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Abstract

Perception is a crucial aspect of the operation of autonomous vehicles. With a multitude of
different sources of sensor data, it becomes important to have algorithms which can process
the available information quickly and provide a timely solution. Also, an inherently contin-
uous world is sensed by robot sensors and converted into discrete packets of information.
Algorithms that can take advantage of this setup, i.e., which have a sound founding in
continuous time formulations but which can effectively discretize the available information
in an incremental manner according to different requirements can potentially outperform
conventional perception frameworks. Inspired from recent results in motion planning algo-
rithms, this thesis aims to address these two aspects of the problem of robot perception,
through novel incremental and anytime algorithms.

The first part of the thesis deals with algorithms for different estimation problems,
such as filtering, smoothing, and trajectory decoding. They share the basic idea that a
general continuous-time system can be approximated by a sequence of discrete Markov
chains that converge in a suitable sense to the original continuous time stochastic system.
This discretization is obtained through intuitive rules motivated by physics and is very
easy to implement in practice. Incremental algorithms for the above problems can then be
formulated on these discrete systems whose solutions converge to the solution of the original
problem.

A similar construction is used to explore control of partially observable processes in the
latter part of the thesis. A general continuous time control problem in this case is approxi-
mates by a sequence of discrete partially observable Markov decision processes (POMDPs),
in such a way that the trajectories of the POMDPs—i.e., the trajectories of beliefs—converge
to the trajectories of the original continuous problem. Modern point-based solvers are used
to approximate control policies for each of these discrete problems and it is shown that
these control policies converge to the optimal control policy of the original problem in an
appropriate space. This approach is promising because instead of solving a large POMDP
problem from scratch, which is PSPACE-hard, approximate solutions of smaller problems
can be used to guide the search for the optimal control policy.

Thesis Supervisor: Emilio Frazzoli
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Moreover a mathematical problem should be difficult in order to entice
us, yet not completely inaccessible, lest it mock our efforts. It should be
to us a guidepost on the mazy path to hidden truths, and ultimately a
reminder of our pleasure in the successful solution . . ..

David Hilbert, Paris International Congress, 1900

Autonomous vehicles have become popular due to the wide scope for their applications.
From avoiding traffic jams in busy cities to helping the disabled and the elderly on their
daily commute, they promise to revolutionize transportation. The success of recent DARPA
challenges have shown that tasks like autonomous driving in unknown terrain or performing
complicated routing tasks while operating under normal traffic rules is indeed possible.

Let us look at MIT’s DARPA Urban Challenge vehicle [LHT+08] in greater detail to
motivate the problem. It travelled completely autonomously for over six hours in an urban
environment to perform specific tasks like navigation through a set of checkpoints. In order
to do so, these vehicles rely on an intricate system of sensors to give them information about
the real world. Vast arrays of sensors such as lidars (laser-sensors), radars and cameras
together provide information in the order of several megabytes per second. An example is
shown in Figure 1-2. There are a number of problems that an autonomous vehicle has to
solve using this data. The first can be called “perception” and it involves processing all
this data from different sources like laser points, camera images, sonar readings to create a
unified usable map of the surroundings. The second problem—let us call it “planning”—
involves executing certain specified tasks in this world created by perception algorithms.
The crucial aspect of this program is processing this enormous amount of information
efficiently to quickly provide information about the location and orientation of the vehicle,
location, speed and kind of obstacles near the vehicle, etc., which the planner typically uses.

As will be discussed in Section 1.1.1, the motion planning problem has found a satis-
factory solution. This thesis aims to provide a similar solution for the perception problem.
In particular, it proposes algorithms for state estimation and control of partially observed
systems that have two major flavors.

11



12 CHAPTER 1. INTRODUCTION

• Generality : Sensors interact with the outside world that is inherently continuous.
Data collection and analysis is however a discrete process. By formulating the original
problem in continuous time, we ensure a faithful representation of the continuous
information process. The algorithms proposed in this thesis provide a natural way of
discretizing this while keeping the formulation as general as possible.

• Anytime computation : Algorithms that do not need to be tuned to operate on sys-
tems with varying parameters or computational capability are desirable. The notion
of anytime computation in this context applies to algorithms which provide the an-
swer (viz. an estimate or a control policy) quickly and improve upon the solution if
given more computational resources or more information. In addition to this, the im-
proved solution should be obtained only after an incremental effort i.e., incorporating
a new set of observations or improving the control policy should utilize the previous
solution, require a little amount of additional computation, instead of solving again
from scratch.

(a) DARPA Urban Challenge [LHT+08] (b) Voice-controlled Forklift [TWA+10]

Figure 1-1: Autonomous vehicles present significant challenges to perception algorithms

1.1 Background

1.1.1 Motion Planning

In a different context, the curse of dimensionality has been shown to be inevitable in robot
motion planning problems, i.e., the problem of finding an optimal dynamically feasible tra-
jectory around obstacles so as to reach a goal region. Even setting aside optimality, it was
shown early on that finding a feasible solution to this problem is PSPACE-hard [Rei79],
which strongly suggests that algorithms that return a feasible solution if one exists and
return failure otherwise are doomed to suffer from excessive computational costs. Yet, al-
gorithms with probabilistic guarantees such as Probabilistic RoadMaps (PRM) [KL98] or
the Rapidly-exploring Random Tree (RRT) [LKJ01] have been shown to work quite effec-
tively in returning a feasible solution in high-dimensional configuration spaces by effectively



1.1. BACKGROUND 13

 Basic Driving 
• Safe driving by default for various driving conditions
• Behaviors naturally emerge from the planning system:
–Slow down near turns, yield and merge into traffic
–Passing other vehicles, 3 point turn to change direction, park, etc.

Figure 1-2: A picture showing sensor data gathered on MIT’s DUC vehicle. Concentric circles
are data from one 3D laser sensor (velodyne) giving more than 1 million points per second. With 5
cameras, 12 lidars, 16 radars and a velodyne, efficiently processing such large amounts of information
becomes important.

discretizing the said space based on random sampling. In [KF11], two novel motion plan-
ning algorithms were proposed under the name of PRM∗ and RRT∗, which are shown to
be both computationally efficient in the sense that they return a solution quickly and con-
verge to the optimal solution asymptotically if given more computation time. In particular,
the RRT∗ algorithm has been successfully applied to many challenging motion planning
problems involving high-dimensional configuration spaces [PKW+11], complex dynamical
systems [JKF11]. RRT∗ uses a classic result in random geometric graphs which says that if
a randomly sampled set of points S has size n, connecting every point z ∈ S to its O(log n)
neighbors ensures that the resulting graph has optimal shortest paths in the limit as the
number of samples goes to infinity. This result is sharp in the sense that fewer connections
than this is almost surely sub-optimal.

This argument is at the heart of all the algorithms proposed in this thesis. It provides
an effective way of discretizing the state-space doing just enough work to ensure optimality.
Algorithms for construction of Markov chain approximations in this thesis use this idea
to discretize both the state-space and the time-axis at appropriate rates, thereby ensuring
optimality of estimates while at the same time keeping the size of the graph to a minimum.

1.1.2 State Estimation

First originating in the works of Wiener and Kolmogorov, the filtering problem has a vast
body of literature dedicated to it. Filters belonging to the Kalman filter family like the
KF, EKF, UKF etc. are predominantly used in control systems and signal processing ap-
plications. On the other hand, newer problems such as localization of mobile robots in
unknown environments have been tackled with Monte Carlo algorithms known as particle
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(b) Super-critical

Figure 1-3: Isolated regions in Figure 1-3a result from less than O(log n) connections leading to
sub-optimality. On the other hand, with the graph in Figure 1-3b is fully connected and leads to an
optimal trajectory with O(log n) connections.

filters. The Kalman filter is an optimal filter for linear systems with additive Gaussian
noise in the sense that it provides the estimate which minimizes the mean square error. It
turns out that it is possible to get a finite dimensional optimal filter only in the case of
linear systems with Gaussian noise corrupting the observations. The general filtering prob-
lem, e.g., for continuous time nonlinear systems or non-Gaussian noise, is difficult because
even parametrizing the solution is non-trivial. The Kalman filter has to propagate a finite
state vector and a covariance matrix to keep track of the optimal estimate whereas particle
filters have to propagate a large set of particles with their probabilities that represent the
whole conditional distribution of the state variable based on observations till then. While
the former family of filters is applicable to only a restricted class of systems, the latter
approaches although very general are not robust [PS99] and require a number of techniques
like adaptive sampling [Fox03] and particle resampling [DC05] for application on real-world
problems.

This thesis takes a different approach to the filtering problem. It focuses on creating
a simple discrete approximation of the underlying continuous time system using Markov
chain approximations. Propagating the filtering estimates on this discrete Markov chain
is then as easy as an application of Bayes’ law. To do so, it uses a discretization created
by random sampling inspired from asymptotically optimal motion planning algorithms. In
addition to this, it also utilizes new ideas such as “anytime” computation to propose a
filtering algorithm that provides a quick inaccurate state estimate but can improve it if
given more computation time.

1.1.3 POMDPs

The second part of the thesis deals with control of partially observable processes modeled
as Markov decision processes (POMDPs). POMDPs are a principled approach for deci-
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sion making under uncertainty. A number of different approaches are available for solving
this problem such as value function approximation, belief space planners, stochastic control
methods and more recent point based methods. The generality of this formulation however
comes at a cost. Most real-world problems beyond toy examples are computationally in-
tractable. The number of future states of the system grows exponentially with the size of
the system. The problem becomes even harder as the length of the time horizon over which
future actions are predicted increases. These two aspects are coupled in real problems and
that makes achieving a tractable solution much harder.

This thesis proposes a way to solve a larger POMDP by breaking it into smaller parts
which can be solved more efficiently. Roughly, by creating a sequence of smaller problems
that are close to the original problem, we can use the solutions of smaller problems to get
an approximation of the solution to the original problem. In fact the formulation given
here is general enough to encompass the complete continuous-time stochastic problem. The
program proposed by this thesis then reduces this continuous time problem into a sequence
of discrete POMDPs in such a way that trajectories of beliefs of the discrete problems
converge to the trajectories of beliefs of the continuous time problem. This is then used to
prove that the cost function obtained by solving the discrete problem using, say, a point-
based POMDP solver converges to the cost function of the original continuous-time problem.
The final output of this offline approach also gives a control policy which can be shown to
converge to the control policy of the original problem in an appropriate relaxed sense.

1.2 Contributions

The contributions of this thesis are as follows. The major idea pursued all through this
thesis is that a continuous time system can be approximated by a sequence of completely
discrete finite systems. These approximations are derived from very intuitive rules and are
easy to implement in practice. Algorithms proposed in Chapter 2 enable one to generate a
sequence of approximate solutions in an incremental fashion. Ideas inspired from random
sampling algorithms in the motion planning literature are used to enable approximations
of continuous systems with large state-spaces.

Modifications of the Markov chain approximation method are used to solve the continuous-
time optimal nonlinear filtering problem in Chapter 3. Random sampling introduced in
Chapter 2 enables us to provide an anytime solution to this. In the same spirit, related prob-
lems such as smoothing and trajectory decoding are formulated and solved using Markov
chain approximation in an incremental fashion. The nature of these algorithms, on one
hand, allows us to formulate the continuous time problem in its full generality; on the other
hand, since they rely at each step on completely discrete structures, traditional algorithms
for inference for finite problems still apply.

The second part of the thesis deals with control of partially observable processes. A
continuous time version of the problem is formulated and it is shown that it is equivalent
to a number of other popular formulations which originated in vastly different fields like
control of distributed systems or separation principle style results. The discrete version of
this problem is popular in computer science literature solves problems like Markov decision
process (MDPs) and partially observable Markov decision processes (POMDPs). Sequences
of discrete POMDPs can then be constructed to converge to the original continuous time
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problem, algorithms for which this thesis proposes. The notion of convergence is usually
weak but can still be used to prove convergence of corresponding cost functions and control
policies. The program then is to solve these discrete POMDPs using state-of-the-art point
based solvers and use their solutions to converge to the solution of the continuous time
problem. An important offshoot of this work is that the discretization of the state space
and of the time horizon gives a natural way to work within the limits of both the curse of
dimensionality and the curse of history simultaneously.

Parts of this thesis have been published in [CKF12].

1.3 Organization

There are three major parts to this thesis. Chapter 2 introduces the main idea of the
thesis which is used throughout the other chapters. It gives a background on Markov
chain approximations and proposes two algorithms to construct these both utilizing random
sampling techniques. Chapter 3 takes a look at one of the two major problems discussed
in this thesis, i.e., filtering. It proposes an algorithm for optimal filtering which is valid for
a large class of general dynamical systems. Chapter 3 also formulates and discusses two
related problems of state estimation, i.e., smoothing and trajectory decoding, and proposes
an incremental and anytime solution to these state estimation problems.

Control of partially observable continuous-time processes forms the second part of this
thesis and is discussed in Chapter 4. A general continuous-time partially observable control
problem is formulated and then approximated by a sequence of discrete time, discrete state
POMDP problems in such a way that sequences of discrete problems converge to the original
continuous problem in an appropriate sense. Optimal solutions of discrete problems can be
shown to converge to the optimal solution of the continuous time problem in terms of the
cost function and the control policy obtained.

Chapter 5 takes a holistic view of the problems addressed in this thesis and identifies
future directions for research.



Chapter 2

Markov Chain Approximation
Method

This chapter studies diffusion processes of the form

dx(t) = f(x(t), t) dt+ F (x(t)) dw. (2.1)

where x(t) ∈ Rd, f : Rd × R → Rd is the drift vector, F (·) : Rd → Rd×k is the diffusion
matrix and w(t) is the standard k-dimensional Wiener process. The aim is to approximate
the cost of the form

W (x) = E
[∫ τ

0
l(x(t)) dt+ L(x(τ))

]
, (2.2)

until some target set ∂G is reached. The time τ is defined as the exit time from some
compact set G ⊂ Rd, i.e., τ = inf{t : x(t) /∈ Go} where Go denotes the interior of G. The
problem thus stops when the system hits the boundary of set G. Denote the differential
operator of Equation (2.1) by L using Dynkin’s formula as

L = f(x)
d

dx
+

1

2
F (x)

d2

dx2
. (2.3)

It can then be shown that formally, the cost function W (x), i.e., the cost incurred if the
process starts from x(0) = x satisfies the equation

LW (x) + l(x) = 0 x ∈ G0, (2.4)

with the boundary condition W (τ) = L(x(τ)). It is possible to obtain an approximate
solution of the partial differential equation (2.4) using a finite-difference method. However,
these equations are only formal and even when it can be proved that the solution exists
and is unique, the convergence of finite-difference solutions is difficult to prove without
additional regularity assumptions. On the other hand, equations of the kind (2.1) are often
obtained from physical models and it is possible to use the intuition gained from there to
solve problems of stochastic control. An added advantage is that such approaches neither
require an understanding of analytical properties of the diffusion process nor guarantees on
the nature of solutions of the Bellman equation (2.4). The methods discussed in this chapter

17



18 CHAPTER 2. MARKOV CHAIN APPROXIMATION METHOD

are very similar to finite difference methods even though their analysis is quite different the
former lends to completely probabilistic algorithms.

This chapter pursues the basic idea that a diffusion process can be approximated by a
sequence of computationally tractable finite stochastic process along with a corresponding
simplification of the cost function. In particular, the simpler processes will be Markov
chains in the case of uncontrolled diffusions, while they will be controlled Markov chains
(Markov decision processes) when the original diffusion problem has control embedded in
it. These Markov chains will be derived from the original system by a series of intuitive
rules which will be demonstrated on the canonical problem described above. Essentially, it
will be ensured that the Markov chain and the diffusion process are equivalent in a certain
“local” sense. There are a number of ways of achieving this end and one usually chooses
the most computationally feasible one.

The approximating Markov chains will have a state space which is a finite subset of the
state space of the original problem. They will be parametrized by the size of this finite
set. This is akin to the resolution parameter h in finite-difference algorithms. Roughly, as
the number of states in the Markov chain goes to infinity, it will increasingly resemble the
diffusion process in its local properties, i.e., the expected change of state per step (drift) and
the expected mean square change of state per step (diffusion). The approach does not need
regularity assumptions on the solutions of the Bellman equation and can take advantage
of purely intuitive notions of the physical process. For example, the expected change in
state per transition is equal to the drift whereas the covariance of the change in state is
the diffusion. It should be noted that the nature of convergence is similar to those of finite
difference schemes.

Virtues of the said approximation being many, it still turns out that it is plagued by
the same problems faced by finite difference schemes. It is essential to find a good way to
choose the resolution parameter to create a consistent and computationally feasible Markov
chain approximation. The later part of the chapter employs methods from random sampling
algorithms to create consistent Markov chains. This will enable us to approximate high-
dimensional stochastic systems. The major advantage of using random sampling methods
to create Markov chains is that they can be made “incremental” very easily. Given a Markov
chain with n states that approximates the continuous-time system, creating a refinement of
the Markov chain to contain n+ 1 states say is an O(log n) operation. This approximation
also has the “anytime” property, i.e., for real-time implementations, the algorithm finds a
crude solution to the state-estimation problem very quickly and converges to optimal solu-
tion (in an appropriate sense) if given more computation time. This contrasts conventional
algorithms which need a fixed amount of time to come up with the solution.

The organization of this chapter is as follows. Section 2.1 will provide introductory
concepts on Markov chains and background of the approximation method. The next section,
Section 2.2, details the construction of the Markov chain. It provides two methods: one
utilizes fixed grids, while the other creates an approximation using a random sampling of
the state space. This is followed by Section 2.5 which discusses convergence properties of
these approximations. The chapter concludes with experiments verifying the convergence
for an example stochastic system in Section 2.6.
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2.1 Preliminaries

This section is devoted to some preliminary definitions and results.

2.1.1 Discrete Markov Chains

A Markov chain is denoted by the tuple M = (S, P ), where S ⊂ S ⊂ Rd is a finite set of
states and P (· | ·) : S × S → R≥0 is a function that denotes the transition probabilities,
i.e., the function P (z | z′) is the probability that the next state is z given that the current
state is z′. As a conditional probability mass function, P satisfies

∑
z∈S P (z | z′) = 1 for all

z′ ∈ S. The trajectory of a Markov chain starting from an initial state z0 is denoted by the
sequence {ξi : i ∈ N} of random variables that satisfy (i) ξ0 = z0 and (i) P(ξi+1 = z | ξi =
z′) = P(z | z′) for all z, z′ ∈ S and all n ∈ N. The initial state z0 can also be drawn from
some distribution π.

2.1.2 Continuous time interpolations

Markov chains as described in Section 2.1.1 are primarily discrete objects. The trajectories
as described there can however be interpolated to give a continuous-time trajectory. To this
end, define M = (S, P, T ) to be a Markov chain where T is the set of functions ∆t(z) : S →
R>0 that associate a time interval to each state in S. The function ∆t is called the function
of interpolating times, or holding time for short. Roughly, ∆t(z) is the time that the chain
spends at state z before making another transition. It is made precise in the sequel with
an explicit formula.

Given an initial state z0 ∈ S, let {ξi : i ∈ N} denote the trajectory of the Markov chain
M starting from z0. ξ(·) is the continuous-time interpolation of such trajectories under
holding times ∆t, i.e.,

ξ(s) = ξi for all s ∈ [ti, ti+1),

where ti =
∑i

j=1 ∆t(ξj). For any realization ξ(t, ω) of the stochastic process {ξ(t); t ∈
R≥0}, the function ξ(·, ω) is continuous from the right and has limits from the left, i.e.,
ξ(t, ω) ∈ Dd[0,∞). Hence, ξ can be thought of as a random mapping that takes values in
the function space Dd[0,∞). Figure 2-1 shows the interpolation of the trajectories of the
discrete Markov chain. If ∆t(z)→ 0 as the number of states in the Markov chain n→∞,
the bold trajectory converges in distribution to the blue trajectory of the original stochastic
system.

The interpolation interval ∆t(z) can in fact be taken to be a constant for a finite Markov
chain if we prefer but this is restrictive. If the drift vector |f(z)| is large for some parts of the
state-space, we might find it beneficial to reduce the interpolating interval there. It is also
because of this that numerical algorithms approximating the cost function converge faster
if we have a roughly uniformly dense Markov chain which is ensured if the interpolating
time is a function of the drift and diffusion terms. As we will see later, the construction of
the Markov chain gives the form of both the transition probabilities and the holding times
as a by product.

Given a continuous time interpolation, we can come up with conditions under which
the trajectories of a sequence of Markov chains converge to the trajectories of the original
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Figure 2-1: Blue : Stochastic trajectory, Bold black : interpolated trajectory

process described by Equation (2.1). Let {Mn;n ∈ N}, where Mn = (Sn, Pn, Tn), denote a
sequence of Markov chains. For each n ∈ N, let {ξni ; i ∈ N} be the trajectory of Mn with
initial state distributed according to some distribution πn. The sequence of Markov chains
{Mn;n ∈ N} is said to be locally consistent [KD01] with the original system described by
Equation (2.1) if the following criteria are satisfied for all z ∈ S.

◦ lim
n→∞

∆tn(z) = 0, (2.5)

◦ lim
n→∞

E[ξni+1 − ξni | ξni = z]

∆tn(z)
= f(z), (2.6)

◦ lim
n→∞

Cov[ξni+1 − ξni | ξni = z]

∆tn(z)
= F (z)F (z)T . (2.7)

where Cov(x) = E[(x− E[x])(x− E[x])T ].
Note that the conditions above imitate local properties of the drift-diffusion as described

in Equation (2.1), i.e., if the current state is x, the state after a small time δ > 0 is given
by x(δ) and the initial state is x, we have,

E[x(δ)− x] = f(x) δ + o(δ),

Cov[x(δ)− x] = F (x)F (x)T δ +O(δ2).

The first condition, i.e., effectively, supz ∆t(z)→ 0, ensures that δ → 0 resulting in the local
behavior of the Markov chain converging to that of Equation (2.1). Surprisingly, as stated in
Theorem 2.2, under mild technical assumptions, local consistency implies the convergence
of continuous-time interpolations of the trajectories of the Markov chain to the trajectories
of the stochastic dynamical system described by Equation (2.1). An example to convince
the reader is due at this point.

