidar.com/products/hdl-64e/

99

(https://www.youtube.com/watch?v=V8JMwE_L5s0) by the head of Uber’s1

autonomous driving group to get more perspective about localization and2

mapping.3

https://www.youtube.com/watch?v=V8JMwE_L5s0

Chapter 51

Dynamic Programming2

Reading
1. (Thrun) Chapter 15

2. (Sutton & Barto) Chapters 3–4

3. Optional: (Bertsekas) Chapter 1 and 4

This is the beginning of Module 2, this module is about “how to act”.3

The first module was about “how to sense”. The prototypical problem in4

the first module was how to assimilate the information gathered by all the5

sensors into some representation of the world. In the next few lectures,6

we will assume that this representation is good, that it is accurate in terms7

of its geometry (small variance of the occupancy grid) and in terms of8

its information (small innovation in the Kalman filter etc.). Let us also9

assume that it has all the necessary semantics, e.g., objects are labeled as10

cars, buses, pedestrians etc (we will talk about how to do this in Module11

4).12

The prototypical problem investigated in the next few chapters is how13

to move around in this world, or affect the state of this world to achieve a14

desired outcome, e.g., drive a car from some place A to another place B.15

Our philosophy about notation Material on Dynamic Programming16

and Reinforcement Learning (RL), which we will cover in the following17

chapters, contains a lot of tiny details (much more than other areas in18

robotics/machine learning). These details are usually glossed over in most19

treatments. In the interest of simplicity, other courses or most research20

papers these days, develop an imprecise notation and terminology to focus21

on the problem. However, these details of RL matter enormously when22

you try to apply these techniques to real-world problems. Not knowing all23

the details or using imprecise terminology to think about RL is unlikely to24

make us good at real-world applications.25

100

101

For this reason, the notation and the treatment in this chapter, and the1

following ones, will be a bit pedantic. We will see complicated notation2

and terminology for quantities, e.g., the value function, that you might3

see being written very succinctly in other places. We will mostly follow4

the notation of Dmitri Bertsekas’ book on “Reinforcement Learning and5

Optimal Control” (http://www.mit.edu/ dimitrib/RLbook.html). You will6

get used to the extra notation and it will become second nature once you7

become more familiar with the concepts.8

5.1 Formulating the optimal control problem9

Let us denote the state of a robot (and the world) by xk ∈ X ⊂ Rn at the10

kth timestep. We can change this state using a control input uk ∈ U ⊂ Rp11

and this change is written as12

xk+1 = fk(xk, uk) (5.1)

for k = 0, 1, . . . , T − 1 starting from some initial given state x0. This is13

deterministic nonlinear dynamical system (no noise ϵ in the dynamics).14

We will let the dynamics fk also be a function of time k. The time T is15

some time-horizon up to which we care about running the system. The16

state-space is X (which we will assume does not change with time k) and17

the control-space is U .18

Recall, that we can safely assume that the system is Markov. The19

reason for it is as follows. If it is not, and say if xk+1 depends upon20

both xk and the previous step xk−1, then we can expand the state-space21

to write a new dynamics in the expanded state-space. We will follow22

a similar program as that of Module 1: we first describe very general23

algorithms (dynamic programming) for general systems (Markov Decision24

Processes), then specialize our methods to a restricted class of systems that25

are useful in practice (linear dynamical systems) and then finally discuss a26

very general class of systems again with more sophisticated algorithms27

(motion-planning).28

The central question in this chapter is how to pick a control uk.
We want to pick controls that lead to desirable trajectories of the
system, e.g., results in a parallel-parked car at time T and does not
collide against any other object for all times k ∈ {1, 2, . . . , T}. We
may also want to minimize some chosen quantity, e.g., when you
walk to School, you find a trajectory that avoids a certain street with
a steep uphill.

Finite, discrete state and control-space In this chapter we will

http://www.mit.edu/~dimitrib/RLbook.html

102

only consider problems with finitely-many states and controls, we
will assume that the state-space X and the control-space U are finite,
discrete sets.

Run-time cost and terminal cost We will take a very general view of1

the above problem and formalize it as follows. Consider a cost function2

qk(xk, uk) ∈ R

which gives a scalar real-valued output for every pair (xk, uk). This3

models the fact that you do not want to walk more than you need to get to4

School, i.e., we would like to minimize qk. You also want to make sure5

the trajectory actually reaches the lecture venue, we write this down as6

another cost qf (xT). We want to pick control inputs (u0, u1, . . . , uT−1)7

such that8

J(x0;u0, u1, . . . , uT−1) = qf (xT) +

T−1∑
k=0

qk(xk, uk) (5.2)

is minimized. The cost qf (xT) is called the terminal cost, it is high if9

xT is not the lecture room and small otherwise. The cost qk is called the10

run-time cost, it is high for instance if you have to use large control inputs,11

e.g., xk is a climb.12

The optimal control problem Given a system xk+1 = fk(xk, uk),
we want to find control sequences that minimize the total cost J
above, i.e., we want to solve

J∗(x0) = min
uk∈U,k=0,...,T−1

J(x0;u0, . . . , uT−1) (5.3)

It is important to realize that the function J(x0;u0, . . . , uT−1) de-
pends upon an entire sequence of control inputs and we need to find
them all to find the optimal cost J∗(x0) of, say reaching the School
from your home x0.

5.2 Dĳkstra’s algorithm13

If the state-space X and control-space U are discrete and finite sets, we14

can solve (5.3) as a shortest path problem using very fast algorithms.15

Consider the following picture. This is what would be called a transition16

graph for a deterministic finite-state dynamics.17

103

Figure 5.1: Transition graph for Dĳkstra’s algorithm

The graph has one source node x0. Each node in the graph is xk, each1

edge depicts taking a certain control uk. Depending on which control we2

pick, we move to some other node xk+1 given by the dynamics f(xk, uk).3

Note that this is not a transition like that of a Markov chain, everything is4

deterministic in this graph. On each edge we write down the cost5

cost(xk, xk+1) := qk(xk, uk)

where xk+1 = fk(xk, uk) and “close” the graph with a dummy terminal6

node with the cost qf (xT) on every edge leading to an artificial terminal7

node (sink).8

Minimizing the cost in (5.3) is now the same as finding the shortest9

path in this graph from the source to the sink. The algorithm to do so is10

quite simple and is called Dĳkstra’s algorithm after Edsgar Dĳkstra who11

used it around 1956 as a test program for a new computer named ARMAC12

(http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html).13

1. Let Q be the set of nodes that are currently unvisited; all nodes in14

the graph are added to it at the beginning. S is an empty set. An15

array called dist maintains the distance of every node in the graph16

from the source node x0. Initialize dist(x0) = 0 and dist =∞ for17

all other nodes.18

2. At each step, if Q is not empty, pop a node v ∈ Q such that v /∈ S19

with the smallest dist(v). Add v to S. Update the dist of all nodes20

u connected to v. For each u, if21

dist(u) > dist(v) + cost(u, v)

update the distance of u to be dist(v) + cost(u, v). If the above22

condition is not true do nothing.23

The algorithm terminates when the set Q is empty.24

You might know that there are many other variants of Dĳkstra’s25

algorithm, e.g., the A∗ algorithm that are quicker to find shortest paths.26

We will look at some of these in the next chapter.

? Shortest path algorithms do not work if
there are cycles in the graph because the
shortest path is not unique. Are there cycles
in the above graph?

27

? What should one do if the state/control
space is not finite? Can we still use Dĳkstra’s
algorithm?

http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html

104

The quantity dist is quite special: observe that after Dĳkstra’s
algorithm finishes running and the set Q is empty, the dist function
gives the optimal cost to go from each node in the graph to the source
node. We wanted to only find the cost to go from source x0 to the
sink node but ended up computing the cost from every node in the
graph to the source.

5.2.1 Dĳkstra’s algorithm in the backwards direction1

We can run Dĳkstra’s algorithm in the backwards direction to get the same2

answer as well. The sets Q and S are initialized as before. In this case3

we will let dist(v) denote the distance of a node v to the sink node. The4

algorithm proceeds in the same fashion, it pops a node v ∈ Q, v /∈ S and5

updates the dist of all nodes u connected to v. For each u, if6

dist(u) > dist(v) + cost(u, v)

then we update dist(u) to be the right-hand side of this inequality. Running7

Dĳkstra’s algorithm in reverse (from sink to the source) is completely8

equivalent to running it in the forward direction (from source to the sink).9

 If Dĳkstra’s algorithm (forwards or
backwards) is run on a graph with n vertices
and m edges, its computational complexity is
O(m+ n log n) if we use a priority queue to
find the node v ∈ Q, v /∈ S with the smallest
dist. The number of edges in the transition
graph in Figure 5.1 is m = O(T |X|).5.3 Principle of Dynamic Programming10

The principle of dynamic programming is a formalization of
the idea behind Dĳkstra’s algorithm. It was discovered by Richard
Bellman in the 1940s. The idea behind dynamic programming is
quite intuitive: it says that the remainder of an optimal trajectory is
optimal.

We can prove this as follows. Suppose that we find the optimal control11

sequence (u∗0, u
∗
1, . . . , u

∗
T−1) for the problem in (5.3). Our system is12

deterministic, so this control sequence results in a unique sequence of states13

(x0, x
∗
1, . . . , x

∗
T). Each successive state is given by x∗k+1 = fk(x

∗
k, u

∗
k)14

with x∗0 = x0. The principle of optimality, or the principle of dynamic15

programming, states that if one starts from a state x∗k at time k and wishes16

to minimize the “cost-to-go”17

qf (xT) + qk(x
∗
k, uk) +

T−1∑
i=k+1

qi(xi, ui)

over the (now assumed unknown) sequence of controls (uk, uk+1, . . . , uT−1),18

then the optimal control sequence for this truncated problem is exactly19

(u∗k, . . . , u
∗
T−1).20

The proof of the above assertion is an easy case of proof by contradic-21

tion: if the truncated sequence were not optimal starting from x∗k there22

105

exists some other optimal sequence of controls for the truncated problem,1

say (v∗k, . . . , v
∗
T−1). If so, the solution of the original problem where one2

takes controls v∗k from this new sequence for time-steps k, k+1, . . . , T −13

would have a lower cost. Hence the original sequence of controls would4

not have been optimal.5

Principle of dynamic programming. The essence of dynamic
programming is to solve the larger, original problem by sequentially
solving the truncated sub-problems. At each iteration, Dĳkstra’s
algorithm constructs the functions

J∗
T (xT), J

∗
T−1(xT−1), . . . , J

∗
0 (x0)

starting from J∗
T and proceeding backwards to J∗

T−1, J
∗
T−2 The

function J∗
T−k(v) is just the array dist(v) at iteration k of the back-

wards implementation of Dĳkstra’s algorithm. Mathematically,
dynamic programming looks as follows.

1. Initialize J∗
T (x) = qf (x) for all x ∈ X .

2. For iteration k = T − 1, . . . , 0, set

J∗
k (x) = min

uk∈U

{
qk(x, uk) + J∗

k+1(fk(x, uk))
}

(5.4)

for all x ∈ X .

After running the above algorithm we have the optimal cost-to-goJ∗
0 (x)6

for each state x ∈ X , in particular, we have the cost-to-go for the initial7

state J∗
0 (x0). If we remember the minimizer u∗k in (5.4) while running the8

algorithm, we also have the optimal sequence (u∗0, u
∗
1, . . . , u

∗
T−1). The9

function J∗
0 (x) (often shortened to simply J∗(x)) is the optimal cost-to-go10

from the state x ∈ X .11

Again, we really only wanted to calculate J∗
0 (x0) but had to do all this12

extra work of computing J∗
k for all the states.13

Curse of dimensionality What is the complexity of running dynamic14

programming? The cost of the minimization over U is O(|U |), it is a15

bunch of comparisons between floats. The number of operations at each16

iteration for setting the values J∗
k (x) for all x ∈ X is |X|. So the total17

complexity is O(T |X| |U |).18

The terms |X| and |U | are often the hurdle in implementing dynamic19

programming or any variant of it. Think of the grid-world in Problem 1 in20

HW 1, it had 200×200 cells which amounts to |X| = 40, 000. This may21

seem a reasonable number but it explodes quickly as the dimensionality22

of the state-space grows. For a robot manipulator with six degrees-of-23

freedom, if we discretize each joint angle into 5 degree cells, the number24

of states is |X| ≈ 140 billion. The number of states |X| is exponential in25

106

the dimensionality of the state-space and dynamic programming quickly1

becomes prohibitive beyond 4 dimensions or so. Bellman called this the2

curse of dimensionality.3

Cost of dynamic programming is linear in the time-horizon Notice a4

very important difference between (5.4)5

J∗
k (x) = min

uk∈U

{
qk(x, uk) + J∗

k+1(fk(x, uk))
}

for iterations i = T − 1, . . . , 0 and (5.3)6

J∗(x0) = min
uk∈U,k=0,...,T−1

J(x0;u0, . . . , uT−1).

The latter has a minimization over a sequence of controls (u0, u1, . . . , uT−1)7

while the former has a minimization over only the control at time k, uk8

over T iterations. The former is much much easier to solve because it is9

a sequence of O(T) smaller optimization problems: it is really easy to10

compute minuk∈U) for each state x separately than to solve the gigantic11

minimization problem in (5.3) because in the latter case, the variable of12

optimization is the entire control trajectory and has size |U |T .13

? The principle of dynamic programming
gives us a way to solve an optimization
problem (5.3) over a really large space (the
space of all control trajectories) using a linear
in time-horizon number of optimization
problems (5.4). Can we split any optimization
problem in sub-problems like this?

Dynamic programming and Viterbi’s algorithm We have seen the14

principle of dynamic programming in action before in Viterbi’s algorithm15

in Chapter 2. The transition graph in Figure 5.1 is the same as the Trellis16

graph for Viterbi’s algorithm, the run-time cost was17

qk(xk, uk) := − log P(Yk | Xk)− log P(Xk+1 | Xk)

and instead of a terminal cost qf , we had an initial cost − log P(X1).18

Viterbi’s algorithm computed the most likely path given observations19

of the HMM, i.e., the path (X1, . . . , XT) that maximizes the proba-20

bility P(X1, . . . , XT | Y1, . . . , YT) is simply the solution of dynamic21

programming for the Trellis graph.22

? How should one modify dynamic
programming if we have a non-additive cost,
e.g., the runtime cost at time k given by qk is
a function of both xk and xk−1?

5.3.1 Q-factor23

The quantity24

Q∗
k(x, u) := qk(x, u) + J∗

k+1(fk(x, u))

is called the Q-factor. It is simply the expression that is minimized in the25

right-hand side of (5.4) and denotes the cost-to-go if control u was picked26

at state x (corresponding to cost qk(x, u)) and the the optimal control27

trajectory was followed after that (corresponding to cost J∗
k (fk(x, u))28

from state x′ = fk(x, u)). This nomenclature was introduced by Watkins29

in his thesis.30

107

Q-factors and the cost-to-go are equivalent ways of thinking about1

dynamic programming. Given the Q-factor, we can obtain the cost-to-go2

J∗
k as3

J∗
k (x) = min

uk∈U
Q∗
k(x, uk). (5.5)

which is precisely the dynamic programming update (by definition) in (5.4).4

We can also write dynamic programming completely in terms of Q-factors5

as follows.6

Dynamic programming written in terms of the Q-factor

1. Initialize Q∗
T (x, u) = qf (x) for all x ∈ X and all u ∈ U .

2. For iteration k = T − 1, . . . , 0, set

Q∗
k(x, u) = qk(x, u) + min

u′∈U
Q∗
k+1(fk(x, u), u

′). (5.6)

for all x ∈ X and all u ∈ U .

As yet, it may be seem unnecessary to think of the Q-factor (which is
a larger array with |X| × |U | entries) instead of the cost-to-go (which
only has |X| entries in the array).

Value function The following terminology is commonly used in
the literature

value function ≡ cost-to-go J∗(x)

action-value function ≡ Q-factor Q∗(x, u).

Since the two functions are equivalent, we will call both as “value
functions”. The difference will be clear from context.

5.4 Stochastic dynamic programming: Value7

Iteration8

Let us now see how dynamic programming looks for a Markov Decision9

Process (MDP). As we saw in Chapter 3, we can think of MDPs as10

stochastic dynamical systems denoted by11

xk+1 = fk(xk, uk) + ϵk; x0 is given.

We will assume that we know the statistics of the noise ϵk at each time-step12

(say it is a Gaussian). Stochastic dynamical systems are very different from13

deterministic dynamical systems, given the same sequence of controls14

(u0, . . . , uT−1), we may get different state trajectories (x0, x1, . . . , xT)15

108

depending upon the realization of noise (ϵ0, . . . , ϵT−1). How should1

we find a good control trajectory then? One idea is to modify (5.3) to2

minimize the expected value of the cost over all possible state-trajectories3

J(x0;u0, . . . , uT−1) = E
(ϵ0,...,ϵT−1)

[
qf (xT) +

T−1∑
k=0

qk(xk, uk)

]
(5.7)

Suppose we minimized the above expectation and obtained the value4

function J∗(x0) and the optimal control trajectory (u∗0, . . . , u
∗
T−1). As5

the robot starts executing this trajectory, the realized versions of the noise6

ϵk might differ a lot from their expected value, and the robot may find7

itself in very different states xk than the average-case states considered8

in (5.10).

 Draw the picture of a one-dimensional
stochastic dynamical system (random walk on
a line) and see that the realized trajectory of
the system can be very different from the
average trajectory.9

Feedback controls The concept of feedback control is a powerful way10

to resolve this issue. Instead of seeking u∗k ∈ U as the solutions of (5.10),11

we instead seek a function12

uk(x) : X 7→ U (5.8)

that maps the state-space X to a control U . Effectively, given a feedback13

control uk(x) the robot knows what control to apply at its current realized14

state xk ∈ X , namely uk(xk), even if the realized state xk is very different15

from the average-case state. Feedback controls are everywhere and are16

critical to using controls in the real world. For instance, when you tune17

the shower faucet to give you a comfortable water temperature, you18

are constantly estimating the state (feedback using the temperature) and19

turning the faucet accordingly. Doing this without feedback would leave20

you terribly cold or scalded. We will denote the space of all feedback21

controls uk(·) that depend on the state x ∈ X by22

uk(·) ∈ U(X).

Control policy A sequence of feedback controls23

π = (u0(·), u1(·), . . . , uT−1(·)). (5.9)

is called a control policy. This is an object that we will talk about often. It24

is important to remember that a control policy is set of controllers (usually25

feedback controls) that are executed at each time-step of a dynamic26

programming problem.27

The stochastic optimal control problem finds a sequence of

109

feedback controls (u0(·), u1(·), . . . , uT (·)) that minimizes

J(x0;u0(·), . . . , uT−1(·)) = E
(ϵ0,...,ϵT−1)

[
qf (xT) +

T−1∑
k=0

qk(xk, uk(xk))

]
.

The value function is given by

J∗(x0) = min
uk(·)∈U(X), k=0,...,T−1

J(x0;u0(·), . . . , uT−1(·))

(5.10)
The optimal sequence of feedback controls (in short, the optimal
control trajectory) is the one that achieves this minimum.

 All this sounds very tricky and abstract but
you will quickly get used to the idea of
feedback control because it is quite natural.
You can think of feedback control as being
analogous to the innovation term in the
Kalman filter K(yk − Cµk+1|k) which
corrects the estimate µk+1|k to get a new
estimate µk+1|k+1 using the current
observation yk. Filtering would not work at
all if the innovation term did not depend upon
the actual observation yk and only depended
upon some average observation.

Dĳkstra’s algorithm no longer works, as is, if the edges in the graph1

are stochastic but we can use the principal of dynamic programming2

to write the solution for the stochastic optimal control problem. The3

idea remains the same, we compute a sequence of cost-to-go functions4

J∗
T (x), J

∗
T−1(x), . . . , J

∗
0 (x), and in particular J∗

0 (x0), proceeding back-5

wards.6

Finite-horizon dynamic programming for stochastic systems.

1. Initialize J∗
T (x) = qf (x) for all x ∈ X .

2. For all times k = T − 1, . . . , 0, set

J∗
k (x) = min

uk(·) ∈ U(X)

{
qk(x, uk(x)) + E

ϵk

[
J∗
k+1(fk(x, uk(x)) + ϵk)

]}
(5.11)

for all x ∈ X .

Just like (5.4), we solve a sub-problem for one time-instant at each7

iteration. But observe a few importance differences in (5.11) compared8

to (5.4).9

1. There is an expectation over the noise ϵk in the second term in the10

curly brackets. The second term in the curly brackets is the average of11

the cost-to-go of the truncated sub-problems from time k+1, . . . , T12

over all possible starting states x′ = fk(xk, uk(xk)) + ϵk. This13

makes sense, after taking the control uk(xk), we may find the robot14

at any of the possible states x′ ∈ X depending upon different15

realizations of noise ϵk and the cost-to-go from xk is therefore the16

average of the cost-to-go from each of those states (according to the17

principal of dynamic programming).18

2. The minimization in (5.11) is performed over a function19

U(X) ∋ uk(·) : X 7→ U.

110

Since our set of states and controls is finite, this involves finding1

a table of size |X| × |U | for each iteration. In (5.4), we only had2

to search over a set of values uk ∈ U of size |U |. At the end of3

dynamic programming, we have a sequence of feedback controls4

(u∗0(·), u∗1(·), . . . , u∗T−1(·)).

Each feedback control u∗k(x) tells us what control the robot should5

pick if it finds itself at a state x at time k.6

3. If we know the dynamical system, not in its functional form xk+1 =7

fk(xk, uk) + ϵk but rather as a transition matrix P(xk+1 | xk, uk)8

(like we had in Chapter 2) then the expression in (5.11) simply9

becomes10

J∗
k (x) = min

uk(·) ∈ U(X)

{
qk(x, uk(x)) + E

x′∼P(·|xk,uk(xk))

[
J∗
k+1(x

′))
]}

(5.12)

? Why should we only care about
minimizing the average cost in the objective
in (5.10)? Can you think of any other
objective we may wish to use?

Computational complexity The form in (5.12) helps us understand the11

computational complexity, each sub-problem performs |X| × |X| × |U |12

amount of work and therefore the total complexity of stochastic dynamic13

programming is14

O(T |X|2|U |).

Naturally, the quadratic dependence on the size of the state-space is an even15

bigger hurdle while implementing dynamic programming for stochastic16

systems.17

5.4.1 Infinite-horizon problems18

In the previous section, we put a lot of importance on the horizon T19

for dynamic programming. This is natural: if the horizon T changes,20

say you are in a hurry to get to school, the optimal trajectory may take21

control inputs that incur a lot of runtime cost simply to reach closer to22

the goal state (something that keeps the terminal cost small). In most,23

real-world problems, it is not very clear what value of T we should pick.24

We therefore formulate the dynamic programming problem as something25

that also allows a trajectory of infinite steps but also encourages the length26

of the trajectory to be small enough in order to be meaningful. Such27

problems are called infinite-horizon problems (T →∞).28

Stationary dynamics and run-time cost We think of infinite-horizon29

problems in the following way: at any time-step, the length of the trajectory30

remaining for the robot to traverse is infinite. It helps in this case to solve31

a restricted set of problems where the system dynamics and run-time cost32

do not change as a function of time (they only change as a function of the33

111

state and the control). We will set1

q(x, u) ≡ qk(x, u),
f(x, u) ≡ fk(x, u)

for all x ∈ X and u ∈ U . Such a condition is called stationarity. If the2

system is stochastic, we also require that the distribution of noise ϵk does3

not change as a function of time (it could change in (5.11) but we did not4

write it so). The infinite-horizon setting is never quite satisfied in practice5

but it is a reasonable formulation for problems that run for a long length6

of time.7

Infinite-horizon objective The objective that we desire be minimized8

by an infinite-horizon control policy9

π = (u0(·), u1(·), . . . , uT (·), uT+1(·), . . . ,)

is defined in terms of an asymptotic limit10

J(x0;π) = lim
T→∞

E
(ϵ0,...,ϵT−1)

[
T−1∑
k=0

γkq(xk, uk(xk))

]
. (5.13)

and we again wish to solve for the optimal cost-to-go11

J∗(x0) = argmin
π

J∗(x0;π). (5.14)

Thus the infinite horizon costs of a policy is the limit of its finite horizon12

costs as the horizon tends to infinity. Notice a few important differences13

when compared to (5.7).14

1. The objective is a limit, it is effectively the cost of the trajectory as15

it is allowed to stretch for a larger and larger time-horizon.16

2. There is no terminal cost in the objective function; this makes sense17

because an explicit terminal state xT does not exist anymore. In18

infinite-horizon problems, you should think of the terminal cost19

as being incorporated inside the run-time cost q(x, u) itself, e.g.,20

move the robot to minimize the fuel used at this time instant but also21

move it in a way that it reaches the goal at some time in the future.22

3. Discount factor— Depending upon what controls we pick, the23

summation24
T∑
k=0

q(xk, uk(xk))

can diverge to infinity as T →∞ and thereby a meaningful solution25

to the infinite-horizon problem may not exist. In order to avoid this,26

we use a scalar27

γ ∈ (0, 1)

known as the discount factor in the formulation. It puts more28

112

emphasis on costs incurred earlier in the trajectory than later ones1

and thereby encourages the length of the trajectory to be small.2

Notice that
∑∞
k=0 α

k = 1/(1 − α) if |a| < 1, so if the cost3

|q(xk, uk(xk))| < 1, then we know that the objective in (5.13)4

always converges.5

Stochastic shortest path problems It is important to remember that6

the discount factor is chosen by the user, no one prescribes it. There is7

also a class of problems where we may choose γ = 1 but in these cases,8

there should exist some essentially terminal state in the state space where9

we can keep taking a control such that the runtime cost q(x, u) is zero.10

Otherwise, the objective will diverge. The goal region in the grid-world11

problem could be an example of such state. Such problems are called12

stochastic shortest path problems because the time-horizon is not actually13

infinite, we just do not know how many time-steps it will take for the robot14

to go to the goal location. Naturally, stochastic shortest path problems15

are a generalization of the shortest path problem solved by Dĳkstra’s16

algorithm. The algorithms we discuss next will work for such problems.17

Stationary policy It seems a bit cumbersome to carry around an infinitely18

long sequence of feedback controls in infinite-horizon problems. Since19

there is an infinitely-long trajectory yet to be traveled at any given time-20

step, the optimal control action that we take should only depend upon the21

current state. This is indeed true mathematically. If J∗(x) is the optimal22

cost-to-go in the infinite-horizon problem starting from a state x, using23

the principle of dynamic programming, we should also have that we can24

split this cost as the best one-step cost of the current state x added to the25

optimal cost-to-go from the state f(x, u) realized after taking the optimal26

control u:27

J∗(x) = min
u(x)∈U(X)

E
ϵ
[q(x, u(x)) + J∗(f(x, u(x)) + ϵ)] . (5.15)

We will study this equation in depth soon. But if we find the minimum at28

u∗(x) for this equation, then we can run the policy29

π∗ = (u∗(·), u∗(·), . . . , u∗(·), . . .)

for the entire infinite horizon. Such a policy is called a stationary30

policy. Intuitively, since the future optimization problem (tail of dynamic31

programming) from a given state x looks the same regardless of the time32

at which we start, optimal policies for the infinite-horizon problem can33

be found even inside the restricted class of policies where the feedback34

control does not change with time k.35

We will almost exclusively deal with stationary policies in this course.36

113

5.4.2 Dynamic programming for infinite-horizon prob-1

lems2

We wish to compute the optimal cost-to-go of starting from a state x and3

taking an infinitely long trajectory that minimizes the objective (5.13).4

We will exploit the equation in (5.15) and develop an iterative algorithm5

to compute the optimal cost-to-go J∗(x).6

Value Iteration . The algorithm proceeds iteratively to maintain a
sequence of approximations

∀x ∈ X, J (0)(x), J (1)(x), J (2)(x), . . . ,

to the optimal value function J∗(x). Such an algorithm is called
“value iteration”.