Example 2.1. Consider the system dx = −x dt+σ dw on some bounded interval S ⊂ R≥0

with a regular discretization of distance h. In this example, any state x in the Markov chain
is only connected with its neighbors x− h and x+ h. The Markov chain transitions to the
right using only diffusion whereas it uses both drift and diffusion to go left:

P (x+ h |x) =
σ2/2

c
and P (x− h |x) =

σ2/2 + hx

c
.
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These transition probabilities sum up to 1, i.e., c = (σ2 + hx). Finally, local consistency
conditions are satisfied if we choose ∆th = c−1h2. The following section provides an
explanation of why the transition probabilities take the above form. It will also be seen
that the exact form is quite immaterial to the convergence, all that is required is that the
approximation satisfy the local consistency conditions.

2.2 Construction of the Markov chains

This section concentrates on constructions of approximations which can be readily imple-
mented. They are obtained from intuitive techniques and are very versatile. The basic
method to obtain consistent Markov chains is using a finite discretization of the partial
differential equation shown in Equation (2.4). This is however only used as a guide to the
process, the construction is probabilistic and gives the transition probabilities as well as
the holding times. It is also possible to change these probabilities to get different versions
for numerical benefits so long as the consistency equations are satisfied. This aspect of
the construction will be exploited throughout this thesis to apply the method to different
problems.

2.3 Grid based methods

The set of states of the Markov chain M is a subset of the original state space. Let x ∈ R,
i.e., consider a 1−dimension drift-diffusion process in Equation (2.1) to be amenable to
a rough derivation. Given a compact set G = [0, B], we can create a uniform grid of
discretization h and call it S. Writing out Equation (2.4) in its explicit form, we get that
the cost function W (x) satisfies the PDE

Wxf(x) +WxxF (x) + l(x) = 0. (2.8)

Write the finite difference approximations as

Wx ∼





W (x+ h)−W (x)

h
if f(x) ≥ 0,

W (x)−W (x− h)

h
if f(x) < 0;

Wxx ∼
W (x+ h)− 2W (x) +W (x− h)

h2
.

For a general function f(x), decompose it into positive and negative parts as f(x) = f+(x)−
f−(x), i.e., f+(x) = max(f(x), 0) and f−(x) = −min(f(x), 0) which also gives |f(x)| =
f+(x) + f−(x). Substituting these in Equation (2.8), after multiplying and dividing by
F 2(x) + h |f(x)|, we get,

W (x) =
F 2(x)/2 + hf+(x)

F 2(x) + h |f(x)| W (x+h)+
F 2(x)/2 + hf−(x)

F 2(x) + h |f(x)| W (x−h)+
h2

F 2(x) + h |f(x)| l(x)
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Write this as

W (x) = P(x+ h |x) W (x+ h) + P(x− h |x) W (x− h) + ∆t(x) l(x)

with P(x+h |x),P(x−h |x) and ∆t(x) being the coefficients of the respective terms above.
Let P(x | y) = 0 if y 6= x ± h. These probabilities sum up to one (by construction in fact)
and thus can be considered a legitimate Markov transition kernel. A quick check for local
consistency gives,

E[∆ξ(x)] =
F 2(x)/2 + hf+(x)

F 2(x) + h |f(x)| h+
F 2(x)/2 + hf−(x)

F 2(x) + h |f(x)| (−h) = f(x) ∆t(x)

and similarly

E[(∆ξ(x))2] = h2

(
F 2(x)/2 + hf+(x)

F 2(x) + h |f(x)| +
F 2(x)/2 + hf−(x)

F 2(x) + h |f(x)|

)
= F 2(x) ∆t(x) + ∆t(x)h |f(x)|

= F 2(x) ∆t(x) + ∆t(x)O(h).

Note that E[(∆ξ − E[∆ξ])2] = F 2(x) ∆t(x) + ∆t(x)O(h) as well and this assignment of
probabilities thus satisfies the local consistency conditions in Section 2.1.2. Of course, the
condition for this assignment to be valid is that,

inf(F 2(x) + h |f(x)|) > 0 for x ∈ S.

For a number of other considerations and a more elaborate discussion refer Chapter 5
of [KD01]. In the general case, transition probabilities to neighboring states depend upon
both the direction of the drift vector and the diffusion vector. For example, the state in
the top-right corner will have the highest probability of being the next state in a Markov
trajectory starting from state z. Connections of this form thus implement the intuitive
notion that a stochastic differential equation is a superposition of a drift term and a diffusion
term.

2.4 Random sampling based methods

The previous section gave a method of constructing Markov chains for a priori discretiza-
tion level h. It is worthwhile to explore methods which can create successively refined
approximations of the same stochastic dynamics. There are a number of ways of doing so
using grid based constructions. Consider a simple example, that of laying a grid in a unit
hypercube. In d-dimensions, using a regular grid of distance h this takes O(h−d). The num-
ber of samples grows exponentially in the number of dimension. This is otherwise known as
the curse of dimensionality which we will encounter in later chapters as well. Let us look
at this from two different perspectives.

• Incrementality : Suppose we want to refine the grid, i.e., reduce the distance be-
tween nodes by half. An extra O((2d − 1) h−d) nodes have to be added to achieve
this. More generally, given a grid of O(n) nodes, refining the grid so as to halve the
distance between the nodes takes an additional O((2d − 1) n) nodes. The transition
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Figure 2-2: Transition probabilities using random sampling of states. Note that the directions where
the drift vector has low magnitude result in low transition probabilities (boldness of arrows) while
the probability of transition in direction of the drift vector is very high.

probabilities explicitly depend upon the discretization level h and thus we have to
find the transition probabilities of all the nodes, i.e., O(2d n) operations in total. In
other words, we have to run the algorithm afresh on the new grid instead of utilizing
the transition probabilities of the earlier construction. It is possible to increase the
number of nodes in such a way that the grid is refined incrementally by adding nodes
to only certain regions of the state-space. However, doing so is complicated and it is
important to ensure that the dispersion, i.e., the maximum distance between nodes
in the set S goes to zero. In other words, it is necessary to artificially introduce a
“bias” to reduce the dispersion in regions with sparse nodes. Random sampling meth-
ods are based on probabilistic techniques and this bias is incorporated in the method
itself. We can thus easily construct the new transition probabilities in an incremental
fashion. This typically results in vast benefits for successive refinement algorithms.

• Anytime completeness : As mentioned above, grid based methods start with an a
priori discretization of the state space. It is necessary to perform an O(n) operations
to construct the transition probabilities of all the nodes to get the Markov chain. On
the other hand, random sampling methods construct the grid probabilistically in such
a way that the transition probabilities are constructed along with the sampling. This
makes the algorithms amenable to anytime completeness which means that a poorly
refined Markov chain is obtained quickly without having to wait for completion of the
whole construction.

2.4.1 Primitive procedures

Sampling : Let x ∈ S ⊂ Rd. We will primarily use uniform random sampling procedure
to populate the set of states of the Markov chain S. The Sample procedure returns states
sampled independently and uniformly from the bounded set S.

Neighboring states : Given z ∈ S and a finite set S ⊂ S of states, the procedure
Near(z, S) returns the set of all states that are within a distance of r = γ (log n/n)1/d from
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z, i.e.,

Znear(z) =

{
zk ∈ S, zk 6= z : ‖zk − z‖2 ≤ γ

(
log n

n

)1/d
}
,

where n = |S|, d = dim(S) and γ > 0 is a constant that will be specified in Section 2.5.
Given a state z ∈ S, let Znear be the set of states returned by Near(z, S).

Time Intervals : Given a state z ∈ S, the procedure ComputeHoldingTime(z, S) returns
a holding time given by the formula

∆t(z) =
r2

‖F (z)F T (z)‖2 + r‖f(z)‖2
,

where r is as given in the procedure Near(z, S). A rough explanation of the nature of the
above formula is as follows. For a deterministic system without the diffusion term, the
time taken to travel a distance r is ∆t1 = r

‖f(z)‖2 + o(r). On the other hand, for a system
with no drift and only diffusion the expected time taken to travel the same distance is

O
(

r2

‖F (z)FT (z)‖2

)
(using Dynkin’s formula). Thus the expression of ∆t(z) is motivated by

∆t = distance
average velocity

. This formula satisfies the condition given in Equation (2.5) as r → 0,
i.e., n→∞. From the derivation in Section 2.3, we can see that the exact expression for the
transition probabilities and holding time is flexible so long as it satisfies the local consistency
conditions. While applying the method to different problems we will again leverage this
flexibility to scale the holding times to achieve computationally efficient algorithms.

Transition Probabilities Correctly choosing the transition probabilities so as to satisfy
local consistency conditions is key to success of the Markov chain approximation method.
There are a number of ways of satisfying these conditions, two of which will be described
below. Once the basic methodology of the Markov chain approximation is understood,
we can appropriately change the transition probabilities and the holding times to still get
consistent approximations.

Local consistency conditions translate into a linear program for finding the transition
probabilities which is given as follows. Given a set Znear find K = |Znear| transition
probabilities say p1, p2, . . . , pK such that p1 = P(zk | z) where zk ∈ Znear. The local con-
sistency in Equations (2.5), (2.6) and (2.7) conditions can be written as a set of linear
constraints. Roughly, these conditions essentially approximate the small time behavior the
stochastic system. It is because of this that we can also use a local Gaussian to get the
probabilities as follows. Given a state z ∈ S and a finite set Znear ⊂ S, the procedure
ComputeTransProb(z, Znear,∆t(z)) returns a function p(· | z) which is computed as follows.
Let Nµ,Σ(·) denote the density of the (possibly multivariate) Gaussian distribution with
mean µ and variance Σ; then,

p(zk | z) = η Nµ,Σ(zk).

Here µ = z+f(z)∆t(z) and Σ = F (z)F (z)T∆t(z) and the constant η ensures
∑K

k=1 p(zk | z) =
1. Lemma 2.3 in Section 2.5 proves that this satisfies local consistency conditions in the
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limit. Note that P(z′ | z) = 0 if z′ /∈ Znear. Although it is certainly possible to make more
densely connected Markov chains, it will turn out that just connecting to O(|Znear|) nearest
vertices is enough. This is seen in another place as follows. For grid based methods, every
vertex is connected to 2d neighboring vertices and this still gives an irreducible Markov
chain. For randomly sampled nodes, connecting to mere nearest neighbors is not enough.
We need to connect to at least O(log n) neighbors to ensure that the resulting Markov chain
is irreducible. This is easily seen because of the following. An irreducible Markov chain is
defined as a Markov chain where all the states of the chain form a single communicating
class, i.e., there exists some integer m > 0 such that P(ξ(m) = z2 | ξ(0) = z1) > 0 for any
z1, z2 ∈ Sn. This is proved in Theorem 2.4 by proving that (i) every state is connected
to its neighbors, (ii) all transition probabilities to neighbors are positive. These two thus
together make the Markov chain irreducible. The value of the constant γ is set precisely
such that this happens.

Connect State : The procedure ConnectState acts on a state z ∈ S. It computes the
holding time for z and also the transition probabilities to all the states in the set Znear.

2.4.2 Batch construction of the Markov chain

Sampling n states for the Markov chain to populate the set S can be done in a “batch”
fashion where the transition probabilities and holding times are calculated on a pre-sampled
set S. Algorithm 2.1 takes a set of sampled states Sn as the input (lines 1-5). It runs the
procedure ConnectState on all z ∈ Sn to calculate the transition probabilities and the
holding times at each state. This creates the Markov chain Mn. The Near procedure takes
worst case O(log n) time using approximate nearest neighbor algorithms [Sam95]. Note that

the expected number of samples in a ball of radius γ
(

logn
n

)1/d
is O(log n) [KF11]. Hence,

the ComputeTransProb procedure takes O(log n) time. The complexity of ConnectState is
thus O(log n). Algorithm 2.1 thus runs in O(n log n) time to create a Markov chain Mn.

Algorithm 2.1: Batch Markov chain construction

1 n← 0;
2 while n < N do
3 z ← Sample();
4 S ← S ∪ {z};
5 n← n+ 1;

6 for z ∈ SN do
7 (SN , PN , TN )← ConnectState(z, (SN , PN , TN ));

8 return (SN , PN , TN );
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Algorithm 2.2: ConnectState(z, (S, P, T ))

1 ∆t(z)← ComputeHoldingTime(z, S);
2 Znear ← Near(z, S);
3 P (· | z)← ComputeTransProb(z, Znear,∆t(z));
4 T (z)← ∆t(z);
5 return (S, P, T );

2.4.3 Incremental construction of the Markov chain

For algorithms discussed in the following chapters, it is of interest to create the Markov
chains incrementally. Given a Markov chain Mn, we want to obtain a more refined Markov
chain Mn+1 without calculating all the transition probabilities of n+1 nodes. Using random
sampling to create the set Sn ensures that it is very easy to make the construction incre-
mental. Algorithm 2.3 uses the procedures introduced in the previous section to generate an
incremental Markov chain. Note that we want to create a Markov chain which satisfies local
consistency conditions given in Equations (2.5)- (2.7). The last two conditions are trivially
satisfied by construction, this is proved in Theorem 2.3. In an incremental construction, we
have to ensure that the first condition on holding times is also satisfied in the limit, i.e.,
as the number of samples in the Markov chain goes to infinity, we need to ensure that the
holding time for all states goes to zero. This would be satisfied easily if we construct the
chain from scratch for every new n which we want to avoid doing. Roughly, given Sn there
are some states z ∈ Sn with large holding times. As n increases we need to recalculate
the transition probabilities of these states to ensure that the new holding times (which
now depend on a larger value of n, see Section 2.4.1) keep decreasing. We do this by the
following idea in Algorithm 2.3. Recalculating the probabilities for all the neighbors in the
set Znear for every newly sampled state zn+1 ensures that the holding times for all states
are reduced asymptotically as proved in Theorem 2.5. As shown in Figure 2-3, transition
probabilities for an old state z which lies within distance r2 = γ (log(n+ 1)/(n+ 1))1/d are
recalculated with a new state zn+1 is added to the Markov chain. Since |Znear| = O(log n),
the complexity of recalculating probabilities (lines 7-8 in Algorithm 2.3) is O((log n)2). The
incremental algorithm is thus only a factor O(log n) worse than the batch construction.

Algorithm 2.3: Incremental construction

1 n← 0;
2 while n < N do
3 z ← Sample();
4 Sn ← Sn−1 ∪ {z};
5 (Sn, Pn, Tn)← ConnectState(z, (Sn, Pn−1, Tn−1));
6 Znear ← Near(z, Sn);
7 for znear ∈ Znear do
8 (Sn, Pn, Tn)← ConnectState(znear, (Sn, Pn, Tn));

9 n← n+ 1;

10 return (SN , PN , TN );
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Figure 2-3: Incremental construction

2.5 Analysis

Theorem 2.2 (Theorem 10.4.1 in [KD01]). Assume that f(·) and F (·) are bounded and
continuous. Let {Mn; n ∈ N} be a sequence of Markov chains that are locally consistent
with stochastic dynamical system described by Equation (2.1). For each n ∈ N, let {ξn(t); t ∈
R≥0} denote the continuous-time interpolation to the trajectory of Mn. Then, (ξn(·)) has a
subsequence that converges in distribution to (x(·)) satisfying

x(t) = x0 +

∫ t

0
f(x(s))ds+

∫ t

0
F (x(s)) dw(s),

where x0 is distributed according to limn→∞ πn, πn being the prior distribution of the initial
state on Mn.

Proof. We will only give a short sketch of the proof here. Refer Section 9.4 of [KD01] for
complete proof. Let us first prove that the collection of sequences {ξn(·); n ∈ N} is tight.
Let ξn(tk) = ξkn. Suppress the subscript ξn for the purposes of the following derivation.
Note that by construction,

E[∆ξk] = f(ξk) ∆t(ξk)

E[(∆ξk − E[∆ξk])(∆ξk − E[∆ξk])T ] = F (ξk) F T (ξk) ∆t(ξk).

Let M = max{n :
∑n

k=1 ∆t(ξk) ≤ t}. Then,

E[ξn(t)2] = E



∣∣∣∣∣
M∑

k=0

E[∆ξk] + (∆ξk − E[∆ξk])

∣∣∣∣∣

2



≤ 2E



∣∣∣∣∣
M∑

k=0

f(ξk) ∆t(ξk)

∣∣∣∣∣

2

+ 2E

[
M∑

k=0

F (ξk)F T (ξk) ∆t(ξk)

]

≤ 2K2t2 + 2Kt,
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where K is the common bound for f(·) and F (·). Finally the probability

P(|ξn(t)| ≥ a) ≤ E[ξn(t)2]

a2
≤ 2K2t2 + 2Kt

a2

can be made arbitrarily small for any fixed value of t by varying a to create a compact set
of the form [−a, a]. Thus we have proved that sequences ξn(·) are tight. Using Prokhorov’s
theorem we can now extract a subsequence of ξn(·) such that it converges to some x(·) say,
i.e. ξn(·)⇒ x(·). Now construct a process wn(·) as

wn(t) =

M−1∑

k=0

∆ξk − E[∆ξk]

F (ξk)

which is essentially an approximation of the Wiener process constructed by ξn(·). It can
be checked that this wn(·) converges to the actual Wiener process. Finally we claim that
the solution of the stochastic differential equation is unique in the weak sense and it is
constructed by the same Wiener process w(·). Thus the subsequence that we extracted
above converges weakly (see Section A in Appendix A) to the solution of Equation (2.1).

�

Lemma 2.3. The Gaussian approximation presented in the ComputeTransProb procedure
satisfies the local consistency conditions given in equations (2.6) and (2.7).

Proof. Let φ(x(t)) denote the probability density without observations of the stochastic
dynamics given in Equation (2.1). The Fokker-Plank equation can then be used to compute
this density as

∂

∂t
φ(x(t)) =

[
− ∂

∂x
f(x) +

1

2

∂

∂x
F (x)F T (x)

]
φ(x(t)).

The solution for small times ∆t can then be written to obtain [Ris96],

P (x′, t+ ∆t |x, t) =
1√

2πF (x)F T (x)∆t
exp

(
−1

2

[x′ − x− f(x, t)∆t]2

F (x)F T (x)∆t

)

The Gaussian for the transition probabilities in the ComputeTransProb procedure is thus the
small-time solution of the Fokker-Planck equation. Also, it can be proved that the number
of samples in the neighborhood of every sample (in every grid cell Gn(i) of Theorem 2.4 to
be precise) is increasing [KF11], i.e., the small-time solution of the Fokker-Plank equation
becomes exact as n→∞. �

Theorem 2.4. The Markov chain (Sn, Pn, Tn) returned by Algorithm 2.1 is locally con-
sistent with the stochastic dynamical system described by Equation (2.1), with probability
one.

Proof. The transition probabilities are consistent by Lemma 2.3. Hence, we only need to
prove that using Algorithm 2.1, every state has non-zero probability of transition to another
state, i.e. every state is connected to at least one other state or that the Markov chain is
irreducible. The analysis here is similar to the analysis in [KF11, HKF12].
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For each n ∈ N, divide the state space S into grid cells with side length γ
2 (log n/n)1/d

as follows. Define the grid cell Gn(i) for i ∈ Zd as

i

(
γ

2

log n

n

)1/d

+

[
−1

4
γ

(
log n

n

)1/d

,
1

4
γ

(
log n

n

)1/d
]d
,

where [−a, a]d denotes the d-dimensional cube with side length 2 a centered at the origin.
Hence, the expression above translates the d-dimensional cube with side length γ

2 (log n/n)1/d

to the point with coordinates i γ2 (log n/n)1/d. Let Kn denote the indices of set of all cells
that lie completely inside the state space S, i.e., Kn = {i ∈ Zd : Gn(i) ⊆ S}.

We claim that for all large n, all grid cells in Kn contain at least one vertex of Sn. Given
an event A, let Ac denote its complement. Let An,k denote the event that the cell Gn(k)
contains a vertex from Sn. Then, for all k ∈ Kn,

P
(
Acn,k

)
=

(
1− (γ2 )−d

µ(S)

log n

n

)n

≤ exp
(
−((

γ

2
)d/µ(S)) log n

)

= n−( γ
2

)d/µ(S),

where µ(S) denotes the Lebesgue measure assigned to S. Let An denote the event that all
cells Gn(i) contain at least one vertex of Sn. Then,

P(Acn) = P
((⋂

k∈Kn
An,k

)c)
= P

(⋃
k∈Kn

Acn,k

)

≤
∑

k∈Kn
P
(
Acn,k

)
= |Kn|n−( γ

2
)d/µ(S),

where the first inequality follows from the union bound and |Kn| denotes the cardinality
of the set Kn. Merely calculating the maximum number of cubes that can fit into S, the
latter quantity can be bounded by

|Kn| ≤
µ(S)

(γ2 )d logn
n

=
µ(S)

(γ2 )d
n

log n
.

Hence,

P (Acn) ≤ µ(S)

(γ2 )d
n

log n
n−( γ

2
)d/µ(S)

≤ µ(S)

(γ2 )d
n1−( γ

2
)d/µ(S),

which is summable for all γ > 2 (2µ(S))1/d. Hence, by the Borel-Cantelli lemma, the
probability that Acn occurs infinitely often is zero, which implies that the probability that
An occurs for all large n is one. Since the radius of the ball in the procedure Near is
γ( logn

n )1/d, every state z is connected to at least one other state. Finally, since, ∆t(z)→ 0
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as n→∞ we have proved that Algorithm 2.1 is locally consistent. �

Theorem 2.5. Incremental construction of the approximating chain using Algorithm 2.3
is also locally consistent for large n, with probability one.

Proof. The proof of connectivity of the Markov chain is the same as the proof of Theorem 2.4
whereas Equations (2.6)-(2.7) are satisfied for any state z ∈ ∪i∈NSi by Lemma 2.3. We only
to show that Equation (2.5) is satisfied, i.e, ∆t(z) for any state z that is added to the Markov
chain at some iteration, say i, goes to zero. Note that, calling ConnectState on an existing
state always results in reduction of ∆t(z) because n is increasing. We thus essentially prove
that z is reconnected to its neighbors (which are changing with n) infinitely often.

Fix some iteration i and some state z ∈ Si. Let An, defined for all n > i, denote the
event that the state z belongs to Near(zn, Sn) of the newly node zn at iteration n. It is

thus inside the ball of volume γd( logn
n ) centered at zn. Hence, P(An) = γd

µ(S)( logn
n ). Since∑

P(An) =∞ and the event An is independent from Ai for all i 6= n, Borel-Cantelli lemma
implies that P(lim supn→∞An) = 1. Hence, any state z is reconnected infinitely often, with
probability 1. �

Theorems 2.2, 2.4, and 2.5 imply that the trajectories of the successive Markov chains
(Sn, Pn, Tn) converge in distribution to the trajectories of the system described by Equa-
tion (2.1).

2.6 Experiments

This section is devoted to some experiments that empirically verify the convergence of
Markov chain approximations. We test the construction on an example linear system and
show that the distribution of states at any time t converges to the actual distribution for
the original system (which can be calculated in closed form for a linear system).

We can numerically verify the results of Theorems 2.4 and 2.5 by a Monte-Carlo simula-
tion. Since the distributions of trajectories converge, the distribution of states at any fixed
time t also converges. Also, by definition, the moments of the distributions of states at any
time t converge, which we will verify. Consider a 2-dimensional single integrator with drift
but no observations,

dx1 = −x1

2
dt+ 0.03 dw1

dx2 = −x2 dt+ 0.03 dw2 (2.9)

Figure 2-5 simulates 50, 000 trajectories of the Markov chain and the actual system dynamics
until time T = 2 and looks at the distribution of states at five specific time instants. The
scatter plots in Figure 2-5 show the distribution of states (x1, x2) of the Markov chain at
five specific time instants t ∈ {0, 0.3, 0.5, 1.0, 2.0} secs. Translucent ellipses are 3σ ellipses
from the simulation of the stochastic system as given in Equation (2.9). The dotted blue
and red lines show the mean of the actual and Markov trajectories respectively for t ∈ [0, 2]
secs. The mean trajectories converge, i.e. the first moment of the distribution converges
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as more samples are added. The variance shown as a scatter plot also converges. Both the
Markov chain and the original system are started from the nearest state to (0.8, 0.8) in Sn.

We can also compare the moments of the distribution of the states x(T ) and xMarkov(T )
for different number of states in the Markov chain. Figure 2-4 shows the convergence of the
error in the first two moments calculated over 50, 000 trajectories with increasing number
of states in the Markov chain ranging from 1, 000 to 100, 000.
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(a)

104 105

Number of samples

0.016

0.018

0.020

0.022

0.024

0.026

0.028
2nd moment

(b)

Figure 2-4: Figure (a) shows |E[ξn(T )]− E[x(T )]| versus the number of samples n while Figure (b)
shows a similar plot for the 2nd moment, i.e.‖E[ξn(T )ξTn (T )− x(T )xT (T )]‖2.
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Figure 2-5: Convergence in distribution of the trajectories for a 2-dimensional single integrator.



Chapter 3

Filtering

After the problem of estimating the state of a system on the basis of noisy observations
was first introduced in the works of Kolmogorov and Wiener, filtering has become one of
the most fundamental problems in stochastic control and communications literature. The
underlying system is assumed to be continuous-time and continuous state-in some cases
whereas it is discrete in some others. The primary motivation in this chapter is to create
a filtering algorithm for a general class of systems, in particular, systems with continuous
time and continuous state space. We are interested in algorithms that have essentially no
parameters that need to be tuned to achieve satisfactory performance, i.e., we want state
estimation algorithms that are both anytime and incremental in nature. This means that
instead of a practitioner having to tune the algorithm to work on platforms with different
computational capacity, the algorithm gives the best solution it can in the computational
capacity it is given. The state estimate is improved upon if more computational resources
are available. It utilizes the idea introduced in Chapter 2 that continuous time stochastic
systems can be approximated by sequences of discrete-time finite Markov chains.

This chapter is organized as follows. The introductory section 3.1 describes existing lit-
erature and motivates the solution approach used for the filtering problem. The continuous
time filtering problem is formulated in Section 3.2. Section 3.3 discusses a modification of
the Markov chain approximations constructed in Chapter 2 and uses them to give an incre-
mental algorithm for filtering. The resulting solution is tested on a number of examples in
Section 3.4 and compared to other state-of-the-art algorithms.

3.1 Previous approaches

This section discusses various different approaches that solve the filtering problem. We
concentrate on the many different fields that have given rise to state of the art algorithms.
In the end, we will take a holistic view of all these methods which will motivate the essentials
of a new class of algorithms for filtering.

Kalman filter Arguably, the Kalman filter dominates most real world applications in
signal processing and optimal state estimation. It is a provably optimal filter for linear
systems with additive Gaussian noise. As we will see in the following paragraphs, the

33
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filtering problem does not always lend itself to a nice computable finite dimensional solution.
Kalman filter is a special case in which it is possible to do so. The Extended Kalman filter
linearizes the dynamics and observation equations at every step and approximates the state-
estimate of the non-linear system using the Kalman filter. What it gains in generality, the
EKF loses in optimality. The linearization procedure results in the EKF no longer being
optimal for non-linear systems. Also, although EKF accurately propagates the mean of the
conditional distribution of state given observations, it was shown by Julier and Uhlmann
in [JU97] that linearization results in very poor approximation of the posterior covariance.
They introduced the Unscented Transform to approximate the conditional distribution by a
small set of deterministically chosen “sigma points” and propagate these points to give the
Unscented Kalman filter (UKF). Different methods of choosing sigma points can preserve
arbitrary number of moments of the conditional distribution and thus UKF is very accurate
in practice. It effectively exploits the symmetry of the conditional distribution (in cases
where it is Gaussian say) to vastly reduce the computational complexity of covariance
propagation.

PDE based approaches Consider the drift-diffusion Equation (2.1) in Chapter 2,

dx(t) = f(x(t)) dt+ F (x(t)) dw. (3.1)

If observations of this system are obtained as

dy(t) = g(x(t)) dt+G(x(t)) dv, (3.2)

where g(·) : Rd → Rk, G(·) : Rd → Rd×n and v(t) is the standard n-dimensional Wiener
process, the propagation of the conditional density of the state given the observations, i.e.
π(t) = P(x(t) | Yt) where Yt = σ(y(s); s ≤ t) is the σ-field generated by the observation
process, is given by a stochastic partial differential equation of the form

dπ = Lf (π(t)) dt+ g(x(t))π(t)dy(t).

In the above equation, Lf is the forward Fokker Plank operator defined in Equation (2.3),
and π(t) is the unnormalized conditional density in this equation also known as the Zakai
equation. One way of then solving the non-linear filtering problem is to search for numerical
solutions for this PDE. Grid based methods discussed in [Kus77] are a precursor to a variety
of other methods such as separation of variables, adaptive local grids, quadrature methods in
this area. However, it is generally seen that these algorithms are neither very computational
efficient nor are they recursive. This hampers their usage in most real-world applications
where filtering can be made recursive so as to enable quick computation.

Exact filters It turns out that there exist some systems for which we do not have to
explicitly solve the Zakai equation. Exact filters are a class of filters where it is possible
to obtain an optimal finite-dimensional filter even for non-linear systems. Kalman filter
also belongs to this class with a dimension of d + d(d + 1)/2 because it propagates only
the mean and the symmetric covariance matrix. Exact filters are built upon a result by
Fisher which says that the only distributions with finite-dimensional sufficient statistics are
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from the exponential family. Benes in [Ben81] showed that if the drift term f(x) can be

written as a gradient, or equivalently if ∂f
∂x =

(
∂f
∂x

)T
, the propagation equations of the

filter are finite dimensional. This case however does not cover the Kalman filter completely
and there are extensions to cases where the drift is the solution of a Riccati equation for
example. See [Dau05] for a thorough exposition on exact filters as well as a general overview
of filtering literature.

Monte Carlo methods In many real-world problems, nonlinearities and non-Gaussian
noise prevent us from getting closed-form expressions for the optimal filter. The seminal
paper [GSS93] introduced the bootstrap filter which forms the basis for a class of general
filters based on sequential Monte-Carlo methods [DDFG01] known as particle filters. They
utilize a large number of random samples (called particles) to represent arbitrary posterior
distributions and are propagated in time using importance sampling techniques. The crucial
aspect of particle filtering is estimating a good posterior distribution to sample from. These
filters are very easy to implement and have good convergence properties inherited from
Monte Carlo algorithms. On the other hand, it is necessary to tune the filtering algorithm
to the given problem for robust performance [PS99]. Sparse particles in systems with
large nonlinearities can result in divergence of the estimated posterior. Techniques like
resampling posterior [DC05] to reduce variance of particles and adaptive sampling [Fox03]
result in the algorithm being flexible and applicable to a wide class of nonlinear and non-
Gaussian models. Altogether, it is essential to tune these algorithms to work on different
systems and given the huge number of different techniques to do so, it is difficult to quantify
which technique is the best for a particular problem.

Continuous time filtering Continuous-time filtering algorithms have also received wide
attention in literature, starting from the Kalman-Bucy filter for continuous-time linear
systems with Gaussian additive noise. More recent results on continuous time particle
filters are inspired by weak approximations of solutions of stochastic differential equations
(SDEs) and come with explicit rates of convergence [Cri06]. Elsewhere, branching and
interacting particle systems in continuous time have also been applied to the nonlinear
filtering problem [DMM00]. Numerical solutions to the partial differential equations arising
from the Zakai equation and the Kushner-Stratonovich equation have been used to perform
continuous time nonlinear filtering [Kus77]. These applications of these algorithms are
however limited due to computational intractability or non-recursive nature.

Discussion State-of-the-art filtering algorithms like particle filters and UKFs are noto-
riously difficult to implement on real systems. A part of this complexity comes from the
fact that they contain a number of tunable parameters like (i) number of particles, (ii)
time discretization of integration or (iii) assumptions about the conditional density (e.g.,
Gaussian). It is seldom clear beforehand how many particles are necessary for localization
of a robot using range sensors or how small should the integration step of the dynamics
should be to ensure that the covariance is propagated accurately. These simple issues often
lead to divergence of filtering algorithms in real-world scenarios. In order to reduce the in-
stances of divergence, we often add a larger number of particles which results in an increase
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in computational complexity which in turn results in a larger integration time step if the
computational resource is kept constant. This conundrum does not always have a precise
solution although techniques like adaptive sampling [Fox03] alleviate it to some extent.

It is the primary aim of this chapter to find a satisfactory solution to this multiplicative
effect. In particular, it will be our aim to design an incremental and anytime state esti-
mation algorithm. We leverage recent results in asymptotically optimal motion planning
algorithms and apply them to construct incrementally refined Markov chain approximations
of stochastic systems. The key idea behind this construction is to discretize time and state
space at a rate similar to that of PRM∗ and the RRT∗ algorithms, and get the transition
probabilities of the chain using local consistency ideas of the Markov chain approximation
method. We prove that the trajectories of these successive approximations converge in
distribution to the trajectories of the original stochastic dynamical system. We propose
an algorithm to solve the nonlinear optimal filtering problem using these approximations.
The resulting algorithms draw their features from both motion planning and Markov chain
approximation method and are, (i) fairly general, i.e., designed for a large class of stochastic
dynamical systems, (ii) easy to implement even for complex dynamical systems and (iii)
do not need to be explicitly tuned for different problems or for platforms with different
computational capabilities due to their incremental nature.

3.2 Problem Definition

Let R denote the set of real numbers and Rn×k denote the set of all n × k real valued
matrices. Consider a stochastic differential equation of the form

dx(t) = f(x(t)) dt+ F (x(t)) dw(t), x(0) = x0, (3.3)

where (i) x(t) ∈ Rd for all t ≥ 0, (ii) f : Rd → Rd, F : Rd → Rd×k are Borel-measurable
functions, (iii) the stochastic process {w(t) : t ≥ 0} is the standard k-dimensional Brownian
motion, and the random variable x0 is bounded with probability one. A solution to the
differential form presented in Equation (3.3) is a stochastic process {x(t) : t ≥ 0} that
constitutes a solution to the following integral equation:

x(t) = x0 +

∫ t

0
f(x(τ))dτ +

∫ t

0
F (x(τ)) dw(τ), ∀ t ≥ 0,

where the second term on the right hand side is the usual Itô integral [Øks03]. We tac-
itly assume throughout the paper that the functions f(·) and F (·) are bounded and con-
tinuous functions to guarantee weak existence and weak uniqueness for the solutions of
Equation (3.3).

In the standard nonlinear filtering problem [KD01, Øks03] one attempts to estimate the
process {x(t); t ≥ 0} using data available till time t, defined by Yt := {y(s) : s ≤ t}, where
{y(t) : t ≥ 0} is a solution to the stochastic differential equation of the form

dy(t) = g(x(t)) dt+G(x(t))dv(t), (3.4)

where g : Rd → Rm and G : Rd → Rm×l are Borel-measurable functions, and {v(t) : t ≥
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0} is a l-dimensional Brownian motion independent of the stochastic process {x(t) : t ≥
0}. Similarly, we assume that the functions g(·) and G(·) are bounded and continuous to
guarantee weak existence and weak uniqueness of solutions to Equation (3.4). As in [KD01],
we formulate the problem such that the system evolves inside a compact subset, denoted
by S, of Rd. The process is stopped if it hits the boundary of S. That is, define

τ := inf{s : x(s) /∈ So},

where, So denotes the interior of S. Then, the definition of the problem is given as follows.

Problem 3.1. Given a set Yt := {y(s) : s ≤ t} of observations generated by process (3.4),
find an estimate x̂(t) such that (i) E[‖x(t)−x̂(t)‖2] is minimized and (ii) the random variable
x̂(t) is square integrable and Ht-measurable, where Ht is the σ-algebra generated by Yt.

It is well known that the error-minimizing state estimate x̂(t) based on observations Yt
is

x̂(t) = E[x(t) | Yt].
In fact, this equation forms the basis of the Fujisaki-Kallianpur-Kunita equation of filtering
theory [Øks03]. In some references the filtering problem is posed as the estimation of the
distribution of the random variable E[x(t) |Ht] (see, e.g., [KD01]), which is equivalent to
our formulation of the problem. Let us also note that the solution of the filtering problem
can be given as follows [Kus67]. If x̃(t) is a process with the same distribution as that of
x(t) but independent of (x(t), y(t)), and φ(·) is any continuous real-valued function, then
the solution of the filtering problem is,

E[φ(x(t)) | Yt] =
E[R(t)φ(x̃(t)) | Yt]

E[R(t) | Yt]
, (3.5)

where

R(t) = exp

[∫ t

0
g(x̃(s))Tdy(s)− 1

2

∫ t

0
|g(x̃(s))|2 ds

]
.

Our approach in this chapter uses the Markov chain approximation method to generate a
process x̃(t) which has the same law as the original process x(t). Equation (3.5) which is
really the limiting version of Bayes’ rule then gives the optimal filter.

Example 3.2 (Optimal filter on Markov chain). The optimal filtering problem for a
discrete Markov chain is very similar to Problem 3.1. Given a Markov chain M = (S, P )
and a set Yk = {yi : i = 1, 2, . . . , k} of discrete-time observations coming from an equation
of the form yk = g(ξk) + G(ξk)ṽ, where, ṽ is unit-variance white Gaussian noise, we can
calculate the conditional distribution φk(z) = P(ξk = z |Yk) to be

φn(z) =
∑

z′∈S
P(ξn = z, ξn−1 = z′ |Yn),

which can be written using recursive Bayes’ rule as

φn(z) = η
∑

z′∈S
P(yn | ξn = z, ξn−1 = z′) P(ξn = z | ξn−1 = z′) φn−1(z′), (3.6)
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where η is a normalization constant and φ0(z) is the initial distribution of states. Note
that the probability P(yn | ξn = z, ξn−1 = z′) becomes P(yn | ξn = z) under our observation
equation. This formulation is similar to estimation on Hidden Markov Models except for
the fact that observations come from an observation space instead of a finite set. So as long
as we can calculate P(yn | ξn = z), the same formulae hold. Also note that the observations
in Equation (3.4) are often approximated [Kus08] by discretizing them at times kδ as

yk = g(x(kδ))δ +G(x(kδ))[v(kδ)− v(kδ − δ)],

which is the conventional discrete observation model

yk = g̃(xk) +G(xk) ṽk,

with g̃(xk) = g(x(kδ)) δ and ṽk = v(kδ) − v(kδ − δ) being the white Gaussian noise con-
structed from the continuous-time Brownian motion v(t). Note that ṽk need not be Gaus-
sian noise in the above equation; v(t), however, needs to be Brownian motion to formally
guarantee existence and uniqueness of solution to Equation (3.4).

3.3 Filtering on Markov chain approximations

3.3.1 Modified Markov chain for filtering

We use Equation (3.6) to propagate estimates on the Markov chain constructed in Sec-
tion 2.2. This requires that we know the single step transition probabilities, i.e., roughly
the holding times of all states in the discrete Markov chains need to be the same. Transi-
tion probabilities and holding times that result in a locally consistent chain can be scaled
appropriately to adapt the construction in Chapter 2 to the filtering problem. In Chap-
ter 4, we will see a different type of scaling. The constructions given below are inspired
from traditional finite-difference methods of solving partial differential equations. We will
discuss two methods, which we call explicit and implicit, respectively.

Explicit construction The only requirement is that the set of probabilities and holding
times satisfy local consistency conditions, i.e., Equations (2.6)- (2.7). Denote the new
transition probabilities by pδ(·) where δ is the time interval to which we want to equalize
all the holding times. It can be shown using the example of 2.3 that (i) if the terminal time
is finite, the cost function W (x, t) satisfies the partial differential equation

∂

∂t
W (x, t) + LfW (x, t) + l(x) = 0, (3.7)

and (ii) a similar analysis as that of 2.3 shows that the new probabilities are scaled versions
of old probabilities, i.e.,

pδ(z′ | z)
1− pδ(z | z) = p(z′ | z) (3.8)

This is roughly explained by the fact that the only difference between Equation 2.8 and
Equation 3.7 above is the presence of the term ∂

∂tW (x, t) which results in a self-transition
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probability of the form pδ(z | z) which gives the scaling factor. (p(·),∆t(z)) and(pδ(·), δ)
then satisfy the same consistency conditions. Equation (2.6) then gives

1− pδ(z | z) =
δ

∆t(z)
(3.9)

Additionally, we require the following condition to ensure that pδ(z | z) ≤ 1 for all z ∈ S.

δ ≤ min
z∈S

∆t(z).

Equations 3.8 and 3.9 together give the modified probabilities provided the above condition
is satisfied. The new holding time is of course equal to δ. Figure 3-1a shows how the explicit
chain is constructed. If the X-axis depicts time, a state z connects to its neighbors after
taking a step δ. Given a state z ∈ Sn and a finite set Znear ⊂ Sn, the ComputeTransProb

procedure is replaced by a new ComputeTransProbTime(z, Znear,∆t, δ) that returns a proba-
bility density function over Tδ×Znear, where Tδ = {0, δ, 2δ, . . . , }. This probability density
is denoted by pδ(· | kδ, z) defined for z ∈ S and k ∈ {1, 2, . . . } for time-inhomogeneous
Markov chains. We will continue to use the notation p(· | z) in the later sections. Having
thus ensured that the holding time from every state to every other state is the same, we
can use Bayes’ rule given in Equation (3.6) to update the conditional distribution of the
filter given a new observation.

Implicit construction The difference between explicit and implicit method is that the
explicit method treats the time variable explicitly. In other words, time increases by a fixed
amount δ at every step which transitions between states take place with the corresponding
transition probabilities. The generality of local consistency conditions indicates that this
is not the only way of satisfying them. Roughly, we ensure that the spatial component
i.e. ξ(·) satisfies local consistency conditions while the time component i.e. ∆t(z) changes
probabilistically.

The procedure starts with an equation similar to Equation 3.8,

pδ(z′; kδ | z; kδ)
1− pδ(z; kδ + δ | z; kδ) = p(z′ | z) (3.10)

where pδ(z′; kδ | z; kδ) denotes the probability of transitioning to another state with the time
component of the chain advancing. In the same way, the conditional increment of the time
component with the state being same is actually

∆tδ(z) = pδ(z; kδ + δ | z; kδ) δ.

We will not actually “equalize” the holding times using this method (refer [Kus08] for that)
but suffice here by providing modified probabilities for the appended state-space for later
use. Thereby, the above equation actually defines the new holding time ∆tδ(z). Substitute
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in local consistency conditions to get

pδ(z; kδ + δ | z; kδ) =
∆t(z)

∆t(z) + δ

∆tδ(z) =
δ ∆t(z)

∆t(z) + δ
. (3.11)

Equation (3.11) along with Equation (3.10) defines the new transition probabilities and
interpolation intervals.

(a) Explicit chain (b) Implicit chain

Figure 3-1: The Markov chain for filtering can be built in two ways. The first one incorporates
the time part explicitly whereas the second one called the implicit method calculates the transition
probabilities implicitly in the sense that chain is built on a space S × [0, T ]. The time component of
the state also transitions probabilistically in the implicit construction.

3.3.2 Incremental construction

Equation (3.9) suggests that δ ≤ minz∈Sn ∆t(z). If the Markov chain is obtained from
Algorithm 2.1, we fix a δ = minz∈Sn ∆t(z) and modify the transition probabilities of every
state z ∈ Sn using Equations (3.8) and (3.9). On the other hand, if the Markov chain
is being constructed incrementally using Algorithm 2.3, we cannot fix such a δ because
∆t(z) is decreasing as n → ∞. Instead, we incrementally reduce the time discretization
as δnew = δcurrent/2 and recalculate probabilities for all states in Sn every time we add
a new state zn+1 that has ∆t(zn+1) ≤ δcurrent. Since δ ∼ ∆t(z) = O(( logn

n )2/d) from
Section 2.4.1, two successive values of n, n1, and n2 when we have to recalculate the
transition probabilities are such that n2 ∼ n12d/2 which gives an amortized complexity
of O(n(log n)2). This technique is called exponential backup.

Theorem 3.3 (see Theorem 4.1 in [Kus08]). For any continuous real-valued function
φ(·), for any T < ∞, if ξn(·) is a sequence which converges in distribution to the solution
to Equation (3.3) i.e., x(t), as n→∞ and is independent of (x(t), y(t)), then,

lim
n→∞

sup
t≤T

∣∣∣E[φ(ξn(t)) | Yt]− E[φ(x(t)) | Yt]
∣∣∣ = 0.
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The above theorem coupled with the formula given in Equation (3.5) proves that the
filtered density calculated on the Markov chain Mn converges to the optimal nonlinear
filtering density as n→∞ and δ → 0.