1. Initialize J (0)(x) = 0 for all x ∈ X .

2. Update using the Bellman equation at each iteration, i.e., for
i = 1, 2, . . . , N , set

J (i+1)(x) = min
u∈U

E
ϵ

[
q(x, u) + γJ (i)(f(x, u) + ϵ)

]
. (5.16)

for all x ∈ X until the value function converges at all states,
e.g.,

∀x ∈ X,
∣∣∣J (i)(x)− J (i+1)(x)

∣∣∣ < small tolerance.

3. Compute the feedback control and the stationary policy π∗ =

(u∗(·), . . . ,) corresponding to the value function estimate J (N)

as

u∗(x) = argmin
u∈U

E
ϵ

[
q(x, u) + γJ (N)(f(x, u) + ϵ)

]
(5.17)

for all x ∈ X .

 If the dynamics is given as a transition
matrix, we can replace the expectation over
noise Eϵ as an expectation over the next state
x′ ∼ P(x′ | x, u(x)) in (5.16) to run value
iteration. Everything else remains the same

Let us observe a few important things in the above sequence of updates.7

First, at each iteration, we are updating the values of all |X| states. This8

involves |X|2|U | amount of work per iteration. How many such iterations9

N do we need until the value function converges? We will see in a bit, that10

∀x ∈ X, J∗(x) = lim
N→∞

J (N)(x).

Again, we really only wanted to compute the cost-to-go J∗(x0) from some11

initial state x0 but computed the value function at all states x ∈ X .12

114

Q-Iteration Just like we wrote dynamic programming in terms of the1

Q-factor, we can also write value iteration to find the optimal Q-factor2

Q∗(x, u), i.e., the optimal cost-to-go of the infinitely-long trajectory that3

starts at state x, takes a control u at the first time-step and therefore follows4

the optimal policy.5

1. We can again initialize Q(0)(x, u) = q(x, u) for all x ∈ X and6

u ∈ U .7

2. The Bellman update in terms of the Q-factor becomes8

Q(i+1)(x, u) = E
ϵ

[
q(x, u) + γ min

u′∈U
Q(i)(f(x, u) + ϵ, u′)

]
(5.18)

and update this for all x ∈ X and all u ∈ U .9

3. The feedback control is the control at that state that minimizes the10

Q-factor11

∀x ∈ X, u∗(x) = argmin
u′∈U

Q(N)(x, u′) (5.19)

and the control policy is12

π∗ = (u∗, u∗, . . . ,)

Notice how we can directly find the u′ that has the smallest value of13

Q(N) and set it to be our feedback control.14

5.4.3 An example15

Let us consider a grid-world example. A robot would like to reach a16

goal region (marked in green) and we are interested in computing the17

cost-to-go from different parts of the domain. Gray cells are obstacles that18

the robot cannot enter. At each step the robot can move in four directions19

(north, east, west, south) with a small dynamics noise which keeps it at20

the original cell in spite of taking the control. These pictures are when21

the run-time-cost is negative, i.e., the robot gets a certain reward q(x, u)22

for taking the control u at cell x. Dynamic programming (and value23

iteration) also works in this case and we simply replace all minimizations24

by maximizations in the equations.25

26

115

1

2

3

The final value function after 50 iterations looks as follows.4

5

5.4.4 Some theoretical results on value iteration6

We list down some very powerful theoretical results for value iteration.7

These results are valid under a very general set of conditions and make8

value iteration work for a large number of real-world problems; they are9

at the the heart of all modern algorithms. We will not derive them (it is10

116

easy but cumbersome) but you should commit them to memory and try to1

understand them intuitively.2

Value iteration converges. Given any initialization J (0)(x) for all3

x ∈ X , the sequence of value iteration estimates J (i)(x) converges to the4

optimal cost5

∀x ∈ X, J∗(x) = lim
N→∞

J (N)(x)

The solution is unique. The optimal cost-to-go J∗(x) of (5.14) satisfies6

the Bellman equation7

J∗(x) = min
u∈U

E
ϵ
[q(x, u) + γJ∗(f(x, u) + ϵ)] .

The function J∗ is also the unique solution of this equation. In other8

words, if we find some other function J ′(x) that satisfies the Bellman9

equation, we are guaranteed that J ′ is indeed the optimal cost-to-go.10

Policy evaluation: Bellman equation for a particular policy. Consider11

a stationary policy π = (u(·), u(·), . . .). The cost of executing this policy12

starting from a state x, is J(x;π) from (5.13), also denoted by Jπ(x) for13

short. It satisfies the equation14

Jπ(x) = q(x, u(x)) + γ E
ϵ
[Jπ(f(x, u(x)) + ϵ)] (5.20)

and is also the unique solution of this equation. In other words, if we15

have a policy in hand, and wish to find the cost-to-go of this policy, i.e.,16

“evaluate the policy” we can initialize J (0)(x) = 0 for all x ∈ X and17

perform the sequence of iterative updates to this initialization18

J (i+1)(x) = q(x, u(x)) + γ E
ϵ

[
J (i)(f(x, u(x)) + ϵ)

]
. (5.21)

As the number of updates goes to infinity, the iterate converges to Jπ(x)19

∀x ∈ X, Jπ(x) = lim
N→∞

J (N)(x).

Policy evaluation is equivalent to solving a linear system of equations.20

Observe that the corresponding equation for policy equation (5.20) does21

not have the minimization over controls. This allows us to write the22

updates in (5.21) as the solution of a linear system of equations. Since we23

are in a finite state-space, we can write the cost-to-go as a large vector24

Jπ := [Jπ(x1), J
π(x2), . . . , J

π(xn)]
⊤

where n is the number of total states in the state-space. We create a similar25

vector for the run-time cost term26

qu := [q(x1, u(x1)), q(x2, u(x2)), . . . , q(xn, u(xn))] .

117

We know that the expectation over noise ϵ is equivalent to an expecta-1

tion over the next state of the system, let us rewrite the dynamics part2

f(x, u(x)) + ϵ in terms of the Markov transition matrix3

Tx,x′ = P(x′ | x, u(x))

as4

γ E
ϵ
[Jπ(f(x, u(x)) + ϵ)] = γ

∑
x′

Tx,x′Jπ(x′) = γ TJπ

to get a linear system5

Jπ = qu + γTJπ (5.22)

which can be solved easily for Jπ = (I − γ T)−1
qu to get the cost-to-go6

of a particular control policy π.7

5.5 Stochastic dynamic programming: Policy8

Iteration9

Value iteration converges exponentially quickly, but asymptotically. Note10

that the number of states |X| = n is finite and so is the number of controls11

|U |. So this should seem funny, one would expect that we should be able12

to find the optimal cost J∗(x) in finite time if the problem is finite. After13

all we need to find |X| numbers J∗(x1), . . . , J
∗(xn). This intuition is14

correct and, in this section, we will discuss an algorithm called policy15

iteration which is a more efficient version of value iteration.16

The idea behind policy iteration is quite simple: given a stationary17

policy for an infinite-horizon problem π = (u(·), . . . , u(·)), we can18

evaluate this policy to obtain its cost-to-go Jπ(x). If we now set the19

feedback control to be20

ũ(x) = argmin
u∈U

E
ϵ
[q(x, u) + γJπ(f(x, u) + ϵ)] , (5.23)

i.e., we construct a new control policy that finds the best control to execute21

in the first step ũ(·) and thereafter it executes the old feedback control u(·)22

π(1) = (ũ(·), u(·), . . .),

then the cost-to-go of the new policy π(1) has to be better:23

∀x ∈ X, Jπ
(1)

(x) ≤ Jπ(x).

? Why? It is simply because (5.23) is at least
an improvement upon the feedback control
u(·). The cost-to-go cannot improve only if
the old feedback control u(·) where optimal
to begin with.

We don’t have to stop at one time-step, we can patch the old policy at the24

first two time-steps to get25

π(2) = (ũ(·), ũ(·), . . .),

and have by the same logic26

∀x ∈ X, Jπ
(2)

(x) ≤ Jπ
(1)

(x) ≤ Jπ(x).

118

If we build a new stationary policy1

π̃ = (ũ(·), ũ(·), ũ(·), . . .), (5.24)

we similarly have2

∀x ∈ X, J π̃(x) ≤ Jπ(x).

This suggests an iterative way to compute the optimal stationary policy3

π∗ starting from some initial stationary policy.4

Policy Iteration The algorithm proceeds to maintain a sequence of
stationary policies

π(k) = (u(k)(·), u(k)(·), u(k)(·), . . .)

that converges to the optimal policy π∗.
Initialize u(0)(x) = 0 for all x ∈ X . This gives the initial

stationary policy π(0). At each iteration k = 1, . . . , we do the
following two things.

1. Policy evaluation Use multiple iterations of (5.21) to evaluate
the old policy π(k). In other words, initialize J (0)(x) = 0 for
all x ∈ X and iterate upon

J (i+1)(x) = q(x, u(i)(x)) + γ E
ϵ

[
J (i)(f(x, u(i)(x) + ϵ))

]
for all x ∈ X until convergence. In practice, we can use the
linear system of equations in (5.22) to solve for Jπ(k) directly.

 For large problems, we use methods for
solving large linear systems such as Lanczos
iteration. Typical policy evaluation problems
are also sparse (why?) so we can use things
like the Kaczmarz method to solve the linear
system.

2. Policy improvement Update the feedback controller us-
ing (5.23) to be

u(k+1)(x) = argmin
u∈U

E
ϵ

[
q(x, u) + γJπ

(k)

(f(x, u) + ϵ)
]

for all x ∈ X and compute the updated stationary policy

π(k+1) = (u(k+1)(·), u(k+1)(·), . . .)

The algorithm terminates when the controller does not change at any
state, i.e., when the following condition is satisfied

∀x ∈ X, u(k+1)(x) = u(k)(x).

Just like value iteration converges to the optimal value function, it can5

be shown that policy iteration produces a sequence of improved policies6

∀x ∈ X, Jπ(k+1)(x) ≤ Jπ(k)(x)

119

and converges to the optimal cost-to-go1

∀x ∈ X, J∗(x) = lim
N→∞

Jπ(N)(x).

The key property of policy iteration is that we need a finite number of2

updates to the policy to find the optimal policy. Notice that this does3

not mean always mean that we are doing less work than value iteration4

in policy iteration. Observe that the policy evaluation step in the policy5

iteration algorithm performs a number of Bellman equation updates. But6

typically, it is observed in practice that policy iteration is much cheaper7

computationally than value iteration.8

5.5.1 An example9

Let us go back to our example for value iteration. In this case, we will10

visualize the controller u(k)(x) at each cell x as arrows pointing to some11

other cell. The cells are colored by the value function for that particular12

stationary policy.13

14

15

120

1

2

The evaluated value for the policy after 4 iterations is optimal, compare3

this to the example for value iteration.4

5

Chapter 61

Linear Quadratic2

Regulator (LQR)3

Reading
1. http://underactuated.csail.mit.edu/lqr.html, Lecture 3-4 at

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-
323-principles-of-optimal-control-spring-2008/lecture-notes

2. Optional: Applied Optimal Control by Bryson & Ho, Chapter
4-5

This chapter is the analogue of Chapter 3 on Kalman filtering. Just4

like Chapter 2, the previous chapter gave us two algorithms, namely value5

iteration and policy iteration, to solve dynamic programming problems for6

a finite number of states and a finite number of controls. Solving dynamic7

programming problems is difficult if the state/control space are infinite.8

In this chapter, we will look at an important and powerful special case,9

called the Linear Quadratic Regulator (LQR), when we can solve dynamic10

programming problems easily. Just like a lot of real-world state-estimation11

problems can be solved using the Kalman filter and its variants, a lot of12

real-world control problems can be solved using LQR and its variants.13

6.1 Discrete-time LQR14

Consider a deterministic, linear dynamical system given by15

xk+1 = Axk +Buk; x0 is given.

where xk ∈ Rd and uk ∈ Rm which implies that A ∈ Rd×d and16

B ∈ Rd×m. In this chapter, we are interested in calculating a feedback17

control uk = u(xk) for such a system. Just like we formulated the problem18

121

http://underactuated.csail.mit.edu/lqr.html
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-323-principles-of-optimal-control-spring-2008/lecture-notes/
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-323-principles-of-optimal-control-spring-2008/lecture-notes/

122

in dynamic programming, we want to pick a feedback control which leads1

to a trajectory that achieves a minimum of some run-time cost and a2

terminal cost. We will assume that both the run-time and terminal costs3

are quadratic in the state and control input, i.e.,4

q(x, u) =
1

2
x⊤Qx+

1

2
u⊤Ru (6.1)

where Q ∈ Rd×d and R ∈ Rm×m are symmetric, positive semi-definite5

matrices6

Q = Q⊤ ⪰ 0, R = R⊤ ⪰ 0.

Effectively, if Q were a diagonal matrix, a large diagonal entry would Qii7

models our desire that the trajectory of the system should not have a large8

value of the state xi along its trajectories. We want these matrices to be9

positive semi-definitive to prevent dynamic programming from picking10

a trajectory which drives down the run-time cost to negative infinity by11

picking.12

Example Consider the discrete-time equivalent of the so-called double13

integrator z̈(t) = u(t). The linear system in this case (obtained by creating14

two states x := [z(t), ż(t)] is15

xk+1 =

[
1 ∆t

0 1

]
xk +

[
0

∆t

]
uk.

 This system is called the double integrator
because of the structure z̈ = u; if z denotes
the position of an object the equation is
simply Newton’s law which connects the
force applied u to the acceleration.

16

First, note that a continuous-time linear dynamical system ẋ = Ax is17

asymptotically stable, i.e., from any initial condition x(0) its trajectories go18

to the equilibrium point x = 0 (x(t)→ 0 as t→∞). Asymptotic stability19

for continuous-time dynamical systems occurs if all eigenvalues of A are20

strictly negative. A discrete-time linear dynamical system xk+1 = Axk21

is asymptotically stable if all eigenvalues of A have magnitude strictly22

smaller than 1, |λ(A)| < 1.23

A typical trajectory of the double integrator will look as follows.24

Suppose we would like to pick a different controller that more quickly25

brings the system to its equilibrium. One way of doing so is to minimize26

J =

T∑
k=0

∥xk∥2

which represents how far away both the position and velocity are from zero27

over all times k. The following figure shows the trajectory that achieves a28

small value of J .29

123

0 2 4 6 8 10
t [s]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

z,
 d

ot
 z

, u

Double integrator

z
dot z
u

Figure 6.1: The trajectory of z(t) as a function of time t for a double integrator
z̈(t) = u where we have chosen a stabilizing (i.e., one that makes the system
asymptotically stable) controller u = −z(t) − ż(t). Notice how the trajectory
starts from some initial condition (in this case z(0) = 1 and ż(0) = 0) and moves
towards its equilibrium point z = ż = 0.

0 2 4 6 8 10
t [s]

4

3

2

1

0

1

z,
 d

ot
 z

, u

Double integrator (large control)

z
dot z
u

Figure 6.2: The trajectory of z(t) as a function of time t for a double integra-
tor z̈(t) = u where we have chosen a large stabilizing control at each time
u = −5z(t) − 5ż(t). Notice how quickly the state trajectory converges to the
equilibrium without much oscillation as compared to Figure 6.1 but how large the
control input is at certain times.

This is obviously undesirable for real systems where we may want the1

control input to be bounded between some reasonable values (a car cannot2

accelerate by more than a certain threshold). A natural way of enforcing3

this is to modify our our desired cost of the trajectory to be4

J =

T∑
k=0

(
∥xk∥2 + ρ∥uk∥2

)
where the value of the parameter ρ is something chosen by the user to5

give a good balance of how quickly the trajectory reaches the equilibrium6

point and how much control is exerted while doing so. Linear-Quadratic-7

Regulator (LQR) is a generalization of this idea, notice that the above8

example is equivalent to setting Q = Id×d and R = ρIm×m for the9

run-time cost in (6.1).10

124

Back to LQR With this background, we are now ready to formulate1

the Linear-Quadratic-Regulator (LQR) problem which is simply dynamic2

programming for a linear dynamical system with quadratic run-time cost.3

In order to enable the system to reach the equilibrium state even if we have4

only a finite time-horizon, we also include a quadratic cost5

qf (x) =
1

2
x⊤Qfx. (6.2)

The dynamic programming problem is now formulated as follows.6

Finite time-horizon LQR problem Find a sequence of control
inputs (u0, u1, . . . , uT−1) such that the function

J(x0;u0, u1, . . . , uT−1) =
1

2
x⊤TQfxT+

1

2

T−1∑
k=0

(
x⊤k Qxk + u⊤k Ruk

)
(6.3)

is minimized under the constraint that xk+1 = Axk + Buk for all
times k = 0, . . . , T − 1 and x0 is given.

6.1.1 Solution of the discrete-time LQR problem7

We know the principle of dynamic programming and can apply it to solve8

the LQR problem. As usual, we will compute the cost-to-go of a trajectory9

that starts at some state x and goes further by T − k time-steps, Jk(x)10

backwards. Set11

J∗
T (x) =

1

2
x⊤Qfx for all x.

Using the principle of dynamic programming, the cost-to-go JT−1 is12

given by13

J∗
T−1(xT−1) = min

u

{
1

2

(
x⊤T−1QxT−1 + u⊤Ru

)
+ J∗

T (AxT−1 +Bu)

}
= min

u

{
1

2

(
x⊤T−1QxT−1 + u⊤Ru+ (Ax+Bu)⊤Qf (AxT−1 +Bu)

)}
.

We can now take the derivative of the right-hand side with respect to u to14

get15

0 =
dRHS
du

= Ru+B⊤Qf (AxT−1 +Bu)

⇒ u∗T−1 = −(R+B⊤QfB)−1B⊤QfA xT−1

≡ −KT−1 xT−1.

(6.4)

where16

KT−1 = (R+B⊤QfB)−1B⊤QfA

125

is (surprisingly) also called the Kalman gain. The second derivative is1

positive semi-definite2

d2RHS
du2

= R+B⊤QfB ⪰ 0

so we know that u∗T−1 is a minimum of the convex quantity on the right-3

hand side. Notice that the optimal control u∗T−1 is a linear function of the4

state xT−1. Let us now expand the cost-to-go JT−1 using this optimal5

value (the subscript T − 1 on the curly bracket simply means that all6

quantities are at time T − 1)7

J∗
T−1(xT−1) =

1

2

{
x⊤Qx+ u∗⊤Ru∗ + (Ax+Bu∗)⊤Qf (Ax+Bu∗)

}
T−1

=
1

2
x⊤T−1

{
Q+K⊤RK + (A−BK)⊤Qf (A−BK)

}
T−1

xT−1

≡ 1

2
x⊤T−1PT−1xT−1

where we set the stuff inside the curly brackets to the matrix P which is8

also positive semi-definite. This is great, the cost-to-go is also a quadratic9

function of the state xT−1. Let us assume that this pattern holds for all10

time steps and the cost-to-go of the optimal LQR trajectory starting from11

a state x and proceeding forwards for T − k time-steps is12

J∗
k (x) =

1

2
x⊤Pkx.

We can now repeat the same exercise to get a recursive formula for Pk in13

terms of Pk+1. This is the solution of dynamic programming for the LQR14

problem and it looks as follows.15

PT = Qf

Kk =
(
R+B⊤Pk+1 B

)−1
B⊤Pk+1 A

Pk = Q+K⊤
k R Kk + (A−BKk)

⊤
Pk+1 (A−BKk) ,

(6.5)

for k = T−1, T−2, . . . , 0. There are a number of important observations16

to be made from this calculation:17

1. The optimal controller u∗k = −Kkxk is a linear function of the state18

xk. This is only true for linear dynamical systems with quadratic19

costs. Notice that both the state and control space are infinite sets20

but we have managed to solve the dynamic programming problem21

to get the optimal controller. We could not have done it if the run-22

time/terminal costs were not quadratic or if the dynamical system23

were not linear. Can you say why?24

2. The cost-to-go matrix Pk and the Kalman gain Kk do not depend25

upon the state and can be computed ahead of time if we know what26

the time horizon T is going to be.27

3. The Kalman gain changes with time k. Effectively, the LQR28

126

controller picks a large control input to quickly reduce the run-time1

cost at the beginning (if the initial condition were such that the2

run-time cost of the trajectory would be very large) and then gets3

into a balancing act where it balances the control effort and the state-4

dependent part of the run-time cost. LQR is an optimal way to strike5

a balance between the two examples in Figure 6.1 and Figure 6.2.6

The careful reader will notice how the equations in (6.5) and our7

remarks about them are similar to the update equations of the Kalman filter8

and our remarks there. In fact we will see shortly how spookily similar the9

two are. The key difference is that Kalman filter updates run forwards in10

time and update the covariance while LQR updates run backwards in time11

and update the cost-to-go matrix P . This is not surprising because LQR12

is an optimal control problem, its update equations should run backward13

in time like the Dĳkstra’s algorithm. If you are trying this example yourself, I
used the formula for continuous-time LQR
and then discretized the controller while
implementing it. We will see this
in Section 6.2

0 2 4 6 8 10
t [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

z,
 d

ot
 z

, u

Double integrator (LQR control)

z
dot z
u

Figure 6.3: The trajectory of z(t) as a function of time t for a double integrator
z̈(t) = u where we have chosen a controller obtained from LQR with Q = I and
R = 5. This gives the controller to be about u = −0.45z(t)− 1.05ż(t). Notice
how we still get stabilization but the control acts more gradually. Using different
values of R, we can get many different behaviors. Another key aspect of LQR as
compared to Figure 6.1 where the control was chosen in an ad hoc fashion is to let
us prescribe the quality of state trajectories using high-level quantities like Q,R.

14

6.2 Hamilton-Jacobi-Bellman equation15

This section will show how the principle of dynamic programming looks16

for continuous-time deterministic dynamical systems17

ẋ = f(x, u), with x(0) = x0.

As we discussed in Chapter 3, we can think of this as the limit of discrete-18

time dynamical system xk+1 = f discrete(xk, uk) as the time discretization19

goes to zero. Just like we have a sequence of controls in the discrete-time20

case, we have a continuous curve that determines the control (let us also21

call it the control sequence)22

{u(t) : t ∈ R+}

127

which gives rise to a trajectory of the states1

{x(t) : t ∈ R+}

for the dynamical system. Let us consider the case when we want to2

find control sequences that minimize the integral of the cost along the3

trajectory that stops at some fixed, finite time-horizon T :4

qf (x(T)) +

∫ T

0

q(x(t), u(t)) dt .

This cost is again a function of the run-time cost and a terminal cost.

 Since {x(t)}t≥0 and {u(t)}t≥0 are
continuous curves and the cost is now a
function of a continuous-curve,
mathematicians say that the cost is a
“functional” of the state and control trajectory.5

Continuous-time optimal control problem We again want to
solve for

J∗(x0) = min
u(t), t∈[0,T]

{
qf (x(T)) +

∫ T

0

q(x(t), u(t)) dt

}
(6.6)

with the system satisfying ẋ = f(x, u) at each time instant. Notice
that the minimization is over a function of time {u(t) : t ∈ [0, T]} as
opposed to a discrete-time sequence of controls that we had in the
discrete-time case. We will next look at the Hamilton-Jacobi-Bellman
equation which is a method to solve optimal-control problems of this
kind.

The principle of dynamic programming principle is still valid: if we6

have an optimal control trajectory {u∗(t) : t ∈ [0, T]} we can chop it up7

into two parts at some intermediate time t ∈ [0, T] and claim that the tail8

is optimal. In preparation for this, let us define the cost-to-go of going9

forward by T − t time as10

J∗(x, t) = min
u(s), s∈[t,T]

{
qf (x(T)) +

∫ T

t

q(x(s), u(s)) ds

}
,

the cost incurred if the trajectory starts at state x and goes forward by T − t
time. This is very similar to the cost-to-go J∗

k (x) we had in discrete-time
dynamic programming. Dynamic programming now gives

J∗(x(t), t) = min
u(s), t≤s≤T

{
qf (x(T)) +

∫ T

t

q(x(s), u(s)) ds

}

= min
u(s), t≤s≤T

{
qf (x(T)) +

∫ t+∆t

t

q(x(s), u(s)) ds+

∫ T

t+∆t

q(x(s), u(s)) ds

}

= min
u(s), t≤s≤t+∆t

{
J∗(x(t+∆t), t+∆t) +

∫ t+∆t

t

q(x(s), u(s)) ds

}
.

We now take the Taylor approximation of the term J∗(x(t+∆t), t+∆t)11

128

as follows1

J∗(x(t+∆t), t+∆t)− J∗(x(t), t)

≈ ∂xJ∗(x(t), t) (x(t+∆t)− x(t)) + ∂tJ
∗(x(t), t)∆t

≈ ∂xJ∗(x(t), t) f(x(t), u(t)) ∆t+ ∂tJ
∗(x(t), t)∆t

where ∂xJ∗ and ∂tJ∗ denote the derivative of J∗ with respect to its first2

and second argument respectively. We substitute this into the minimization3

and collect terms of ∆t to get4

0 = ∂t J
∗(x(t), t)+ min

u(t)∈U
{q(x(t), u(t)) + f(x(t), u(t)) ∂xJ

∗(x(t), t)} .

(6.7)
Notice that the minimization in (6.7) is only over one control input5

u(t) ∈ U , this is the control that we should take at time t. (6.7) is called6

the Hamilton-Jacobi-Bellman (HJB) equation. Just like the Bellman7

equation8

J∗
k (x) = min

u∈U

{
qk(x, u) + J∗

k+1(f(x, u))
}
.

has two quantities x and the time k, the Hamilton-Jacobi-Bellman equation9

also has two quantities x and continuous time t. Just like the Bellman10

equation is solved backwards in time starting from T with J∗
k (x) = qf (x),11

the HJB equation is solved backwards in time by setting12

J∗(x, T) = qf (x).