3.3.3 Heuristics

The algorithms proposed in Chapter 2 are general and can be used to get a discrete ap-
proximation of a large class of stochastic systems. This chapter provides a way to apply
them to the problem of nonlinear filtering. There are a number of heuristics specific to
the filtering problem applied to our Markov chain construction that can vastly improve the
computational complexity in practice. As proposed in Algorithms 2.3 and 2.1, we sample
the bounded state-space uniformly. Roughly, this results in the convergence rate depend-
ing upon the size of state-space. In order to avoid this, we can concentrate the samples
around the estimated posterior to create the Markov chain. This estimated posterior can
come for example from an EKF prediction. It is not necessary that it be accurate since
the exploring properties of the Markov chain construction will result in a dense sampling of
the state-space around the approximated posterior. In the examples given in the following
section, the mean and variance of the prior (assumed to be Gaussian) are propagated for a
time δ to get the posterior which is used to concentrate samples. It is seen that this vastly
improves the computational complexity of the filtering algorithm.

Creating Markov chain approximation using Algorithm 2.1 and 2.3 is O(n log n) and
O(n(log n)2) respectively as discussed in Chapter 2. A particle filter for n particles is
easily seen to be O(n) [DGA00]. Thus the filtering algorithms proposed in this chapter
are a factor O(log n) or O((log n)2) worse than the particle filter for the same number of
particles n. It should be noted however that they not only provide a state estimate but
explicitly construct a discrete approximation of the continuous time system as well. In
addition to this, heuristics discussed above vastly improve the computational complexity
in practice while providing the same theoretical guarantees. Experiments in the following
section show that the proposed algorithms result in lower average state-estimate error for
the same number of particles.

3.4 Experiments

We compare the proposed filter with other filtering algorithms like EKF and particle filter
on a number of examples in this section.

3.4.1 Drifting ship

Consider a drifting ship [KB00] confined to move within a disc of radius 9 units. A large
force fi(x(t)) acts on the ship to make it move inwards if it is moving outwards when it
goes out of this disc as shown in Equation (3.12). The ship is like a 2-dimensional double
integrator with forces f1(x), f2(x) with observations being range and heading as given in
Equation (3.13). Figures 3-2 shows that the tracking error is similar to that of the particle
filter.

fi(x(t)) =
−50xi√
x2

1 + x2
2

I{√x21+x22≥9}I{x1x3+x2x4≥0}
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dx1 = x3 dt+ e dw1

dx2 = x4 dt+ e dw2

dx3 = f1(x) dt+ e dw3

dx4 = f2(x) dt+ e dw4 (3.12)

dy1 = [x2
1 + x2

2]1/2dt+ e1 dv1

dy2 = tan−1(x2/x1)dt+ e2 dv2 (3.13)
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Figure 3-2: Filter estimate for the drifting ship in Equation (3.12) with e = 0.3, e1 = 0.03 and
e2 = 0.03. The EKF error is very large near (0, 0), when the observation nonlinearity is large. The

average estimated state error i.e., E[ 1T
∫ T
0
‖x − x̂‖dt] is 5.02 × 10−3 for the HMM filter, 5.2 × 10−3

for the particle filter both with 100 particles and 1.36× 10−2 for the EKF.

3.4.2 Van der Pol oscillator

Next, we consider a noisy Van der Pol oscillator given by Equation (3.14). This system is
highly non-linear with a stable limit cycle for µ > 0.

dx1 = x2 dt+ e1 dw1

dx2 = [−x1 + µ x1 (1− x1
2)] dt+ e2 dw2

dy = x1 dt+ e3 dv (3.14)

The last equation is the scalar observation equation and µ = 2. Figure 3-3 shows the
performance of the sampling filter on this system. Note that this system is typically hard for
the EKF which accumulates linearization error due to varying time scales and, predictably,
the EKF estimate of x2(t) completely diverges. The proposed filter took 0.2 secs to execute
while the PF took 0.013 secs for 100 samples with similar average error. This example
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Figure 3-3: x1(t) and x2(t) for a Van der Pol oscillator. Mean error of the estimate averaged over
100 runs was 0.1816 for the proposed filter with 100 particles and 0.1849 for the particle filter with
100 particles. The EKF estimate for x2(t) completely diverges.

shows that the proposed filter performs as well as other filters both in terms of estimate
and is also computationally tractable.

3.4.3 Parameter estimation

Next we compare these filters on a modified version of a parameter estimation problem
from [DT03] as given in Equation (3.15). The parameter we are estimating is φ = 0.5.

dx = x cos(2πφx) dt+ σx dw1

dφ = 0 dt+ σφ dw2

dy = x dt+ σv dv. (3.15)

To begin with, it is only known that φ ∼ N (0.8, 1). Append the state-space with φ and
inject small noise dw2 into its dynamics for estimation. This is a hard problem for a particle
filter because the conditional density of φ given data is not in the exponential family [DT03]
which makes resampling difficult. Figure 3-4 shows an example run with the particle filter
using multinomial sampling. The proposed filter consistently ends up with lower estimation
error.

3.5 Smoothing

Filters are generally used to provide an estimate of the state of the system in real time. This
estimate is then used for various purposes like control or planning. In this section, we are
interested in estimating the states of the system off-line based over some given observation
interval. The crucial difference between these two situations is that in the current case
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Figure 3-4: x(t) and φ(t) for the parameter estimation problem with σx = 0.1, σv = 0.1 and σφ = 0.1.
Average state error over 100 Monte-Carlo runs was 1.44 for the proposed filter whereas it was 1.878
for the particle filter with 100 samples for both.

we have access to all the observations collected during the time interval as opposed to
only the observations until the current instant like the filtering problem. An example of
a situation where we might be interested in something more than filtering is the SLAM
(Simultaneous Localization And Mapping) problem. This problem is as follows. A robot is
placed in an unknown environment and its job is to build a map of the environment. Since
the surroundings are completely unknown it has to simultaneously build a map, estimate
its position and evaluate the next position to go to. To do so, it typically uses a filtering
algorithm to estimate its position and the map is built based on these filter estimates.
This results in a coupling between errors of the map and errors of the state estimate and
arguably a much accurate map can be built using an accurate estimate. The procedure is
then to use all the observations received by the robot together to calculate the corrected
state estimate and then improve the map based on this. This is akin to something like least
squares problems where we have access to a lot of data and are tasked with estimating the
state at one particular instance.

These two sections look at maximum a posteriori estimation problems, in particular
trajectory smoothing and trajectory decoding. The smoothing problem can be formally
stated as below.

Problem 3.4. For a system defined by Equations (3.3) and (3.4), given a set of observations
Yt := {y(s) : s ≤ t}, find an estimate {x̂(s) : s ≤ t} such that (i) E[‖x(s) − x̂(s)‖2] is
minimized and (ii) the random variable x̂(s) is square integrable and Yt-measurable.

This is popularly known as the fixed-interval smoothing problem and the solution to
this is [AE86],

x̂(s) = E[x(s) | Yt] ∀ s ≤ t.
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3.5.1 Forward-Backward algorithm

We will first give a quick derivation of the continuous-time smoothing algorithm and see
how it relates to filtering estimates. Let the smoothing density be given as ψ(µ, t). Also,
denote the optimal filtering density at time t by φ(µ, t). The corresponding distribution for
smoothing is written as Px(s)(µ | Yt) = P(x(s) = µ | Yt) and similarly for filtering. Formally,

Px(s)(µ | Yt) =

∫ ∞

−∞
Px(s)(µ |x(s+ ds) = ν,Yt) Px(s+ds)(ν | Yt) dν (3.16)

The process y(t) is assumed to be separable [Doo53] as is done in [LPS70]. This means that
limits and bounds over dense subsets for example ȳ(t) = {y(t) : t ≤ T ; t ∈ Q} are equal to
the limits and bounds over the continuous space {y(t) : t ≤ T ; t ∈ R}. We can replace y(t)
by ȳ(t) which is the discrete equivalent of y(t). In particular, this process is equal to y(t)
if t ∈ Q, otherwise zero. This assumption is not restrictive because any process y(t) which
is not separable has a corresponding separable process y′(t) such that they are equal with
probability one, i.e., P(y′(t) = y(t)) = 1. Since rational numbers are countable, replace y(s)
by ȳ(i) for some i and rewrite Equation 3.16 as,

Px(i)(µ | Yt) =

∫ ∞

−∞
Px(i)(µ |x(i+ 1) = ν,Yt) Px(i+1)(ν | Yt) dν.

But, Px(i)(µ |x(i+1) = ν,Yt) is equal to Px(i)(µ |x(i+1) = ν,Yi) using the Markov property.
Also,

Px(i)(µ |x(i+ 1) = ν,Yi) =
Px(i+1)(ν |x(i) = µ,Yi) Px(i)(µ | Yi)

Px(i+1)(ν | Yi)
.

Thus,

Px(i)(µ | Yt) =

∫ ∞

−∞

Px(i+1)(ν |x(i) = µ,Yi) Px(i)(µ | Yi)
Px(i+1)(ν | Yi)

Px(i+1)(ν | Yt) dν

Using the separability assumption, replace i by s and i+ 1 by s+ ds to get

ψ(µ, s) = φ(µ, s)

∫ ∞

−∞

Px(s+ds)(ν |x(s) = µ)

Px(s+ds)(ν | Yt)
ψ(ν, s+ ds) dν. (3.17)

Note that the denominator can also be written as

∫ ∞

−∞
Px(s+ds)(ν |x(s) = µ) φ(µ, s) dµ. Let

us discuss some of the terms in the formula for ψ(µ, s). The first term is the filtering density
φ(µ, s). The numerator of the integrand is the effect of dynamics of the system while the
denominator is the next predicted state estimate given the filtering estimate. This is weighed
by the smoothing density at a later time s+ds. Translating this formula to the discrete-state,
discrete-time case, if we define, α(µ, i) = P (x(i) = µ | Yi) and β(µ, i) = P (Yi+1:T |x(i) = µ),
the above expression simplifies to

ψ(µ, i) =
α(µ, i) β(µ, i)

P (YT )
. (3.18)
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This is the motivation for the classic Forward-Backward algorithm for smoothing which we
will use. In addition, the definition of α and β yields itself to an iterative procedure using
Bayes’ rule given in Equation (3.20).

Smoothing on approximate Markov chains The modified Markov chain, call it M δ
n,

for the time axis discretized by δ that was created for filtering in Section 3.3.1 will be
used here for obtaining smoothing estimates. The proposed solution to the fixed-interval
smoothing problem uses the forward-backward algorithm [Rab89] as motivated above. In
particular, let

αt(z) = P(Y0:t, ξ(t) = z),

βt(z) = P(Yt:T | ξ(t) = z),

P(ξ(t) = z | YT ) = η αt(z) βt(z), (3.19)

where η is a normalization factor dependent only upon YT .

We are interested in obtaining the smoothing estimate on a discrete Markov chain
whereby Theorem 3.3 will be used to prove that it converges to the optimal continuous
time smoothing estimate. Given Yt, partition the interval [0, T ] into m sub-intervals of
length δ at times tk, k ∈ 1, . . . ,m. Using the definition of αt(.) and βt(.) in Equation (3.19),
for this discrete-system, the iterative procedures can be given as,

αk+1(z) = P(yk+1 | z)
∑

z′∈S
αk(z)P(z | z′)

βk(z) =
∑

z′∈S
βk+1(z′) P(z′ | z) P(yk+1 | z′) (3.20)

Notice that αt(z) is just the usual filtering estimate as calculated in Section 3.3. βt(z) is
the backward filtering (since it runs backward in time) with the uniform density at time T
as the prior. Figure 3-6 describes the iterative update of α(·) and β(·). Run the filtering

Figure 3-5: Forward-Backward algorithm for trajectory smoothing

algorithm on M δ
n in the forward direction to get αtk(z) for all tks. A backward filter with
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uniform density as the prior then gives βtk(.). Let the smoothing density be

ψδ(z, t) = P(ξ(t) = z | YT ).

3.5.2 Smoothing on approximate Markov chains

We can now give the algorithm for smoothing. The inputs required are the Markov chain
M δk
n constructed for some n using Algorithm 2.3 and a δk as defined in Section 3.3. A

trajectory of the output y(t) 0 ≤ t ≤ T , is partitioned into m intervals thereby giving the
set {tk; k ≤ m} where 0 = t0 < t1 < . . . < tm = T . We find the unnormalized smoothed
density only at these m instants. Given these two numbers m and n, the batch smoothing
algorithm is described as follows. A Markov chain M δk

n where δk = tk+1 − tk shown as the
vertical line in Figure 3-6 is such that the transition probabilities are calculated for the time
discretization δk i.e. to go from time tk to tk+1. There is one such Markov chain with the
same set of states but different transition probabilities calculated using Equations (3.8) and
(3.9) for every instant tk. These Markov chains are used to calculate the solution of the
forward filtering problem to give αtk(z) while a backward filtering problem gives the values
of βtk(z) for all z ∈ Sn. The optimal smoothing density is just the product of these two
densities after appropriate normalization at every tk.

The incremental solution to this problem is not as straightforward. We want to increase
m and n in such a way that the smoothing density calculated on these discrete Markov
chains approximates the optimal smoothing density. The algorithm for this is given in
Algorithm 3.1 while some preliminary procedures are discussed below. We refine the Markov
chain approximation by the incremental algorithm given in Chapter 2 while simultaneously
breaking the interval [0, T ] into finer refinements to calculate the smoothing density at those
intervals.

• Partition the interval [0, T ] such that tk such that 0 < t1 < t2 . . . < tm < T and
max δk = δ. Create Markov chain approximations M δk

n each with the same n states.
The procedure Forward takes in the current time instant tk and Markov chain M δk

n

and calculates αtk from αtk−1
using Equation 3.20. Similarly, the procedure Backward

takes in the current time instant tk and Markov chain M δk
n and calculates βtk from

βtk+1
using Equation 3.20. The procedure Forward − Backward does both of these

operations.

• Every iteration adds a new sample zn+1 to create a new Markov chain M δk
n+1. The

smoothing density ψ(zn+1, tk) for all k ≤ m has to be recalculated. This probabil-
ity is dependent upon all the observations that create Y0:T , but we can use a local
approximation by assuming that the density is smooth, i.e.,

ψtk(z) =
1

|Znear|
∑

z′∈Znear(z)

ψtk(z′)

for all tk with k ≤ m. Since |Znear| = O(log n), this procedure takes O(m log n) time
to average and O((log n)2) time to create the new Markov chain M δk

n+1. Call this
averaging procedure ApproximateDensity.
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• Every iteration of the smoothing algorithm thus adds a new state to the Markov
chains. To approximate the smoothing density at all instants, we have to successively
refine the time partition also. Every O(log n) iterations, uniformly randomly sam-
ple a new time instant say t′ from the interval [0, T ] and create the corresponding
Markov chain M δ′

n . To obtain the α′t(z) and β′t(z), use the iterative procedure given
in Equation (3.20). This however affects the forward density of all tk > t′ and the
backward density of all instants tk < t′. We thus have to re-propagate these densi-
ties forward or backward m times for every new time instant added to the partition.
This procedure is an O(m n log n) operation. Since a new time instant is added only
if cblog(n + 1) − log nc > 1 we have m = O(log n). This results in the asymptotic
amortized complexity of the propagation operation being O(n log n).

Algorithm 3.1: Incremental Smoothing

1 n← n1;
2 m← m1;
3 for k ≤ m do
4 Create Markov chain M δk

n ;

5 ψtk = Forward− Backward(M δk
n ,YT );

6 while n < N do

7 for k ≤ m do

8 Create M δk
n+1 from M δk

n ;
9 ψtk(zn+1)← ApproximateDensity(ψtk);

10 if c blog n− log(n− 1)c > 1 then
11 t′ ← SampleTime;

12 Create M δ′
n+1;

13 ψtk ← Forward− Backward(M δ′
n+1,YT );

14 for tk > t′ do

15 ψtk ← Forward(M δ′
n+1,YT );

16 for tk < t′ do

17 ψtk ← Backward(M δ′
n+1,YT );

18 n← n+ 1;

19 return (M δk
N , ψtk);

Theorem 3.5. The smoothing density calculated by Algorithm 3.1 converges to the optimal
smoothing density given by Equation (3.17) as n → ∞ i.e. for any continuous bounded
function φ(·),

lim
n→∞

sup
t≤T
|E[φ(ξn(t)) | YT ]− E[φ(x(t)) | YT ]| = 0.

Remark 3.6. The optimal smoothing density is as given in Equation (3.18). Both the
forward and backward filters converge to the optimal foward and backward filtering densities
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Figure 3-6: x1(t) and x2(t) for Vander pol oscillator. Average state error over 100 runs was 0.051
for the filtering algorithm in Section 3.3 (without heuristics), 0.0164 for the smoothing algorithm
described in this section using 5000 samples and 0.04233 for the particle filter using 1000 samples.

respectively by Theorem 3.3 and hence the smoothing density given by Equation (3.18) also
converges to the optimal smoothing density which is the solution of Problem 3.4.

3.5.3 Examples

Figure 3-6 shows an example run on the Van der Pol oscillator as described in Section 3.4.
Note that the jittery nature of the filtered output for the Markov chain filter as well as the
particle filter is not seen in the smoothing output which leads to a much improved state
estimate.

3.6 Decoding

We can also consider the maximum a posteriori (MAP) trajectory estimator also known as
decoding. It aims to find the most likely trajectory that explains all the observations until
a fixed terminal time T . Consider the discrete time case to motivate the continuous time
solution. The problem here is to find a trajectory x̂(tk) such that

x̂ = arg max
x(tk)∈Rd; ∀k

P(x(·) | YT ).

Let us briefly go through Viterbi’s algorithm which obtains the solution to the above problem
using dynamic programming. Given a Markov chain Mn and a discrete observation sequence
yk at time instants tk, the Viterbi algorithm [FJ73] finds the most likely trajectory, i.e., x̂(tk)
for all k. Let γtk(z) be the probability of the most likely path that ends at state z and time
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tk generating observations y(ti); i ≤ k

γtk(z) = max
ξ(ti); i<k

P (ξ(ti); i < k, ξ(tk) = z, y(ti); i ≤ k) .

This can be written in an iterative form as follows,

γtk+1
(z) = max

z′∈Sn
γtk(z′) P(z | z′) P(ytk+1

| z). (3.21)

The Viterbi algorithm iterates over all time steps tk and all states z ∈ Sn to find the value
of γT (z). It also maintains the maximizer of the γtk(z) at each step. At time T , the state
with the highest value of γT (z) is the end-point of the most likely trajectory which can
be followed back using the maximizers maintained by the algorithm to yield the complete
trajectory.

In the general continuous time case the solution to the problem of finding the most
probable trajectory is infinite-dimensional. We will again consider the system in the drift-
diffusion form as given in Equation (3.3) and observations as given by Equation (3.4).
Formally, the objective then is to find the most probable trajectory as follows.

Problem 3.7. Given a stochastic differential equation like Equation (3.3) with observations
of the form given in Equation (3.4), the decoding problem finds the most probable trajectory
such that

θ(t) = arg max
θ∈C1

P
(
x(t) : ‖x(t)− θ(t)‖ < ε | YT

)

Remark 3.8. The maximization in the above problem looks peculiar for the following rea-
son. It is easy to define the most probable state problem as x̂s = arg maxz(s)∈Rd P(z(s) | YT )
where x̂s is the most likely state at time s. But this problem is not very meaningful for
the case of the space of trajectories because there is no legitimate prior on this space. We
however can consider a relaxation of the problem as given by Zeitouni in [ZD87] and take
an ε-neighborhood around the most probable trajectory. Given this form of the problem,
it is worthwhile to check whether the solution to this problem always exists. It turns out
that a solution to the above problem exists almost surely with respect to the observation
trajectory YT in an appropriate space [ZD88]. An interesting aside that comes from this
analysis is that a finite dimensional MAP trajectory estimator exists only in cases when a
finite dimensional optimal filter exists. Thus we can find a finite dimensional estimator to
calculate the MAP trajectory for situations when the Kalman-Bucy filter and the Benes’
filter work. In fact, if the observation equation is linear in the state, i.e., g(x(t)) = cx(t),
the solution of the MAP smoothing problem is the same as that of the optimal smoothing
algorithm given in Section 3.5.

Note that P(‖x−θ‖ < ε | YT )→ 0 as ε→ 0. So the cost function for a decoded trajectory
θ of the MAP estimator problem needs to be relaxed via normalizing as follows,

J(θ) = lim
ε→0

P(x : ‖x− θ‖ < ε | YT ) Ky

P(w : ‖w‖ < ε)
(3.22)
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where

Ky = E
[
exp

(∫ 1

0
g∗(ws)dys +

∫ T

0
f∗(ws)dws −

1

2

∫ T

0
(|g(ws)|2 + |g(ws)|2)ds

)
| YT

]

with (·)s = (·)(s). As proved in [ZD88], under some technical conditions, this converges to
the cost function

J(θ) = exp
[
− 1

2

∫ T

0

∣∣∣θ̇(s)− f(θ(s))
∣∣∣
2
ds− 1

2

∫ T

0
divf(θ(s)) ds (3.23)

+ y∗(T )g(θ(T ))−
∫ T

0
y∗(s)∇g(θ(s)) θ̇(s) ds

]
:= Ay(θ). (3.24)

Using variational calculus, it can be shown [ZD87] that the trajectory θ that maximizes the
above functional is the solution of the stochastic differential equation

dψs = (G∗(θs)−G(θs)) ψsds+K(θs, ys)ds+M(θs, ys) dys

dθs = ψsds. (3.25)

where if Gij =
∂fj
∂xj

, Hij =
∂gj
∂xi

and Zi = ∂
∂xi

trace G, Mij = Hij and Ki = (Gf)i + (Hg)i +

1/2Zi depend only upon the observations ys and the system defined by Equation (3.3)
and (3.4). In other words,

θ = arg max
f∈C1

J(f).

Solving for the MAP trajectory then is finding the trajectory that minimizes this cost
function. The above equation has a stochastic term dy but the right way to think of a
solution θ is that it is a strong-sense unique solution of Equation (3.25) (see Appendix A)
because the observation trajectory y(s) is given beforehand and the solution is calculated
with respect to the filtration Ys. Let us only consider a simple case of boundary conditions
when the initial state of the system is known perfectly θ0 = x0. The boundary conditions
can be given as,

θ̇T = f(θT )

θ0 = x0.

Note that the boundary conditions are however split. This is similar to optimal control
theory where the differential equations of states and co-states have split boundary condi-
tions. The problem is then to find a trajectory which is the solution of the above differen-
tial equation with these boundary conditions. This is a general two-point boundary value
problem and can be solved in a number of ways given access to the observation sequence
y(s); 0 ≤ s ≤ 1. We can however use the knowledge that θ(s) minimizes the above cost
function (which can be calculated for any state) to create a Rapidly Expanding Random
Graph (RRG) [KF11] with the split boundary conditions. The shortest cost path in this
graph is then the solution Equation (3.25). Note that θ(t, x) is the probability of the most
likely path reaching x ∈ S at time t while generating observations y(s); s ≤ t along the
way [ZD87], it is the continuous time counterpart of γk(z). Thus, solving Equation (3.25)
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for the MAP trajectory is equivalent to solving the Viterbi algorithm on a discrete Markov
chain. It is this equivalence which will be useful to solve the decoding problem using Markov
chain approximations.

3.6.1 Decoding on approximate Markov chains

In this section, we will give an algorithm which use the Viterbi algorithm on discrete Markov
chains approximations to recover the solution to the continuous time MAP problem de-
scribed in Problem 3.7. We will follow a similar procedure as that of smoothing. Given
continuous-time observations of y([0, T ]), partition the interval [0, T ] into m subintervals
and create a Markov chain approximation M δk

n at every time instant. The Viterbi algorithm
can be then be run to find the most likely trajectory, i.e., the trajectory with the least cost
as defined by Equation (3.22) in a batch fashion. In addition to this, we can refine the
approximate Markov chains and also create successive refinements of the time axis to get
an incremental solution to the decoding problem.

The decoding problem is however simpler than smoothing in the following sense. Since
we are only interested in the most likely trajectory, we need not maintain the whole smooth-
ing density at every time instant. The remainder of the section gives an incremental solution
to the decoding problem by constructing a Markov chain directly in the S × [0, T ] space.
This space can be discretized in a different way than the smoothing in Algorithm 3.1. Ap-
pend the state space with time as z = (t, x) along with the trivial dynamics for the time
part, i.e., ṫ = 1 and create a locally consistent Markov chain using Algorithm 2.3 to get
Mn. Note that ∆t(z) as defined in Section 2.4.1 is the expected increment in time of any
Markov trajectory ξ(t) after a transition at state z. i.e.,

E[∆ξ0(tn+1) | ξ(tn) = z] = ∆t(z),

where ξ0(.) denotes the time component of the state. This condition along with the other
three conditions given in Equations (2.5)-(2.7) then ensure a locally consistent chain in the
new state space. Figure 3-7 shows the Markov chain constructed in this appended state-
space. Arguably, this construction could have been used in Algorithm 3.1 also. However,
the smoothing problem calculates the whole conditional density of the state at every time
instant s ≤ t. With probability 1, no two samples in Sn as constructed here even have the
same time components whereas we need the conditional density as time tk to propagate
it to time tk+1 using Equation 3.6. The decoding problem only finds the most probable
trajectory and does not need to maintain the whole conditional distribution.

3.6.2 Algorithm

The above discussion and the fact that the solution to the decoding problem is the solution
to some optimal control problem will help us formulate an algorithm for the MAP trajec-
tory. This relies on a direct construction of a Rapidly Exploring Random Graph (RRG)
with appropriate changes to its elementary routines as discussed below. Roughly, an ap-
pended state-space [0, T ] × S as shown in Figure 3-7 is sampled to create a Markov chain
incrementally after which the Viterbi algorithm can be run on it to obtain the solution.
The preliminary procedures described in Section 2.4.1 almost remain the same with a few
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Figure 3-7: Decoding Markov chain

key differences are discussed here. Sample procedure samples a point z = (t, x) uniformly
randomly from the appended state space [0, T ]×S. Let t(z) denote the time component of
the state z of the Markov chain. Near returns a set Znear of all states zk ∈ Sn such that

‖zk − z‖2 ≤ γ
(

log n

n

)1/(d+1)

where γ is the same as described in Theorem 2.4. The holding time is trivial in the case
of decoding and is the expected time that the chain takes to go from state z to the next.
The only difference in this construction is that instead of an explicit formula for the holding
time, given states in zk ∈ Znear we calculate it as

∆t(z) = E[∆ξ0
k(z)]

where ∆ξ0 denotes the increment of the time component i.e. ∆ξ0
k(z) = tzk − tz. Transition

probabilities are calculated similarly to satisfy the local consistency conditions which can be
done using the linear program in Section 2.4.1. If we wish to use the Gaussian approximation
which requires a full rank F (x), we can consider a “stochastic” time dynamics given by
ṫ = 1 + σtw̃ where w̃ is zero mean standard white Gaussian noise with σt being very small.
The procedure UpdateGamma(z) solves Equation (3.21) to obtain γ(z) using states zk ∈ Znear
with t(zk) < t(z). Refer to [KF11] for a detailed description of RRG. Algorithm 3.2 uses
modified preliminary procedures as described above to build a Markov chain Mn on the
appended state-space using Algorithm 2.3 and run the Viterbi algorithm on it to calculate
γk(z) for all z ∈ Sn.

Remark 3.9. The Viterbi algorithm iterates backwards from the final time to the starting
time to get the most likely trajectory. In order to converge to the optimal decoded output,
we need to ensure that the set ∂S = {T}×S is densely sampled while constructing Mn. Just
sampling [0, T ) × S is not enough because the decoded trajectory is constructed explicitly
by starting at the final time. A trivial counterexample is a 1-dimensional process x(·) with
x(T ) > ε. If there is no sample in the set {T} × [0, ε], the decoded trajectory will be such
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Figure 3-8: Decoded trajectories with σ = 0.1 and γ = 0.1. Total error between the actual and

estimated trajectory, calculated as
∫ T
0
‖x(t)− x̂(t)‖22 dt, is 4.9× 10−3 with 20, 000 samples in Figure

(a). The convergence of decoding error averaged over 100 trajectories is shown on a log-log plot in
Figure (b). The red curve shows a 10th order polynomial fit for the error data.

that |θ(T )− x(T )| > ε. In other words, the set ∂S is a boundary set of the state-space for
this problem. The Sample procedure is thus modified to sample two points one inside the
set S and one on the boundary ∂S.

Having constructed the Markov chain Mn, the Viterbi algorithm gives the most likely
trajectory in O(n log n) time (since every state z is connected to O(log n) states in our
construction of the approximate Markov chain.

Algorithm 3.2: Decoding on Markov chain

1 Create Markov chain Mn;

2 S′n ← Sort z ∈ Sn according to t(z);
3 for z ∈ S′n do
4 γ(z)← UpdateGamma(z);

5 zend ← z ∈ Sn ∩ ∂S with largest γ(z);

6 return (MN , γ(·), zend);

Example Let us consider a simple example of a 2-dimensional linear system and calculate
the maximum a posteriori trajectory for it. The dynamics is given by the equation dx1 =
−3 x1 dt+σ dw1 while observations are obtained through a process y(t) = [y1(t), y2(t)]T with
dy1 = x1 dt+ γ dv1. The corresponding equations for x2 and y2 are similar. The system is
propagated for T = 2 secs to generate the process y(t) which is then used in Algorithm 3.2
to run the Viterbi algorithm. Figure 3-8 shows an example decoded trajectory and the
decoding error as a function of the number of states n in the approximate Markov chain.



Chapter 4

Control of Partially Observable
Processes

After considering state estimation algorithms in the previous chapter, we move to a related
problem, that of decision making in dynamic environments. It is a problem that we come
across in many different branches like control systems, portfolio management, supply chain
management in operations research to name a few. These problems typically involve a
situation where we have to choose a feasible set of actions to satisfy numerous possible
future outcomes and do so while preserving some notion of optimality. These are primarily
modeled as Markov decision processes (MDPs) wherein the system is modeled as a Markov
chain that transitions based upon the action chosen. This action is chosen in such a way that
it minimizes some form of a state and action dependent cost. In certain situations, instead
of fully observing state variables we might instead be able to observe other quantities which
give partial information about the state of the underlying system. These observations may
either be exact or they may be corrupted by noise. This gives rise to partially observed
Markov decision processes (POMDPs). POMDPs are thus a very general and principled
approach to model problems of decision making under uncertainty.

The solution to real-life POMDP problems is marred by computational intractability.
In fact until a few years ago, even problems with more than 10 states were beyond the reach
of computers. This is primarily because of two aspects. As the number of states, actions
and observations gets larger, the number of possible future states of the system grows
exponentially. This space, as we will later parametrize it, is known as the belief space.
The task is then to search for optimal policies that take into account all different future
states. The other equally hard aspect of the problem is that as the number of time steps
considered in the future grows larger, this search tree grows exponentially. The problem is
thus doubly exponential in the time horizon and the size of the system. Modern approaches
to this make extensive use of heuristics to search this large space efficiently. This chapter
proposes the idea that instead of solving a larger POMDP from scratch, we can successively
approximate the solution by solving smaller POMDPs which are much easier to solve due
to their size. There are two major things to be considered in such a program. Firstly,
given a larger problem we need to be able to construct smaller approximations of it. In
particular, this chapter looks at general continuous time partially observable problems and

55
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creates sequences of “smaller” problems which converge to it in the limit. Secondly, the
solution obtained for the larger problem should not only be optimal but also be calculated
in an incremental fashion i.e. the control policy of smaller POMDPs should approximate
the solution of the continuous time POMDP in an appropriate sense. This program thus
enables us to solve general partially observable problems if we can solve the smaller discrete
POMDPs efficiently.

The structure of this chapter is as follows. Section 4.1 provides some background on
discrete time POMDPs. With a large history of almost 40 years, there have been nu-
merous different approaches to obtain a computationally tractable solution. In particular,
Section 4.2 summarizes four major areas that these methods fall into. This section also dis-
cusses why the POMDP problem is so computationally challenging by analyzing different
existing algorithms and complexity results. This motivates a new solution to the POMDP
problem which is the primary content of this chapter. Section 4.4 concretely defines the
continuous time stochastic control problem with noisy observations. This formulation is
general enough to encompass a number of other equivalent problems. Section 4.5 discusses
the the construction and details of the proposed solution. In particular, it defines the con-
struction of sequences of discrete POMDPs which approximate the continuous time problem
that we are looking at along with a way to find the solution incrementally. Section 4.6 is the
core of the technical part of the chapter and proves a number of results that show that the
approximate constructions converge to the original problem in terms of the cost function
and the control policies on these discrete POMDPs. Simulation experiments in Section 4.7
are validate the performance of the proposed algorithms on a number of classic problems.

4.1 Preliminaries

Markov decision processes

An MDP is a tuple consisting of M = (S,A, P, s0) where S is a finite set of states such
that the intial state is s0 ∈ S and A is a finite set of actions. The process is Markov in
the sense that taking an action a ∈ A from a state s ∈ S leads to a new state s′ ∈ S with
a probability P (s′ | s, a). If the process is not time homogeneous, we write this transition
probability as P(s′ | s, a, t). Let us consider the finite horizon problem first. Given a cost
function of the form

J = E

[
T∑

k=1

l(s, a, k) + L(s(T ))

]

l(s, a, t) is the cost incurred after taking an action a at state s. while L(s(T )) is a terminal
state cost. A policy π : S → A is a mapping from the set of states S to the set of actions
A. An optimal policy π∗ is a mapping such that

Jπ∗ = inf
π∈Π

Jπ

where Jπ = E
[∑T

k=1 l(s, π(s), t) + L(s(T ))
]

and Π is the set of all feasible policies which

is the set of all Markov policies. Discounted cost, as shown below, ensures that the cost
function remains finite even for infinite horizon control problems by considering a cost
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function like

J = E

[
T∑

k=1

γk l(s, a, k) + L(s(T ))

]

where γ ∈ (0, 1] is a discount factor.

Partially observable Markov decision processes

A POMDP is a tuple M = (S,A,O, P,Q, b0) such that S is a finite set of states, A is a
finite set of actions and O is a finite set of possible observations received at those states.
The variable b0 is called the initial belief which is a probability mass function over the set S
denoting the probability b0(s) = P(s(0) = s). P denotes the transition probabilities and is
same as that of the Markov decision process. M is a probability mass function which gives
the probability Q(o | s) = P(o | s) for all o ∈ O. Similar to the MDP case, we will consider
cost functions of the form

J = E

[
T∑

k=1

l(s, a, k) + L(s(T ))

]
.

A POMDP has primarily two sources of uncertainty, one is the stochastic nature of the
inherent system while the other is the uncertainty arising from noisy observations of its
states. It turns out that these two sources together lead to an explosion of possible scenarios
which makes the solution much harder than either of its component problems viz. MDPs
or Hidden Markov Models (HMMs). A simple example is the following problem.

Problem 4.1. Consider a system with 3 states s1, s2, s3. Every state si has 2 transition
matrices, one for each action aij (j 6= i) of probabilities P(sj | si, aij). The observation
consists of a matrix of probabilities of the form P(sj | si) if si is the true state. The system
gets a (state dependent) reward after it takes an action based upon one observation.

A distribution on these 3 states is a normalized tuple of probabilities π = (p1, p2, p3) also
called belief shown as a plane in a 3-dimensional space in Figure 4-1a. Every action and
observation sequence results in a different tuple in this space. The objective then is to find
some sequence of actions such that each action a ∈ {aij ; i, j ≤ 3} starting from some initial
tuple π0 to get the maximum reward. For a finite horizon problem, the set of beliefs is finite,
although exponentially large in both the number of states, actions and observations and the
time horizon. After searching on a tree with 6 actions and 3 observations i.e. 6× 3 possible
beliefs at every step, we get a value function given in Figure 4-1b parametrized by p1, p2

due to normalization. This shows the explosion of the computation required for 1 step, 6
actions and 3 possible observations. As the number of steps, actions and observations gets
larger, the computation required grows exponentially and the problem very quickly becomes
intractable. In fact after 30 years of research since the first results in the area, problems
with more than tens of states were still intractable.
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Figure 4-1: Example 3-dimensional belief space with its corresponding value function.

4.2 Previous approaches

This section discusses some solutions to the POMDP problem. It focusses on the widely
different areas that have generated different approaches to this problem.

Stochastic control. The results in this area can be broken down into two subparts. First
is the existence and nature of controls for the general non-linear continuous time optimal
control problem. The second section focusses on finite dimensional filtering problems which
enable a solution to the partially observed stochastic control problem using an equivalent
separation theorem.

Consider a stochastic system in the drift-diffusion form given by

dx(t) = f(x, u) dt+ F (x, u) dw(t). (4.1)

The unique weak-sense solution to the above equation written as

x(t) = x(0) +

∫ t

0
f(x(s), u(s)) ds+

∫ t

0
F (x(s), u(s)) dw(s)

where x(0) is a random variable drawn from some initial distribution x(0) ∼ b(0). Formally
under assumptions of continuity and smoothness, the Fokker-Planck equation describes the
evolution of this initial distribution under the dynamics given by Equation (4.1). If b(x, t)
be the density of x(t) at a time t we have

∂b

∂t
= −

d∑

i=1

∂

∂xi
(fib) +

1

2

d∑

i=1

d∑

j=1

∂2

∂xi∂xj
(FF Tij b). (4.2)

This can also be written in short as
bt = Lf b
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where Lf is the forward Fokker-Plank operator defined as

Lf () =
d∑

i=1

∂

∂xi
fi(·) +

1

2

d∑

i=1

d∑

j=1

∂2

∂xi∂xj
FF Tij (·).

If in addition to the dynamics we have stochastic observations of the form

dy(t) = g(x) dt+G(x) dv(t) (4.3)

with v(t) being uncorrelated to w(t), the evolution of the unnormalized conditional distri-
bution P(ξ(t) = x | b(0),Yt) is given by the Zakai equation. The density q(x, t) evolves as
follows.

dq = Lf (q) dt+ q gTdy (4.4)

Lf is the Fokker-Planck operator as defined above. As seen from this formula, the Zakai
equation is a stochastic partial differential equation dependent upon the random process
y(t). The solution of this equation entails the solution of the optimal filtering problem.

The aim of the stochastic control is then to influence the distribution given by Equa-
tions (4.2) and (4.4) from an initial distribution to some terminal distribution so as to
minimize some cost criterion of the form

J = E
[∫ T

0
l(b, u, t) dt+ L(b(T ))

]

Complications arise on this route because the resulting dynamics is an infinite dimensional
system and the controlled object i.e. the state x(t) no longer enters the control problem.
However, the theory of optimal control of distributed parameter systems is sufficiently
developed [ABC+08], this problem is a special case of that general theory. A number of
results in this area are known. For example the Hamilton-Jacobi-Bellman equation for this
problem is given by Mortensen in [Mor66] or in a different form by Kushner in [Kus65]. The
controller in such situations depends upon the whole history of the processes x(t), y(t) or
equivalently, the control is a Markov function of the conditional state distribution at time t.
Explicit solutions to the HJB equation are difficult to obtain because it is an HJB equation
in function space. However, special cases like linear dependence of the drift (f(x, u)) and
observation (h(x)) on the state x give back the Linear-Quadratic-Gaussian (LQG) problem.

Speaking of the LQG problem, with linear dynamics and observations, we have access
to a fundamental result called the separation principle which allows us to reformulate the
partially observed problem as a completely observed one with the state as the conditional
mean given by the Kalman filter. It can be shown that optimal LQR controller placed
in a loop with a Kalman filter is optimal. It is tempting to look for a separation result
for non-linear systems but it eludes effort since optimal finite dimensional filters for the
general non-linear problem are unavailable. A major result in this area is however given by
Mortensen [Mor66] where he shows that the separation principle is valid with the conditional
distribution of the state based on observation history taken as a sufficient statistic on which
control actions are based.

Theorem 4.2 ([Mor66]). Conditional distribution of the state given observation history
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is a sufficient statistic for POMDP

Any success towards a separation theorem for non-linear systems thus depends upon
solving for the optimal conditional density. Charalambous in [CE97] gives a number of
cases where such a solution is possible viz. finite dimensional estimation algebra [BC80],
drift and observations being in gradient form(Benes filter [Ben81]), rational or exponential
non-linearities. We will explore these methods further in following sections.

Value function approximation. Arguably, the most important result that makes POMDPs
practically tractable is due to Smallwood and Sondik [SS73] which shows that optimal cost
function is a convex and piecewise-linear function of the current state of the underlying
Markov process. Let us quickly discuss this result. The Bellman equation for the optimal
cost in the discounted cost problem starting at a belief b, J(b) can be written as

J(b) = min
a∈A

(
l(x, a) + γ

∑

o∈O
P(o | b, a) J(b′)

)
(4.5)

where l(·, ·) is the running cost, γ is a constant discount factor and b′(s) = P(s | b, a, o) is
the new belief state after taking an action a at state bn. The optimal cost function can
however be expressed as

J(b) = min
α∈A

(b . α)

where A is a finite set of α−vectors which are supported on the set of states S. Each of the
α− vector is associated with an action a(α) which is precisely the minimizing control of the
Bellman update. Thus these α-vectors completely represent the value function as well as
the policy in a POMDP problem. Instead of explicitly calculating and updating the value
function at every belief, fast methods just maintain a set of α-vectors and update them.
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Figure 4-2: Approximation of the value function using α-vectors which are tangent planes to the
value function at the sampled beliefs. The value function is mirrored about the line x+ y = 1 only
for visualization purposes.
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Owing to this result, a significantly large portion of literature is thus dedicated to
efficient computations and representations of the value function like Sondik’s one-pass al-
gorithm which uses dynamic programming and the above mentioned structure of the value
function to approximate the value function [SS73]. Dynamic programming has been used
in a number of other algorithms such as [Mon82, LCK96]. It is evident that some form of
relaxation is necessary to make the problem tractable. Exploiting the underlying structure
is in fact crucial for practical solutions to this problem. Structured representations of the
policy have been explored in [BP96, ZL96]. Pruning methods for dynamic programming
updates enable much faster algorithms in practice as is shown in [CLZ97].

Motion planning. Another major area of modern results is inspired from motion plan-
ning methods. Given the vast success of randomized sampling based methods for path-
planning problems even in high-dimensional configuration spaces like Probabilistic Road-
maps [KL98] and Rapidly Exploring random trees [KJL00, LaV98], it is tempting to apply
them to search the large belief spaces of the POMDP problem. Though these methods
are primarily for deterministic problems, efforts have been made to incorporate stochastic
actions by using probabilistic roadmaps. Incorporating observations has generally not been
feasible. However, if we can identify a certain structure to the belief space such as Gaussian
with factored covariance [PR09] or linearity of the underlying system [BR11, PPK+12] we
can create tractable algorithms easily. The crucial observation in such cases is that the
evolution equations for the mean of the conditional distribution are controllable and in
cases where we can efficiently keep track of the variance of the distribution after different
actions, the problem of an exponentially growing action-observation tree is tractable. The
strong point of this approach is that it leverages sampling strategies of motion planning al-
gorithms which have been empirically very successful to get solutions quickly. In addition to
this, the algorithms are applicable to continuous-time, continuous-state systems and stand
out as compared to the vast discrete-time, discrete-state literature. The crucial assump-
tion necessary for this approach, which is that the belief space has a particular structure
(e.g., Gaussian) is however vastly untrue and even simple real world examples like a robot
traveling inside a room significantly defy this. The algorithms proposed in this Chapter

Approximation methods. Evidently, the scalability of all solutions to POMDP value
iteration problems is affected by two main reasons.

• Curse of dimensionality : For a problem with n discrete states, the belief space consists
of a (n − 1) dimensional simplex. Therefore, simple approaches like discretizing the
belief space using grids scales exponentially in the number of states.