You should think of the HJB equation as the continuous-time,
continuous-space analogue of Dĳkstra’s algorithm when the number
of nodes in the graph goes to infinity and the length of each edge is
also infinitesimally small.

6.2.1 Infinite-horizon HJB13

The infinite-horizon problem with the HJB equation is easy: since we14

know that the optimal cost-to-go is not a function of time, we have15

∂tJ
∗(x, t) = 0

and therefore J∗(x) satisfies16

0 = min
u∈U

{q(x, u) + f(x, u) ∂xJ
∗(x)} . (6.8)

In this case, the above equation makes sense only if the integral of the run-17

time cost with the optimal controller
∫∞
0
q(x(t), u∗(x(t))) dt remains18

bounded and does not diverge to infinity. Therefore typically in this19

problem we will set q(0, 0) = 0, i.e., there is no cost for the system being20

at the origin with zero control, otherwise the integral of the run-time cost21

will never be finite. This also gives the boundary condition J∗(0) = 0 for22

the HJB equation.23

129

6.2.2 Solving the HJB equation1

The HJB equation is a partial differential equation (PDE) because there2

is one cost-to-go from every state x ∈ X and for every time t ∈ [0, T].3

It belongs to a large and important class of PDEs, collectively known4

as Hamilton-Jacobi-type equations. As you can imagine, since dynamic5

programming is so pervasive and solutions of DP are very useful in practice6

for a number of problems, there have been many tools invented to solve the7

HJB equation. These tools have applications to a wide variety of problems,8

from understanding how sound travels in crowded rooms to how light9

diffuses in an animated movie scene, to even obtaining better algorithms10

to train deep networks (https://arxiv.org/abs/1704.04932). HJB equations11

are usually never exactly solvable and a number of approximations need12

to be made in order to solve it.13

In this course, we will not solve the HJB equation. Rather, we are
interested in seeing how the HJB equation looks for continuous-time
linear dynamical systems (both deterministic and stochastic ones) and
LQR problems for such systems, as done in the following section.

An example We will look at a classical example of the so-called car-14

on-the-hill problem given below. The state of the problem is the position

Figure 6.4: A car whose position is given by z(t) would like to climb the hill to
its right and reach the top with minimal velocity. The car rolls on the hill without
friction. The run-time cost is zero everywhere inside the state-space. Terminal
cost is -1 for hitting the left boundary (z = −1) and −1− ż/2 for reaching the
right boundary (z = 1). The car is a single integrator, i.e., ż = u with only two
controls (u = 4 and u = −4) and cannot exceed a given velocity (in this case
|ż| ≤ 4. This looks like a simple dynamic programming problem but it is quite
hard due to the constraint on the velocity. The car may need to make multiple
swing ups before it gains enough velocity (but not too much) to climb up the hill.

15

and velocity (z, ż) and we can solve a two-dimensional HJB equation to16

obtain the optimal cost-to-go from any state, as done by the authors Yuval17

Tassa and Tom Erez in “Least Squares Solutions of the HJB Equation18

With Neural Network Value-Function Approximators”19

(https://homes.cs.washington.edu/t̃odorov/courses/amath579/reading/NeuralNet.pdf).20

In practice, while solving the HJB PDE, one discretizes the state-space at21

given set of states and solves the HJB equation (6.7) on this grid using22

https://arxiv.org/abs/1704.04932
https://homes.cs.washington.edu/~todorov/courses/amath579/reading/NeuralNet.pdf

130

numerical methods (these authors used neural networks to solve it). The1

end result looks as follows.

Figure 6.5: The left-hand side picture shows the infinite-horizon cost-to-goJ∗(z, ż)
for the car-on-the-hill problem. Notice how the value function is non-smooth at
various places. This is quite typical of difficult dynamic programming problems.
The right-hand side picture shows the optimal trajectories of the car (z(t), ż(t));
gray areas indicate maximum control and white areas indicate minimum control.
The black lines show a few optimal control sequences taken the car starting from
various states in the state-space. Notice how the optimal control trajectory can
be quite different even if the car starts from nearby states (-0.5,1) and (-0.4,1.2)).
This is also quite typical of difficult dynamic programming problems.

2

6.2.3 Continuous-time LQR3

Consider a linear continuous-time dynamical system given by4

ẋ = A x+B u; x(0) = x0.

In the LQR problem, we are interested in finding a control trajectory that5

minimizes, as usual, a cost function that is quadratic in states and controls,6

except that we have an integral of the run-time cost because our system is7

a continuous-time system8

1

2
x(T)

⊤
Qf x(T) +

1

2

∫ T

0

x(t)
⊤
Q x(t) + u(t)

⊤
R u(t) dt .

This is a very nice setup for using the HJB equation from the previous9

section.10

Let us use our intuition from the discrete-time LQR problem and say11

that the optimal cost is quadratic in the states, namely,12

J∗(x, t) =
1

2
x(t)

⊤
P (t) x(t);

notice that as usual the optimal cost-to-go is a function of the states x13

131

and the time t because is the optimal cost of the continuous-time LQR1

problem if the system starts at a state x at time t and goes on until time2

T ≥ t. We will now check if this J∗ satisfies the HJB equation (we don’t3

write the arguments x(t), u(t) etc. to keep the notation clear)4

−∂tJ∗(x, t) = min
u∈U

{
1

2

(
x⊤Qx+ u⊤R u

)
+ (A x+B u)⊤ ∂xJ

∗(x, t)

}
(6.9)

from (6.7). The minimization is over the control input that we take at time5

t. Also notice the partial derivatives6

∂xJ
∗(x, t) = P (t) x.

∂tJ
∗(x, t) =

1

2
x⊤Ṗ (t) x.

It is convenient in this case to see that the minimization can be per-7

formed using basic calculus (just like the discrete-time LQR problem), we8

differentiate with respect to u and set it to zero.9

0 = .RHS of HJB
du

⇒ u∗(t) = −R−1 B⊤P (t) x(t)

≡ −K(t) x(t).

(6.10)

where K(t) = R−1 B⊤P (t) is the Kalman gain. The controller is again10

linear in the states x(t) and the expression for the gain is very simple in11

this case, much simpler than discrete-time LQR. Since R ≻ 0, we also12

know that u∗(t) computed here is the global minimum. If we substitute13

this value of u∗(t) back into the HJB equation we have14

{}
∣∣∣
u∗(t)

=
1

2
x⊤
{
PA+A⊤P +Q− PBR−1B⊤P

}
x.

If order to satisfy the HJB equation, we must have that the expression15

above is equal to −∂tJ∗(x, t). We therefore have, what is called the16

Continuous-time Algebraic Riccati Equation (CARE), for the matrix17

P (t) ∈ Rd×d18

−Ṗ = PA+A⊤P +Q− PBR−1B⊤P. (6.11)

This is an ordinary differential equation for the matrix P . The derivative19

Ṗ = dP
dt stands for differentiating every entry of P individually with20

time t. The terminal cost is 1
2x(T)

⊤
Qf x(T) which gives the boundary21

condition for the ODE as22

P (T) = Qf .

Notice that the ODE for the P (t) travels backwards in time.23

Continuous-time LQR has particularly easy equations, as you can see24

in (6.10) and (6.11) compared to those for discrete-time ((6.4) and (6.5)).25

Special techniques have been invented for solving the Riccati equation. I26

132

used the function scipy.linalg.solve_continuous_are to obtain Figure 6.31

using the continuous-time equations; the corresponding function for2

solving Discrete-time Algebraic Riccati Equation (DARE) which is given3

in (6.5) is scipy.linalg.solve_discrete_are. The continuous-time point-of-4

view also gives powerful connections to the Kalman filter, where you can5

show that the Kalman filter and LQR are duals of each other: in fact the6

equations for the Kalman filter (in continuous-time) and continuous-time7

LQR turn out to be exactly the same after you interchange appropriate8

quantities (!).9

Infinite-horizon LQR Just like the infinite-horizon HJB equation has10

∂tJ
∗(x, t) = 0, if we have an infinite-horizon LQR problem, the cost11

matrix P should not be a function of time12

Ṗ = 0.

The continuous-time algebraic Riccati equation in (6.11) now becomes13

PA+A⊤P +Q− PBR−1B⊤P.

with the cost-to-go being given by J∗(x) = 1
2x

⊤Px.14

6.3 Stochastic LQR15

We will next look at a very powerful result. Say we have a stochastic linear16

dynamical system17

ẋ(t) = Ax(t) +Bu(t) +Bϵϵ(t); x(0) is given

where ϵ(t) is standard Gaussian noise ϵ(t) ∼ N(0, I) that is uncorrelated18

in time and would like to find a control sequence {u(t) : t ∈ [0, T]} that19

minimizes a quadratic run-time and terminal cost20

E
ϵ(t):t∈[0,T]

[
1

2
x(T)

⊤
Qfx(T) +

1

2

∫ T

0

x(t)
⊤
Qx(t) + u(t)

⊤
Ru(t) dt

]
.

over a finite-horizon T . Notice that since the system is stochastic now,21

we should minimize the expected value of the cost over all possible22

realizations of the noise {ϵ(t) : t ∈ [0, T]}. This is a very challenging23

problem, conceptually it is the equivalent of dynamic programming for an24

MDP with an infinite number of states x(t) ∈ Rd and an infinite number25

of controls u(t) ∈ Rm.26

However, it turns out that the optimal controller that we should pick in27

this case is also given by the standard LQR problem28

u∗(t) = −R−1B⊤P (t) x(t)

with − Ṗ = PA+A⊤P +Q− PBR−1B⊤P ; P (T) = Qf .

We will not do the proof (it is easy but tedious, you can try to show it29

133

0 2 4 6 8 10
t [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

z,
 d

ot
 z

, u
Double integrator (LQR control)

z
dot z
u

0 2 4 6 8 10
t [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

z_
s,

 d
ot

 z
_s

, u

Stochastic double integrator (LQR control)

z_s
dot z_s
u

Figure 6.6: Comparison of the state trajectories of deterministic LQR and stochastic
LQR problem with Bϵ = [0.1, 0.1]. The left panel is the same as that in Figure 6.3.
The control input is the same in both cases but notice that the states in the plot
on the right need not converge to the equilibrium due to noise. The cost of the
trajectory will also be higher for the stochastic LQR case due to this. The total cost
is J∗(x0) = 32.5 for the deterministic case (32.24 for the quadratic state-cost and
0.26 for the control cost). The total cost J∗(x0) is much higher for the stochastic
case, it is 81.62 (81.36 for the quadratic state cost and 0.26 for the control cost).

by writing the HJB equation for the stochastic LQR problem). This is a1

very surprising result because it says that even if the dynamical system2

had noise, the optimal control we should pick is exactly the same as the3

control we would have picked had the system been deterministic. It is a4

special property of the LQR problem and not true for other dynamical5

systems (nonlinear ones, or ones with non-Gaussian noise) or other costs.6

We know that the control u∗(t) is the same as the deterministic case.7

Is the cost-to-go J∗(x, t) also the same? If you think about this, the8

cost-to-go in the stochastic case has to be a bit larger than the deterministic9

case because the noise ϵ(t) is always going to non-zero when we run the10

system, the LQR cost J∗(x0, 0) =
1
2x

⊤
0 P (0)x0 is, after all, only the cost11

of the deterministic problem. It turns out that the cost for the stochastic12

LQR case for an initial state x0 is13

J∗(x0, 0) = E
ϵ(t):t∈[0,T]

[
1

2
x(T)

⊤
Qfx(T) +

1

2

∫ T

0

. . . dt

]

=
1

2
x⊤0 P (0)x0 +

1

2

∫ T

0

tr(P (t)BϵB⊤
ϵ) dt .

The first term is the same as that of the deterministic LQR problem. The14

second term is the penalty we incur for having a stochastic dynamical15

system. This is the minimal cost achievable for stochastic LQR but it is16

not the same as that of the deterministic LQR.17

6.4 Linear Quadratic Gaussian (LQG)18

Our development in the previous sections and the previous chapter was19

based on a Markov Decision Process, i.e., we know the state x(t) at each20

instant in time t even if this state x(t) changes stochastically. We said that21

the optimal control for the linear dynamics is still u∗(t) = −K(t) x(t).22

134

What should one do if we cannot observe the state exactly?1

Imagine a “continuous-time” form the observation equation in the2

Kalman filter where we receive observations of the form3

y(t) = Cx(t) +Dν.

where ν ∼ N(0, I) is standard Gaussian noise that corrupts our observa-4

tions y. If we extrapolate the definitions of the Kalman filter mean and5

covariance to this continuous-time setting, we can write the KF as follows.6

We know that the Kalman filter is the optimal estimate of the state given7

all past observations, so it computes8

µ(t) = E
ϵ(s),ν(s): s∈[0,t]

[x(t) | y(s) : s ∈ [0, t]] .
 As we discussed while introducing
stochastic dynamical systems, there are
various mathematical technicalities associated
with conditioning on a continuous-time signal
{y(s) : s ∈ [0, t]}. To be precise
mathematicians define what is called a
“filtration” Y(t) which is the union of the
Borel σ-fields constructed using increasing
subsets of the set {y(s) : s ∈ [0, t]}. Let us
not worry about this here.

There exists a “continuous-time version” of the Kalman filter (which was9

actually invented first), called the Kalman-Bucy filter. If the covariance of10

the estimate is11

Σ(t) = E
ϵ(s),ν(s): s∈[0,t]

[
x(t) x(t)

⊤| y(s) : s ∈ [0, t]
]
,

the Kalman-Bucy filter updates µ(t),Σ(t) using the differential equation12

d

dt
µ(t) = Ax(t) +Bu(t) +K(t) (y(t)− Cµ(t))

d

dt
Σ(t) = AΣ(t) + Σ(t)A⊤ +BϵB

⊤
ϵ −K(t)DD⊤K(t)

⊤

where K(t) = Σ(t) C⊤(DD⊤)−1.

(6.12)

This equation is very close to the Kalman filter equations you saw in13

Chapter 3. In particular, notice the close similarity of the expression for14

the Kalman gain K(t) with the Kalman gain of the LQR problem. You15

can read more at https://en.wikipedia.org/wiki/Kalman_filter.16

Linear Quadratic Gaussian (LQG) It turns out that we can plug

https://en.wikipedia.org/wiki/Kalman_filter

135

in the Kalman filter estimate µ(t) of the state x(t) in order to
compute optimal control for LQR if we know the state only through
observations y(t)

u∗(t) = −K(t) µ(t). (6.13)

It is almost as if, we can blindly run a Kalman Filter in parallel with
the deterministic LQR controller and get the optimal control for the
stochastic LQR problem even if we did not observe the state of the
system exactly. This method is called Linear Quadratic Gaussian
(LQG).

This is a very powerful and surprising result. It is only true for
linear dynamical systems with linear observations, Gaussian noise in
both the dynamics and the observations and quadratic run-time and
terminal costs. It is not true in other cases. However, it is so elegant
and useful that it inspires essentially all other methods that control a
dynamical system using observations from sensors.

Certainty equivalence For instance, even if we are using a particle1

filter to estimate the state of the system, we usually use the mean of the2

state estimate at time t given by µ(t) “as if” it were the true state of the3

system. Even if we were using some other feedback control u(x) different4

than the LQR control (say feedback linearization), we usually plug in this5

estimate µ(t) in place of x(t). Doing so is called “certainty equivalence”6

in control theory/robotics, which is a word borrowed from finance where7

one takes decisions (controls) directly using the estimate of the state (say8

stock price) while fully knowing the the stock price will change in the9

future stochastically.10

6.4.1 (Optional material) The duality between the Kalman11

Filter and LQR12

We can re-write the covariance in (6.12) using the identity13

d

dt

(
Σ(t)−1

)
= Σ(t)−1Σ̇(t)Σ(t)−1

to get14

Ṡ = C⊤ (DD⊤)−1
C −A⊤S − SA− SBwB⊤

wS (6.14)

where we have defined S := Σ−1.15

Notice that the two equations, updates to the LQR cost matrix in (6.11)16

−Ṗ = PA+A⊤P +Q− PBR−1B⊤P

look quite similar to this equation. In fact, they are identical and you can17

substitute the following.18

136

LQR Kalman-Bucy filter
P Σ−1

A −A
BR−1B BwB

⊤
w

Q C⊤ (DD⊤)−1
C

t T − t

1

Let us analyze this equivalence. Notice that the inverse of the Kalman2

filter covariance is like the cost matrix of LQR. This is conceptually easy3

to understand, our figure of merit for filtering is the inverse covariance4

matrix (smaller the better) and our figure of merit for the LQR problem is5

the cost matrix P (smaller the better). Similarly, smaller the LQR cost,6

better the controller. The “dynamics” of the Kalman filter is the reverse of7

the dynamics of the LQR problem, this shows that the P matrix is updated8

backwards in time while the covariance Σ is updated forwards in time.9

The next identity10

BR−1B⊤ = BwB
⊤
w

is very interesting. Imagine a situation where we have a fully-actuated11

system withB = I andBw being a diagonal matrix. This identity suggests12

that larger the control cost Rii of a particular actuator i, lower is the noise13

of using that actuator (Bw)ii, and vice-versa. This is how muscles in your14

body have evolved: muscles that are cheap to use (low R) are also very15

noisy in what they do whereas muscles that are expensive to use (large16

R) which are typically the biggest muscles in the body are also the least17

noisy and most precise. You can read more about this in the paper titled18

“General duality between optimal control and estimation” by Emanuel19

Todorov. The next identity20

Q = C⊤ (DD⊤)−1
C

is related to the quadratic state-cost in LQR. Imagine the situation where21

both Q,D are diagonal matrices. If the noise in the measurements Dii is22

large, this is equivalent to the state-cost matrix Qii being small; roughly23

there is no way we can achieve a low state-cost x⊤Qx in our system that24

consists of LQR and a Kalman filter (this combination is known as Linear25

Quadratic Gaussian LQG as saw before) if there is lots of noise in the26

state measurements. The final identity27

t = T − t

is the observation that we have made many times before: dynamic28

programming travels backwards in time and the Kalman filter travels29

forwards in time.30

6.5 Iterative LQR (iLQR)31

This section is analogous to the section on the Extended Kalman Filter.32

We will study how to solve optimal control problems for a nonlinear33

137

dynamical system1

ẋ = f(x, u); x(0) = x0 is given.

We will consider a deterministic continuous-time dynamical system, the2

modifications to following section that one would make if the system3

is discrete-time, or stochastic, are straightforward and follow the same4

strategy. First consider the problem where the run-time and terminal costs5

are quadratic6

1

2
x(T)

⊤
Qfx(T) +

1

2

∫ T

0

x(t)
⊤
Q x(t) + u(t)

⊤
Ru(t) dt .

Receding horizon control and Model Predictive Control (MPC) One7

easy way to solve the dynamic programming problem, i.e., find a control8

trajectory of the nonlinear system that minimizes this cost functional,9

approximately, is by linearizing the system about the initial state x0 and10

some reference control u0 (this can usually be zero). Let the linear system11

be12

ż = Ax0,u0z +Bx0,u0v; z(0) = 0; (6.15)

where Ax0,u0
= df

dx

∣∣
x=x0,u=u0

and Bx0,u0
= df

du

∣∣
x=x0,u=u0

are the13

Jacobians of the nonlinear function f(x, u) with respect to the state and14

control respectively. The state of the linearized dynamics is15

z := x− x0, and v := u− u0,

We have emphasized the fact that the matrices Ax0,u0
, Bx0,u0

depend16

upon the reference state and control using the subscript. Given the above17

linear system, we can find a control sequence u∗(·) that minimizes the18

cost functional using the standard LQR formulation. Notice now that even19

we computed this control trajectory using the approximate linear system,20

it can certainly be executed on the nonlinear system, i.e., at run-time we21

will simply set u ≡ u∗(z).22

The linearized dynamics in (6.15) is potentially going to be very23

different from the nonlinear system. The two are close in the neighborhood24

of x0 (and u0) but as the system evolves using our control input to25

move further away from x0, the linearized model no longer is a faithful26

approximation of the nonlinear model. A reasonable way to fix matters27

is to linearize about another point, say the state and control after t = 128

seconds, x1, u1 to get a new system29

ż = Ax1,u1
z +Bx1,u1

v; z(0) = 0

and take the LQR-optimal control corresponding to this system for the30

next second.31

The above methodology is called “receding horizon control”. The32

idea is that we compute the optimal control trajectory u∗(·) using an33

approximation of the original system and recompute this control every few34

seconds when our approximation is unlikely to be accurate. This is a very35

138

popular technique to implement optimal controllers in typical applications.1

The concept of using an approximate model (almost invariably, a linear2

model with LQR cost) to plan for the near-term future and resolving the3

problem in receding horizon fashion once the system is at the end of this4

short time-horizon is called “Model Predictive Control”.5

MPC is, perhaps, the second most common control algorithm im-6

plemented in the world. It is responsible for running most complex7

engineering systems that you can think of—power grids, oil refineries,8

chemical plants, rockets, aircrafts etc. Essentially, one never implements9

LQR directly, it is always implemented inside an MPC.

? Can you guess what is the most common
control algorithm in the world?

For instance, in10

autonomous driving, the trajectory that the vehicle plans for traveling11

between two points A and B depends upon the current locations of the12

other cars/pedestrians in its vicinity, and potentially some prediction model13

of where they will be in the future. As the vehicle starts moving along14

this trajectory, the rest of the world evolves around it and we recompute15

the optimal trajectory to take into account the actual locations of the16

cars/pedestrians in the future.17

6.5.1 Iterative LQR (iLQR)18

Now let us consider the situation when in addition to a nonlinear system,19

ẋ = f(x, u); x(0) = x0,

the run-time and terminal cost is also nonlinear20

qf (x(T)) +

∫ T

0

q(x(t), u(t)) dt .

We can solve the dynamic programming problem in this case approximately21

using the following iterative algorithm.22

Assume that we are given an initial control trajectory u(0)(·) =23 {
u(0)(t) : t ∈ [0, T]

}
. Let x(0)(·) be the state trajectory that corresponds24

to taking this control on the nonlinear system, with of course x(0)(0) = x0.25

At each iteration k, the Iterative LQR algorithm performs the following26

steps.27

Step 1 Linearize the nonlinear system about the state trajectory x(k)(·)28

and u(k)(·) using29

z(t) := x(t)− x(k)(t), and v(t) := u(t)− u(k)(t)

to get a new system30

ż = A(k)(t)z +B(k)(t)v; z(0) = 0

where31

A(k)(t) =
df

dx

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)

B(k)(t) =
df

du

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)

139

and compute the Taylor series approximation of the nonlinear cost up to1

the second order2

qf (x(T)) ≈ constant + z(T)
⊤ dqf
dx

∣∣∣
x(T)=x(k)(T)

+ z(t)
⊤ d2qf
dx2

∣∣∣
x(T)=x(k)(T)

z(t),

? How will you solve for the optimal
controller for a linear dynamics for the cost∫ T

0

(
q⊤x+

1

2
x⊤Qx

)
dt ,

i.e., when in addition the quadratic cost, we
also have an affine term?

3

q(x, u, t) ≈ constant + z(t)
⊤ dq

dx

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)︸ ︷︷ ︸

affine term

+ v(t)
⊤ dq

du

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)︸ ︷︷ ︸

affine term

+ z(t)
⊤ d2q

dx2

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)︸ ︷︷ ︸

≡Q

z(t)

+ v(t)
⊤ d2q

du2

∣∣∣
x(t)=x(k)(t),u(t)=u(k)(t)︸ ︷︷ ︸

≡R

v(t).

This is an LQR problem with run-time cost that depends on time (like our4

discrete-time LQR formulation, the continuous-time formulation simply5

has Q, R to be functions of time t in the Riccati equation) and which also6

has terms that are affine in the state and control in addition to the usual7

quadratic cost terms.8

Step 2 Solve the above linearized problem using standard LQR formula-9

tion to get the new control trajectory10

u(k+1)(t) := u(k)(t)−Kz(t).

Simulate the nonlinear system using the control u(k+1)(·) to get the new11

state trajectory x(k+1)(·).12

Some important comments to remember about the iLQR algorithm.13

1. There are many ways to pick the initial control trajectory u(0)(·), e.g.,14

using a spline to get an arbitrary control sequence, using a spline15

to interpolate the states to get a trajectory x(0)(·) and then back-16

calculate the control trajectory, using the LQR solution based on the17

linearization about the initial state, feedback linearization/differen-18

tial flatness (https://en.wikipedia.org/wiki/Feedback_linearization)19

etc.20

2. The iLQR algorithm is an approximate solution to dynamic pro-21

gramming for nonlinear system with general, nonlinear run-time and22

terminal costs. This is because the the algorithm uses a linearization23

about the previous state and control trajectory to compute the new24

https://en.wikipedia.org/wiki/Feedback_linearization

140

control trajectory. iLQR is not guaranteed to find the optimal1

solution of dynamic programming, although in practice with good2

implementations, it works excellently.3

3. We can think of iLQR as an algorithm to track a given state trajectory4

xg(t) by setting5

qf = 0, and q(x, u) = ∥xg(t)− x(t)∥2.

This is often how iLQR is typically used in practice, e.g., to make6

an autonomous race car closely follow the racing line (see the paper7

“BayesRace: Learning to race autonomously using prior experience”8

https://arxiv.org/abs/2005.04755 and https://www.youtube.com/watch?v=dgIpf0Lg8Ek9

for a clever application of using MPC to track a challenging race10

line), or to make a drone follow a given desired trajectory11

(https://www.youtube.com/watch?v=QREeZvHg0lQ).12

Differential Dynamic Programming (DDP) is a suite of techniques13

that is a more powerful version of iterated LQR. Instead of linearizing14

the dynamics and taking a second order Taylor approximation of the cost,15

DDP takes a second order approximation of the Bellman equation directly.16

The two are not the same; DDP is the more correct version of iLQR but is17

much more challenging computationally.18

Broadly speaking, iLQR and DDP are used to perform control for some19

of the most sophisticated robots today, you can see an interesting discussion20

of the trajectory planning of some of the DARPA Humanoid Robotics21

Challenge at https://www.cs.cmu.edu/~cga/drc/atlas-control. Techniques22

like feedback linearization work excellently for drones where we do not23

really care for optimal cost (see “Minimum snap trajectory generation and24

control for quadrotors” https://ieeexplore.ieee.org/document/5980409)25

while LQR and its variants are still heavily utilized for satellites in space.26

https://arxiv.org/abs/2005.04755
https://www.youtube.com/watch?v=dgIpf0Lg8Ek
https://www.youtube.com/watch?v=QREeZvHg0lQ
https://www.cs.cmu.edu/~cga/drc/atlas-control
https://ieeexplore.ieee.org/document/5980409

Chapter 71

Imitation Learning2

Reading
1. The DAGGER algorithm

(https://www.cs.cmu.edu/~sross1/publications/Ross-
AIStats11-NoRegret.pdf)

2. https://www.youtube.com/watch?v=TUBBIgtQL_k

3. An Algorithmic Perspective on Imitation Learning
(https://arxiv.org/pdf/1811.06711.pdf)

This is the beginning of Module 3 of the course. The previous two3

modules have been about how to to estimate the state of the world around4

the robot (Module 1) and how to move the robot (or the world) to a desired5

state (Module 2). Both of these required that we maintain a model of the6

dynamics of the robot; this model may be inaccurate and we fudged over7

this inaccuracy by modeling the remainder as “noise” in Markov Decision8

Processes.9

The next few lectures introduce different aspects of what is called10

Reinforcement Learning (RL). This is a very large field and you can think11

of using techniques from RL in many different ways.12

1. Dynamic programming with function approximation. If we13

are solving a dynamic programming problem, we can think of14

writing down the optimal cost-to-go J∗(x, t) as a function of some15

parameters, e.g., the cost-to-go is16

Jφ(x, t) =
1

2
x(t)

⊤
(some function of A,B,Q,R)︸ ︷︷ ︸

function of φ

x(t)

for LQR. We know the stuff inside the brackets to be exactly P (t)17

but, if we did not, it could be written down as some generic function18

141

https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://www.youtube.com/watch?v=TUBBIgtQL_k
https://arxiv.org/pdf/1811.06711.pdf

142

of parameters φ. We know that any cost-to-go that satisfies the1

Bellman equation is the optimal cost-to-go, so we can now “fit”2

the candidate function Jφ(x, t) to satisfy the Bellman equation.3

Similarly, one may also express the optimal feedback control u(·)4

using some parameters θ as5

uθ(·).