• Curse of history : Value iteration for solving POMDP is roughly like breadth-first
search. Starting from a given initial belief b(0), it explores all the reachable beliefs,
i.e., beliefs obtained from all possible action-observation sequences by simulating the
POMDP forward in time. The number of nodes in this tree scales exponentially with
the number of forward time steps. Pruning strategies for searching this large tree
improve performance only by constant factors.

The two problems are in fact related, the larger the number of states the higher is the
number of possible histories that the algorithm has to maintain. It has been found however
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that the curse of history is a stronger predictor of the running time of value iteration
algorithms [KHL08]. Approaches that effectively solve this aspect of the problem thus
stand a strong chance to perform well in real-world scenarios.

Modern point-based value iteration methods leverage this observation to sample highly
likely beliefs and iterate over them instead of treating every belief equally. Coupled with the
observation that the value function is piecewise linear and convex, maintaining a set of α-
vectors for these sampled beliefs ensures that even the unsampled beliefs are appropriately
(although not precisely) represented in the value function. PBVI is one of the first methods
which exploits this observation [PGT03]. To make this more precise,

Theorem 4.3 (PBVI error bound [PGT03]). For a sampled belief set B and any
horizon T , the error produced by the PBVI algorithm is

‖JBn − J∗n‖∞ ≤ c εB

where εB = maxb′∈∆ minb∈B ‖b− b′‖1 is the maximum distance of any valid belief b′ in the
belief simplex ∆ from the sampled set B.

The denser the sampled set B is, the better the error bound is on the value function
obtained. This result is important in the sense that it provides an easy way to explore
the belief tree starting from a small set of beliefs B and still guarantees how far the value
function obtained from such a process will be. It follows very easily from the piecewise
linear nature of the value function. It is seen that PBVI performs extremely well in practice
solving problems as large as Tag which has 870 states, 5 actions and 30 observations. Why
does such a simple sampling strategy perform so well? The primary difference between
PBVI and naive belief space sampling is that it explores only the reachable set of beliefs. It
follows that this reachable set should be significantly smaller than the set of all the beliefs.
Indeed the following result from [HLR07] shows that a good policy can be found efficiently
if the reachable belief space is small in some sense.

Theorem 4.4. For any b0 ∈ B, if C(δ) be the number of δ-sized balls needed to cover R(b0),
if |l(x, u, t)| ≤ lmax for all x, u, t for any constant ε > 0 an approximation J(b0) such that
|J(b0)− J∗(b0)| < ε can be computed in time

O
(
C

(
(1− γ)2 ε

4γ lmax

)2

logγ
(1− γ) ε

2 lmax

)

Successive Approximation of Reachable spaces under Optimal Policies : SAR-
SOP The success of the point-based POMDP algorithms was attributed to the fact the
reachable belief space starting from any initial belief b0, R(b0) is significantly smaller than
the entire belief space B. This allowed point-based algorithms to dense sample the smaller
reachable set and give sufficiently good solutions to even very large problems. An extension
of this idea further is made by Kurniawati, Hsu et. al. in [HLR07]. Sampling only beliefs
which are optimally reachable from the starting belief b0, denote this sampled set by R∗(b0),
should reduce the size of the sampling set even further. This is however an epistemological
issue since knowledge of the optimally reachable sets is equivalent to the solution of the
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Figure 4-3: Belief space B, reachable belief space R(b0) and optimally reachable belief space
R∗(b0) [HLR07].

complete POMDP problem. Heuristic techniques can be used to approximate this opti-
mally reachable set which results in the search algorithm avoiding large areas of the belief
space that are unlikely to be optimal. Doing so results in significant pruning of the set of
α-vectors also thus bringing more computational efficiency.

Algorithm 4.1: SARSOP

1 Initialize A of α-vectors representing the lower
bound on J∗;

2 Initialize the upper bound on J∗;
3 Start the belief tree rooted TR at b0;
4 while a do
5 Sample(TR,A);
6 Choose a subset B ⊂ TR ;
7 for b ∈ B do
8 Backup(TR,A, b);

9 Prune(TR,A);

For partially observed problems, the upper bound of the cost function is obtained easily
by assuming complete information, i.e., by performing value iteration on the MDP. The
lower bound can in fact be chosen to be the cost obtained by any simple policy such as
the fixed action policy. These bounds are used to heuristically bias the sampling process
towards beliefs that are optimally reachable and result in the best bound for the cost at the
root belief, J(b0). As seen in Algorithm 4.1, SARSOP iterates on mainly three routines.

• Sample : Given a node in the belief tree TR, a new node is obtained by choosing an
action a ∈ A and an observation o ∈ O. It is crucial to do this in an efficient so as
not to sample the whole reachable set R(b0). SARSOP traverses down the tree in a
depth first manner and chooses action-observation sequences which create the largest
change in the upper and lower bound of the cost function at b0.

• Backup : This is the Bellman update as seen in Equation (4.5). However, instead
of the value function, SARSOP propagates the gradient of the value function from
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the children in the belief tree to their parents. Doing so not only updates the value
function at the belief b but also updates the α-vectors over all the belief space.

• Prune : The Backup method results in an exponential increase in the number of
α-vectors per operation. A lot of resulting vectors are such that they are dominated
by other α-vectors over the entire belief space. It is thus prudent to prune these
vectors because they are sub-optimal anyway. SARSOP again uses the upper and
lower bounds of the value function at a belief b ∈ TR to prune away dominated α-
vectors and all the children beliefs if they are sub-optimal.

This strategy of approximating and sampling the optimally reachable belief space enables
very large POMDP problems with 1000s of states being tractable as shown in [HLR07].

4.3 Computational complexity of POMDPs

The seminal paper [PT87] argues that solving the POMDP problem is inherently hard. We
will limit ourselves to a short exposition of their result. Let us give a very quick introduction
to the theory of computational complexity to motivate the next result [PT87]. Let P denote
the class of all problems that can be solved in a polynomial-time on a Turing machine.
NP on the other hand is the class of problems that can be solved non-deterministically in
polynomial time, i.e., a non-deterministic Turing machine essentially branches out at various
stages of the decision problem and pursues every branch in parallel. It thus performs an
exponentially large number of computations. Computer algorithms can also be compared
with regards to the space required to solve them. The space consumed by an algorithm is the
number of memory cells (disregarding the size of input), this could very well be logarithmic
in the size of the input. PSPACE is the class of problems which need at most polynomial
space. P ⊂ PSPACE is easily seen because an algorithm running in polynomial time can at
most consume polynomial amount of space. Now consider an arbitrary problem Y ∈ NP.
A solution to this can be converted to the solution of the 3-SAT problem in polynomial
time. Since Y ∈ NP, it can be solved in polynomial time by an algorithm which queries the
solution of 3-SAT at most polynomial times. It is known that 3-SAT ∈ PSPACE. Thus P
and NP are both subsets of PSPACE. The notion of a problem being C-complete is defined
as A is C complete if (a) A ∈ C and (b) any member B of C can be reduced to A via a
polynomial time algorithm.

Theorem 4.5 ([PT87]). Finding optimal policy for a POMDP is PSPACE-hard.

Remark 4.6. A simple example will illustrate the point of the above theorem. The partially
observed problem can be converted to a fully observed problem by looking at a state b which
is the conditional probability of the state being b(s) for all s ∈ S. We have effectively made
the state-space of the problem infinitely large by doing so [Ber95]. In spite of this it is
known that the cost function has an easy minimization of the form

J = inf
y∈Y

E

[
T∑

k=1

l(bk, uk) + L(b(T ))

]
,
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where Y is the set of all action-observation sequences of length T and bk is the belief
obtained starting from b0 after k actions and k observations. It is thus a minimization over
all possible action-observation sequences given a starting distribution of states. This set
is in general exponentially large in the time horizon. This is precisely what makes it so
hard to solve POMDP problems. The above theorem shows that this phenomenon does
not arise due to our particular solution strategy (belief parametrization). It is in fact an
inherent property of the problem we are considering. It is thus unlikely that we will have a
finite-time algorithm to solve the infinite horizon POMDP.

Theorem 4.7 ([HLR07]). Even if the optimally reachable belief space, R(b0) can be
covered by polynomially many δ-balls, computing an approximation of J∗(b0) such that
|J(b0)− J∗(b0)| ≤ ε |J∗(b0)| is NP-hard.

Theorem 4.8 ([HLR07]). If δ-cover C of R(b0) with δ = (1−γ)2ε
2γ lmax

is given, an approxima-
tion such that |J(b0)− J∗(b0)| ≤ ε can be computed in time

O
(
|C|2 + |C| logγ

(1− γ)ε

2lmax

)

The above two theorems effectively illustrate the advantage of having an approximation
of the reachable space. Even if we can calculate an approximation of the optimally reachable
space, and it is polynomial sized say, it is still NP-hard to compute the value function. On
the other hand, if somebody gives the δ-covering of the reachable space, computing the
value function is just O(|C|).

Remark 4.9. These two sections summarize the state-of-the-art approaches to solve POMDPs.
Key features to keep in mind are as follows.

• Reformulating the problem of stochastic control as a completely observed MDP where
the state of the system is the conditional distribution (belief) immediately results in
the state-space being infinite dimensional. As such, any kind of dynamic programming
method must suffer from the curse of dimensionality. Results of the form described in
Theorems 4.5 and 4.7 effectively show that it is unlikely that computationally efficient
and complete algorithms can be found.

• Since the space of beliefs is so large, any structure we can infer for a given problem
at hand results in tremendous speed-up for search algorithms. There are few key
differences in the way the fastest algorithms leverage this observation. While discrete
POMDP solvers approximate the space of beliefs by sampling optimal sequences of
actions and observations, motion planning methods impose a pre-defined structure on
the nature of beliefs (e.g. Gaussian or finitely parametrizable). The former methods
alleviate the curse of dimensionality by reducing the sampling space but still fall
prey to the curse of history in the sense that they cannot solve long time-horizon
problems. Motion planning methods impose a strict finitely parametrizable structure
on the belief space so the curse of dimensionality does not affect them, but since
they make use of the separation theorem for problems consisting of linear systems or
Gaussian beliefs, they can evade the curse of history very well. Another significant
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advantage of motion planning methods is that they are based on random sampling
strategies and are able to quickly able to explore large high-dimensional state spaces.

4.4 Problem formulation

The major contribution of this work is that it attempts to combine the advantages of both
discrete POMDP solvers and motion planning methods. The aims of this work are as
follows,

• Discrete solvers can solve problems with very large state spaces efficiently because
they explore only the reachable set of beliefs. Our algorithms improve upon this to
create successive approximations of the reachable sets. Along the way, we use the
power of discrete solvers to solve successively harder problems to eventually obtain a
solution to the continuous time POMDP.

• Discrete solvers work on stochastic systems which are represented by discrete dy-
namics. Most real world problems are inherently continuous in nature. It is thus
worthwhile to create efficient approximations of general continuous time systems to
pass them on as inputs to discrete POMDP solvers. This problem can be solved in nu-
merous ways, we use the Markov chain approximation method discussed in Chapter 2
to solve it. As an added advantage of using this method, our discrete approximations
are

– General and applicable to any continuous time system. In particular, we do
not have to worry about the shape of the state space or boundary effects while
picking a particular discretization

– Very easy to compute

– Can be shown to converge with proven convergence rates

The crucial advantage however is that successive approximations of the POMDP prob-
lem will require finer discretizations. Instead of obtaining them from scratch, the
Markov chain approximation lends itself to a very easy incremental implementation
i.e. a finer discretization is obtained from a coarse discretization very efficiently.

• Random sampling strategies of motion planning algorithms are able to explore vast
state-spaces quickly. It is a direct consequence of the fact that they do not depend
upon any a priori discretization of the state space and thus the Voronoi bias is incor-
porated in the method itself. These concepts can be utilized to create computationally
efficient approximations of large POMDP problems.

4.4.1 Problem definition

We formulate the continuous time, continuous-state partially observed stochastic control
problem in this section. The methods discussed in Chapter 2 will be used in the following
sections to provide a solution to this problem.
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Problem 4.10. Let the dynamics of a system be given as

dx(t) = f(x(t), u(t)) dt+ F (x(t)) dw

with x(t) ∈ Rd, the control belongs to some compact set u ∈ U ⊂ Rl and w(t) is the standard
m-dimensional Wiener process. The functions f(x, u) : Rd×Rl → Rd and F (x) : Rd → Rd×l
called “drift” and “diffusion” terms respectively are bounded and continuous. Observations
for this stochastic system are given by a process H(t) as

H(t) = g′(x(t)) +G′(x(t)) v′

where H ∈ Rk and v′ is standard n-dimensional white Gaussian noise. g′(x) : Rd → Rk
and G′(x) : Rd → Rk×n are bounded and continuous. Find a control policy π(t) ∈ U
which is measurable with respect to the σ-algebra produced by the processes x(t) and y(t)
i.e. π(t) ∈ Fxt ∪ Fyt such that it minimizes the cost function

J = E
[∫ T

0
l(x, u, t)dt+ L(x(T ))

]

with x(0) drawn from some distribution b(0). Again l(x, u, t) and L(x(T )) are bounded and
continuous. The time T can be finite or be be defined as the exit time from some compact
set G.

Note that the boundedness assumptions in the problem definition exist for technical
reasons such as using convergence theorems in function spaces (Dominated Convergence
Theorem / Bounded Convergence Theorem). It is ironical that even the simplest systems
such as a linearly dependent drift and observation flout these assumptions. However it is to
be noted that we have solutions for the linear case in the form of Linear Quadratic Gaussian
(LQG) case and hence need not worry about this. Note that if we desire to steer the system
to some terminal probability distribution say bf , we can write the terminal cost as a penalty
function in the form L(b(T ), bf ).

Lemma 4.11. Problem 4.10 is equivalent to minimizing the cost function

J = E
[∫ T

0
l′(b(t), u(t), t) dt+ L′(b(T ))

]

for some functions l′(·) and L′(·) where b(t) is the normalized conditional distribution of
the state given all the past history of observations i.e. b(t) is the normalized solution of the
stochastic PDE

db(t) = Lf (b(t)) dt+ g(x(t))T b(t)dy(t)

Proof. Using the Law of Iterated Expectations and Fubini’s Theorem, the cost function in
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Problem 4.10 can be given as

E
[∫ T

0
l(x, u, t)dt+ L(x(T ))

]
= E

[∫ T

0
l(x, u, t)dt

]
+ E [L(x(T ))]

= E
[∫ T

0
E[l(x, u, t) | Yt] dt

]
+ E[ E[L(x(T ) | YT ] ]

This is equivalent to the above cost function with

l′(b(t), u(t), t) = E[l(x, u, t) | Yt] =

∫

Rd
l(x, u, t) b(x(t)) dx(t)

and

L′(b(t)) = E[L(x(T )) | YT ] =

∫

Rd
L(x(T )) b(x(T )) dx(T )

�

The above lemma is a version of Theorem 4.2. Thanks to it, we will freely use either
of the two representations of the cost function in the upcoming parts of the thesis. For the
purposes of proving theorems, we will be interested in an observation model which is itself
given by a stochastic differential equation. That the two observation models are equivalent
is proved in the following lemma.

Lemma 4.12. The observation model in Problem 4.10 is equivalent to the observation
model

dy(t) = g(x(t)) dt+G(x(t)) dv

for some functions g(·) : Rd → Rk and G(·) : Rd×n and where v(t) is standard n-dimensional
Wiener process.

Proof. Let

y(t) =

∫ t

0
H(s) ds.

We then have
dy(t) = g′(x(t)) dt+G′(x(t)) dv

where v(t) is standard n-dimensional Wiener process by the definition of the Ito integral.
Thus in the above formulation of the lemma, we also have y =

∫
H, g′ = g and G′ = G.

Finally, note that by performing linear operations like integration we are not changing
the amount of information contained in the signal H(t). Thus the two observation models
are equivalent as far as state estimation is concerned. In other words, if H(s) is known for
s ≤ t, we also know y(s) for s ≤ t. �

The notion that observation at time t is given by a random variable which is normally
distributed with mean g(x(t)) and variance G GT will be useful in constructing the algo-
rithms. On the other hand, the fact that equivalent observations can also be given by some
Ito process will be useful to prove that the conditional expectation calculated along the
discrete Markov chain and the original process converge.
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4.5 Construction of discrete POMDPs

As described in Section 4.2, value iteration on the large belief spaces of POMDPs grows
computationally intractable very quickly and is impractical for problems beyond a few
states. We instead combine the advantages of random sampling algorithms along with
the Markov chain approximation method to create discrete POMDPs. These problems are
constructed in such a way that they converge in the limit to the original problem given in
Problem 4.10. This is the major result of the following sections. In addition to doing so,
we will leverage the fact that powerful discrete POMDP solvers like SARSOP are available.
The procedure then is to solve each of the discrete elements of our sequence Mn using
a discrete solver and ultimately solve the complete continuous time problem. Doing so
appears futile if we solve each new element of the sequence freshly from scratch. Hence we
will look for methods which utilize the solution of the previous POMDP of the sequence to
arrive at the solution of the next one. Roughly, the cost function approximation of Mn will
be a lower bound on the value function of Mn+1. Successive iterations on smaller elements
Mk to obtain a solution will be shown to be easier than directly attempting to solve Mn.
This is because approximating the optimally reachable set R∗n(b0) is the crux of solving
POMDPs efficiently. Larger the dimension of the belief space, harder this gets. The belief
spaces of Mk; k < n are effectively lower dimensional cuts of the larger belief space and
thus approximations of those smaller belief spaces can be used to obtain an approximation
of the larger space.

4.5.1 Primitive procedures

Most of the steps of the algorithm are similar to the construction of the Markov chain as
discussed in Section 2.4.1. There are however some differences because we are constructing
MDPs instead of Markov chains for the POMDP. Recall that a discrete POMDP is a tuple
M = (S,U,O, T, P,Q, b0) where S is a finite set of states, U is a finite set of controls, O is a
finite set of observations, T is the set of holding times, P (u); u ∈ U is the state transition
matrix while Q is an observation matrix which gives the probability of observations of the
form M(o, z) = P(o | z).

Sampling : Let x ∈ S ⊂ Rd. We will primarily use uniform random sampling procedure
to populate the set of states of the Markov chain S. The Sample procedure returns states
sampled independently and uniformly from S. In the event that there are state constraints,
let the set of constrained states be denoted by Sobs while the free space is denoted by Sfree.
The Sample procedure then returns a state z ∈ S such that z ∈ Sfree. The procedure
SampleControl samples one value uniformly randomly from the set U of admissible controls.

Neighboring states : This procedure remains exactly the same. Given z ∈ S and a
finite set S ⊆ S of states, the procedure Near(z, S) returns the set of all states that are
within a distance of r = γ (log n/n)1/d from z, i.e.,

Near(z, S) =

{
zk ∈ S, zk 6= z : ‖zk − z‖2 ≤ γ

(
log n

n

)1/d
}
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where n = |S|, d = dim(S) and γ > 0 is a constant.

Transition Probabilities The transition matrix P for an MDP is a function of a par-
ticular chosen control. Let U be the set of sampled controls with |U | = m i.e. u1, . . . um ∈
U ⊂ U . For every one of these controls, execute the ComputeTransProb procedure in
Section 2.4.1 once i.e. effectively the local consistency conditions are changed as follows,

◦ ∆t(z, u)→ 0 for all z ∈ S, u ∈ U

◦ E[∆ξ(z, u)]

∆t(z, u)
→ f(z, u)

◦ E[(∆ξ(z, u)− E[∆ξ(z, u)])2]

∆t(z, u)
→ F (z)F T (z)

The transition probabilities obtained are a function of both the state z ∈ S and the control
u ∈ U . In the successive sections, we will give explicit dependence of the number of sampled
controls m on the number of states in the MDP n. For now, it will suffice to assume that
m controls are sampled uniformly from U and m is a function of n.

Time Intervals : The continuous time system travels for different distances depending
upon which control is chosen. Thus the holding times are a function of the controls in the
MDP case. Given a state z ∈ S and a control u ∈ U , the procedure ComputeHoldingTime(z, S)
returns

∆t(z, u) =
r2

‖F (z)F T (z)‖2 + r‖f(z, u)‖2
,

where r is as given in the procedure Near(z, S).

Observation Probabilities : Given a state z ∈ S, the procedure ComputeObsProb(o)
returns a function P(· | o = g(z) ) which is

p(g(z′) | o) = η N(g(z′), g(z), G(z) GT (z))

where z′ ∈ Znear, N(x, µ,Σ) means the probability density of a normal random variable
with mean µ and variance Σ calculated at x and η is a normalizing constant.

Connect State : The procedure ConnectState acts on a state z ∈ S. It computes the
holding time for z, transition and observation probabilities for that particular state.

With these procedures in tow, we are ready to give the full algorithm to construct a
discrete POMDP approximation from a continuous system.

CreatePOMDP : This is essentially a wrapper procedure around Algorithm 4.4 and
given a POMDP with n states denoted as Mn, it outputs a more refined POMDP Mn+1

by running Algorithm 4.4. This creates the modified Markov chain construction described
in Section 3.3 because the as discussed before, the holding times of all the states in the
MDP have to be the same for running a filtering algorithm on it. The difference however
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is that the holding times in the POMDP case are a function of the sampled controls so the
minimization is over all the states and all the controls i.e.,

∆tn = min
z∈Sn, u∈Un

∆t(z, u)

4.5.2 Algorithm

We can get two algorithms for the construction of the approximating POMDP. In the first
version called as “batch” we only look at creating the nth element of the sequence Mn. It
draws upon the same concepts used in creating approximating Markov chains in Chapter 2.

Batch construction

Algorithm 4.2: Batch POMDP

1 for k ≤ N do
2 S,O ← Sample;

3 for k ≤ m do
4 U ← SampleControl;

5 for z ∈ S do
6 (S, P, T,Q)← ConnectState(z, S, P, T,Q,U);

7 return (S, P, T,Q,U);

Algorithm 4.3: ConnectState(z, S, P, T,Q,U)

1 for u ∈ U do
2 ∆t← ComputeHoldingTime(z, u, |S|);
3 Znear ← Near(z, S);
4 P (· | z, u)← ComputeTransProb(z, Znear, u,∆t);
5 Q(· | g(z))← ComputeObsProb(z);
6 T ← T ∪ (∆t);

7 return (S, P, T,Q);

This construction of the POMDP is very similar to that of Markov chains in Sec-
tion 2.4.2. There is one key difference however which we will discuss here.

• Sampling controls The procedure ComputeTransProb assumes m sampled controls
which form an approximate set Um ⊂ U . For the batch algorithm we can fix this
number of controls to be any reasonable number. They can be sampled for example
uniformly randomly from the compact set U . The crucial part of sampling controls
is to ensure that the number of sampled controls grows as we add more states to Sn.
It should grow in such a way that the set Um is a dense subset of U in the limit. In
particular, an O(log n) uniformly randomly sampled controls will ensure that Um is
dense.
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The following section proves that the cost is approximated arbitrarily well in spite of working
only with a subset of U . To put it more precisely, any control signal of the form u(t) for
t ∈ [0, T ] can be approximated arbitrarily well by a piecewise constant control on a dense
subset.

Incremental construction

Algorithm 4.4: Incremental construction of POMDP

1 n← 0;
2 U0 ← ∅;
3 for k < a do
4 u← SampleControl;
5 Uk ← Uk−1 ∪ {u};
6 m← a;
7 while n < N do
8 Sn, On ← Sample(Sn−1, On−1);
9 (Sn, Pn, Tn, Qn)←

ConnectState(z, Sn, Pn−1, Tn−1, Qn−1, Um−1);

10 Znear ← Near(z, Sn);
11 U ← Um−1;
12 if bc (log n− log(n− 1))c > 1 then
13 u← SampleControl;
14 U ← Um−1 ∪ {u};
15 m← m− 1;

16 for znear ∈ Znear do
17 (Sn, Pn, Tn, Qn)← ConnectState(znear, Sn, Pn, Tn, Qn, U);

18 Um ← U ;
19 n← n+ 1;

20 return (SN , PN , TN , QN , UM );

The difference between the construction of an incremental POMDP and that of the Markov
chain in Chapter 2 are lines 11-15. The set Um has to grow as n→∞. At the same time, we
need to ensure that every state contains transitions using the newly sampled control. Using
similar intuition as the construction of incremental Markov chains, we refine / recalculate
the transition probabilities for all states in the set Znear of every newly sampled state z.
The aim is to sample an O(log n) = c log n controls if the MDP has n states. Hence if
bc (log n − log(n − 1))c > 1 where bxc is the largest integer smaller than x, we sample a
new control u and add it to the set of all controls Um. It was proved in Theorem 2.5 that
every state z ∈ Sn is picked up for refinement infinitely often in the limit. This ensures that
every state will have a new transition matrix using the newly sampled control after finitely
many iterations of the incremtal algorithm.

Cost function approximation Given a discrete POMDP Mn created by Algorithms 4.2
or 4.4, we can use any point-based solver for example Algorithm 4.1 to obtain an approxi-
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mation to the value function. In particular, with an input of Mn, the output of SARSOP is
a belief tree TRn (b0) rooted at the initial belief b0 (which is a probability mass function over
Sn) and the set of α-vectors An. A small discussion on the nature of discrete cost functions
will be helpful at this point. Consider a discrete POMDP with the cost function given in
the form

J =
T∑

k=1

γk l(xk, uk) + γT L(xT )

where T is some hitting some of a goal set ∂G, xk = x(k) ∈ S and ak = u(k) ∈ U . We
will briefly discuss how a continuous time cost function can be translated into this form
given above. For two discrete POMDPs created by Algorithm 4.4, say Mn1 ,Mn2 , since they
approximate the same continuous time cost function, the time that the optimal policy takes
in both cases is the same. i.e. if the optimal policy takes kn1 steps for Mn1 and kn2 steps
for Mn2 we have

kn1 ∆tn1 = kn2 ∆tn2 = c1

For problems of the kind where l(·, ·) = 0 we can easily find the discount factor γn for
successive discrete POMDPs. In particular

γc1/∆tnn = c2 < 1 =⇒ log γn
∆tn

= c′ < 0 =⇒ γn = e−c ∆tn

for some c > 0.

Successive value function approximation Let An the set of α-vectors obtained by
solving the POMDP Mn having n states. Let Jn be the approximation of the cost function
created by An. In other words,

Jn(b) = min
a∈An

(b . α)

We are interested in obtaining a bound on Jn+1 based on An which will be used by SARSOP
to obtain An+1. There are two steps in such a program (i) the belief tree maintained by
SARSOP TRn consists of beliefs bn which are probability mass functions supported on the
set Sn (ii) set of α-vectors a ∈ An is a n-dimensional vector. We thus need to approximate
both the belief tree TRn+1 and the α-vectors An+1.

Approximating TRn+1 : Every belief bn ∈ TRn is a probability mass function supported
on the discrete set Sn. If bn+1 be the corresponding new belief supported on Sn+1, we can
calculate it by equating the moments of the two distributions as follows. Let bkn be the
probability mass at point zk ∈ Sn. Given bkn for all k ≤ n, we have to calculate bkn+1 for
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k ≤ (n+ 1) such that all the moments of the two distributions bn and bn+1 are equal i.e.,

b1n + . . . bnn = b1n+1 + . . . bn+1
n+1 = 1

b1n z1 + . . . bnn zn = b1n+1 z1 + . . . bn+1
n+1 zn+1

...

b1n (z1)n + . . . bnn (zn)n = b1n+1 (z1)n + . . . bn+1
n+1 (zn+1)n

These are n+ 1 linear equations for n+ 1 unknowns b1n+1 . . . b
n+1
n+1 and can be solved easily.

In the absence of this, the value bn+1
n+1 can also be obtained by local averaging as described

in the procedure ApproximateDensity in Section 3.5.

Approximating An+1 : For each α ∈ An, let αk denote its value at zk i.e., αk = Jn(δ(zk))
if δ(zk) is the Dirac measure at zk and if α were the best α-vector at a belief δ(zk). This
observation can be used to calculate the value αn+1 for all α ∈ An to obtain a new set of α-
vectors which are vectors of length n+1 and constitute An+1. This is done by starting with
the belief b(0) = δ(zn+1) and taking the optimal action u associated with α to obtain a new
belief say b(1). The bounds on the value function at this new belief can be approximated
from the previous paragraph, let Jn+1 be the lower bound. Then

αn+1 = R(zn+1, u) + Jn+1.

An+1 thus obtained forms a lower bound for the cost function of the new POMDP Mn+1

which can be used by SARSOP for biasing its search for the optimal policy. Note that this
was not implemented in the examples discussed in the experiments section.

4.6 Analysis

In gist, this section proves that the optimal cost as calculated on the approximate POMDPs
converges almost surely to the optimal cost as calculated on the original continuous time
POMDP as given in Problem 4.10. A few offshoots of the proofs are the facts that not only
does the cost converge, but the control policies also converge albeit in a suitably relaxed
fashion. After this section we can claim that the policies approximated by SARSOP while
solving successive POMDPs as generated in Section 4.5 result in a convergent policy which
is optimal for the continuous time problem.

A short summary of the program used in this section will be helpful before we dig into
the mathematics. This follows the scheme in [KD01] for the convergence of the cost function
of approximate Markov chains (see Theorem 2.2). There are some technical differences due
to the fact that we are working with conditional distributions and this section fills in these
details.

• The first part of this section considers uncontrolled processes. We saw in Section 4.2
that firstly, belief is a sufficient statistic for the cost function i.e. the cost function as
described in Problem 4.10 is equivalently also given as an integral of the belief. Since
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we are creating approximations to the original problem, the space of beliefs in our
approximations is different from the original space. An obvious striking difference is
that the approximate MDP belief is supported on a finite set (the set of states of the
Markov chain) whereas the actual belief is a continuous function. Our first task will
be to prove that these two objects converge in distribution. Belief being a sufficient
statistic will then imply that the cost functions for the uncontrolled problems converge
with probability 1.

• It might happen in finite difference approximations of continuous problems that the
space of approximate controls is not rich enough to approximate certain types of con-
trols which are actually optimal for the original continuous problem. It is a common
trick to establish a measure on the space of controls called relaxed controls to alleviate
such issues. We will spend considerable effort on understanding these controls and
it will turn out that they are not that far away from original controls as far as the
signals or the cost functions are concerned.

• Finally, the above two concepts come together and use weak convergence properties
of the trajectories xn ⇒ x, beliefs bn ⇒ b and controls mn ⇒ m to prove that the
cost function of the approximate POMDP converges to that of the original continuous
problem.

4.6.1 Convergence of belief trajectories

Theorem 4.13 ([Gog94]). For two complete separable metric spaces S1, S2, suppose
that Xn, Yn are S1, S2 valued random variables that converge in distribution to X,Y re-
spectively (X,Y are S1, S2 valued respectively). Define the Radon-Nikodym derivative as
dPn/dQn = Ln(Xn, Yn). Assume that Xn and Yn become independent under Qn with
marginal distributions µn and νn. If µn ⇒ µ and νn ⇒ ν with µ × ν being the distri-
bution of (X,Y ) under some measure Q and if Qn ⇒ Q weakly then the following hold.

(i) P << Q on σ(X,Y ) and dP/dQ = L(X,Y )

(ii) For every bounded continuous function F : S1 → R, the conditional distributions of
F (Xn) and F (X) converge in distribution i.e.,

EPn [F (Xn) |Yn]⇒ EP [F (X) |Y ]

Theorem 4.14. If xn ⇒ x, the conditional distributions calculated with respect to the filtra-
tion generated by the observations Yt = σ(y(t)), bn(t) and b(t) also converge in distribution
i.e.,

bn(t)⇒ b(t)

Proof. Consider the pair of stochastic differential equations

dx(t) = f(x(t)) dt+ F (x(t)) dw(t)

dy(t) = g(x(t)) dt+G(x(t)) dv(t).
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We use a change of measure from P to Q under which X is independent of Y . Q is defined
by

dP

dQ
= exp

[∫ T

0
g(x(t)) dy(t)− 1

2

∫ T

0
|g(x(t))|2 dt

]
(4.6)

Then P << Q on FxT ∪ F
y
T and the conditional expectation E[F (x(t)) | Yt] can be written

as

EP [F (x(t)) | Yt] =
φt(y, F )

φt(y, 1)

with

φt(y, F ) = EQ
[
F (x(t)) exp

(∫ T

0
g(x(t)) dy(t)− 1

2

∫ T

0
|g(x(t))|2 dt

)]

Using Theorem 2.2 of Chapter 2, the process x(t) is approximated by a Markov chain
resulting in trajectories xn(t). The conditional expectation thus becomes

EPn [F (x(t)) | Yt] =
φnt (y, F )

φnt (y, 1)

with

φnt (y, F ) = EQ
[
F (xn(t)) exp

(∫ T

0
g(xn(t)) dy(t)− 1

2

∫ T

0
|g(xn(t))|2 dt

)]

with the probability measure Pn that generates xn(·) given here by

dPn
dQ

= exp

[∫ T

0
g(xn(t)) dy(t)− 1

2

∫ T

0
|g(xn(t))|2 dt

]
.

Note that x(·) and y(·) are random variables taking values in D[0,∞) equipped with the
Skorohod metric. We can use Theorem 4.13 to conclude that E[xn(t) | Yt]⇒ E[x(t) | Yt] by
verifying the following.

1. (xn(t), y(t)) converges weakly to (x(t), y(t)) under the measure Pn. This is true from
theorems proved in Chapter 2.

2. Q distribution of (xn(·), y(·), Ln(xn, y)) converges weakly toQ distribution of (x(·), y(·), L(x, y)).
The first component is true because xn(·) has the same distribution under Pn, P and
Q. The second component is trivially true. The convergence of Ln(·, ·) to L(·, ·) is
seen from the fact that

[∫ T

0
g(xn(t)) dy(t)− 1

2

∫ T

0
|g(xn(t))|2 ds

]
→
[∫ T

0
g(x(t)) dy(t)− 1

2

∫ T

0
|g(x(t))|2 dt

]

using the Skorohod embedding theorem in which x̃n → x̃ almost surely. Having thus
verified all the conditions of Theorem 4.13, we can claim that

EPn [F (xn(t)) | Yt]⇒ EP [F (x(t)) | Yt]

for every bounded continuous function F (·). By the Pormanteau theorem (see Ap-
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pendix A), this means that indeed the conditional distributions at each time t converge
i.e.

bn(t)⇒ b(t)

This convergence takes place with respect to the usual norm on the Hilbert space
L2(Rd × [0, T ]) which is defined as follows. ψk ⇒ ψ where ψk, ψ ∈ L2(Rd × [0, T ]) if

∫

Rd×[0,T ]
ψkf dλ→

∫

Rd×[0,T ]
ψf dλ

where λ is the Lebesgue measure for all functions f ∈ L2(Rd × [0, T ]) which is the
weak convergence criterion.

�

Remark 4.15. We are interested in an offline solution of the POMDP problem in this thesis.
As such, a discrete solver is used to calculate the cost function over future belief trajectories
which are sampled via actions and observations sampled in the sets Un and On. The above
theorem proves that the belief calculated on the Markov chain using the same observations as
the continuous time process converge in distribution. We however need something stronger
i.e. the beliefs calculated on the Markov chain using sampled observations converge in
distribution to the beliefs calculated on the continuous time process using continuous time
observations. More precisely, the conditional distributions also converge with the processes
x, y are approximated by processes xn, yn which converge in distribution. This is fortunately
true when the observation process has Gaussian noise as proved using some additional
machinery in [Gog92]. Henceforth, let Ynt denote the filtration generated by observations
coming only from the set On upto a time t.

Theorem 4.16. The sequence bn(·) is tight.

Proof. Given bn(·) we will prove the conditions of the Prokhorov’s theorem to claim tight-
ness. We follow the first part of the proof of Theorem 2.1 in [Gog94]. Let λn(A,ω) =
Pn(xn(t) ∈ A | Yt). We thus have to prove that the sequence λn(·) is tight. Since xn(·) is
tight using Theorem 2.2, we have

Pn(xn(t) ∈ Kε) > 1− ε

for all n. Thus,

1− ε < Pn(xn(t) ∈ Kε) = En[λ(Kε)] (Iterated expectations)

=

∫
λn(Kε)1{λn(Kε)>1−1/k} dPn +

∫
λn(Kε)1{λn(Kε)≤1−1/k} dPn

<
1

k
Pn
(
λn(Kε) > 1− 1

k

)
+

(
1− 1

k

)
.

Use ε = ε′

k 2k
to get

Pn
(
λn(Kε) > 1− 1

k

)
≥ 1− ε′

2k
,
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which implies

Pn
(
λn(Kε) > 1− 1

k
∀k
)
≥ 1− ε′,

which proves that the sequence of measures λn (and equivalently bn) is tight by Prokhorov’s
theorem. �

Theorem 4.17. The sequence bn(·) converges weakly to a solution b(·) which is the solution
of the stochastic PDE in Problem 4.11.

Proof. Using a slight abuse of notation, let bn(·) itself denote a convergent subsequence of
bn(·). We can always extract such a subsequence because of tightness proved previously
in Theorem 4.16. Theorem 4.13 proves that the conditional distribution of states bn(t) =
P(xn(t) | Ynt ) converges weakly to b(t) = P(x(t) | Yt) which is the solution of the stochastic
PDE in Problem 4.11 for any t. The claim of this theorem then follows using Caratheodory’s
Extension Theorem which says that a measure on a field can be uniquely extended to its
σ-algebra [Wil91]. �

4.6.2 Relaxed Controls

Convergence properties of the Markov chain approximation were used in Theorem 4.19 to
establish the convergence of the uncontrolled cost function. For the analogous problem with
controlled processes, we need to consider sequences of controlled Markov chains and in these
cases convergence of the control process is also necessary in addition to the solution of the
differential equations. Roughly, the nature of the convergent solution of the Markov chain
is guaranteed merely by the local consistency conditions. However, the optimal controls for
the individual chains can be arbitrary and we cannot force them to take a predefined form
(e.g. feedback controls). This is due to the fact that unless the control space is compact
in a sense, the infimum of the cost function will not in general be attained in the control
space.

Example 4.18 (Non-existence of optimal controls). Consider a deterministic control
problem with u ∈ U = [−1, 1] and the system given by

ẋ(t) = b(x(t), u(t)) = u(t).

Let the cost function be

W (x, u) =

∫ ∞

0

[
x2(t) + (u2(t)− 1)

]
dt.

We can see that controls of the form

un(t) = (−1)k on

[
k

n
,
k + 1

n

)
for k = 0, 1, . . .

result in W (0, un) → 0 as n → ∞ i.e., at x(0) = 0, the optimal control wants to take the
values ±1 simultaneously and there is no unique optimal control as such.
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It is for this reason that we need to work with controls with are compact whereby we
are assured that we still get the same infimum while taking limits as n → ∞. “Relaxed
controls” is a theoretical framework for this precise purpose. Note that this will be used
only in proofs and will not present itself in the algorithms.

Given a compact control space U , let B(U) denote the σ−algebra of its subsets. A
relaxed control is then a Borel measure m(·) such that m(U × [0, T ]) = t for all t ≥ 0. The
derivative mt(·) is defined as

mt(A) = lim
δ→0

m(A× [t− δ, t])
δ

The system in the above example can now be written as

ẋ(t) =

∫

U
b(x(t), α) mt(dα)

with the cost function being

W (x, u) =

∫ ∞

0

∫

U

[
x2(t) + (α2(t)− 1)

]
m(dα dt)

i.e. m(A× [0, T ]) is just the total time that the control u(t) spends in the set A ⊂ U during
the time interval [0, T ]. Let us apply this to the above example. Let αk = (−1)k ∈ U for
k = 1, 2 be the values of control and let mt(·) be a measure which takes values α1, α2 with
equal probability. Thus

ẋ(t) =
1

2
[b(x, α1) + b(x, α2)] =

∫

U
b(x(t), α) mt(dα).

Relaxed control essentially convexify the possible velocities and the cost-rate at every time.
The “optimal” relaxed control for this problem is then the measure mt(·) which takes the
values ±1 with probability 1/2.

The following theorems now enable us to prove convergence of the relaxed controls and
the cost function.

4.6.3 Convergence of cost function

Theorem 4.19. The cost function Jn converges to J almost surely where J is given by

Jn = E
[
L(bn(T ), T ) +

∫ T

0
l(bn(t), t) dt

]

and

J = E
[
L(b(T ), T ) +

∫ T

0
l(b(t), t) dt

]

Proof. We will assume that the functions l(·, ·) and L(·, ·) are bounded and Lipschitz con-
tinuous. Theorem (4.13) proved that bn(t)⇒ b(t). We can thus use the Mapping Theorem
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(see Appendix A) for weak convergent sequences to claim that

fn = L(bn(T ), T ) +

∫ T

0
l(bn(t), t) dt⇒ L(b(T ), T ) +

∫ T

0
l(b(t), t) dt = f.

We know that Pn ⇒ P where Pn is the distribution of bn and P is the distribution of b. By
the Portmanteau Theorem (see Appendix A) for any bounded continuous function f , we
have ∫

fdPn →
∫
fdP a.s..

Apply the above criterion for weak convergence to the functions fn and f to get

EPn
[
L(bn(T ), T ) +

∫ T

0
l(bn(t), t) dt

]
→ EP

[
L(b(T ), T ) +

∫ T

0
l(b(t), t) dt

]
a.s.

The proof for a finite fixed terminal time T is very easy as seen above. More conditions
need to be checked for cases where T is a random time such as

T = inf {t : b(t) /∈ G}

for some compact set G. These situations arise in problems where we desire to drive the
system to some terminal distribution.

Denote by Tn the time that the discrete POMDP leaves the set G i.e., Tn = inf {t :
bn(t) /∈ G}. Kushner proves that the sequence Tn ⇒ T on the compactified interval [0,∞]
in [KD01]. The proof of the above theorem in cases there T is a random exit time require
additional machinery as regards to the exit times being continuous under the measure
induced by the processes bn. We will not dwell on these proofs here, please refer the proof
of Theorem 9.4.3 in [KD01] for it. All the conditions go through except for the fact that
beliefs belong to the Hilbert space bn ∈ L2(Rd × [0,∞)) instead of xn ∈ Dd[0,∞). �

Theorem 4.20 (Theorem 10.1.1 in [KD01]). If

x(t) = x(0) +

∫ t

0

∫

U
f(x(s), α)ms(dαds) +

∫ t

0
F (x(s)) dw(s) (4.7)

and xn(0) ⇒ x0, then any sequence {xn(·),mn(·), wn(·)} is tight. Let {x(·),m(·), w(·)} be
the limit of a converging subsequence. Define

Ft = F(x(s),m(s), w(s), s ≤ t).

Then w(·) is a Ft−Wiener process, m(·) ∈ Ft, x(0) = x0 and x(·) satisfies Equation (4.7).

Remark 4.21. This theorem thus shows that the limit of a sequence of controlled diffusion
processes is also a diffusion process under our notion of relaxed controls. The essence
of the theorem is that the limiting controls are admissible. This provides the basis for
approximation of the limiting relaxed control by a piecewise constant control applied to
the Markov chain approximation in the next theorem. As it turns out, the cost functions
obtained by such a process are close.
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Theorem 4.22 ( [KD01]). For a given (m(·), w(·)), let the solution to Equation (4.7)
exist and be unique in the weak sense. Let the relaxed control cost function be defined by

W ′(x,m) := E
[∫ T

0

∫

U
l(x(s), α, s) m(dα ds) + L(x(T ))

]
. (4.8)

Then there exists a probability space

(xε(·), uε(·), wε(·))

where (wε(·) is standard Wiener process) with uε being an admissible piecewise constant
control that satisfies Equation (4.7) and

(i) P (ρT (xε, x) > ε) < ε

(ii) |W ′(x,m)−W ′(x, uε)| < ε

The above theorem proves that any relaxed control can be approximated by an admis-
sible ordinary control uε ∈ U . Notice that we have made use of the equivalence of the cost
functions proved in Theorem 4.11 to use this theorem for the function W ′(x,m) defined
above. Since the cost functions are equivalent, the theorem as cited can be used directly
for the cost function which features belief W (b,m). The program that we need to prove the
convergence of the cost function after this is as follows.

• Let b,m be a solution such that it is ε away from the optimal cost. We would like
to ensure some continuity in the relaxed controlled solutions i.e., does there exist a
relaxed control mn such that

|W (b,mn)−W (b,m)| ≤ δ

The proof of this is given in Theorem 10.3.1 of [KD01].