We will see how to fit such functions in this chapter.6

2. Learning from data. It may happen that we do not know very7

much about the dynamical system, e.g., we do not know a good8

model for what drives customers as they buy items in an online9

merchandise platform, or a robot traveling in a crowded area may10

not have a good model for how large crowds of people walk around11

it. One may collect data from these systems fit some model of the12

form ẋ = f(x, u) to the data and then go back to the techniques of13

Module 2. It is typically not clear how much data one should collect.14

RL gives a suite of techniques to learn the cost-to-go in these15

situations by collecting and assimilating the data automatically.16

These techniques go under the umbrella of policy gradients, on-17

policy methods etc. One may also simply “memorize” the data18

provided by an expert operator, this is called Imitation Learning19

and we will discuss it next.20

Some motivation Imitation Learning is also called “learning from21

demonstrations”. This is in fact one of the earliest successful examples of22

using a neural network for driving. The ALVINN project at CMU by Dean23

Pomerleau in 1988 (https://www.youtube.com/watch?v=2KMAAmkz9go)24

used a two-layer neural network with 5 hidden neurons, about 1000 inputs25

from the pixels of a camera and 30 outputs. It successfully drove in26

different parts of the United States and Germany. Imitation learning has27

also been responsible for numerous other early-successes of RL, e.g.,28

acrobatic maneuvers on an RC helicopter (http://ai.stanford.edu/ acoates/-29

papers/AbbeelCoatesNg_ĲRR2010.pdf).30

Imitation Learning seeks to record data from experts, e.g., humans,

https://www.youtube.com/watch?v=2KMAAmkz9go
http://ai.stanford.edu/~acoates/papers/AbbeelCoatesNg_IJRR2010.pdf
http://ai.stanford.edu/~acoates/papers/AbbeelCoatesNg_IJRR2010.pdf
http://ai.stanford.edu/~acoates/papers/AbbeelCoatesNg_IJRR2010.pdf

143

and reproduce these desired behaviors on robots. The key questions
we should ask, and which we will answer in this chapter, are as
follows.

1. Who should demonstrate (experts, amateurs, or novices) and
how should we record data (what states, controls etc.)?

2. How should we learn from this data? e.g., fit a supervised
regression model for the policy. How should one ignore bad
behaviors in non-expert data?

3. And most importantly, what can we do if the robot encounters
a situation which was not in the dataset.

7.1 A crash course in supervised learning1

Nature gives us data X and targets Y for this data.2

X → Y.

Nature does not usually tell us what property of a datum x ∈ X results in3

a particular prediction y ∈ Y . We would like to learn to imitate Nature,4

namely predict y given x.5

What does such learning mean? It is simply a notion of being able6

to identify patterns in the input data without explicitly programming a7

computer for prediction. We are often happy with a learning process8

that identifies correlations: if we learn correlations on a few samples9

(x1, y1), . . . , (xn, yn), we may be able to predict the output for a new10

datum xn+1. We may not need to know why the label of xn+1 was11

predicted to be so and so.12

Let us say that Nature possesses a probability distribution P over13

(X,Y). We will formalize the problem of machine learning as Nature14

drawing n independent and identically distributed samples from this15

distribution. This is denoted by16

Dtrain =
{
(xi, yi) ∼ P

}n
i=1

is called the “training set”. We use this data to identify patterns that help17

make predictions on some future data.18

What is the task in machine learning? Suppose Dtrain consists of19

n = 50 RGB images of size 100×100 of two kinds, ones with an orange20

inside them and ones without. 104 is a large number of pixels, each pixel21

taking any of the possible 2553 values. Suppose we discover that one22

particular pixel, say at location (25, 45), takes distinct values in all images23

inside our training set. We can then construct a predictor based on this24

pixel. This predictor, it is a binary classifier, ? How many such binary classifiers are there
at most?

perfectly maps the training25

144

images to their labels (orange: +1 or no orange: -1). If xkij is the (ij)th
1

pixel for image xk, then we use the function2

f(x) =

{
yk if xkij = xij for some k = 1, . . . , n

−1 otherwise.

This predictor certainly solves the task. It correctly works for all images3

in the training set. Does it work for images outside the training set?4

Our task in machine learning is to learn a predictor that works outside5

the training set. The training set is only a source of information that Nature6

gives us to find such a predictor.7

Designing a predictor that is accurate on Dtrain is trivial. A hash
function that memorizes the data is sufficient. This is NOT our task
in machine learning. We want predictors that generalize to new data
outside Dtrain.

Generalization If we never see data from outside Dtrain why should we8

hope to do well on it? The key is the distribution P . Machine learning is9

formalized as constructing a predictor that works well on new data that is10

also drawn independently from the distribution P . We will call this set of11

data the “test set”12

Dtest

and it is constructed similarly. This assumption is important. It provides13

coherence between past and future samples: past samples that were used14

to train and future samples that we will wish to predict upon. How to find15

such predictors that work well on new data? The central idea in machine16

learning is to restrict the set of possible binary functions that we consider.17

We are searching for a predictor that generalizes well but only
have the training data to select predictors.

The right class of functions f cannot be too large, otherwise we will18

find our binary classifier above as the solution, and that is not very useful.19

The class of functions cannot be too small either, otherwise we won’t be20

able to predict difficult images. If the predictor does not even work well21

on the training set, there is no reason why we should expect it to work on22

the test set.23

Finding this correct class of functions with the right balance is
what machine learning is all about.

? Can you now think how is machine
learning different from other fields you might
know such as statistics or optimization?

145

7.1.1 Fitting a machine learning model1

Let us now solve a classification problem. We will again go around2

the model selection problem and consider the class of linear classifiers.3

Assume binary labels Y ∈ {−1, 1}. To keep the notation clear, we will4

use the trick of appending a 1 to the data x and hide the bias term b in the5

linear classifier. The predictor is now given by6

f(x;w) = sign(w⊤x)

=

{
+1 if w⊤x ≥ 0

−1 else.
(7.1)

We have used the sign function denoted as sign to get binary {−1,+1} out-7

puts form our real-valued prediction w⊤x. This is the famous perceptron8

model of Frank Rosenblatt.9

We want the predictions of the model to match those in the training10

data and devise an objective to to fit/train the perceptron.11

ℓzero-one(w) :=
1

n

n∑
i=1

1{yi ̸=f(xi;w)}. (7.2)

The indicator function inside the summation measures the number of12

mistakes the perceptron makes on the training dataset. The objective13

here is designed to find weights w that minimizes the average number of14

mistakes, also known as the training error. Such a loss that measures the15

mistakes is called the zero-one loss, it incurs a penalty of 1 for a mistake16

and zero otherwise.17
? Can you think of some quantity other than
the zero-one error that we may wish to
optimize?

Surrogate losses The zero-one loss is the clearest indication of whether18

the perceptron is working well. It is however non-differentiable, so we19

cannot use powerful ideas from optimization theory to minimize it. This20

is why surrogate losses are constructed in machine learning. These are21

proxies for the loss function, typically for the classification problems and22

look as follows. The exponential loss is23

ℓexp(w) = e−y (w⊤x)

or the logistic loss is24

ℓlogistic(w) = log
(
1 + e−yw

⊤x
)
.

Stochastic Gradient Descent (SGD) SGD is a very general algorithm25

to optimize objectives typically found in machine learning. We can use26

it so long as we have a dataset and an objective that is differentiable.27

Consider an optimization problem where we want to solve for28

w∗ = argmin
w

1

n

n∑
i=1

ℓi(w)

146

where the function ℓi denotes the loss on the sample (xi, yi) and w ∈ Rp1

denotes the weights of the classifier. Solving this problem using SGD2

corresponds to iteratively updating the weights using3

w(t+1) = w(t) − ηdℓ
ωt(w)

dw

∣∣∣
w=w(t)

,

i.e., we compute the gradient one sample with index ωt in the dataset. The4

index ωt is chosen uniformly randomly from5

ωt ∈ {1, . . . , n} .

In practice, at each time-step t, we typically select a few (not just one) input6

data ωt from the training dataset and average the gradient dℓωt (w)
dw

∣∣∣
w=w(t)

7

across them; this is known as a “mini-batch”. The gradient of the loss8

ℓωt(w) with respect to w is denoted by9

∇ℓωt(w(t)) :=
dℓωt(w)

dw

∣∣∣
w=w(t)

=

∇w1

ℓωt(w(t))

∇w2
ℓωt(w(t))

...
∇wpℓωt(w(t))

 ∈ Rp.

The gradient ∇ℓωt(w(t)) is therefore a vector in Rp. We have written10

∇w1ℓ
ωt(w(t)) =

dℓωt(w)

dw1

∣∣∣
w=w(t)

for the scalar-valued derivative of the objective ℓωt(w(t)) with respect to11

the first weight w1 ∈ R. We can therefore write SGD as12

w(t+1) = w(t) − η∇ℓωt(w(t)). (7.3)

The non-negative scalar η ∈ R+ is called the step-size or the learning rate.13

It governs the distance traveled along the negative gradient −∇ℓωt(w(t))14

at each iteration.15

7.1.2 Deep Neural Networks16

The Perceptron in (7.1) is a linear model: it computes a linear function17

of the weights w⊤x and uses this function to make the predictions18

f(x;w) = sign(w⊤x). Linear models try to split the data (say we have19

binary labels Y = {−1, 1}) using a hyper-plane with w denoting the20

normal to this hyper-plane. This does not work for all situations of course,21

as the figure below shows, there is no hyper-plane that cleanly separates22

the two classes (i.e., achieves zero mis-prediction error) but there is a23

nonlinear function that can do the job.24

A deep neural network is one such nonlinear function. First consider25

a “two-layer” network26

f(x; v, S) = sign
(
v⊤σ

(
S⊤x

))

147

Figure 7.1

where the matrix S ∈ Rd×p and a vector v ∈ Rp are the parameters or1

“weights” of the classifier. The “nonlinearity” σ is usually set to be what2

is called a Rectified Linear Unit (ReLU)3

σ(x) := ReLU(x) = |x|+
= max(0, x).

(7.4)

Just like the case of a Perceptron, we can use an objective 1
n

∑n
i=1 ℓ

i(v, S)4

that depends on both v, S to fit this classifier on training data. A deep5

neural network takes the idea of a two-layer network to the next step and6

has multiple “layers”, each with a different weight matrix S1, . . . , SL.7

The classifier is therefore given by8

f(x; v, S1, . . . , SL) = sign
(
v⊤σ

(
S⊤
L . . . σ

(
S⊤
2 σ(S⊤

1 x)
)
. . .
))
. (7.5)

We call each operation of the form σ
(
S⊤
k . . .

)
, as a layer. Consider the9

second layer: it takes the features generated by the first layer, namely10

σ(S⊤
1 x), multiplies these features using its feature matrix S⊤

2 and applies11

a nonlinear function σ(·) to this result element-wise before passing it on12

to the third layer.13

A deep network creates new features by composing older features.

This composition is very powerful. Not only do we not have to14

pick a particular feature vector, we can create very complex features by15

sequentially combining simpler ones. For example Figure 7.2 shows the16

features (more precisely, the kernel) learnt by a deep neural network.17

The first layer of features are called Gabor-like, and incidentally they are18

similar to the features learned by the human brain in the first part of the19

visual cortex (the one closest to the eyes). These features are combined20

linearly along with a nonlinear operation to give richer features (spirals,21

right angles) in the middle panel. The third layer combines the lower22

features to get even more complex features, these look like patterns (notice23

a soccer ball in the bottom left), a box on the bottom right etc.24

148

Deep networks are universal function approximators The multi-layer1

neural network is a powerful class of classifiers: depending upon how many2

layers we have and what is the dimensionality of the the weight matrices3

Sk at each layer, we can fit any training data. In fact, this statement,4

which is called the universal approximation property holds even for a5

two-layer neural network v⊤σ(S⊤x) if the number of columns in S is big6

enough. This property is the central reason why deep networks are so7

widely applicable, we can model complex machine learning problems if8

we choose a big enough deep network.9

Figure 7.2

Logits for multi-class classification. The output10

ŷ = v⊤σ
(
S⊤
L . . . σ

(
S⊤
2 σ(S⊤

1 x)
)
. . .
)

is called the logits corresponding to the different classes. This name11

comes from logistic regression where logits are the log-probabilities of an12

input datum belonging to one of the two classes. A deep network provides13

an easy way to solve a multi-class classification problem, we simply set14

v ∈ Rp×C

where C is the total number of classes in the data. Just like logistic15

regression predicts the logits of the two classes, we would like to interpret16

the vector ŷ as the log-probabilities of an input belonging to one of the17

classes. ? What would the shape of w be if you were
performing regression using a deep network?

18

Weights It is customary to not differentiate between the parameters of19

different layers of a deep network and simply say weights when we want20

to refer to all parameters. The set21

w := {v, S1, S2, . . . , SL}

is the set of weights. This set is typically stored in PyTorch as a set of22

matrices, one for each layer. Using this new notation, we will write down23

a deep neural network classifier as simply24

f(x,w) (7.6)

149

and fitting the deep network to a dataset involves the optimization problem1

w∗ = argmin
w

1

n

n∑
i=1

ℓ(yi, ŷi). (7.7)

We will also sometimes denote the loss of the ith sample as2

ℓi(w) := ℓ(yi, ŷi).

Backpropagation The Backpropagation algorithm is a method to com-3

pute the gradient of the objective while fitting a deep network using SGD,4

i.e., it computes ∇wℓi(w). For the purposes of this course, the details of5

how this is done are not essential, so we will skip them. You can read more6

in the notes of ESE 546 at https://pratikac.github.io/pub/20_ese546.pdf.7

PyTorch We will use a library called PyTorch (https://pytorch.org) to8

code up deep neural networks for the reinforcement learning part of this9

course. You can find some excellent tutorials for it at10

https://pytorch.org/tutorials/beginner/basics/intro.html. We have also11

uploaded two recitations from the Fall 2020 offering of ESE 546 on12

Canvas which guide you through various typical use-cases of PyTorch.13

You are advised to go through, at least, the first recitation if you are14

not familiar with PyTorch. For the purposes of this course, you do not15

need to know the intricacies of PyTorch, we will give you enough code16

to work with deep networks so that you can focus on implementing the17

reinforcement learning-specific parts.18

7.2 Behavior Cloning19

With that background, we are ready to tackle what is potentially the simplest20

problem in RL. We will almost exclusively deal with discrete-time systems21

for RL. Let us imagine that we are given access to n trajectories each of22

length T + 1 time-steps from an expert demonstrator for our system. We23

write this as a training dataset24

D =
{
(xit, u

i
t)t=0,1,...,T

}
i=1,...,n

At each step, we record the state xit ∈ Rd and the control that the expert25

took at that state uit. We would like to learn a deterministic feedback26

control for the robot that is parametrized by parameters θ27

uθ(x) : X 7→ U ⊂ Rm.

using the training data. The idea is that if uθ(xi(t)) ≈ ui(t) for all i28

and all times t, then we can simply run our learned controller uθ(x) on29

the robot instead of having the expert. A simple example is a baby deer30

learning to imitate how its mother in how to run.31

https://pratikac.github.io/pub/20_ese546.pdf
https://pytorch.org/
https://pytorch.org/tutorials/beginner/basics/intro.html

150

Parameterizing the controller Our function uθ may represent many1

different families of controllers. For example, uθ(x) = θx where θ ∈2

Rd×p is a linear controller; this is much like the control for LQR except3

that we can fit θ to the expert’s data instead of solving the LQR problem4

to find the Kalman gain. We could also think of some other complicated5

function, e.g., a two-layer neural network,6

uθ(x) = v σ
(
S⊤x

)
where S ∈ Rd×p and v ∈ Rm×p and σ : Rm 7→ Rm is some nonlinearity,7

say ReLU. As we did above, we will use8

θ := (v, S)

to denote all the weights of this two-layer neural network. Multi-layer9

neural networks are also another possible avenue. In general, we want10

to the parameterization of the controller to be rich enough to fit some11

complex controller that the expert may have used on the system.12

How to fit the controller? Given our chosen model for uθ(x), say a13

two-layer neural network with weights θ, fitting the controller involves14

finding the best value for the parameters θ such that uθ(xit) ≈ uit for data15

in our dataset. There are many ways to do this, e.g., we can solve the16

following optimization problem17

θ̂ = argmin
θ

ℓ(θ) :=
1

n

n∑
i=1

1

T + 1

T∑
t=0

∥∥uit − uθ(xit)∥∥22︸ ︷︷ ︸
ℓi(θ)

(7.8)

The difficulty of solving the above problem depends upon how difficult the18

model uθ(x) is, for instance, if the model is linear θ x, we can solve (7.8)19

using ordinary least squares. If the model is a neural network, one would20

have to use SGD to solve the optimization problem above. After fitting21

this model, we have a new controller22

uθ̂(x) ∈ Rm

that we can use anywhere in the domain X ⊂ Rd, even at places where23

we had no expert data. This is known as Behavior Cloning, i.e., cloning24

the controls of the expert into a parametric model.25

Generalization performance of behavior cloning Note that the data26

provided by the expert is not iid, of course the state xit+1 in the expert’s27

trajectory depends upon the previous state xit. Standard supervised28

learning makes the assumption that Nature gives training data that is29

independent and identically distributed from the distribution P . While30

it is still reasonable to fit the regression loss in (7.8) for such correlated31

data, one should remember that if the expert trajectories do not go to all32

parts of the state-space, the learned controller fitted on the training data33

151

may not work outside these parts. Of course, if we behavior clone the1

controls taken by a generic driver, they are unlikely to be competitive for2

racing, and vice-versa. It is very important to realize that this does not3

mean that BC does not generalize. Generalization in machine learning is4

a concept that suggests that the model should work well on data from the5

same distribution. What does the the “distribution” of the expert mean, in6

this case, it simply refers to the distribution of the states that the expert’s7

trajectories typically visit, e.g, a race driver typically drives at the limits8

of tire friction and throttle, this is different from a usual city-driver who9

would rather maximize the longevity of their tires and engine-life.10

 Discuss generalization performance in
behavior cloning.

7.2.1 Behavior cloning with a stochastic controller11

In this case, we have always chosen feedback feedback controllers that12

are deterministic, i.e., there is a single value of control u that is taken at13

the state x. Going forward, we will also talk about stochastic controllers,14

i.e., controllers which sample a control from a distribution. There can15

be a few reasons of using such a controller. First, we will see in later16

lectures how this may help in training a reinforcement learning algorithm;17

this is because in situations where you do not know the system dynamics18

precisely, it helps to “hedge” the feedback to take a few different control19

actions instead of simply the one that the value function deems as the20

maximizing one. This is not very different from having a few different21

stocks in your portfolio. Second, we benefit from this hedging even at22

test-time when we run a stochastic feedback control, e.g., in situations23

where the limited training data may not want to always pick the best24

control (because the best control was computed using an imprecise model25

of the system dynamics and could be wrong), but rather hedge our bets by26

choosing between a few different controls.27

A stochastic feedback control is denoted by28

u ∼ uθ(· | x) = P(· | x)

notice that uθ(· | x) is a probability distribution on the control space U29

that depends on the state x, and in this case the parameters θ. The control30

taken at a state x is a sample drawn from this probability distribution. The31

deterministic controller is a special case of this setup where32

uθ(u| x) = δuθ(x)(u) ≡ uθ(x)

is a Dirac-delta distribution at uθ(x). If the control space U is discrete,33

then uθ(· | x) could be a categorical distribution. If the control space U34

is continuous, then you may wish to think of the controls being sampled35

from a Gaussian distribution with some mean µθ(x) and variance σ2
θ(x)36

Rm ∋ u ∼ uθ(· | x) = N(µθ(x),Σθ(x)).

152

Maximum likelihood estimation Let’s pick a particular stochastic1

controller, say a Gaussian. How should we fit the parameters θ for this?2

We would like to find parameters θ that make the expert’s data in our3

dataset very likely. The log-likelihood of each datum is4

log uθ(u
i
t | xit)

and maximizing the log-likelihood of the entire dataset amounts to solving5

θ̂ = argmin
θ

1

n

n∑
i=1

1

T + 1

T∑
t=0

− log uθ(u
i
t | xit)︸ ︷︷ ︸

ℓi(θ)

. (7.9)

Fitting BC with a Gaussian controller Notice that if we use a Gaussian6

distribution7

uθ(· | x) = N (µθ(x), I)

as our stochastic controller, the objective in (7.9) is the same as that8

in (7.8).9

uθ(· | x) = N
(
µθ(x), σ

2
θ(x)I

)
we have that10

− log uθ(u | x) =
∥µθ(x)− u∥22

σ2
θ(x)

+ 2cp log σθ(x).

where c is a constant.11

7.2.2 KL-divergence form of Behavior Cloning12

Background on KL divergence The Kullback-Leibler (KL) divergence13

is a quantity to measure the distance between two probability distributions.14

There are many similar distances, for example, given two probability15

distributions p(x) and q(x) supported on a discrete set X , the total16

variation distance between them is17

TV(p, q) =
1

2

∑
x∈X

|p(x)− q(x)| .

Hellinger distance (https://en.wikipedia.org/wiki/Hellinger_distance), f -18

divergences (https://en.wikipedia.org/wiki/F-divergence) and the Wasser-19

stein metric20

(https://en.wikipedia.org/wiki/Wasserstein_metric) are a few other exam-21

ples of ways to measure how different two probability distributions are22

from each other.23

The Kullback-Leibler divergence (KL) between two distributions is24

given by25

KL(p || q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (7.10)

This is a distance and not a metric, i.e., it is always non-zero and zero26

https://en.wikipedia.org/wiki/Hellinger_distance
https://en.wikipedia.org/wiki/F-divergence
https://en.wikipedia.org/wiki/Wasserstein_metric

153

if and only if the two distributions are equal, but the KL-divergence1

is not symmetric (like a metric has to be). Also, the above formula is2

well-defined only if for all x where q(x) = 0, we also have p(x) = 0.3

Notice that it is not symmetric4

KL(q || p) =
∑
x∈X

q(x) log
q(x)

p(x)
̸= KL(p || q).

The funny notation KL(p || q) was invented by Shun-ichi Amari5

(https://en.wikipedia.org/wiki/Shun%27ichi_Amari) to emphasize the fact6

that the KL-divergence is asymmetric. The KL-divergence is always7

positive: you can show this using an application of Jensen’s inequality.8

For distributions with continuous support, we integrate over the entire9

space X and define KL divergence as10

KL(p || q) =
∫
X
p(x) log

p(x)

q(x)
dx .

Behavior Cloning Let us now imagine the expert is also a parametric11

stochastic feedback controller uθ∗(· | x). Our data is therefore drawn by12

running this controller for n trajectories, T time-steps on the system. This13

dataset now consists of samples from14

puθ∗ (x, u)

which is the joint distribution on the state-spaceX and the control-spaceU .15

We have denoted the parameters of the feedback controller which creates16

this distribution as the subscript uθ∗ . Our behavior cloning controller17

creates a similar distribution puθ (x, u) and the general version of the18

objective in (7.9) is therefore19

θ̂ = argmin
θ

KL (puθ∗ || puθ) ; (7.11)

The objective in (7.9) corresponds to this for Gaussian stochastic con-20

trollers, but we can just as easily imagine some other distribution for the21

stochastic controller of the expert and the robot.22

Written this way, BC can be understood as finding a controller θ̂
whose distribution on the states and controls is close to the distribution
of states and controls of the expert.

7.2.3 Some remarks on Behavior Cloning23

Worst-case performance Performance of Behavior Cloning can be24

quite bad in the worst case. The authors in “Efficient reductions for25

imitation learning” (https://www.cs.cmu.edu/~sross1/publications/Ross-26

AIStats11-NoRegret.pdf) show that if the learned controller uθ̂ differs27

from the control taken by the expert controller uθ∗ with a probability ϵ at28

https://en.wikipedia.org/wiki/Shun%27ichi_Amari
https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf

154

each time-step, over a horizon of length T time-steps, it can beO(T 2ϵ) off1

from the cost-to-go of the expert as averaged over states that the learned2

controller visits. This is because once the robot makes a mistake and goes3

away from the expert’s part in the state-space, future states of the robot4

and the expert can be very different.

 Draw a picture of the amplifying errors of
running behavior cloning in real-time.

5

Model-free nature of BC Observe that our learned controller uθ̂(· | x)6

is a feedback controller and works for entire state-space X . We did not7

need to know the dynamics of the system to build this controller. The8

data from the expert is conceptually the same as the model ẋ = f(x, u) of9

the dynamics, and you can learn controllers from both. Do you however10

notice a catch?11

7.3 DAgger: Dataset Aggregation12

The expert’s dataset in Behavior Cloning determines the quality of the13

controller learned. If we collected very few trajectories from the expert,14

they may not cover all parts of the state-space and the behavior cloned15

controller has no data to fit the model in those parts.16

Let us design a simple algorithm, of the same spirit as iterative-LQR,17

to mitigate this. We start with a candidate controller, say uθ(0)(x); one18

may also start with a stochastic controller uθ(0)(· | x) instead.19

DAgger: Let the dataset D(0) be the data collected from the
expert. Initialize uθ(0) = uθ̂ to be the BC controller learned using
data D(0). At iteration k

1. The robot queries the expert for a fraction p of the time-steps
and uses its learned controller uθ(k−1) for the other time-steps.
If the expert corresponds to some controller uθ∗ , then the robot
controller at a state x is

u ∼ p δuθ∗ (x) + (1− p) δu
θ(k−1) (x).

2. Use u(x) to collect a dataset D =
{
(xit, u

i
t)t=0,...,T

}
i=1,...,n

with n trajectories.

3. Set the new dataset to be D(k) = D(k−1) ∪D

4. Fit a controller uθ(k) using behavior cloning to the new dataset
D(k).

The above algorithm iteratively updates the BC controller uθ̂ by20

drawing new data from the expert. The robot first bootstraps off the21

expert’s data, this simply means that it uses the expert’s data to fit its22

controller uθ(0)(x). As we discussed above, this controller may veer off23

the expert’s trajectory if the robot starts at states that are different from24

155

the dataset, or even if it takes a slightly different control than the expert1

midway through a trajectory.2

3

To fix this, the robot collects more data at each iteration. It uses a4

combination of the expert and its controller to collect such data. This,5

allows collecting a dataset of expert’s controls in states that the robot6

visits and iteratively expands the dataset D(k).7

8

In the beginning we may wish to be close to the expert’s data and use9

a large value of p, as the fitted controller uθk+1
becomes good, we can10

reduce the value of p and rely less on the expert.11

DAgger is an iterative algorithm which expands the controller to handle12

larger and larger parts of the state-space. Therefore, the cost-to-go of13

the controller learned via DAgger is O(T) off from the cost-to-go of the14

expert as averaged over states that the learned controller visits.15

? What criterion can we use to stop these
iterations? We can stop when the incremental
dataset collected Dk is not that different from
the cumulative dataset D, we know that the
new controllers are not that different. We can
also stop when the parameters of our learned
controller are θ(k+1) ≈ θ(k).DAgger with expert annotations at each step DAgger is a conceptual16

framework where the expert is queried repeatedly for new control actions.17

This is obviously problematic because we need to expert on hand at each18

iteration. We can also cook up a slightly version of DAgger where we19

start with the BC controller uθ(k) = uθ̂ and at each step, we run the20

controller on the real system and ask the expert to relabel the data after21

156

that run. The dataset D(k) collected by the algorithm expands at each1

iteration and although the states xit are those visited by our controller, their2

annotations are those given by the expert. This is a much more natural3

way of implementing DAgger.4

Chapter 81

Policy Gradient Methods2

Reading
1. Sutton & Barto, Chapter 9–10, 13

2. Simple random search provides a competitive approach to
reinforcement learning at
https://arxiv.org/abs/1803.07055

3. Proximal Policy Optimization Algorithms
https://arxiv.org/abs/1707.06347

4. Are Deep Policy Gradient Algorithms Truly Policy Gradient
Algorithms? https://arxiv.org/abs/1811.02553

5. Asynchronous Methods for Deep Reinforcement Learning
http://proceedings.mlr.press/v48/mniha16.pdf

This chapter discusses methods to learn the controller that minimizes3

a given cost functional over trajectories of an unknown dynamical system.4

We will use what is called the “policy gradient” which will be the main5

section of this chapter.6

Recall from the last chapter that we were able to fit stochastic controllers7

of the form uθ̂(· | x) that is a probability distribution on the control-space8

U for each x ∈ X . We fitted uθ using data from the expert in imitation9

learning. We did not learn the cost-to-go for the fitted controller, like we10

did in the lectures on dynamic programming. This is a clever choice: it is11

often easier to learn the controller in a typical problem than to compute12

the optimal cost-to-go as a parametric function J∗(x).13

? Can you give another instance when we
have computed a controller previously in the
class without coming up with its cost-to-go?

157

https://arxiv.org/abs/1803.07055
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1811.02553
http://proceedings.mlr.press/v48/mniha16.pdf

158

8.1 Standard problem setup in RL1

Dynamics and rewards In this and the next few chapters we will always2

consider discrete-time stochastic dynamical systems with a stochastic3

controller with parameters (weights) θ. We denote them as follows4

xk+1 ∼ p(· | xk, uk) with noise denoted by ϵk
uk ∼ uθ(xk).

We will also change perspective and instead of minimizing the infinite-5

horizon sum of a runtime cost, maximize the sum of a runtime reward6

r(x, u) := −q(x, u).

We do so simply to conform to tradition and standard notation in reinforce-7

ment learning; the two are mathematically completely equivalent. We are8

interested in maximizing the expected value of the cumulative rewards9

over infinite-horizon trajectories of the system10

J(θ;x0) = E
x1,x2,...

∞∑
k=0

γk r(xk, uk)︸ ︷︷ ︸
discounted return

| x0

 ; (8.1)

where each uk ∼ uθ(· | xk) and each xk+1 ∼ p(· | xk, uk).11

Trajectory space Let us write out one trajectory of such a system a bit12

more explicitly. We know that the probability of the next state xk+1 given13

xk is p(xk+1 | xk, uk). The probability of taking a control uk at state xk14

is uθ(uk | xk). We denote an infinite trajectory by15

τ = x0, u0, x1, u1,

The probability of this entire trajectory occurring is16

pθ(τ) =

∞∏
k=0

p(xk+1 | xk, uk) uθ(uk | xk);

we have emphasized that the distribution of trajectories depends on the17

weights of controller θ. If we take the logarithm,18

log pθ(τ) =

∞∑
k=0

log p(xk+1 | xk, uk) + log uθ(uk | xk).

Given a trajectory τ = x0, u0, x1, u1, . . ., the sum19

R(τ) =

∞∑
k=0

γk r(xk, uk) (8.2)

159

is called the discounted return of the trajectory τ . Sometimes we will1

also talk of the undiscounted return of the trajectory which is the sum of2

the rewards up to some fixed finite horizon T without the discount factor3

pre-multiplier. Using this notation, we can write out objective from (8.1)4

as5

J(θ;x0) = E
τ∼pθ(τ)

[R(τ) | x0] (8.3)

where p(τ) is the probability distribution of an infinitely long trajectory τ .6

Observe what is probably the most important point in policy-gradient7

based reinforcement learning: the probability of trajectory is an infinite8

product of terms. All terms are smaller than 1 (they are probabilities),9

so it is essentially zero even if the state-space and the control-space are10

finite (even if they are small). Any given infinite (or long) trajectory is11

quite rare under the probability distribution of the stochastic controller.12

Policy-gradient methods sample lots of trajectories from the system and13

average the returns across these trajectories. Since the set of trajectories14

of even a small MDP is so large, sampling lots of trajectories, or even the15

most likely ones, is also very hard. This is a key challenge in getting RL16

algorithms to work.17

Our goal in this chapter is to compute the best stochastic controller
which maximizes the average discounted return. Mathematically, this
amounts to finding

θ̂ = argmax
θ

J(θ;x0) := E
τ∼pθ(τ)

[R(τ) | x0] . (8.4)

The objective J(θ) is called the average return of the controller uθ.

Computing the average return J(θ) Before we move on to optimizing18

J(θ), let us discuss how to compute it for given weights θ of the stochastic19

controller. We can sample n trajectories from the system and compute the20

an estimate of the expectation21

Ĵ(θ) ≈ 1

n

n∑
i=0

T∑
k=0

γkr(xik, u
i
k) (8.5)

for some large time-horizon T and where each uik ∼ uθ(· | xik).

? Contrast (8.5) with the complexity of
policy evaluation which was simply a system
of linear equations. Evaluating the policy
without having access to the dynamical
system is harder.

22

8.2 Cross-Entropy Method (CEM)23

Let us first consider a simple method to compute the best controller. The24

basic idea is to solve the problem25

θ̂ = argmax
θ

J(θ)

160

using gradient descent. We would like to update weights θ iteratively1

θ(k+1) = θ(k) + η ∇J(θ).

where the step-size is η > 0 and ∇J(θ) is the gradient of the objective2

J(θ) with respect to weights θ. Instead of computing the exact ∇J(θ)3

which we will do in the next section, let us simply compute the gradient4

using a finite-difference approximation. The ith entry of the gradient is5

(∇̂J(θ))i =
J(θ + ϵ ei)− J(θ − ϵ ei)

2ϵ
≈ Ĵ(θ + ϵ ei)− Ĵ(θ − ϵ ei)

2ϵ
.

where ei = [0, 0, . . . , 0, 1, 0, . . .] is a vector with 1 on the ith entry. Each6

quantity Ĵ is computed as the empirical average return of n trajectories7

from the system. We compute all entries of the objective using this8

approximation and update the parameters using9

θ(k+1) = θ(k) + η∇̂ J(θ(k)).

A more efficient way to compute the gradient using finite-differences10

Instead of picking perturbations ei along the cardinal directions, let us11

sample them from a Gaussian distribution12

ξi ∼ N(0, σ2I)

for some user-chosen covariance σ2. We can however no longer use13

the finite-difference formula to compute the derivative because the noise14

e is not aligned with the axes. We can however use a Taylor series15

approximation as follows. Observe that16

J(θ + ξ) ≈ J(θ) + ⟨∇J(θ), ξ⟩

where ⟨·, ·⟩ is the inner product. Given m samples ξ1, . . . , ξm observe17

that18

Ĵ(θ + ξ1) = Ĵ(θ) +
〈
∇J(θ), ξ1

〉
Ĵ(θ + ξ2) = Ĵ(θ) +

〈
∇J(θ), ξ2

〉
...

Ĵ(θ + ξm) = Ĵ(θ) + ⟨∇J(θ), ξm⟩ .

(8.6)

is a linear system of equations in ∇J(θ) ∈ Rp where θ ∈ Rp. All19

quantities Ĵ are estimated as before using trajectories drawn from the20

system. We solve this linear system, e.g., using least-squares if m > p, to21

get an estimate of the gradient ∇̂J(θ) ∈ Rp.22

The Cross-Entropy Method is a more crude but simpler way to

161

implement the above least-squares formulation. At each iteration it
updates the parameters using the formula

θ(k+1) = E
θ∼N(θ(k),σ2I)

[
θ 1{Ĵ(θ)>Ĵ(θ(k))}

]
. (8.7)

In simple words, the CEM samples a few stochastic controllers uθ
from a Gaussian (or any other distribution) centered around the
current controller uθ(k) and updates the weights θk in a direction that
leads to an increase in Ĵ(θ) > Ĵ(θ(k)).

8.2.1 Some remarks on sample complexity of simulation-1

based methods2

CEM may seem to be a particularly bad method to maximize J(θ), after3

all we are perturbing the weights of the stochastic controller randomly4

and updating the weights if they result in a better average return Ĵ(θ).5

This is likely to work well if the dimensionality of weights θ ∈ Rp, i.e.,6

p, is not too large. But is unlikely to work well if we are sampling θ in7

high-dimensions. Typical applications are actually the latter, remember8

that we are interested in using a deep network as a stochastic controller9

and θ are the weights of the neural networks.10

Let us do a quick computation, if the state is x ∈ Rd and u ∈ Rm11

with d = 12 (joint angles and velocities) and m = 6 for a six-degree of12

freedom robot manipulator13

14

and if we use a two-layer neural network with 64 neurons in the hidden15

layer, the total number of weights θ ∈ Rp for the function uθ(· | x) =16

N(µθ(x), σ
2
θ(x)I) where σ2(x) is a vector in Rm, is17

p = (12× 64 + 64) + (64× 6 + 6)︸ ︷︷ ︸
for µθ(x)

+(12× 64 + 64) + (64× 6 + 6)︸ ︷︷ ︸
for σ2

θ(x)

= 2, 444.

This is a very high-dimensional space to sample exhaustively. Note that18

it is quite large even if the input and output dimensions of the neural19

network are not too large. To appreciate the complexity of computing the20

gradient∇J(θ), let us think of how to compute it using finite-differences.21

162

We need two estimates Ĵ(θ − ϵei) and Ĵ(θ + ϵei) for every dimension1

i ∈ {1, . . . , p}. Each estimate requires us to obtain n trajectories from2

the system. Since the number of trajectories that a robot can take is quite3

diverse, we should use a large n, so let’s pick n = 100. The total number4

of trajectories required to update the parameters θ(k) at each iteration is5

2 p n ≈ 106.

 For comparison, a busy espresso bar in a
city makes about 500 shots per day. The
espresso machine would have to work for 5
years without breaking down to make 106
shots.This is an absurdly large number, and things are even more daunting6

when we realize that each update of the weights requires us to sample7

these many trajectories from the system. It is not reasonable to sample8

such a large number of trajectories from an actual robot, that too for each9

update of the weights.10

Using fast simulators for RL If we expand our horizon and think11

of learning controllers in simulation, things feel much more reasonable.12

While running a large number of trajectories may degrade a real robot13

beyond use, doing so requires just computation time in a robot sim-14

ulator. There is a large number of simulators that are available with15

various capabilities, e.g., Gazebo (http://gazebosim.org) is a sophisticated16

simulator inside ROS that uses a number of Physics engines such as17

Bullet (https://pybullet.org/wordpress), MuJoCo (http://www.mujoco.org)18

is incredibly fast although not very good modeling contact, Unity is19

a popular platform to simulate driving and more complicated scenes20

(https://docs.nvidia.com/isaac/isaac/doc/simulation/unity3d.html), Drake21

(https://drake.mit.edu) is better at contact modeling but more complex and22

slower. Most robotics companies develop their own driving simulators23

in-house. The assigned reading (#2) for this chapter is a paper which24

develops a very fast implementation of the CEM for use in simulators.25

Working well in simulation does not mean that a controller works26

well on the real robot It is important to realize that a simulator is not27

equivalent to the physical robot. Each simulator makes certain trade-offs28

in capturing the dynamics of the real system and it is not a given that a29

controller that was learned using data from a simulator will work well on30

a real robot. For instance, OpenAI had to develop a large number of tricks31

(which took about a year) to modify the simulator to enable the learned32

policy to work well on a robot (https://openai.com/blog/learning-dexterity)33

for a fairly narrow set of tasks.34

8.3 The Policy Gradient35

In this section, we will study how to take the gradient of the
objective J(θ), without using finite-differences.

http://gazebosim.org
https://pybullet.org/wordpress
http://www.mujoco.org
https://docs.nvidia.com/isaac/isaac/doc/simulation/unity3d.html
https://drake.mit.edu
https://openai.com/blog/learning-dexterity

163

We would like to solve the optimization problem1

max
θ
J(θ) := E

τ∼pθ(τ)
[R(τ) | x0]

We will suppress the dependence on x0 to keep the notation clear. The2

expectation is taken over all trajectories starting at state x0 realized using3

the stochastic controller uθ(· | x). We to update weights θ using gradient4

descent which amounts to5

θ(k+1) = θ(k) + η∇θ E
τ∼pθ(τ)

[R(τ)] .

First let us note that the distribution pθ using which we compute the6

expectation also depends on the weights θ. This is why we cannot simply7

move the derivative ∇θ inside the expectation8

∇θ E
τ∼pθ(τ)

[R(τ)] ̸= E
τ∼pθ(τ)

[∇θR(τ)] .

We need to think of a new technique to compute the gradient above.9

Essentially, we would like to do the chain rule of calculus but where10

one of the functions in the chain is an expectation. The likelihood-ratio11

trick described next allows us to take such derivatives. Here is how the12

computation goes13

∇θ E
τ∼pθ

[R(τ)] = ∇θ
∫
R(τ)pθ(τ)dτ

=

∫
R(τ)∇θpθ(τ) dτ

(move the gradient inside, integral is over trajectories τ which do not depend onθ themselves)

=

∫
R(τ)pθ(τ)

∇pθ(τ)
pθ(τ)

dτ

=

∫
R(τ)pθ(τ)∇ log pθ(τ)dτ

= E
τ∼pθ(τ)

[R(τ)∇ log pθ(τ)]

≈ 1

n

n∑
i=1

R(τ i)∇ log pθ(τ
i)

(8.8)
This is called the likelihood-ratio trick to compute the policy gradient. It14

simply multiplies and divides by the term pθ(τ) and rewrites the term15
∇pθ
pθ

= ∇ log pθ. It gives us a neat way to compute the gradient: we16

sample n trajectories τ1, . . . , τn from the system and average the return17

of each trajectory R(τ i) weighted by the gradient of the likelihood of18

taking each trajectory log pθ(τ
i). The central point to remember here is19

164

that the gradient1

∇θ log pθ(τ i) = ∇θ
T∑
k=0

log p(xik+1 | xik, uik) + log uθ(u
i
k | xik)

=

T∑
k=0

∇θ log uθ(uik | xik)

(8.9)

is computed using backpropagation for a neural network. This expression2

is called the policy gradient because it is the gradient of the objective J(θ)3

with respect to the parameters of the controller/policy θ.4

Variance of policy gradient The expression for the policy gradient may5

seem like a sleight of hand. It is a clean expression to get the gradient of6

the objective but also comes with a number of problems. Observe that7

∇ E
τ∼pθ(τ)

[R(τ)] = E
τ∼pθ(τ)

[
R(τ)

∇pθ(τ)
pθ(τ)

]
≈ 1

n

n∑
i=1

R(τ i)
∇ pθ(τ

i)

pθ(τ i)
.

If we sample trajectories τ i that are not very likely under the distribution8

pθ(τ), the denominator in some of the summands can be very small.9

For trajectories that are likely, the denominator is large. The empirical10

estimate of the expectation using n trajectories where some terms are11

very small and some others very large, therefore has a large variance. So12

one does need lots of trajectories from the system/simulator to compute a13

reasonable approximation of the policy gradient.14

8.3.1 Reducing the variance of the policy gradient15

Control variates You will perhaps appreciate that computing the accu-16

rate policy gradient is very hard in practice. Control variates is a general17

concept from the literature on Monte Carlo integration and is typically18

introduced as follows. Say we have a random variable X and we would19

like to guess its expected value µ = E[X]. Note that X is an unbiased20

estimator of µ but it may have a large variance. If we have another random21

variable Y with known expected value E[Y], then22

X̂ = X + c(Y − E[Y]) (8.10)

is also an unbiased estimator for µ for any value of c. The variance of X̂ is23

Var(X̂) = Var(X) + c2 Var(Y) + 2c Cov(X,Y).

which is minimized for24

c∗ = −Cov(X,Y)

Var(Y)

165

for which we have1

Var(X̂) = Var(X)− c∗2 Var(Y) =

(
1−

(
Cov(X,Y)

Var(Y)

)2
)

Var(X).

By subtracting Y − E[Y] from our observed random variable X , we have2

reduced the variance ofX if the correlation betweenX and Y is non-zero.3

Most importantly, note that no matter what Y we plug into the above4

expression, we can never increase the variance of X; the worst that can5

happen is that we pick a Y that is completely uncorrelated with X and6

end up achieving nothing.7

Baseline We will now use the concept of a control variate to reduce the8

variance of the policy gradient. This is known as “building a baseline”.9

The simplest baseline one can build is to subtract a constant value from10

the return. Consider the PG given by11

∇J(θ) = E
τ∼pθ

[R(τ)∇ log pθ(τ)]

= E
τ∼pθ(τ)

[(R(τ)− b) ∇ log pθ(τ)] .

Observe that12

E
τ∼pθ(τ)

[b∇ log pθ(τ)] =

∫
dτb pθ(τ)∇ log pθ(τ)

=

∫
dτb ∇pθ(τ) = b∇

∫
dτ pθ(τ) = b∇1 = 0.

Example 1: Using the average returns of a mini-batch as the baseline13

What is the simplest baseline bwe can cook up? Let us write the mini-batch14

version of the policy gradient15

∇̂J(θ) := 1

b

b∑
i=1

[
R(τ i)∇ log pθ(τ

i)
]
.

where τ1, . . . , τ b are trajectories that are a part of our mini-batch. We can16

set17

b =
1

b

b∑
i=1

R(τ i)

can use the variance-reduced gradient18

∇̂J(θ) = 1

b

b∑
i=1

[(
R(τ i)− b

)
∇ log pθ(τ

i)
]
.

This is a one-line change in your code for policy gradient so there is no19

reason not to do it.20

166

Example 2: A weighted averaged of the returns using the log-likelihood1

of the trajectory The previous example showed how we can use one2

constant baseline, namely the average of the discounted returns of all3

trajectories in a mini-batch. What is the best constant b we can use?4

We can perform a similar computation as done in the control variate5

introduction to minimize the variance of the policy gradient to get the6

following.7

δ
(
∇̂θiJ(θ)

)
= E

τ

[
((R(τ)− bi)∇θi log pθ(τ))

2
]
−
(

E
τ
[((R(τ)− bi))∇θi log pθ(τ)]

)2
= E

τ

[
((R(τ)− bi)∇θi log pθ(τ))

2
]
−
(
∇̂θiJ(θ)

)2
.

Set8

δ
(
∇̂θiJ(θ)

)
dbi

= 0

in the above expression to get9

bi =
Eτ
[
(∇θi log pθ(τ))

2
R(τ)

]
Eτ
[
(∇θi log pθ(τ))

2
]

which is the baseline you should subtract from the gradient of the ith10

parameter θi to result in the largest variance reduction. This expression is11

just the expected return but it is weighted by the magnitude of the gradient,12

this again is 1–2 lines of code.13

? Show that any function that only depends
on the state x can be used as a baseline in the
policy gradient. This technique is known as
reward shaping.

8.4 An alternative expression for the policy14

gradient15

We will first define an important quantity that helps us think of RL16

algorithms.17

Definition 8.1 (Discounted state visitation frequency). Given a stochas-18

tic controller uθ(· | x) the discounted state visitation frequency for a19

discrete-time dynamical system is given by20

dθ(x) =

∞∑
k=0

γk P(xk = x | x0, uk ∼ uθ(· | xk)).

The distribution dθ(x) is the probability of visiting a state x computed21

over all trajectories of the system that start at the initial state x0. If γ = 1,22

this is the steady-state distribution of the Markov chain underlying the23

Markov Decision Process where at each step the MDP choses the control24

uk ∼ uθ(· | xk). The fact that we have defined the discounted distribution25

is a technicality; this version is seen in the policy gradient expression.26

You will also notice that dθ(x) is not a normalized distribution. The27

normalization constant is difficult to characterize both theoretically and28

167

empirically and we will not worry about it here; RL algorithms do not1

require it.2

Q-function Using the discounted state visitation frequency, the
policy gradient that we saw before can be written in terms of the
value function as follows.

∇J(θ) = E
τ∼pθ

[R(τ)∇ log pθ(τ)]

= E
x∼dθ

E
u∼uθ(·|x)

[
qθ(x, u)∇θ log uθ(u | x)

]
.

(8.11)

 The derivation of this expression is easy
although tedious, you can find it in the
Appendix of the paper “Policy gradient
methods for reinforcement learning with
function approximation” at
https://papers.nips.cc/paper/1713-policy-
gradient-methods-for-reinforcement-
learning-with-function-approximation.pdf.

The function qθ(x, u) is similar to the cost-to-go that we have studied
in dynamic programming and is called the Q-function

qθ(x, u) = E
τ∼pθ(τ)

[R(τ) | x0 = x, u0 = u] . (8.12)

It is the infinite-horizon discounted cumulative reward (i.e., the return)
if the system starts at state x and takes the control u in the first step
and runs the controller uθ(· | x) for all steps thereafter. We make the
dependence of qθ on the parameters θ of the controller explicit.

Compare the above formula for the policy gradient with the one we3

had before in (8.8)4

∇̂J(θ) = E
τ∼pθ(τ)

[R(τ)∇ log pθ(τ)]

= E
τ∼pθ(τ)

[(
T∑
k=0

γkr(xk, uk)

) (
T∑
k=0

∇ log uθ(uk | xk)

)]
.

It is important to notice that this is an expectation over trajectories;5

whereas (8.11) is an expectation over states x sampled from the discounted6

state visitation frequency. The control uk for both is sampled from the7

stochastic controller at each time-step k. The most important distinction8

is that (8.11) involves the expectation of the Q-function qθ weighted by9

the gradient of the log-likelihood of picking each control action. There10

are numerous hacky ways of deriving (8.11) from (8.8) but remember that11

they are fundamentally different expressions of the same policy gradient.12

This expression allows understanding of a number of properties of13

reinforcement learning.14

1. While the algorithm collects the data, states that are unlikely under15

the distribution dθ contribute little to (8.11). In other words, the16

policy gradient is insensitive to such states. The policy update will17

not consider these unlikely states that the system is prone to visit18

infrequently using the controller uθ.19

2. The opposite happens for states which are very likely. For two20

controls u1, u2 at the same state x, the policy increases the log-21

likelihood of taking the controls weighted by their values qθ(x, u1)22

https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf

168

and qθ(x, u2). This is sort of the “definition” of reinforcement1

learning. In the expression (8.8) the gradient was increasing the2

likelihood of trajectories with high returns, here it deals with states3

and controls individually.4

8.4.1 Implementing the new expression5

Suppose we have a stochastic control that is a Gaussian6

uθ(u | x) =
1

(2πσ2)
p/2

e−
∥u−θ⊤x∥2

2σ2

where θ ∈ Rd×p and u ∈ Rp; the variance σ can be chosen by the user.7

We can easily compute log uθ(u | x) in (8.11). How should one compute8

qθ(x, u) in (8.12)? We can again estimate it using sample trajectories9

from the system; each of these trajectories would have to start from a10

state x and the control at the first step would be u, with the controller uθ11

being used thereafter. Note that we have one such trajectory, namely the12

remainder of the trajectory where we encountered (x, u) while sampling13

trajectories for the policy gradient in (8.11). In practice, we do not sample14

trajectories a second time, we simply take this trajectory, let us call it τx,u15

and set16

qθ(x, u) =

T∑
k=0

γkr(xk, uk)

for some large time-horizon T where (x0, u0) = (x, u) and the summation17

is evaluated for (xk, uk) that lie on the trajectory τx,u. Effectively, we are18

evaluating (8.12) using one sample trajectory, a highly erroneous estimate19

of qθ.20

8.5 Actor-Critic methods21

We can of course do more sophisticated things to evaluate the Q-function22

qθ in our new expression of the policy gradient.23

Actor-Critic methods fit a Q-function to the data collected from the
system using the current controller (policy evaluation step) and then
use this fitted Q-function in the expression of the policy gradient (8.11)
to update the controller. In this sense, Actor-Critic methods are
conceptually similar to policy iteration.

In order to understand how to fit the Q-function, first recall that it24

should satisfy the Bellman equation. This means25

qθ(x, u) = r(x, u) + γ E
u∼uθ(·|x′),x′∼P (·|x,u)

[
qθ(x′, u′)

]
. (8.13)

We do not know a model for the system so we cannot evaluate the26

expectation over x′ ∼ P(· | x, u) like we used to in dynamic programming.27

169

But we do have the ability to get trajectories τ i from the system.1

Let’s say (xik, u
i
k) lie on τ i at time-step k. We can then estimate the2

expectation over P(· | xik, uik) using simply xik+1 and the expectation over3

the controls using simply uik+1 to write4

qθ(xik, u
i
k) ≈ r(xik, uik) + γ qθ(xik+1, u

i
k+1) for all i ≤ n, k ≤ T.