• If the answer to the above question is yes then we move on to prove that the sequences
of processes (bn,mn) are tight. If these sequences are tight, there exist subsequences
which converge weakly to some solution (b,m). In that case we can claim

W (bn,mn)→W (b,m)

• It then remains to prove that the minimas also converge. Let Vm(b) = infm∈U W (b,m).
Then

Vm(bn)→ Vm(b)

• If we take the infimum over the space of ordinary controls, V (b) = infu∈U W (b, u) we
finally have using Theorem 4.22 that

Vm(b) = V (b)

Theorem 4.23 (Theorem 10.4.1 in [KD01]). If xn ⇒ x, for any sequence of controls
un(·), let mn(·) denote the relaxed controls, let Tn denote the sequence of exit times for the
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discrete approximations. Then the sequence

{xn, bn,mn, wn, Tn}

is tight. In particular, there exists a subsequence which converges to a limit say {x, b,m,w, T}
such that it satisfies the equation

x(t) = x(0) +

∫ t

0

∫

U
f(x(s), α) m(dα) ds+

∫ t

0
F (x(s))dw (4.9)

Proof. This theorem adds additional quantity bn(·) to the tuple proved in the reference.
Hence we only need to prove that the sequence bn(·) is tight which is proved in Theorem 4.16.

�

Theorem 4.24 (Theorem 10.5.1 in [KD01]). If we have

{xn, bn,mn, wn} ⇒ {x, b,m,w}

weakly, then
W (bn,mn)→W (b,m) ≥ Vm(b)

Also,
lim inf

n
Vm(bn) ≥ Vm(b)

and
lim sup

n
Vm(bn) ≤ Vm(b)

Proof. (Sketch) The first part of theorem can be seen by the fact that as proved above every
sequence of the form

{xn(·), bn(·),mn(·), Tn}
has a weakly convergent subsequence whose limiting processes satisfy Equation 4.9. Denote
the limit of this subsequence by {x(·), b(·),m(·), T}. By the definition of weak convergence,
we than have

EPn

[∫ Tn

0

∫

U
l(xn(s), α) mn(dα)ds+ L(xn(Tn))

]
= EP

[∫ T

0

∫

U
l(x(s), α) m(dα)ds+ L(x(T ))

]

There are some technicalities about the continuity of the exit times Tn which are described
in detail in the reference. We thus have

W (bn,mn)→W (b,m) ≥ Vm(b)

where the last inequality is trivially true. The second inequality i.e.

lim inf
n

Vm(bn) ≥ Vm(b)

is only one side of the proof of convergence of the cost function. The other side is given
by the third inequality. In order to prove that, construct an almost optimal control using
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Theorem 4.22 and adapt it to use on the Markov chain, i.e., evaluate Vmn(bn). The optimal
cost function Vm(b) is minimal and hence

Vmn(bn) ≥ Vm(b).

Now use weak convergence of the process mn(·) to m(·) on the left hand side to claim the
final inequality. �

Remark 4.25. This theorem thus proves that the cost function approximation as calculated
on the approximate Markov chain converges to the cost function of the original stochastic
system. Since mn ⇒ m weakly, it also means that the relaxed controls converge. It is
to be noted that the controls converge in this weak space of relaxed controls but barring
boundary cases like the one constructed in Example 4.18 the controls converge converge in
the original space U as well.

4.7 Experiments

This section discusses a few simulation experiments where a continuous time partially ob-
servable stochastic control problem is broken down into discrete POMDPs to be solved via
a point based solver (e.g. SARSOP).

4.7.1 Linear Quadratic Gaussian

Let us consider the LQG problem. It involves control of a stochastic linear system with
additive Gaussian noise. Denote the system as

ẋ = Ax+Buu+ w̃

with observations of the form
y = Cx+ ṽ

where w̃ ∼ N(0, Rww) and ṽ ∼ N(0, Rvv). The objective them is to minimize a cost function
of the form

J = E
[∫ T

0
(x′Rxxx+ u′Ruuu) dt

]
.

For a finite time T , the minimum cost can be given by

Jmin =

∫ T

0
tr
[
PBwRwwB

′
w

]
+ tr

[
QK ′ssRvvKss

]
dt

for u = −Kssx̂. x̂ is the estimated state of the Kalman filter. P and Q are the solutions of
the Riccati equation for control and estimation respectively. Also, if there is a penalizing
factor of e2αt to the cost, the equations remain the same after changing A → A + αI
in the Riccati equation. To convert the continuous time cost function into the discrete
time cost function of the form J =

∑T
k=0 γ

kl(x, u) that SARSOP requires, we calculate an
approximate α. If γ ∼ 1 then α ∼ 1−γ

2∆t . Note that there is no terminal state or terminal
cost in this example.
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Now consider a linear system with dynamics,

dx(t) = −x(t) dt+ u(t) dt+ F dw

and observations
y(t) = x(t) +G ṽ

where ṽ is unit-variance white Gaussian noise. For the purposes of constructing the Markov
chains, the state-space is bounded with x, y ∈ [−1, 1] and u ∈ [−0.5, 0.5]. Using Algo-
rithm 4.4 to construct the Markov chain for the above dynamics with (5 log n) controls
and observations uniformly sampled from the bounded state space where n is the number
of states in the POMDP. Table 4-4 shows the cost obtained by SARSOP after solving a

States ∆t(s) Cost (95%)

20 0.398 -0.406 ± 0.016

40 0.247 -0.391 ± 0.017

80 0.146 -0.355 ± 0.014

160 0.083 -0.341 ± 0.015

Figure 4-4: Convergence of the discrete LQG cost using SARSOP. The optimal cost for the contin-
uous time problem is -0.308.

POMDP with different number of states. If x(0) ∼ N(0.8, 0.03) and F,G = 0.1, the LQG
cost is -0.308. It can be seen that the cost approximated on the discrete POMDPs reduces
as the number of states in the problem increases. With larger than 150 states, the discrete
problem becomes too large for SARSOP to solve and hence we provide results only upto
160 states. Figure 4-5 shows an example simulated run using the discrete policy.

4.7.2 Light-dark domain

We test the proposed approach on a popular problem known as “light-dark domain” [PPK+12].
In this problem, a robot with certain specified dynamics has to localize its position before
entering a pre-defined goal region to obtain a reward. However, the robot does not have ac-
cess to accurate observations always. There are regions in the state-space with beacons (i.e.
light regions) where highly accurate observations can be obtained. In all other parts of the
state-space, the magnitude of observation noise is very large (i.e. dark regions). Depending
upon where the robot starts from, it might need to move into the light region and localize
itself before venturing into the dark region again to obtain a discounted reward. Consider
a robot with dynamics

dx(t) = u(t) dt+ dw

and observations given by
y(t) = x(t) +G(x(t)) ṽ
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Figure 4-5: Simulated policy using 80 states for the LQG problem. This figure shows the mean and
percentiles for state trajectories starting from N(0.8, 0.03) for the SARSOP policy (blue) and the
optimal LQG policy calculated using the Riccati equation (red).

Similar to the previous problem, x, y ∈ [−2, 2]. G(x) gives the location of beacons in this
problem. Let G(x) be defined as follows,

G(x) =

{
ε : |x− b1| < e1

1/ε : otherwise

Note that this is a slightly stronger condition than say a quadratic gradient in observation
noise covariance. Roughly, the exploration in the belief tree can be biased towards searching
for policies which reduce the robot’s covariance by traveling into the light region. Neverthe-
less, the current approach works in either case. We will consider a 1-dimensional example
with a single beacon first. The system gets a reward of the form,

R(x) =

{
1000 : |x− g1| < e1

−1000 : otherwise

The cost function considered is

J =

T∑

k=0

γk l(xk, uk)− γTR(x(T ))

where the term l(xk, uk) is quadratic control cost. Reward R(x) is obtained at time T .
The terminal time T is decided by a terminal action ugoal which the system has to take in
order to get the reward. The agent travels to the goal region and takes this terminal action
when it is certain on being inside the goal region |x− g1| < e1. If this happens, it gets
a reward of 1000 otherwise it gets a penalty of -1000 and the problem ends. An example
policy calculated for the case when b1 = 0.9, g1 = −0.9, e1 = 0.1 is shown in Figure 4-6.
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Note that the belief is a probability mass function projected on the sampled states (which
form a regular grid in this case). The control policy is then to travel first to the light region
marked by green rectangles, localize itself and then proceed towards the goal marked by
red rectangles to obtain the reward.

Single Beacon : The advantage of the proposed approach is evident in these exam-
ple. This is a complete continuous time problem that has been conventionally solved using
techniques like belief space planner [PPK+12] or convex optimization [JT12]. It needs ad-
ditional assumptions of discrete / linear systems, Gaussian belief space. The same problem
was solved using a completely discrete point based solver with just 20 sampled states. It
should be noted that the output of such a solver is a set of α-vectors that give the expected
reward at every belief point b as J(b) = minα∈A(b . α). The filtering algorithm as described
in Chapter 3 gives a probability mass function projected on the same sampled set Sn and
thus can be used with an offline solution in this fashion easily.

Two beacons : The next example looks at the same problem in two dimensions with two
beacons placed at b1 = (1.4, 1.4) and b2 = (−1.4,−1.4), both of width (1.2, 1.2). The initial
position of the robot is at (−1.5,−0.5) which means that it is closer to b2 than b1. Both the
beacons have the same observation characteristics as described before. The problem is to
enter a goal region located at (1.5,−1.5) of width (0.2, 0.2) to claim a discounted reward.
The optimal trajectory is different depending upon the initial position of the robot. The
following two examples show different policies obtained from the discrete solver for varying
number of states in the POMDP or computational time allowed. It is seen that in each
case, a rough policy that goes through one of the light regions is obtained before improving
it to a policy which obtains a larger expected reward.

• Incrementality of SARSOP Figure 4-7 shows simulated belief trajectories for this
problem. The X-Y plane represents the mean of the conditional distribution while
the Z axis depicts the norm of the variance. The robot thus starts with some high
variance and has to reach the goal region at (1.5, -1.5) with low variance to obtain a
reward of 1000. The green squares show light regions. As seen in the figure, the solver
quickly finds a policy which goes through the light region alright but later improves
to go through the closer light region. This example shows the incrementality of the
SARSOP algorithm i.e., the discrete POMDP used in both the figures is the same.

• Construction of discrete POMDP In addition to an incremental solver, Algo-
rithm 4.4 constructs discrete POMDPs incrementally. We test this by running SAR-
SOP on two different POMDPs one with 75 states and the other with 150 sampled
states. Figure 4-8 shows simulated belief trajectories for this problem. Note that the
expected reward for the sparse POMDP is lower because it reaches the goal with a
larger variance. This is because the set of α-vectors calculated on this POMDP is
not refined enough to ensure that all belief trajectories go through the light region.
On the other hand, with larger number of states, most of the belief trajectories go
through the light region.
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Figure 4-6: An example policy calculated on a POMDP of just 20 states for 1-dimensional Light-
dark domain. Red denotes the goal region while the system has access to accurate observations in
the green region. Blue rectangles denote the belief bn(t). These six figures show the belief state at
6 different instants of policy execution.
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Figure 4-7: Simulated belief trajectories for the light-dark domain with two beacons with the system
starting from the same position for the same discrete POMDP having 150 states. Figure 4-7a is
obtained after running the solver for 100 seconds giving an expected reward of 212.1 ± 99.7. If the
incremental solver is run for 200 secs, the policy improves with the expected reward rising to 428.6
± 55.2 as seen in Figure 4-7b.
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Figure 4-8: Incrementality of discrete POMDPs. Figure 4-8a shows simulated belief trajectories
using a POMDP having 75 states with an expected reward of 377.9 ± 48.7. As more states are added
to the POMDP, the expected reward rises to 428.6 ± 55.2 for 150 states. The belief trajectories for
this are shown in Figure 4-8b.



Chapter 5

Conclusions

This thesis proposed algorithms for incremental estimation algorithms. The basic idea ex-
plored in this thesis is that, continuous-time stochastic estimation problems can be reduced
into a number of discrete problems, each of which can be solved using simpler and compu-
tationally efficient algorithms. Classic results on Markov chain approximations were used
to approximate the underlying stochastic systems. The primary features of this method
are that we can derive approximate models using intuitive physical laws and do not need
to depend upon hard-to-verify regularity assumptions on solutions of partial differential
equations. The advantages of this are two-fold. Firstly, the resulting algorithms are very
easy to implement in practice and secondly, these algorithms are completely probabilistic
in nature. Even weak notions of convergence are thus enough to guarantee convergence
of other quantities of interest such as conditional distributions, cost functions or control
policies.

A major contribution of this thesis is that it uses ideas from asymptotically optimal mo-
tion planning algorithms to create Markov chain approximations via random sampling. This
is a powerful approach because, as demonstrated in numerous algorithms like Probabilistic
Road Maps (PRM) and Rapidly Expanding Random Trees (RRTs) or their optimal coun-
terparts like PRM∗ and RRT∗, random sampling algorithms can explore large state spaces
very quickly to arrive at answers. There are two properties of these algorithms that the
approaches in this thesis inherit, in particular, incrementality and anytime computability.
Applications of this concept are particularly important in situations where we have a large
amount of data, or if we have low computational resources. In this sense, the algorithms
proposed in this thesis are such that they give an optimal answer with respect to available
computational resources. They do not need to be tuned to work on platforms with different
computational capacity, partly because of their anytime property and partly because of the
fact that they have sound footing in inherently continuous formulations of the problem. The
discretization of this general problem depends upon the amount of computation available
naturally.

The first part of the thesis discusses state estimation problems. Markov chain approxi-
mations were used to construct Markov chains with a time component, i.e., roughly Markov
chains on the space [0, T ] × S using both a grid based approach as well as random sam-
pling. A simple Bayes’ rule filter was then used to propagate the conditional density on
this discrete Markov chain. Incremental refinement of the chain results in successively finer
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discretizations of the time axis, whereby, the conditional density on this Markov chain con-
verges to the conditional density of the optimal nonlinear filter. A similar approach was used
to construct Markov chains for related problems like smoothing and trajectory decoding.
It was shown that while the Markov chain approximation is necessary for the smoothing
problem, a simpler version which uses only random sampling based methods can be used
to obtain the solution of the decoding problem.

The second part of the thesis focused on control of partially observable processes. It
follows the same basic idea as Chapter 2 of creating discrete approximations of a continuous
time process. Roughly, it repeats the program of weak convergence of trajectories of Markov
chains to solutions of stochastic differential equations. This case is technically more compli-
cated because trajectories of a discrete POMDP are trajectories of conditional distributions
(beliefs). These trajectories of beliefs converge to the corresponding trajectories of beliefs of
the original continuous time stochastic control problem. However, correspondingly similar
proofs for this case exist. We can prove that if the discrete POMDPs are created in a certain
locally consistent fashion, the cost function as calculated along discrete trajectories, as well
as the control policies calculated using them converges. This approach is applied to break
down two example continuous time problems into conventional discrete POMDPs which are
then solved using state-of-the-art point based solvers.

Future directions for perception algorithms mainly draw upon the idea that state-
estimation is not the explicit objective of perception. The objective in most cases is control.
This is an interesting idea because arguably, if we can isolate what elements of sensory in-
formation will affect the control actions that we choose, the computational complexity of
all perception algorithms can be vastly improved. An example from vision will illustrate
the point. The information obtained from a camera mounted on an autonomous vehicle is
a stream of images, each of which is a vector, say, of length 640× 480. The orientation or
the distance of the camera from nearby objects can be calculated by analyzing this stream
via stereo or optical flow algorithms. On the other hand, for a driver of a car turning along
a road, just the estimate of his position with respect to the apex of the curve is enough
information for control. The whole state estimate which is typically derived from compli-
cated (and slow) algorithms is irrelevant to this particular task. In other words, we need a
theory of observability for a particular task instead of reconstruction of the state-estimate.
It is thus essential to (i) unify perception and control to create algorithms which grab only
control relevant portions of information from a vast sensor array and (ii) understand what
information is specific to control activities. Recent works like [YSDZ12] are exploring the
former question while [Soa09] is a promising approach towards the latter problem.



Appendix A

A.1. Stochastic differential equations

Wiener Process : Let (Ω,F ,P) be a probability space with Ft for t ≥ 0 being the
filtration defined on it. A process w(t) is called a standard Ft-Wiener process if it satisfies
the following conditions.

1. w(0) = 0 with probability 1.

2. w(t) ∈ Ft and F(w(s)− w(t)) for s ≥ t is independent of Ft for all t ≥ 0.

3. w(s)− w(t) is normal with mean zero and variance s− t.

4. Sample paths are continuous i.e., w(t) ∈ C[0,∞)

A vector of mutually independent standard Wiener processes is called a vector-valued
Wiener process. Note that w(t) is a martingale and Markov with a quadratic variation
< w(t) >= t.

Ito integral : For any Ft measurable function f(t), we can define the Ito integral as

It(f) =

∫ t

0
f(s)dw(s) = lim

∆→0

n−1∑

k=0

f(tk) [w(tk+1)− w(tk)] + f(tn)[w(t)− w(tn)]

for any partition 0 ≤ t1 < t2 < . . . < tn ≤ t of [0, t] with ∆ = supk |tk+1 − tk|. It has a
number of nice properties like

• Linearity : It(f1 + f2) = It(f1) + It(f2)

• Isometry : E[(It(f))2] =
∫ t

0 f(s)2 ds

Ito’s formula : Ito’s formula is the analogous version of the chain-rule in calculus. Note
that we use the notation

dx(s) = b(s)ds+ σ(s)dw(s)

for the integral equation

x(t) = x(0) +

∫ t

0
b(s)ds+

∫ t

0
σ(s)dw(s) (A.1)
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where the first term is the ordinary Riemann integral and the second term is the Ito integral
defined previously. For a continuous and differentiable function f ∈ C1(R) we define

df(x(s)) =
∂

∂x
f(x(s)) dx(s) +

1

2

∂2

∂2x
f(x(s)) (dx)2

with (dx)2 being calculated by rules of the form ds2 = 0, ds . dw = 0 while quadratic
variation of w(t) gives dw2 = ds. The vector version of this formula is obtained analogously.

Equation (A.1) denotes a stochastic differential equation. The solution of this equation
is a process x(t) which is Ft measurable and satisfies it. There are two ways in which the
solutions of such equations can be said to exist and be unique.

• Strong Existence : Given a probabiltiy space (Ω,F ,P) and a filtration Ft along
with an Ft-Wiener process, if x(0) ∈ F0 is a measurable initial condition, then a
Ft-adapted process x(t) exists that satisfies Equation (A.1) for all t ≥ 0.

• Weak Existence : We say that Equation (A.1) has a weak sense unique solution if
given any measure µ on Rk, there exists a probability space (Ω,F ,P), a filtration Ft
along with an Ft-Wiener process and Ft-adapted process x(t) exists that satisfies it
with P(x(0) ∈ Γ) = µ(Γ).

The difference between these two notions is that strong existence requires that the filtra-
tion, Wiener process and the probabilty space be given in advance whereas weak solutions
construct all the three elements along with the process x(·). Strong existence clearly implies
weak existence.

• Strong Uniqueness : Two solutions x1(t) and x2(t) are strong sense unique if

P(x1(0) = x2(0)) = 1 =⇒ P(x1(t) = x2(t) for all t ≥ 0) = 1.

• Weak Uniqueness : Two weak sense solutions (Ωk,Fk,Pk,Fk,t, wk(t), xk(t)) for
k = 1, 2 are weak sense unique if the equality of distributions of xk(0) ∈ Rk implies
the equality of distributions of xk(t) on Ck[0,∞) under Pk.

Strong uniqueness is called pathwise uniqueness whereas weak uniqueness is called uniquess
of probability law. Proving convergence of numerical schemes related to stochastic differ-
ential equations only requires weak sense uniqueness of weak solutions.

A.2. Weak Convergence

Theorem A.1 (Portmanteau Theorem [Bil99]). The following statements are equiva-
lent.

(i) Pn ⇒ P , i.e., Pn converges weakly to P

(ii)
∫
fdPn →

∫
fdP for all bounded uniformly continuous functions f .

(iii) lim supPn(F ) ≤ P (F ) for any closed set F .
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(iv) lim inf Pn(G) ≥ P (G) for any open set G.

(v) Pn(A)→ P (A) for all sets A such that P (∂A) = 0.

Theorem A.2 (Mapping Theorem [Bil99]). If h maps one metric space S into another
S′ and is a measurable function, if Dh is the set of all the points of discontinuity of h and
if P (Dh) = 0, then Pnh−1 ⇒ Ph−1.

Tightness of measures : A measure P is called tight if for any ε > 0, there exists a
compact set K such that P(K) > 1−ε. It turns out that if the underlying space is complete
and separable, then any probability measure is tight.
Topology of C[0, 1] : We will use the standard topology on the space of real-valued
continuous functions with the metric defined as ρ(x, y) = supt∈[0,1] |x(t)− y(t)| Note that
ρ(xn, x) → 0 only implies pointwise convergence. It can be shown that C[0, 1] with this
metric is complete and separable [Rud76]. Thus any measure on C[0, 1] is tight.

Theorem A.3 (Arzela-Ascoli [Bil99]). A relatively compact set of a metric space is a
set A such that any sequence in A has a convergent subsequence. This celebrated theorem
characterizes such sets i.e., A is relatively compact subset of C[0,∞) if and only if

• supx∈A |x(0)| <∞

• limδ→0 supx∈Awx(δ) = 0 where wx(δ) is the modulus of continuity given by wx(δ) =
sup|s−t|≤δ |x(s)− x(t)| for s, t ∈ [0, 1].

Theorem A.4 (Prokhorov’s Theorem [Bil99]). A sequence of measures is called tight
when there exists a compact set K such that Pn(K) > 1 − ε for all n for any ε > 0.
Prohorov’s theorem claims that a sequence of measures (Pn) is tight, then it is relatively
compact. The essense of the argument is that if every subsequence of (Pn) converges to
some limit P , then the whole sequence in fact converges to P , i.e., Pn ⇒ P .

A converse of the above theorem is also true and it states that if the underlying space on
which the measures are defined is complete and separable and if (Pn) is relatively compact
then it is tight.
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