This is a nice constraint on the Q-function. If this were a discrete-state,5

discrete-control MDP, it is a set of linear equations for the q-values. These6

constraints would be akin to our linear equations for evaluating a policy in7

dynamic programming except that instead of using the dynamics model8

(the transition matrix), we are using trajectories sampled from the system.9

Parameterizing the Q-function using a neural network If we are deal-10

ing with a continuous state/control-space, we can think of parameterizing11

the q-function using parameters φ12

qθφ(x, u) : X × U → R.

The parameterization is similar to the parameterization of the controller,13

e.g., just like we would write a deterministic controller as14

uθ(x) = θ⊤x

we can think of a linear Q-function of the form15

qθφ(x, u) = φ⊤
[
x

u

]
, φ ∈ Rm+d

which is a linear function in the states and controls. You can also think of16

using something like17

qθφ(x, u) =
[
1 x u

]
φ

1x
u

 φ ∈ R(m+d+1)×(m+d+1).

which is quadratic in the states and controls, or in general a deep network18

with weights φ as the Q-function.19

Fitting the Q-function We can now “fit” the parameters of the Q-20

function by solving the problem21

φ̂ = argmin
φ

1

n(T + 1)

n∑
i=1

T∑
k=0

∥∥qθφ(xik, uik)− r(xik, uik)− γ qθφ(xik+1, u
i
k+1)

∥∥2.
(8.14)

which is nothing other than enforcing the Bellman equation in (8.13).22

If the Q-function is linear in [x, u] this is a least squares problem, if it23

is quadratic the problem is a quadratic optimization problem which can24

also be solved efficiently, in general we would solve this problem using25

stochastic gradient descent if we are parameterizing the Q-function using a26

170

deep network. Such a Q-function is called the “critic” because it evaluates1

the controller uθ, or the “actor”. This version of the policy gradient where2

one fits the parameters of both the controller and the Q-function are called3

Actor-Critic methods.

 We will be pedantic and always write the
q-function as qθφ. The superscript θ denotes
that this is the q-function corresponding to the
θ-parameterized controller uθ. The subscript
denotes that the q-function is parameterized
by parameters φ.

4

Actor-Critic Methods We fit a deep network with weights θ to
parameterize a stochastic controller uθ(· | x) and another deep
network with weights φ to parameterize the Q-function of this
controller, qθφ(x, u). Let the controller weights at the kth iteration be
θ(k) and the Q-function weights be φk.

1. Sample n trajectories, each of T timesteps, using the current
controller u(k)θ (· | x).

2. Fit a Q-function qθ(k)φk+1 to this data using (8.14). using stochastic
gradient descent. While performing this fitting (although it is
not mathematically sound), it is common to use initialize the
Q-function weights to their values from the previous iteration
φκ.

3. Compute the policy gradient using the alternative expression
in (8.11) and update parameters of the policy to θ(k+1).

8.5.1 Advantage function5

The new expression for the policy gradient in (8.11) also has a large6

variance; this should be no surprise, it is after all equal to the old7

expression. We can however perform variance reduction on this using the8

value function.9

Our goal as before would be construct a relevant baseline to subtract10

from the Q-function. It turns out that any function that depends only upon11

the state x is a valid baseline. This gives a powerful baseline for us to to12

use in policy gradients. We can use the value function as the baseline. The13

value function for controls taken by the controller uθ(· | x) (notice that14

this is not the optimal value function, it is simply the policy evaluation) is15

given by16

vθ(x) = E
τ∼pθ(τ)

[R(τ) | x0 = x]

where uk ∼ uθ(· | xk) at each timestep. We also know that the value17

function is the expected value of the Q-function across different controls18

sampled by the controller19

vθ(x) = E
u∼uθ(·|x)

[
qθ(x, u)

]
. (8.15)

The value function again satisfies the dynamic programming principle/-20

171

Bellman equation1

vθ(x) = E
u∼uθ(·|x)

[
r(x, u) + γ E

x′∼P(·|x,u)

[
vθ(x′)

]]
.

We again parameterize the value function2

vθψ(x) : X → R

using parameters ψ and fit it to the data in the same way as (8.14) to get3

ψ̂ = argmin
ψ

1

n(T + 1)

n∑
i=1

T∑
k=0

∥∥vθψ(xik)− r(xik, uik)− γ vθψ(xik+1)
∥∥2.

(8.16)

Using this baseline can modify the policy gradient to be

∇J(θ) = E
x∼dθ

E
u∼uθ(·|x)

qθφ(x, u)− vθψ(x)︸ ︷︷ ︸

aθφ,ψ(x,u)

 ∇θ log uθ(u | x)
 .

(8.17)
where each of the functions qθφ and vθψ are themselves fitted us-
ing (8.14) and (8.16) respectively. The difference

aθφ,ψ(x, u) = qθφ(x, u)− vθψ(x)
≈ qθφ(x, u)− E

u∼uθ(·|x)

[
qθφ(x, u)

] (8.18)

is called the advantage function. It measures how much better the
particular control u is for a state x as compared to the average return
of controls sampled from the controller at that state. The form (8.17)
is the most commonly implemented form in research papers whenever
they say “we use the policy gradient”.

? The advantage function is very useful
while doing theoretical work on RL
algorithms. But it is also extremely useful in
practice. It imposes a constraint upon our
estimate qθφ and the estimate vθψ . If we are not
solving (8.14) and (8.16) to completion, we
may benefit by imposing this constraint on the
advantage function. Can you think of a way?

8.6 Discussion4

This brings to an end the discussion of policy gradients. They are, in5

general, a complicated suite of algorithms to implement. You will see6

some of this complexity when you implement the controller for something7

as simple as the simple pendulum. The key challenges with implementing8

policy gradients come from the following.9

1. Need lots of data, each parameter update requires fresh data from10

the systems. Typical problems may need a million trajectories, most11

robots would break before one gets this much data from them if one12

implements these algorithms naively.13

172

2. The log-likelihood ratio trick has a high variance due to uθ(· | x)1

being in the denominator of the expression, so we need to implement2

complex variance reduction techniques such as actor-critic methods.3

3. Fitting the Q-function and the value function is not easy, each4

parameter update of the policy ideally requires you to solve the5

entire problems (8.14) and (8.16). In practice, we only perform a6

few steps of SGD to solve the two problems and reuse the solution7

of kth iteration update as an initialization of the k+1th update. This8

is known as “warm start” in the optimization literature and reduces9

the computational cost of fitting the Q/value-functions from scratch10

each time.11

4. The Q/value-function fitted in iteration k may be poor estimates of12

the Q/value at iteration k + 1 for the new controller uθ(k+1)(· | x).13

If the controller parameters change quickly, θ(k+1) is very dif-14

ferent from θ(k), then so are qθ
(k+1) and vθ

(k+1) . There is a15

very fine balance between training quickly and retaining the ef-16

ficiency of warm start; and tuning this in practice is quite dif-17

ficult. A large number of policy gradient algorithms like TRPO18

(https://arxiv.org/abs/1502.05477) and PPO (https://arxiv.org/abs/1707.06347)19

try to alleviate this with varying degrees of success.20

5. The latter, PPO, is a good policy-gradient-based algorithm to try21

on a new problem. For instance, in a very impressive demon-22

stration, it was used to build an RL agent to play StarCraft23

(https://openai.com/blog/openai-five). We will see better RL meth-24

ods in the next chapter.25

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://openai.com/blog/openai-five

Chapter 91

Q-Learning2

Reading
1. Sutton & Barto, Chapter 6, 11

2. Human-level control through deep reinforcement learning
https://www.nature.com/articles/nature14236

3. Deterministic Policy Gradient Algorithms,
http://proceedings.mlr.press/v32/silver14.html

4. Addressing Function Approximation Error in Actor-Critic
Methods https://arxiv.org/abs/1802.09477

5. An Application of Reinforcement Learning to Aerobatic Heli-
copter Flight, https://papers.nips.cc/paper/3151-an-application-
of-reinforcement-learning-to-aerobatic-helicopter-flight

In the previous chapter, we looked at what are called “on-policy”3

methods, these are methods where the current controller uθ(k) is used4

to draw fresh data from the dynamical system and used to update to5

parameters θ(k). The key inefficiency in on-policy methods is that this6

data is thrown away in the next iteration. We need to draw a fresh set of7

trajectories from the system for uθ(k+1) . This lecture will discuss off-policy8

methods which are a way to reuse past data. These methods require much9

fewer data than on-policy methods (in practice, about 10–100× less).10

9.1 Tabular Q-Learning11

Recall the value iteration algorithm for discrete (and finite) state and12

control spaces; this is also called “tabular” Q-Learning in the RL literature13

because we can store the Q-function q(x, u) as a large table with number14

of rows being the number of states and number of columns being the15

173

https://www.nature.com/articles/nature14236
http://proceedings.mlr.press/v32/silver14.html
https://arxiv.org/abs/1802.09477
https://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight
https://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight

174

number of controls, with each entry in this table being the value q(x, u).1

Value iteration when written using the Q-function at the kth iteration for2

the tabular setting looks like3

q(k+1)(x, u) =
∑
x′∈X

P(x′ | x, u)
(
r(x, u) + γmax

u′
q(k)(x′, u′)

)
= E
x′∼P(·|x,u)

[
r(x, u) + γmax

u′
q(k)(x′, u′)

]
.

In the simplest possible instantiation of Q-learning, the expecta-
tion in the value iteration above (which we can only compute if we
know a model of the dynamics) is replaced by samples drawn from
the environment.

We will imagine the robot as using an arbitrary controller4

ue(· | x)

that has a fairly large degree of randomness in how it picks actions. We5

call such a controller an “exploratory controller”. Conceptually, its goal6

is to lead the robot to diverse states in the state-space so that we get a7

faithful estimate of the expectation in value iteration. We maintain the8

value q(k)(x, u) for all states x ∈ X and controls u ∈ U and update these9

values to get q(k+1) after each step of the robot.10

From the results on Bellman equation, we know that any Q-function11

that satisfies the above equation is the optimal Q-function; we would12

therefore like our Q-function to satisfy13

q∗(xk, uk) ≈ r(xk, uk) + γmax
u′

q∗(xk+1, u
′).

over samples (xk, uk, xk+1) collected as the robot explores the environ-14

ment.15

Tabular Q-Learning Let us imagine the robot travels for n trajec-
tories of T time-steps each. We can now solve for q∗ by minimizing
the objective

min
q

1

n(T + 1)

n∑
i=1

T∑
k=0

(
q(xik, u

i
k)− r(xik, uik)− γ max

u′∈U
q(xik+1, u

′)

)2

.

(9.1)
on the data collected by the robot. The variable of optimization here
are all values q∗(x, u) for x ∈ X and u ∈ U .

Notice a few important things about the above optimization problem.16

First, the last term is a maximization overu′ ∈ U , it is maxu′∈U q(x
i
k+1, u

′)17

and not q(xik+1, u
i
k+1). In practice, you should imagine a robot performing18

175

Q-Learning in a grid-world setting where it seeks to find the optimal1

trajectory to go from a source location to a target location. If at each2

step, the robot has 4 controls to choose from, computing this last term3

involves taking the maximum of 4 different values (4 columns in the4

tabular Q-function).5

Notice that for finite-horizon dynamic programming we initialized6

the Q-function at the terminal time to a known value (the terminal cost).7

Similarly, for infinite-horizon value iteration, we discussed how we can8

converge to the optimal Q-function with any initialization. In the above9

case, we do not impose any such constraint upon the Q-function, but there10

is an implicit constraint. All values q(x, u) have to be consistent with11

each other and ideally, the residual12

q(xik, u
i
k)− r(xik, uik)− γ max

u′∈U
q(xik+1, u

′) = 0

for all trajectories i and all timesteps T .13

Solving tabular Q-Learning How should we solve the optimization14

problem in (9.1)? This is easy, every entry q(x, u) for x ∈ U and u ∈ U15

is a variable of this objective and each (·)2 term in the objective simply16

represents a constraint that ties these different values of the Q-function17

together. We can solve for all q(x, u) iteratively as18

q(x, u) ← q(x, u)− η∇q(x,u)ℓ(q)

= (1− η) q(x, u)− η
(
r(x, u) + γmax

u′
q(x′, u′)

) (9.2)

where ℓ(q) is the entire objective 1
n(T+1)

∑
i

∑
k · · · above and (x, u, x′) ≡19

(xik, u
i
k, x

i
k+1) in the second equation. An important point to note here is20

that although the robot collects a finite number of data21

D =
{
(xik, u

i
k)k=0,1,...,T

}n
i=1

we have an estimate for the value q(x, u) at all states x ∈ X . As an22

intuition, tabular Q-learning looks at the returns obtained by the robot23

after starting from a state x (the reward-to-come J(x)) and patches the24

returns from nearby states x, x′ using the constraints in the objective (9.1).25

Terminal state One must be very careful about the terminal state in such26

implementations of Q-learning. Typically, most research papers imagine27

that they are solving an infinite horizon problem but use simulators that28

have an explicit terminal state, i.e., the simulator does not proceed to the29

next timestep after the robot reaches the goal. A workaround for using30

such simulators (essentially all simulators) is to modify (9.2) as31

q(x, u) = (1−η) q(x, u)−η
(
r(x, u) + γ

(
1− 1{x′ is terminal}

)
max
u′

q(x′, u′)

)
.

176

Effectively, we are setting q(x′, u) = 0 for all u ∈ U if x′ is a terminal state1

of problem. This is a very important point to remember and Q-Learning2

will never work if you forget to include the term 1{x′ is terminal} in your3

expression.4

What is the controller in tabular Q-Learning? The controller in5

tabular Q-Learning is easy to get after we solve (9.1). At test time, we use6

a deterministic controller given by7

u∗(x) = argmax
u′

q∗(x, u′).

9.1.1 How to perform exploration in Q-Learning8

The exploratory controller used by the robot ue(· | x) is critical to perform9

Q-Learning well. If the exploratory controller does not explore much,10

we do not get states from all parts of the state-space. This is quite bad,11

because in this case the estimates of Q-function at all states will be bad,12

not just at the states that the robot did not visit. To make this intuitive,13

imagine if we cordoned off some nodes in the graph for the backward14

version of Dĳkstra’s algorithm and never used them to update the dist15

variable. We would never get to the optimal cost-to-go for all states in this16

case because there could be trajectories that go through these cordoned17

off states that lead to a smaller cost-to-go. So it is quite important to pick18

the right exploratory controller.19

It turns out that a random exploratory controller, e.g., a controller20

ue(· | x) that picks controls uniformly randomly is pretty good. We can21

show that our tabular Q-Learning will converge to the optimal Q-function22

q∗(x, u) as the amount of data drawn from the random controller goes to23

infinity, even if we initialize the table to arbitrary values.

 This is again the power of dynamic
programming at work. The Bellman equation
guarantees the convergence of value iteration
provided we compute the expectation exactly.
But if the robot does give us lots of data from
the environment, then Q-Learning also
inherits this property of convergence to the
optimal Q-function from any initialization.

In other words,24

if we are guaranteed that the robot visits each state in the finite MDP25

infinitely often, it is a classical result that updates of the form (9.2) for26

minimizing the objective in (9.1) converge to the optimal Q-function.27

Epsilon-greedy exploration Instead of the robot using a arbitrary28

controller ue(· | x) to gather data, we can use the current estimate of the29

Q-function with some added randomness to ensure that the robot visits all30

states in the state-space. This is a key idea in Q-Learning and is known as31

“epsilon-greedy” exploration. We set32

ue(u | x) =

{
argmaxu q(x, u) with probability 1− ϵ
uniform(U) with probability ϵ.

(9.3)

for some user-chosen value of ϵ. Effectively, the robot repeats the controls33

it took in the past with probability 1 − ϵ and uniformly samples from34

the entire control space with probability ϵ. The former ensures that the35

robot moves towards the parts of the state-space where states have a high36

return-to-come (after all, that is the what the Q-function q(x, u) indicates).37

177

The latter ensures that even if the robot’s estimate of the Q-function is bad,1

it is still visiting every state in the state-space infinitely often.2

A different perspective on Q-Learning Conceptually, we can think of3

tabular Q-learning as happening in two stages. In the first stage, the robot4

gathers a large amount of data5

D =
{
(xik, u

i
k)k=0,1,...,T

}n
i=1

using the exploratory controller ue(· | x); let us consider the case6

when we are using an arbitrary exploratory controller, not epsilon-greedy7

exploration. Using this data, the robot fits a model for the system, i.e., it8

learns the underlying MDP9

P(x′ | x, u);

this is very similar to the step in the Baum-Welch algorithm that we saw10

for learning the Markov state transition matrix of the HMM in Chapter 2.11

We simply take frequency counts to estimate this probability12

P(x′ | x, u) ≈ 1

N

∑
i

1{x′ was reached from x using control u}

where N is the number of the times the robot took control u at state x.13

Given this transition matrix, we can now perform value iteration on the14

MDP to learn the Q-function15

q(k+1)(x, u) = E
x′∼P(·|x,u)

[
r(x, u) + γmax

u′
q(k)(x′, u)

]
.

The success of this two-stage approach depends upon how accurate our16

estimate of P(x′ | x, u) is. This in turn depends on how much the robot17

explored the domain and the size of the dataset it collected, both of these18

need to be large. We can therefore think of Q-learning as interleaving19

these two stages in a single algorithm, it learns the dynamics of the system20

and the Q-function for that dynamics simultaneously. But the Q-Learning21

algorithm does not really maintain a representation of the dynamics, i.e.,22

at the end of running Q-Learning, we do not know what P(x′ | x, u) is.23

9.2 Function approximation (Deep Q Networks)24

Tabular methods are really nice but they do not scale to large problems.25

The grid-world in the homework problem on policy iteration had 10026

states, a typical game of Tetris has about 1060 states. For comparison, the27

number of atoms in the known universe is about 1080. The number of28

different states in a typical Atari game is more than 10300. These are all29

problems with a discrete number of states and controls, for continuous30

state/control-space, the number of distinct states/controls is infinite. So31

it is essentially impossible to run the tabular Q-Learning method from32

178

the previous section for most real-world problems. In this section, we1

will look at a powerful set of algorithms that parameterize the Q-function2

using a neural network to work around this problem.3

We use the same idea from the previous chapter, that of parameterizing4

the Q-function using a deep network. We will denote5

qφ(x, u) : X × U 7→ R

as the Q-function and our goal is to fit the deep network to obtain the6

weights φ̂, instead of maintaining a very large table of size |X| × |U | for7

the Q-function. Fitting the Q-function is quite similar to the tabular case:8

given a dataset D =
{
(xit, u

i
t)t=0,1,...,T

}n
i=1

from the system, we want to9

enforce10

qφ(x
i
t, u

i
t) = r(xit, u

i
t) + γmax

u′
qφ(x

i
t+1, u

′)

for all tuples (xit, uit, xit+1) in the dataset. Just like the previous section,11

we will solve12

φ̂ = argmin
φ

1

n(T + 1)

n∑
i=1

T∑
t=1

qφ(xit, uit)− r(xit, uit)− γ (1− 1{xit+1 is terminal}
)

max
u′

qφ(x
i
t+1, u

′)︸ ︷︷ ︸
target(x′;φ)

2

≡ argmin
φ

1

n(T + 1)

n∑
i=1

T∑
t=1

(
qφ(x

i
t, u

i
t)− target(xit+1;φ)

)2
(9.4)

The last two terms in this expression above are together called the “target”13

because the problem is very similar to least squares regression, except that14

the targets also depend on the weights φ. This is what makes it challenging15

to solve.16

As discussed above, Q-Learning with function approximation is known17

as “Fitted Q Iteration”. Remember that very important point that the robot18

collects data using the exploratory controller ue(· | x) but the Q-function19

that we fit is the optimal Q-function.20

Fitted Q-Iteration with function approximation may not converge21

to the optimal Q-function It turns out that (9.4) has certain math-22

ematical intricacies that prevent it from converging to the optimal23

Q-function. We will give the intuitive reason here. In the tabular24

Q-Learning setting, if we modify some entry q(x, u) for an x ∈ X25

and u ∈ U , the other entires (which are tied together using the Bell-26

man equation) are all modified. This is akin to you changing the dist27

value of one node in Dĳkstra’s algorithm; the dist values of all other28

nodes will have to change to satisfy the Bellman equation. This is29

what (9.2) achieves if implemented with a decaying step-size η; see30

http://users.isr.ist.utl.pt/∼mtjspaan/readingGroup/ProofQlearning.pdf for31

the proof. This does not hold for (9.4). Even if the objective in (9.4) is32

zero on our collected dataset, i.e., the Q-function fits data collected by the33

robot perfectly, the Q-function may not be the optimal Q-function.

 The mathematical reason behind this is that
the Bellman operator, i.e., the update to the
Q/value-function is a contraction for the
tabular setting, this is not the case for Fitted
Q-Iteration unless the function approximation
has some technical conditions imposed upon
it.

An34

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

179

intuitive way of understanding this problem is that even if the Bellman1

error is zero on samples in the dataset, the optimization objective says2

nothing about states that are not present in the dataset; the Bellman error3

on them is completely dependent upon the smoothness properties of the4

function expressed by the neural architecture. Contrast this comment with5

the solution of the HJB equation in Chapter 6 where the value function6

was quite non-smooth at some places. If our sampled dataset does not7

contain those places, there is no way the neural network can know the8

optimal form of the value function.9

10

9.2.1 Embellishments to Q-Learning11

We next discuss a few practical aspects of implementing Q-Learning.12

Each of the following points is extremely important to understand how to13

get RL to work on real-world problems, so you should internalize these.14

Pick mini-batches from different trajectories in SGD . In practice,15

we fit the Q-function using stochastic gradient descent. At each iteration16

we sample a mini-batch of inputs (xit, uit, xit+1) from different trajectories17

i ∈ {1, . . . , n} and update the weights φ in the direction of the negative18

gradient.19

φk+1 = φk − η∇φ
(
qpk(x, u)− target(x′;φk)

)2
.

The mini-batch is picked to have samples from different trajectories20

because samples from the same trajectory are correlated to each other21

(after all, the robot obtains the next tuple (x′, u′, x
′′
) from the previous22

tuple (x, u, x′)).23

Replay buffer The dataset D is known as the replay buffer.24

Off-policy learning The replay buffer is typically not fixed during25

training. Instead of drawing data from the exploratory controller ue, we26

can think of the following algorithm. Initialize the Q-function weights to27

φ0 and the dataset to D = ∅. At the kth iteration,28

• Draw a dataset Dk of n trajectories from the ϵ-greedy policy29

ue(u | x) =

{
argmaxu qk(x, u) with probability 1− ϵ
uniform(U) with probability ϵ.

180

• Add new trajectories to the dataset1

D ← D ∪Dk.

• Update weights to qk+1 using all past data D using (9.4).2

Compare this algorithm to policy-gradient-based methods which throw3

away the data from the previous iteration. Indeed, when we want to4

compute the gradient ∇θ Eτ∼p
θk

[R(τ)], we should sample trajectories5

from current weights θk, we cannot use trajectories from some old weights.6

In contrast, in Q-Learning, we maintain a cumulative dataset D that7

contains trajectories from all the past ϵ-greedy controllers and use it to8

find new weights of the Q-function. We can do so because of the powerful9

Bellman equation, Q-Iteration is learning the optimal value function and10

no matter what dataset (9.4) is evaluated upon, if the error is zero, we are11

guaranteed that Q-function learned is the optimal one. Policy gradients do12

not use the Bellman equation and that is why they are so inefficient. This13

is also the reason Q-Learning with a replay buffer is called “off-policy”14

learning because it learns the optimal controller even if the data that it uses15

comes from some other non-optimal controller (the exploratory controller16

or the ϵ-greedy controller).17

Using off-policy learning is an old idea, the DQN paper which18

demonstrated very impressive results on Atari games using RL brought it19

back into prominence.20

Setting a good value of ϵ for exploration is critical Towards the21

beginning of training, we want a large value for ϵ to gather diverse data22

from the environment. As training progresses, we want to reduce ϵ because23

presumably we have a few good control trajectories that result in good24

returns and can focus on searching the neighborhood of these trajectories.25

Prioritized experience replay is an idea where instead of sampling26

from the replay buffer D uniformly randomly when we fit the Q-function27

in (9.4), we only sample data points (xit, uit) which have a high Bellman28

error29 ∣∣∣∣qφ(xit, uit)− r(xit, uit)− γ (1− 1{xit+1 is terminal}
)

max
u′

qφ(x
i
t+1, u

′)

∣∣∣∣
This is a reasonable idea but is not very useful in practice for two reasons.30

First, if we use deep networks for parameterizing the Q-function, the31

network can fit even very complex datasets so there is no reason to not32

use the data points with low Bellman error in (9.4); the gradient using33

them will be small anyway. Second, there are a lot of hyper-parameters34

that determine prioritized sampling, e.g., the threshold beyond which35

we consider the Bellman error to be high. These hyper-parameters are36

quite difficult to use in practice and therefore it is a good idea to not use37

prioritized experience replay at the beginning of development of your38

method on a new problem.39

181

Using robust regression to fit the Q-function There may be states in1

the replay

 Huber loss for δ = 1 (green) compared to
the squared error loss (blue).

buffer with very high Bellman error, e.g., the kinks in the value2

function for the mountain car obtained from HJB above, if we happen to3

sample those. For instance, these are states where the controller “switches”4

and is discontinuous function of state x. In these cases, instead of these5

few states dominating the gradient for the entire dataset, we can use ideas6

in robust regression to reduce their effect on the gradient. A popular way7

to do so is to use a Huber-loss in place of the quadratic loss in (9.4)8

huberδ(a) =

{
a2

2 for |a| ≤ δ
δ
(
|a| − δ

2

)
otherwise.

(9.5)

Delayed target Notice that the target also depends upon the weights φ:9

target(x′;φ) := r(x, u) + γ
(
1− 1{x′ is terminal}

)
max
u′

qφ(x
′, u′).

This creates a very big problem when we fit the Q-function. Effectively,10

both the covariate and the target in (9.4) depend upon the weights of the11

Q-function. Minimizing the objective in (9.4) is akin to performing least12

squares regression where the targets keep changing every time you solve13

for the solution. This is the root cause of why Q-Learning is difficult to14

use in practice. A popular hack to get around this problem is to use some15

old weights to compute the target, i.e., use the loss16

1

n(T + 1)

∑
i,t

(
qφk(x

i
t, u

i
t)− target(xit+1; φ

k′)
)2
. (9.6)

in place of (9.4). Here k′ is an iterate much older than k, say k′ = k−100.17

This trick is called “delayed target”.18

Exponential averaging to update the target Notice that in order to19

implement delayed targets as discussed above we will have to save all20

weights φk, φk−1, . . . , φk−100, which can be cumbersome. We can21

however do yet another clever hack and initialize two copies of the weights,22

one for the actual Q-function φk and another for the target, let us call it23

φ′k. We set the target equal to the Q-function at initialization. The target24

copy is updated at each iteration to be25

φ′k+1
= (1− α)φ′k + αφk+1 (9.7)

with some small value, say α = 0.05. The target’s weights are therefore26

an exponentially averaged version of the weights of the Q-function.27

Why are delayed targets essential for Q-Learning to work? There28

are many explanations given why delayed targets are essential in practice29

but the correct one is not really known yet.30

1. For example, one reason could be that since qφk(x, u) for a given31

state typically increases as we train for more iterations in Q-Learning,32

182

the old weights inside a delayed target are an underestimate of the1

true target. This might lead to some stability in situations when the2

Q-function’s weights φk change too quickly when we fit (9.4) or we3

do not have enough data in the replay buffer yet.4

2. Another reason one could hypothesize is related to concepts like5

self-distillation. For example, we may write a new objective for6

Q-Learning that looks like7

(
qφk(x

i
t, u

i
t)− target(xit+1; φ

k)
)2

+
1

2λ

∥∥∥φk − φk′∥∥∥2
2

where the second term is known as proximal term that prevents the8

weights φk from change too much from their old values φk′ . Proxi-9

mal objectives are more stable versions of the standard quadratic10

objective in (9.4) and help in cases when one is solving Q-Learning11

using SGD updates.12

Double Q-Learning Even a delayed target may not be sufficient to get13

Q-Learning to lead to good returns in practice. Focus on one state x. One14

problem arise from the max operator in (9.4). Suppose that the Q-function15

qφk corresponds to a particularly bad controller, say a controller that picks16

a control17

argmax
u

qφk(x, u)

that is very different from the optimal control18

argmax
u

q∗(x, u)

then, even the delayed target qφk′ may be a similarly poor controller. The19

ideal target is of course the return-to-come, or the value of the optimal20

Q-function maxu′ q∗(x′, u′), but we do not know it while fitting the Q-21

function. The same problem also occurs if our Q-function (or its delayed22

version, the target) is too optimistic about the values of certain control23

inputs, it will consistently pick those controls in the max operator. One24

hack to get around this problem is to pick the maximizing control input25

using the non-delayed Q-function but use the value of the delayed target26

targetDDQN(x
i
t+1;φ

′k) = r(x, u)+γ
(
1− 1{xit+1 is terminal}

)
qφ′k(xit+1, u

′).

(9.8)
where27

u′ = argmax
u

qφk(x
i
t+1, u)︸ ︷︷ ︸

control chosen by the Q-function

.

Training two Q-functions We can also train two copies of the Q-function28

simultaneously, each with its own delayed target and mix-and-match their29

targets. Let φ(1)k and φ′(1)k be one Q-function and target pair and φ(2)k
30

and φ′(2)k be another pair. We update both of them using the following31

183

objective.1

For φ(1) :

(
q(1)

k
(x, u)− r(x, u)− γ

(
1− 1{x′ is terminal}

)
targetDDQN(x

′, φ′(2)k)

)2

For φ(2) :

(
q(2)

k
(x, u)− r(x, u)− γ

(
1− 1{x′ is terminal}

)
targetDDQN(x

′, φ′(1)k)

)2

(9.9)
Sometimes we also use only one target that is the minimum of the two2

targets (this helps because it is more pessimistic estimate of the true target)3

target(x′) := min
{

targetDDQN(x
′, φ′(1)k), targetDDQN(x

′, φ′(2)k)

}
.

You will also see many papers train multiple Q-functions, many more than4

2. In such cases, it is a good idea to pick the control for evaluation using5

all the Q-functions:6

u∗(x) := argmax
u

∑
k

qφ(k)(x, u).

rather than only one of them, as is often done in research papers.7

A remark on the various tricks used to compute the target It may8

seem that a lot of these tricks are about being pessimistic while computing9

the target. This is our current understanding in RL and it is born out of10

the following observation: typically in practice, you will observe that the11

Q-function estimates can become very large. Even if the TD error is small,12

the values qφ(x, u) can be arbitrarily large; see Figure 1 in Continuous13

Doubly Constrained Batch Reinforcement Learning for an example in a14

slightly different setting. This occurs because we pick the control that15

maximizes the Q-value of a particular state x in (9.8). Effectively, if the16

Q-value qφ(x′, u) of a particular control u ∈ U is an over-estimate, the17

target will keep selecting this control as the maximizing control, which18

drives up the value of the Q-function at qφ(x, u) as well. This problem is19

a bit more drastic in the next section on continuous-valued controls. It is20

however unclear how to best address this issue and design mathematically21

sound methods that do not use arbitrary heuristics such as “pessimism”.

 Mathematically, the fundamental problem
in function-approximation-based RL is
actually clear: even if the Bellman operation
is a contraction for tabular RL, it need not be
a contraction when we are approximating the
Q-function using a neural network. Therefore
minimizing TD-error which works quite well
for the tabular case need not work well in the
function-approximation case. There may exist
other, more robust, ways of computing the
Bellman fixed point
qφ(x, u) = r(x, u) + maxu′ γ qφ(x

′, u′)

other than minimizing the the squared TD
error but we do not have good candidates yet.

22

9.3 Q-Learning for continuous control spaces23

All the methods we have looked at in this chapter are for discrete control24

spaces, i.e., the set of controls that the robot can take is a finite set. In this25

case we can easily compute the maximizing control of the Q-function.26

u∗(x) = argmax
u

qφ(x, u).

Certainly a lot of real-world problems have continuous-valued controls27

and we therefore need Q-Learning-based methods to handle this.28

https://arxiv.org/abs/2102.09225
https://arxiv.org/abs/2102.09225
https://arxiv.org/abs/2102.09225

184

Deterministic policy gradient A natural way, although non-rigorous,1

to think about this is to assume that we are given a Q-function qφ(x, u)2

(we will leave the controller for which this is the Q-function vague for3

now) and a dataset D =
{
(xit, u

i
t)
T
t=0

}n
i=1

. We can find a deterministic4

feedback controller that takes controls that lead to good values as5

θ∗ = max
θ

1

n(T + 1)

n∑
i=1

T∑
t=0

qφ(x
i
t, uθ(x

i
t)). (9.10)

Effectively we are fitting a feedback controller that takes controls uθ∗(x)6

that are the maximizers of the Q-function. This is a natural analogue7

of the argmax over controls for discrete/finite control spaces. Again we8

should think of having a deep network that parametrizes the deterministic9

controller and fitting its parameters θ using stochastic gradient descent10

on (9.10)11

θk+1 = θk + η∇θqφ(xω, uθk(xω))
= θk + η (∇uqφ(xω, u)) (∇θuθk(xω))

(9.11)

where ω is the index of the datum in the dataset D. The equality was12

obtained by applying the chain rule. This result is called the “deterministic13

policy gradient” and we should think of it as the limit of the policy gradient14

for a stochastic controller as the stochasticity goes to zero. Also notice15

that the term16

∇uqφ(xω, u)

is the gradient of the output of the Q-function qφ : X × U 7→ R with17

respect to its second input u. Such gradients can also be easily computed18

using backpropagation in PyTorch. It is different than the gradient of the19

output with respect to its weights20

∇φqφ(xω, u).

On-policy deterministic actor-critic Let us now construct an analogue21

of the policy gradient method for the case of a deterministic controller. The22

algorithm would proceed as follows. We initialize weights of a Q-function23

φ0 and weights of the deterministic controller θ0.24

1. At the kth iteration, we collect a dataset from the robot using the25

latest controller uθk . Let this dataset be Dk that consists of tuples26

(x, u, x′, u′).27

2. Fit a Q-function qθk to this dataset by minimizing the temporal28

difference error29

φk+1 = argmin
φ

∑
(x,u,x′,u′)∈Dk

(
qφ(x, u)− r(x, u)− γ

(
1− 1{x′ is terminal}

)
qφ′(x′, u′)

)2
.

(9.12)
Notice an important difference in the expression above, instead of30

using maxu in the target, we are using the control that the current31

185

controller, namely uθk has taken. This is because we want to1

evaluate the controller uθk and simply parameterize the Q-function2

using weights φk+1. More precisely, we hope that we have3

qφk+1(x, uθk(x)) ≈ max
u
qθ
k

(x, u).

3. We can now update the controller using this Q-function:4

θk+1 = θk + η∇θqφk+1(xω, uθk(x
ω)) (9.13)

This algorithm is called “on-policy SARSA” because at each iteration we5

draw fresh data Dk from the environment; this is the direct analogue of6

actor-critic methods that we studied in the previous chapter for deterministic7

controllers.

 SARSA is an old algorithm in RL that is
the tabular version of what we did here. It
stands for state-action-reward-state-action . . .

8

Off-policy deterministic actor-critic methods We can also run the9

above algorithm using data from an exploratory controller. The only10

difference is that the we now do not throw away the data Dk from older11

iterations12

D = D1 ∪ · · · ∪Dk

and therefore have to change (9.12) to be13

φk+1 = argmin
φ

∑
(x,u,x′,u′)∈D

qφ(x, u)− r(x, u)− γ (1− 1{x′ is terminal}
)
qφ′(x′, uθk(x

′)︸ ︷︷ ︸
notice the difference

)

2

.

(9.14)
Effectively, we are fitting the optimal Q-function using the data D but14

since we can no longer take the maximum over controls directly, we plug15

in the controller in the computation of the target. This is natural; we16

think of the controller as the one that maximizes the Q-function when we17

update (9.13). When used with deep networks, this is called the “deep18

deterministic policy gradient” algorithm, it is popular by the name DDPG.19

Chapter 101

Model-based2

Reinforcement Learning3

Reading
1. PILCO: A Model-Based and Data-Efficient Approach to Policy

Search, http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf

2. Embed to Control: A Locally Linear Latent Dynamics Model
for Control from Raw Images https://arxiv.org/abs/1506.07365

3. Deep Reinforcement Learning in a Handful of Trials using Prob-
abilistic Dynamics Models https://arxiv.org/abs/1805.12114

We have seen a large number of methods which use a known model4

of the dynamical system to compute the control inputs, these include5

value/policy iteration, Linear Quadratic Regulator (LQR) and Model6

Predictive Control (MPC). We also saw a number of methods from the7

reinforcement learning literature that can work “model-free”, i.e., having8

access to some data from the environment in lieu of a model. On one hand,9

model-based methods come with some obvious challenges, if we do not10

know the model of the system, the controller will not be optimal and worse,11

it may even be unsafe; think of driving on black ice that is a thin coat of12

ice which develops after repeated freezing and melting of snow on asphalt.13

On the other hand, model-free approaches are spectacularly inefficient:14

policy gradient-based methods require several thousands of trajectories to15

train a controller and even more efficient ones such as off-policy methods16

require prohibitive amounts of data; recall the example of an espresso bar17

in New York City that makes 50 shots a day, it takes more than a month to18

sample more than 1000 trajectories. This has limited the reach of model-19

free RL methods primarily to simulation, although there are examples20

where these policies were run (typically after training) in the real world21

186

http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
https://arxiv.org/abs/1506.07365
https://arxiv.org/abs/1805.12114

187

also; see another example at https://ai.googleblog.com/2020/05/agile-and-1

intelligent-locomotion-via.html. Very rarely you will see RL methods2

being used to train robots directly.3

It makes sense to combine model-based and model-free methods if4

we want to reduce the number of data required from the system to learn a5

controller. Such methods are typically called model-based RL methods.6

10.1 Learning a model of the dynamics7

Imagine that we have a robot with dynamics8

xk+1 = f(xk, uk)

and obtained some data from this robot using an exploratory controller9

ue(· | x). Let us call this dataset D =
{
(xit, u

i
t)
T
t=0

}n
i=1

; it consists of n10

trajectories each of length T timesteps. We can fit a deep network to learn11

the dynamics. This involves parameterizing the unknown dynamics using12

a deep network with weights w13

fw : X × U 7→ R

and minimizing a regression error of the form14

w∗ = argmin
w

1

n(T + 1)

n∑
i=1

T∑
t=0

∥∥xit+1 − fw(xit, uit)
∥∥2
2
. (10.1)

If the residual
∥∥xit+1 − fw(xit, uit)

∥∥2 is small on average over the dataset,15

then we know that given some new control u′ ̸= uit, we can, for instance,16

estimate the new future state x′ = fw(x, u
′). In principle, we can use this17

model now to execute algorithms like iterated LQR to find an optimal18

controller. We could also imagine using this as our own simulator for the19

robot, i.e., instead of drawing new trajectories in model-free RL from the20

actual robot, we use our learned model of the dynamics to obtain more21

data.22

An inverse model of the dynamics We can also learn what is called23

the inverse model of the system that maps the current state xit and the next24

state xit+1 to the control that takes the system from the former to the latter:25

f inv
w : X ×X 7→ U.

The regression error for one sample in this case would be
∥∥uit − fw(xit, xit+1)

∥∥2.26

This is often a more useful model to learn from the data, e.g., if we want to27

use this model in a Rapidly Exploring Random Tree (RRT), we can sample28

states in the configuration space of the robot and have the learned dynamics29

guess the control between two states. Also see the paper on contact-30

invariant optimization (https://homes.cs.washington.edu/ todorov/papers/-31

MordatchSIGGRAPH12.pdf) and a video at https://www.youtube.com/watch?v=mhr_jtQrhVA32

https://ai.googleblog.com/2020/05/agile-and-intelligent-locomotion-via.html
https://ai.googleblog.com/2020/05/agile-and-intelligent-locomotion-via.html
https://ai.googleblog.com/2020/05/agile-and-intelligent-locomotion-via.html
https://homes.cs.washington.edu/~todorov/papers/MordatchSIGGRAPH12.pdf
https://homes.cs.washington.edu/~todorov/papers/MordatchSIGGRAPH12.pdf
https://homes.cs.washington.edu/~todorov/papers/MordatchSIGGRAPH12.pdf
https://www.youtube.com/watch?v=mhr_jtQrhVA

188

for an impressive demonstration of using an inverse model.1

 For a quick primer on planning using a
model, see the notes at
https://ocw.mit.edu/courses/aeronautics-and-
astronautics/16-410-principles-of-autonomy-
and-decision-making-fall-2010/lecture-
notes/MIT16_410F10_lec15.pdf from Emilio
Frazzoli (ETH/MIT).

Models can be wrong at parts of state-space where we have few
data This is really the biggest concern with using models. We have
seen in the chapter on deep learning that if we do not have data from
some part of the state-space, there are few guarantees of the model fw
or f inv

w working well for those states. A planning algorithm does not
however know that the model is wrong for a given state. So the central
question in learning a model is “how to estimate the uncertainty of
the output of the model”, i.e.,

P(xk+1 ̸= fx(xk, uk))

where xk+1 is the true next state of the system and fx(xk, uk) is
our prediction using the model. If we have a good estimate of
such uncertainty, we can safely use the model only at parts of the
state-space where this uncertainty is small.

Sequentially querying the environment for data We can use our
ideas from DAgger and off-policy RL to improve our model iteratively
by collecting more data using the controller that is being learned.
Here is how it would work

1. Draw some data D from the system, fit a dynamics model
f0w(x, u) using (10.1). Learn a feedback controller u0(x) using
any method we know so far (LQR, MPC, RL-based methods)

2. Run the learned controller u0(x) from the real system to collect
more data D1 and add it to the dataset

D ← D ∪D1.

This is a simple mechanism that that ensures that we can collect more
data from the system. If the controller goes to parts of the state-space
that the model is incorrect at, we get samples from such regions and
iteratively improve both the learned dynamics model fkw(x, u) and
the controller uk(x) using this model.

10.2 Some model-based methods2

10.2.1 Bagging multiple models of the dynamics3

Let us look at bagging, which is a method to estimate the uncertainty of4

a learning-based predictor. Bagging is short for bootstrap aggregation,5

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec15.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec15.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec15.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec15.pdf

189

and can be explained using a simple experiment. Suppose we wanted to1

estimate the average height µ of people in the world. We can measure the2

height of N individuals and obtain one estimate of the mean µ. This is of3

course unsatisfying because we know that our answer is unlikely to be the4

mean of the entire population. Bootstrapping computes multiple estimates5

of the mean µk over many subsets of the data N and reports the answer as6

µ := mean(µk) + stddev(µk).

Each subset of the data is created by sampling the original data with7

N samples with replacement. This is among the most influential ideas8

in statistics see “Bootstrap Methods: Another Look at the Jackknife”9

https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-1/Bootstrap-10

Methods-Another-Look-at-the-Jackknife/10.1214/aos/1176344552.full be-11

cause it is a very simple and general procedure to obtain the uncertainty12

of the estimate. Also see a very famous paper “Bagging predictors”13

at https://link.springer.com/article/10.1007/BF00058655 that invented14

random forests based on this idea.15

Training an ensemble We are going to train multiple dynamics models16

fwk(x, u) for k ∈ {1, . . . ,M}, one each for bootstrapped versions of the17

training dataset
{
D1, . . . , DM

}
. Each subset Dk is built by sampling a18

fraction, say 60% of the data uniformly randomly from our training dataset19

D. In other words, the bootstrapped versions of the data are not disjoint20

but their union is likely to be the entire training dataset. We are going to21

use this ensemble as follows. For each pair (x, u), we run all models and22

set23

x̂′ =
1

M

N∑
k=1

fwk(x, u);

i.e., the ensemble predicts the next state of the robot using the mean. The24

important benefit of using an ensemble is that we can also get an estimate25

of the error in these predictions26

error in x̂′ = (δkfwk(x, u))
1/2

.

Different members of the ensemble are training on different datasets27

and make different predictions as to what the next state could be. The28

mis-match between them is an indicator of the error in our dynamics model.29

This need not be an accurate estimate of the error (i.e., the difference30

between the predicted x̂′ and the actual next state x′ of the true dynamics)31

but is often a good proxy to use if we do bootstrapping.32

 Typically, while fitting deep networks
fwk(x, u) using SGD, most RL papers
initialize the training process at different
weights and do not perform any bootstrapping.
The rationale that is usually given is that since
the training process is non-convex, two
models initialized at different locations train
to two different predictors even if they both
work on the same data. Although doing this
leads to some notion of uncertainty, it is not
an entirely correct one and performing
bootstrapping will always give better
estimates.

Bagging is perhaps the most useful idea in machine learning (by far).33

It is always good to keep it in your mind. The winners of most high-profile34

machine learning competitions, e.g., the Netflix Prize35

(https://en.wikipedia.org/wiki/Netflix_Prize) or the ImageNet challenge,36

have been bagged classifiers created by fitting multiple architectures on37

the same dataset.38

https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-1/Bootstrap-Methods-Another-Look-at-the-Jackknife/10.1214/aos/1176344552.full
https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-1/Bootstrap-Methods-Another-Look-at-the-Jackknife/10.1214/aos/1176344552.full
https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-1/Bootstrap-Methods-Another-Look-at-the-Jackknife/10.1214/aos/1176344552.full
https://link.springer.com/article/10.1007/BF00058655
https://en.wikipedia.org/wiki/Netflix_Prize

190

How to use an ensemble for hallucinating new data The proce-
dure is very similar to what we saw above for querying the model.
The key difference is that we now have M models of the dynamics
and can mix-and-match their predictions as we simulate the trajectory.

PILCO A powerful Gaussian Process-based algorithm to incorporate1

uncertainty in the predictions of a learned dynamics model is “PILCO: A2

Model-Based and Data-Efficient Approach to Policy Search”3

http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf. Instead of using boot-4

strapping of an ensemble to estimate the uncertainty, this algorithm5

explicitly models the uncertainty as6

p(xk+1 | xk, uk) = N(xk + E[∆k],Var(∆k))

where ∆k = xk+1 − xk in the training data, using a Gaussian Process.7

See a preliminary but great tutorial on Gaussian Processes at https://distill.pub/2019/visual-8

exploration-gaussian-processes. PILCO is a complicated algorithm to9

implement but you can see the source code by the original authors at10

https://mloss.org/software/view/508. You can also look at the paper ti-11

tled “BayesRace: Learning to race autonomously using prior experience”12

https://arxiv.org/abs/2005.04755 which uses model-based RL in13

10.2.2 Model-based RL in the latent space14

http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
https://distill.pub/2019/visual-exploration-gaussian-processes
https://distill.pub/2019/visual-exploration-gaussian-processes
https://distill.pub/2019/visual-exploration-gaussian-processes
https://mloss.org/software/view/508
https://arxiv.org/abs/2005.04755

Chapter 111

Offline Reinforcement2

Learning3

Reading
1. Offline Reinforcement Learning: Tutorial, Review, and Per-

spectives on Open Problems by Levine et al. (2020)

2. Continuous doubly constrained batch reinforcement learning
by Fakoor et al. (2021)

So far, we have imagined that we have access to a model of a robot, a4

simulator for it, or access to the actual robot that allows us to obtain data5

from the robot. But there are many problems in which we cannot get any6

of these. For example, when Amazon sells merchandise to its customers,7

it is quite difficult for them to model or simulate each customer, or even8

a canonical one. It is possible to do rollouts using actual customer data9

but that would not be wide because an exploratory policy, by the time it10

learns, would lead to huge loses. This would also not be desirable for the11

customers. Amazon also needs reinforcement learning for this problem12

because there is not many other ways to explore what customers like and13

do not like. One could take another example from a very different domain.14

Suppose a hospital is trying to develop a new protocol to handle incoming15

patients. E.g., a patient comes into ER, there is a fixed set of checks that16

are performed quickly on them called as “triage”. The number and kind17

of checks are performed directly affects patient care. If there are too many18

checks, then the patient loses precious time before they are treated. If19

there are too few, then there is a large bottleneck when these patients are20

referred to doctors. It is not easy to model or simulate this problem. It is21

possible to do rollouts to discover a policy but that would not be easy, or22

wise.23

These problems have a few commonalities.24

191

192

• We do not have models or simulators for such systems and that1

is why we need to use ideas from reinforcement learning to build2

controllers for them;3

• There are both existing systems, i.e., there exists a controller that4

is currently deployed. This controller may be very complex, e.g.,5

in Amazon’s case it is the result of many scientists building this6

system over a decade (and thereby even if one could look at it, there7

is no way one would be able to model/simulate it). In the case of the8

hospital, the current triage policy was likely created by the doctors9

over experience and refined by the triage nurses by looking at actual10

cases. Because the system evolved over a long time, a lot of this11

knowledge is not accessible in a codified form.12

Offline reinforcement learning are a suite of techniques that allow
us to learn the optimal value function from data that need not be
coming from an optimal policy—without drawing any new data from
the environment. Note that we do not just want to evaluate an existing
policy, we want to learn the optimal value function, or at the very
least improve upon the current policy.

There are many other problems of this kind: data is plentiful, just that we13

cannot get more.14

Technically speaking, offline learning is a very clean problem in that15

we are close to the supervised learning setting (we do not know the16

true targets). A meaningful theoretical analysis of typical reinforcement17

learning algorithms is difficult because there are a lot of moving parts18

in the problem definition: exploratory controllers, the fact that we are19

adding correlated samples into our dataset as we draw more trajectories,20

function approximation properties of the neural network that does not21

allow Bellman iteration to remain a contraction etc. Some of these hurdles22

are absent in the analysis of offline learning.

A good intuition for offline reinforcement
learning is given by this picture. In imitation
learning, or behavior cloning, we simply want
to learn a policy that mimics the expert (or
recorded data). In offline reinforcement
learning, we can “stitch together” multiple
sub-optimal policies in different parts of the
domain.

23

11.1 Why is offline reinforcement learning dif-24

ficult?25

Suppose that we wanted to use behavior cloning for this problem. After26

all, we could build a state vector x and do behavior cloning with a27

neural network to learn a policy uθ(x) from the existing dataset D =28 {
(xit, u

i
t)t=0,...,T

}n
i=1

. In principle, we can also also learn the value29

function corresponding to this policy, qθφ(x, u) where u is the control30

input. Note that this is not the optimal value function. We will call this31

the behavior cloning solution to offline reinforcement learning.32

We know further that value iteration converges (for tabular MDPs)33

from any initial condition. In lieu of the actual model of the Markov34

Decision Process, we can imagine using the entire dataset D to calculate35

193

Bellman updates for a value function parameterized by a neural network:1

min
φ

∑
i,t

(
qθφ

(k+1)
(xit, u

i
t)− r(xit, u)− γ max

u′∈U
qθφ

(k)
(xit+1, u

′)

)2

.

This approach is unlikely to work very well. Observe the following figure.2

3

We do not really know whether the initial value function qθφ assigns large4

returns to controls that are outside of the ones in the dataset. If it does, then5

these controls will be chosen in the maximization step while calculating6

the target. If there are states where the value function over different7

controls looks like this picture, then their targets will cause the value at8

all other states to grow unbounded during training. This is exactly what9

happens in practice. For example,10

11

 We have discussed how Bellman updates
are a set of consistent constraints on the
optimal value function. This entails that if we
over-estimate the value at a given state, then
the estimated return to come (i.e., the value)
of all other states becomes incorrect.

In offline reinforcement learning, this phenomenon is often called the12

“extrapolation error”. It arises because we do not know a natural way to13

force the network to avoid predicting large values for controls that are not14

a part of the training dataset. It is instructive to ask why off-policy or15

on-policy reinforcement learning does not suffer from extrapolation error.16

Both of these algorithms explicitly draw more data from the simulator. If17

the value function were to over-estimate the value of certain control actions18

at a state, then the controller would take those controls during exploration19

and discover that the value was in fact an over-estimate. Methods that20

draw more data have this natural self-correcting behavior that we cannot21

get in offline learning.22

There is a second problem associated with computing the maximum23

in value iteration. For problems with continuous controls, we do not know24

of computationally effective ways to compute the maximum maxu∈U .25

194

Typical implementations of offline learning fit a controller that maximizes1

the value function2

θ = argmax
1

nT

∑
i,t

qθφ(x
i
t, uθ(x))

to make it easy to calculate this maximum. But this forces us to use3

another network (and it is not a given that the parameterized controller4

can calculate the correct maximum).

 One can use a linear value function, e.g.,
qθφ(x, u) = ⟨[1, x, u], φ[1, x, u]⟩ or any other
set of basis functions. But this is not enough
to resolve the issue in theory. Bellman
updates are not a contraction when the
TD-error is projected onto a set of bases. In
practice, this approach works reasonably well.

5

11.2 Regularized Bellman iteration6

There are two broad class of techniques that are believed to give reasonable7

results for offline learning. These are both quite new and ad hoc and8

effective offline learning is essentially an open problem today. To wit,9

current offline learning methods not only fail to learn optimal value10

functions or policies from sub-optimal data, but they often do any better11

than behavior cloning.12

11.2.1 Changing the fixed point of the Bellman iteration13

to be more conservative14

Since extrapolation error is fundamentally caused by the value function15

taking large values, it is reasonable strategy to modify the Bellman updates16

to regularize the value function in some way. A basic version would look17

like a coupled system of updates18

φ∗ = min
φ

1

nT

∑
i,t

(
qθφ

(k+1)
(xit, u

i
t)− r(xit, u)− γqθφ

(k)
(xit+1, uθ(x

i
t+1))

)2
− λ Ω(qθp)

θ∗ = min
θ

1

nT

∑
i,t

qθφ(x
i
t, uθ(x

i
t)).

(11.1)
We will use the regularizer19

Ω =
1

nT

∑
i,t

(
qθφ(x

i
t, uθ(x

i
t))− qθφ(xit, uit)

)2
+

The notation (·)+ denotes rectification, i.e., (x)+ = x if x > 0 and zero20

otherwise. Notice that second term in the objective for fitting the value21

function forces the value of the control uθ(xit) to be smaller than the22

value of the control uit taken at the same state in the dataset. This is a23

conservative choice. While it does not fix the issue of extrapolation error,24

it forces the value network to predict smaller values and prevents it from25

blowing up.26

195

A second, similar, strategy looks like1

Ω =
1

nT

∑
i,t

max
u′∼uθ(xit)

(
qθφ(x

i
t, u

′)− qθφ(xit, uit)
)2
+

where the maximum of actions is computed over a large number of samples.2

A yet another strategy looks like3

Ω =
1

nT

∑
i,t

log

∫
u

exp
(
qθφ(x

i
t, u)

)
.

These strategies have been found to be somewhat useful in the sense that4

they prevent the value function from taking large values. But it is also5

clear that the solution of the problems is not the optimal value function.6

 Practically speaking, it is reasonable to
expect that even if we do not find the optimal
value function, if we can obtain a better policy
than the existing policy that is running on the
system, then offline reinforcement learning is
a viable approach.

11.2.2 Estimating the uncertainty of the value function7

It is reasonable to ask the question whether initializing the value function8

Chapter 121

Meta-Learning2

Reading
1. Learning To Learn: Introduction (1996),

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.3140

2. Prototypical Networks for Few-shot Learning
http://papers.nips.cc/paper/6996-prototypical-networks-
for-few-shot-learning

3. Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks https://arxiv.org/abs/1703.03400

4. A Baseline for Few-Shot Image Classification
https://arxiv.org/abs/1909.02729

5. Meta-Q-Learning https://arxiv.org/abs/1910.00125

The human visual system is proof that we do not need lots of images3

to learn to identify objects or lots of experiences to learn about concepts.4

Consider the mushrooms shown in the image below.5

6

The one on the left is called Muscaria and you’d be able to identify7

the bright spots on this mushroom very easily after looking at one image.8

The differences between an edible one in the center (Russala) and the one9

on the right (Phalloides) may sometimes be subtle but a few samples from10

each of them are enough for humans to learn this important distinction.11

196

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.3140
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning
http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning
https://arxiv.org/abs/1703.03400
https://arxiv.org/abs/1909.02729
https://arxiv.org/abs/1910.00125

197

There are also more everyday examples of this phenomenon. You1

touched a hot stove once as a child and have forever learnt not to do it.2

You learnt to ride a bike as a child and only need a few minutes on a3

completely new bike to be able to ride it these days. At the same time, you4

could start learning to juggle today and will be able to juggle 3 objects5

with a couple of days of practice.6

The hallmark of human perception and control is the ability to gen-7

eralize. This generalization comes in two forms. The first is the ability8

to do a task better if you see more samples from the same task; this is9

what machine learning calls generalization. The second is the ability to10

mix-and-match concepts from previously seen tasks to do well on new11

tasks; doing well means obtaining a lower error/higher reward as well12

as learning the new task quickly with few days. This second kind is the13

subject of what is called “learning to learn” or meta-learning.14

Standard machine learning⇒ generalization across samples15

Meta-Learning⇒ generalization across tasks16

What is a task? If we are going to formalize meta-learning, we
better define what a task is. This is harder than it sounds. Say we
are doing image classification, classifying cats vs. dogs could be
considered Task 1; Task 2 could be classifying apples vs. oranges. It
is reasonable to expect that learning low-level features such as texture,
colors, shapes etc. while learning Task 1 could help us to do well on
Task 2.

This is not always the case, two tasks can also fight each other. Say,17

you design a system to classify ethnicities of people using two kinds18

of features. Task 1 uses the shape of the nose to classify Caucasians19

(long nose) vs. Africans (wide nose). Task 2 uses the kind of hair to20

classify Caucasians (straight hair) vs. Africans (curly hair). An image of21

a Caucasian person with curly hair clearly results in two tasks fighting22

each other.23

The difficulty in meta-learning begins with defining what a task is.24

While understanding what a task is may seem cumbersome but doable25

for image classification, it is even harder for robotics systems.26

27

We can think of two different kinds of tasks.28

198

1. The first, on the left, is picking up different objects like a soccer1

ball, a cup of coffee, a bottle of water etc. using a robot manipulator.2

We may wish to learn how to pick up a soccer ball quickly given3

data about how to pick up the bottle.4

2. The second kind of tasks is shown on the right. You can imagine5

that after building/training a model for the robot in your lab you6

want to install it in a factory. The factory robot might have 6 degrees-7

of-freedom whereas the one in your lab had only 5; your policy8

better adapt to this slightly different state-space. An autonomous9

car typically has about 10 cameras and 5 LIDARs, any learning10

system on the car better adapt itself to handle the situation when11

one of these sensors breaks down. The gears on a robot manipulator12

will degrade over the course of its life, our policies should adapt to13

this degrading robot.14

Almost all the current meta-learning/meta-reinforcement learning15

literature focuses on developing methods to do the first set of tasks. The16

second suite of tasks are however more important in practice. In the17

remainder of this chapter, we will discuss two canonical algorithms to18

tackle these two kinds of tasks.19

? Meta-learning vs. multi-task learning
We have talked about adaptation as the way to
handle new tasks in the previous remark.
Consider the following situation: in standard
machine learning, we know that larger the
size of the training data we collect better the
performance on the test data; a large number
of images help capture lots of variability in
the data, e.g., dogs of different shapes, sizes
and colors. You can imagine then that in
order to do well on lots of different tasks, i.e.,
meta-learn, we should simply collect data
from lots of different tasks. Can you think as
to why mere multi-task learning may not
work well for meta-learning?

12.1 Problem formulation for image classifica-20

tion21

The image classification formulation thinks of each class/category as a22

“task”.23

Consider a supervised learning problem with a datasetD =
{
(xi, yi)

}
i=1,...,N

.24

The labels yi ∈ {1, . . . , C} for some large K and there are N
C samples in25

the dataset for each class. Think of this as a large dataset of cars, cats, dogs,26

airplanes etc. all objects that are very frequent in nature and for which27

we can get lots of images. This training set is called the meta-training set28

with C “base tasks”.29

Say, we were simply interested in obtaining a machine learning model30

to classify this data. Let us denote the parameters of this model by w. If31

this model predicts the probability of the input x belonging to each of32

these known classes we can think of maximizing the log-likelihood of the33

data under the model (or minimizing the cross-entropy loss)34

ŵ = argmax
w

1

N

N∑
i=1

log pw(y
i | xi). (12.1)

This is the standard multi-class image classification setup. Since we like35

to think of one task as one category, this is also the multi-task learning36

setup. The model37

pŵ(· | x)

199

after fitting on the training data will be good at classifying some new input1

image x as to whether it belongs to one of theC training classes. Note that2

we have written the model as providing the probability distribution pŵ(· |3

x) as the output, one real-valued scalar per candidate class {1, . . . , C}.4

? Say, we are interested in classifying images
from classes that are different than those in
the training set. The model has only C
outputs, effectively the universe is partitioned
into C categories as far as the model is
concerned and it does not know about any
other classes. How should one formalize the
problem of meta-learning then?

12.1.1 Fine-tuning5

Let us now consider the following setup. In addition to our original dataset6

of the base tasks, we are given a “few-shot dataset” that has c new classes7

and s labeled samples per class, a total of n = cs new samples8

D′ =
{
(xi, yi)

}
i=N+1,...,N+n

; yi ∈ {C + 1, . . . , C + c} .

The words “few-shot” simply mean that s is small, in particular we are9

given much fewer images per class than the meta-training dataset,10

n

c
= s≪ N

C
.

This models the situation where the model is forced to classify images11

from rare classes, e.g., the three kinds of strawberries grown on a farm in12

California after being trained on data of cars/cats/dogs/planes etc.13

We would like to adapt the parameters ŵ using this labeled few-shot14

data. Here is one solution, we simply train the model again on the new15

data. This looks like solving another optimization problem of the form16

w∗ = argmin
w
− 1

n

N+n∑
i=N+1

log pw(y
i | xi) + λ

2
∥w − ŵ∥22. (12.2)

The new parameters w can potentially do well on the new classes even if17

the shot s is small because training is initialized using the parameters ŵ.18

We write down this initialization using the second term19

λ

2
∥w − ŵ∥22

which keeps the parameters being optimizedw closed to their initialization20

using a quadratic spring-force controlled by the parameter λ. We can21

expect the new model pw∗ to perform well on the new classes if the22

initialization ŵ was good, i.e., if the new tasks and the base tasks were23

close to each other. This method is called fine-tuning, it is the easiest trick24

to implement to handle new classes.25

? Think of a multi-layer neural network ŵ
that has K outputs. The new network should
now produce m outputs, how should we
modify this network?

12.1.2 Prototypical networks26

The cross-entropy objective used in (12.1) to train the model pŵ simply27

maximizes the log-likelihood of the labels given the data. It is reasonable28

to think that since the base classes are not going to show up as the few-shot29

classes, we should not be fitting to this objective.30

200

The idea behind a prototypical loss is to train the model to be a
good discriminator among different classes.

Let us imagine the features of the model, e.g., the activations of the1

last layer in the neural network,2

z = φw(x)

for a particular image x. Note that the features z depend on the parameters3

w. During standard cross-entropy training, there is a linear layer on top of4

these features and our prediction probability for class y is5

pw(y | x) =
ew

⊤
y z∑

y′ e
w⊤
y′z

where wy ∈ Rdim(z). This is the softmax operation and the vectors w are6

the weights of the last layer of the network; when we wrote (12.1) we7

implicitly folded those parameters into the notation w.8

Prototypical networks train the model to be a discriminator as follows.9

1. Each mini-batch during training time consists of a few-shot task10

created out of the meta-training set by sub-sampling.11

Depisode = Dsupport ∪Dquery

=
{
(xi, yi); yi ∈ {1, . . . , C}

}
i∈{1,...,Cs} ;

∪
{
(xi, yi); yi ∈ {1, . . . , C}

}
i∈{1,...,Cq} .

with |Dsupport| = Cs and |Dquery| = Cq. This is called an “episode”12

by researchers in this literature. Each episode comes with some13

more data from the same classes called the “query-shot” in this14

literature. The query-shot is akin to the data from the new classes15

that the model is forced to predict during adaptation time. Let us16

have q query-shot per class in each episode.17

2. We know the labels of the N = Cs labeled data and can compute18

the prototypes, which are simply centroids of the features,19

µy =
1

s

∑
(xi,yi)∈Depisode

1{yi=y} φw(x
i).

3. You can now impose a clustering loss to force the query samples to20

be labeled correctly, i.e., maximize21

pw,µy (y | x) =
e−∥φw(x)−µy∥2∑
y′ e

−∥φw(x)−µy′∥2

where y = yi and x = xi for each of the samples (xi, yi) in the22

query-set of the episode.23

201

1

4. The objective maximized at each mini-batch is2

1

Cq

∑
(x,y)∈Dquery)

log pw,µyi (y
i | xi).

Note that the gradient of the above expression is both on the weights3

w of the top layer and the weights w of the lower layers.4

5. We can now use the trained model for classifying new classes by5

simply feeding the new images through the network, computing the6

prototypes using the few labeled data and computing the clustering7

loss on the unlabeled query data at test time to see which prototype8

the feature of a particular query datum is closest to.9

Discussion Prototypical loss falls into the general category of metric-10

based approaches to few-shot learning. We make a few remarks next.11

1. It is a very natural setting for learning representations of the data for12

classification that can be transferred easily. If the model is going to13

be used for new classes, it seems reasonable that the prototypes of14

the new classes should be far away from each other and the zs of the15

query samples should be clustered around their correct prototypes.16

2. Prototypical networks perform well if you can estimate the proto-17

types accurately. In practice, this requires that you have about 1018

labeled data per new class.19

3. We used the ℓ2 metric ∥·∥2 in the z-space to compute the affinities20

of the query samples. This may not be a reasonable metric to use for21

some problems, so a large number of approaches try to devise/learn22

new metrics.23

4. A key point of prototypical networks is that there is no gradient-based24

learning going on upon the new categories; we simply compute25

the prototypes and the affinities and use those to classify the new26

samples.27

12.1.3 Model-agnostic meta-learning (MAML)28

We will next look at a simple algorithm for gradient-based adaptation of29

the model on the new categories. The key idea is to update the model30

202

using the same objective in (12.1) but avoid overfitting the model on the1

meta-training data so that the model can be quickly adapted using the2

few-shot data via gradient-updates.3

Here we consider an episode Depisode = Dsupport and Dquery = ∅, i.e.,4

there are no query shots. Let us define5

ℓ(w;Dsupport) =
1

Cs

∑
(xi,yi)∈Dsupport

log pw(y
i | xi);

this is the same objective as that in (12.1) so if we maximized the objective6

ℓ(w; Dsupport)

we will perform standard cross-entropy training. At each mini-batch/episode,7

the MAML algorithm instead maximizes the objective8

ℓmaml(w; D
support) = ℓ

(
w + α∇ℓ(w;Dsupport); Dsupport) . (12.3)

In other words, MAML uses a “look ahead” gradient: the gradient of9

ℓ(w; Dsupport) is not in the steepest ascent direction of ℓ(w;Dsupport)10

but in the steepest ascent direction after one update of the parameters11

w + α∇ℓ(w; Dsupport).12

Adaptation on the few-shot data One we have a model trained using13

MAML14

ŵ = argmax
w

ℓmaml(w; D)

we can update it on new data simply by maximizing the standard cross-15

entropy objective again, i.e.,16

w∗ = argmax
w

1

n

N+n∑
i=N+1

log pw(y
i | xi)− 1

2λ
∥w − ŵ∥22. (12.4)

The adaptation phase is exactly the same as standard cross-entropy training.17

? How does look-ahead in MAML help?

MAML as an approximation of a second order optimization method18

MAML is not specific to few-shot learning. We can use the MAML19

objective for any other standard supervised learning problem, is this going20

to help? Indeed it will, gradient descent/stochastic gradient descent are21

myopic algorithms because they update parameters only in the direction22

of the steepest gradient, you can potentially do better by computing the23

lookahead gradient. The caveat is that is computationally difficult to24

compute the lookahead gradient. Observe that25

ℓmaml(w) = ℓ(w + α∇ℓ(w))

≈ ℓ(w) + α (∇ℓ(w))⊤∇ℓ(w)
⇒ ∇ℓmaml(w) = ∇ℓ(w) + 2α∇2ℓ(w)∇ℓ(w).

203

So MAML is secretly a second-order optimization method, computing the1

gradient of the MAML objective requires having access to the Hessian of2

the objective ∇2ℓ(w). For large models such as neural networks this is3

very expensive to compute.4

Remark 12.1. Let us consider a meta-training set with two mini-batches/episodes/tasks,5

D = D1 ∪D2. The MAML algorithm uses the gradient6

∇ℓmaml(w;D) = ∇ 1

2

2∑
i=1

ℓmaml(w;D
i)

=
1

2

2∑
i=1

∇ℓ(w;Di) + 2α∇2ℓ(w;Di)∇ℓ(w;Di)

Observe now that if there exist parameters w that have∇ℓ(w;Di) for all7

the episodes Di then the MAML gradient is also zero. In other words, if8

there exist parameters w that work well for all tasks then MAML may find9

such parameters. However, in this case, the simple objective10

ℓmulti-task(w;D) =
1

2

2∑
i=1

ℓ(w;Di) (12.5)

that sums up the losses of all the mini-batches/episodes/tasks will also11

find these parameters. This objective known as the multi-task learning12

objective is much simpler than MAML’s because it requires only the13

first-order gradient.14

? What happens if the two tasks are different
(as is likely to be the case) in which case there
don’t exist parameters that work well for all
the tasks?

12.2 Problem formulation for meta-RL15

One mathematical formulation of meta-RL is as follows. Let k denote a16

task and there is an underlying (unknown) dynamics for this task given by17

xkt+1 = fk(xkt , u
k
t , ξt)

We will assume that all the tasks have a shared state-space xkt ∈ X and a18

shared control-space ukt ∈ U . The reward function of each task is different19

rk(x, u) but we are maximizing the same infinite-horizon discounted20

objective for each task. The q-function is then defined to be21

qk,θ
k

(x, u) = E
ξ(·)

[∞∑
t=0

γtrk(xt, ut) | x0 = x, u0 = u, ut = uθk(xt)

]
.

where uθk(xt) is a deterministic controller for task k. Given all these22

meta-training tasks, our objective is to learn a controller that can solve a23

new task k /∈ {1, . . . ,K} upon being presented a few trajectories from24

the new task. Think of you learning to pick up different objects during25

training time and then adapting to picking up a new object not in the26

training set.27

204

Let us consider the off-policy Q-learning setting and learn separate1

controllers for all the tasks for now. As usual, we want the q-function2

to satisfy the Bellman equation, i.e., if we are using parameters φk to3

approximate the q-function, we want to find parameters φk such that4

argmin
φk

E
(x,u,x′)∈Dk

[(
qk,θ

k

φk
(x, u)− rk(x, u)− γqk,θ

k

φk
(x′, uθk(x

′))
)2]

(12.6)
where the dataset Dk is created using some exploratory policy for the task5

k. The controllers uθk are trained to behave like the greedy policy for the6

particular q-function qk,θ
k

φk
7

argmax
θk

E
(x,u)∈Dk

[
qk,θ

k

φk
(x, uθk(x))

]
. (12.7)

The above development is standard off-policy Q-learning and we8

have seen it in earlier lectures. The different controllers uθk do not9

learn anything from each other, they are trained independently on their10

own datasets. We can now construct a multi-task learning objective for11

meta-RL, in this we will learn a single q-function and a single controller12

for all tasks. We modify (12.6) and (12.7) to simply work on all the13

datasets together14

argmin
φ

E
(x,u,x′)∈D1∪D2...

[(
qθφ(x, u)− rk(x, u)− γ qwφ (x′, uw(x′))

)2]
argmax

w
E

(x,u)∈D1∪D2...

[
qwφ (x, uw(x))

]
(12.8)

This is the multi-task learning objective for RL. This is unlikely to work15

well because depending upon the task, the controllers for the different16

tasks will conflict with each other, it is unlikely that there is a single set17

of parameters for the controller and the q-function that works well for all18

tasks.19

? Imagine a planning task with multiple
goals. The optimal trajectory that goes to one
goal location will bifurcate from the optimal
trajectory that goes to some other goal. We
will never be able to learn a controller that
goes to both goals using one neural network.
How to fix this? You can use MAML
certainly to under-fit the controller and the
q-function to all the tasks and then adapt them
using some data from the new task using
gradient updates.12.2.1 A context variable20

Reinforcement Learning offers a very interesting way to solve the few-21

shot/meta-learning problem. We can append the state-space to include22

a context variable that is a representation of the particular task. Let us23

construct features for a trajectory using a set of basis functions24

{ϕ1(x, u, r), ϕ2(x, u, r), . . . , ϕm(x, u, r)}

We will now construct a variableµk(τ) for a trajectory τ0:t = (x0, u0, . . . , xt, ut, . . .)25

from task k as26

µ(τ0:t) =

t∑
s=0

m∑
i=1

γt αi ϕi(x
k
s , u

k
s , r

k(xks , u
k
s)).

205

We will call this variable a “context” because we can use it to guess which1

task a particular trajectory is coming from. It is important to note that2

the mixing coefficients αi are shared across all the tasks. We would3

like to think of this feature vector µ(τ) as a kind of indicator of whether a4

trajectory τ belongs to the task k or not. We now learn a q-function and5

controller that also depend on µ(τ)6

qθφ(xt, ut, µ(τ0:t))

uθ(xt, µ(τ0:t)).
(12.9)

Including a context variable like µ(τ) allows the q-function to detect the7

particular task that it is being executed for using the past t time-steps of8

the trajectory τ0:t. This is similar to learning independent q-functions9

qk,θ
k

φk
and controllers uθk but there is parameter sharing going on in (12.9).10

We will still solve the multi-task learning problem like (12.8) but also11

optimize the parameters αis that combine the basis functions.12

argmin
φ,αi

K∑
i=1

E
(x,u,x′)∈Dk

[(
qθφ(x, u, µ(τ))− rk(x, u)− γ qθφ(x′, uθ(x′, µ(τ)))

)2]
argmax
θ,αi

K∑
i=1

E
(x,u)∈Dk

[
qθφ(x, uθ(x, µ(τ)), µ(τ))

]
.

(12.10)
The parameters αi of the context join the q-functions and the controllers13

of the different tasks together but also allow the controller the freedom to14

take different controls depending on which task it is being trained for.15

Adapting the meta-learnt controller to a new task Suppose we16

trained on K tasks using the above setup and have the parameters17

θ̂, φ̂, {α̂i}i=1,...,m in our hands. How should we adapt to a new task? This18

is easy, we can run an exploration policy on the new task (the current policy19

uθ will work just fine if the control space U is the same) to collect some20

data and update our off-policy Q-learning parameters θ̂, φ̂ on this data21

using (12.6) and (12.7) while keeping the results close to our meta-trained22

parameters using penalties like23

1

2λ
∥w − ŵ∥22 and

1

2λ
∥φ− φ̂∥22.

We don’t update the context parameters αis during such adaptation.24

? Does adaptation always improve
performance on the new task?

12.2.2 Discussion25

This brings an end to the chapter on meta-learning and Module 4. We26

focused on adapting learning-based models for robotics to new tasks. This27

adaptation can take the form of learning a reward (inverse RL), learning28

the dynamics (model-based RL) or learning to adapt (meta-learning).29

Adaptation to new data/tasks with few samples is a very pertinent problem30

because we want learning-based methods to generalize a variety of different31

206

tasks than the ones they have been trained for. Such adaptation also comes1

with certain caveats, adaptation may not always improve the performance2

on new tasks; understanding when one can/cannot adapt forms the bulk of3

the research on meta-learning.4

Bibliography1

Censi, A. (2016). A class of co-design problems with cyclic constraints and their solution. IEEE Robotics and2

Automation Letters, 2(1):96–103.3

Fakoor, R., Mueller, J. W., Asadi, K., Chaudhari, P., and Smola, A. J. (2021). Continuous doubly constrained4

batch reinforcement learning. Advances in Neural Information Processing Systems, 34:11260–11273.5

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: Tutorial, review, and6

perspectives on open problems. arXiv preprint arXiv:2005.01643.7

Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the Turing Test, pages 23–65.8

Springer.9

207

	What is Robotics?
	Perception-Learning-Control
	Goals of this course
	Some of my favorite robots

	Introduction to State Estimation
	A review of probability
	Random variables

	Using Bayes rule for combining evidence
	Coherence of Bayes rule

	Markov Chains
	Hidden Markov Models (HMMs)
	The forward algorithm
	The backward algorithm
	Bayes filter
	Smoothing
	Prediction
	Decoding: Viterbi's Algorithm
	Shortest path on a Trellis graph

	Learning an HMM from observations

	Kalman Filter and its variants
	Background
	Linear state estimation
	One-dimensional Gaussian random variables
	General case
	Incorporating Gaussian observations of a state
	An example

	Background on linear and nonlinear dynamical systems
	Linear systems
	Linear Time-Invariant (LTI) systems
	Nonlinear systems

	Markov Decision Processes (MDPs)
	Back to Hidden Markov Models

	Kalman Filter (KF)
	Step 0: Observing that the state estimate at any timestep should be a Gaussian
	Step 1: Propagating the dynamics by one timestep
	Step 2: Incorporating the observation
	Discussion

	Extended-Kalman Filter (EKF)
	Propagation of statistics through a nonlinear transformation
	Extended Kalman Filter

	Unscented Kalman Filter (UKF)
	Unscented Transform
	The UT with tuning parameters
	Unscented Kalman Filter (UKF)
	UKF vs. EKF

	Particle Filters (PFs)
	Importance sampling
	Resampling particles to make the weights equal
	Particle filtering: the algorithm
	Example: Localization using particle filter
	Theoretical insight into particle filtering

	Discussion

	Rigid-body transforms and mapping
	Rigid-Body Transformations
	3D transformations
	Rodrigues' formula: an alternate view of rotations

	Quaternions
	Occupancy Grids
	Estimating the map from the data
	Sensor models
	Back to sensor modeling

	3D occupancy grids
	Local Map
	Discussion

	Dynamic Programming
	Formulating the optimal control problem
	Dijkstra's algorithm
	Dijkstra's algorithm in the backwards direction

	Principle of Dynamic Programming
	Q-factor

	Stochastic dynamic programming: Value Iteration
	Infinite-horizon problems
	Dynamic programming for infinite-horizon problems
	An example
	Some theoretical results on value iteration

	Stochastic dynamic programming: Policy Iteration
	An example

	Linear Quadratic Regulator (LQR)
	Discrete-time LQR
	Solution of the discrete-time LQR problem

	Hamilton-Jacobi-Bellman equation
	Infinite-horizon HJB
	Solving the HJB equation
	Continuous-time LQR

	Stochastic LQR
	Linear Quadratic Gaussian (LQG)
	(Optional material) The duality between the Kalman Filter and LQR

	Iterative LQR (iLQR)
	Iterative LQR (iLQR)

	Imitation Learning
	A crash course in supervised learning
	Fitting a machine learning model
	Deep Neural Networks

	Behavior Cloning
	Behavior cloning with a stochastic controller
	KL-divergence form of Behavior Cloning
	Some remarks on Behavior Cloning

	DAgger: Dataset Aggregation

	Policy Gradient Methods
	Standard problem setup in RL
	Cross-Entropy Method (CEM)
	Some remarks on sample complexity of simulation-based methods

	The Policy Gradient
	Reducing the variance of the policy gradient

	An alternative expression for the policy gradient
	Implementing the new expression

	Actor-Critic methods
	Advantage function

	Discussion

	Q-Learning
	Tabular Q-Learning
	How to perform exploration in Q-Learning

	Function approximation (Deep Q Networks)
	Embellishments to Q-Learning

	Q-Learning for continuous control spaces

	Model-based Reinforcement Learning
	Learning a model of the dynamics
	Some model-based methods
	Bagging multiple models of the dynamics
	Model-based RL in the latent space

	Offline Reinforcement Learning
	Why is offline reinforcement learning difficult?
	Regularized Bellman iteration
	Changing the fixed point of the Bellman iteration to be more conservative
	Estimating the uncertainty of the value function

	Meta-Learning
	Problem formulation for image classification
	Fine-tuning
	Prototypical networks
	Model-agnostic meta-learning (MAML)

	Problem formulation for meta-RL
	A context variable
	Discussion

	Bibliography

