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It has been eight decades since Norbert Wiener first articulated the “cybernetic dream.” Yet, despite
recent excitement around Artificial Intelligence, we are still far from realizing robots that can interact
intelligently with humans and the physical environment. My ambition is to bring this dream closer to reality,
towards Embodied Intelligence. With this target in mind:

As an Academic, my first goal is to understand. I explore the interplay of optimization and generalization
in deep networks1,2, with some recent breakthroughs3. This is a cross-disciplinary effort spanning physics,
non-convex optimization, and probability, in addition to classical statistical learning.

As an Engineering Academic, I believe the understanding should improve practice. I develop algorithms to
train deep networks2,4, that are faster and generalize better. My work on distributed algorithms5 is being
considered for deployment by some of the major technology companies.

As a modern Engineering Academic, I aim for broad societal impact. My work on robotics6,7,8 has been
incorporated into the world’s first autonomous taxi service, launched in 2016 in Singapore.

As a modern Engineering Academic Educator, I aim to make powerful analytical and computational tools
available to students in Computer Science and Engineering, and to foster a collaborative, inter-disciplinary
culture.

I next summarize my scientific accomplishments and articulate how they fit into my long-term research plan.

1 UNDERSTANDING DEEP LEARNING

Deep networks are machine learning models with a very large number, up to a hundred million, of parameters
(“weights”). My work focuses on algorithms to train deep networks. This involves finding a weight
vector x∗ that optimizes some loss function, say the classification error on the training data. This is difficult
because deep networks are highly non-convex functions of their weights. Further, it is challenging to ensure
generalization, i.e., x∗ should correctly classify unseen samples not part of the training data.

1.1 Generalization and optimization go hand-in-hand

Training a deep network in a way that ensures generalization is, at present, an art form. The gold standard of
training algorithms is stochastic gradient descent (SGD). It updates weights using the gradient computed on a
subset of samples (“mini-batch”), instead of the entire data; this makes it stochastic. When SGD is successful,
deep networks generalize beyond what statistical learning theory suggests for such highly over-parametrized
models. Understanding this conundrum can help improve learning algorithms.

Enter statistical physics: My first result in this area2 shows that SGD, when it generalizes well, converges
to “flat minima”. I devised a modified loss, called Local Entropy, that biases optimization towards such
regions. It is a local smoothing of the exponentiated original loss, motivated from statistical physics. The
algorithm I designed to optimize this, named Entropy-SGD, converges up to 2× faster than SGD while
obtaining the state-of-the-art in generalization on benchmark datasets. I also proved accelerated convergence
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over SGD4 and generalization bounds2 for this algorithm. This work is influencing recent investigations
on generalization9,10, non-convex optimization11 and representation learning12.

Connect with partial differential equations (PDEs): In a collaborative effort to connect Entropy-SGD to
the standard literature on optimization, I showed that Local Entropy is the solution of a viscous Hamilton-
Jacobi PDE4 with the original loss as the initial condition. This connection brings the rich PDE literature to
the table and is an interpretable way to exploit new PDEs to obtain even better performance. I proved that the
non-viscous limit of Local Entropy leads to an established algorithm called proximal point iteration. The
consequent insensitivity to hyper-parameters is very important in the practice of deep learning.

Obtain distributed algorithms: By exploiting connections of Local Entropy with statistical physics and
PDEs, I, along with collaborators, devised an algorithm called Parle5 for distributed training of deep networks
that obtains state-of-the-art generalization and also converges 2-5× faster than SGD. We also proved4 that
Elastic-SGD13, a popular distributed training algorithm for deep networks, actually minimizes Local Entropy.
We are currently exploring extensions, as well as analysis, of this method.

1.2 Mysteries of SGD on deep networks

It is widely believed that SGD performs implicit regularization. I proved this to be the case in a precise sense:
SGD performs variational inference with a uniform prior3. However, SGD minimizes a different loss,
which is, in general, not the original loss used to compute the gradients. I showed that the two are different
in deep networks due to highly non-isotropic noise introduced by mini-batches3. This result recovers the
celebrated Jordan-Kinderleher-Otto functional of optimal transportation and the two loss functions become
equal, but only if gradient noise is isotropic.

Enter non-equilibrium thermodynamics: With non-vanishing step-sizes, iterates of SGD after convergence
are expected to perform Brownian motion in the neighborhood of a critical point. I showed that non-isotropic
noise leads to closed-loop trajectories in the weight space called limit cycles3. These loops can be far away
from local minima; SGD may even converge to limit cycles around saddle points. This result is surprising as
it challenges accepted wisdom in deep learning and calls for additional exploration.

2 ROBOTICS

Societal impact: A prototype campus mobility system
in 2011 to a commercial taxi-service in 2016.

My goal is to develop perception algorithms not for classi-
fying objects in images, but for robots to inhabit the physical
world. Actions in the real world have consequences: an imper-
fect machine learning algorithm can be lethal when deployed on
an autonomous vehicle. Being able to provide provable guar-
antees for real-time algorithms is the key to the continued
development and societal acceptance of autonomy.

I devised algorithms for state-estimation and control14,15

based on novel discretizations of general stochastic dynam-
ical systems using techniques from stochastic geometry. These
algorithms are well-suited to real-time implementations, they
provide a rough “guess” very quickly and improve upon it if additional computational resources become avail-
able. They are also optimal, i.e., the guess converges to the optimal output, asymptotically, with probability
one, with very little work per iteration.



Building upon these techniques, I constructed algorithms for provably-safe urban navigation6,8. They use
novel variants of Linear Temporal Logic to model road-safety rules and synthesize control actions to satisfy
such high-level constraints. I further worked on game-theoretic approaches7,16 using these ideas to devise
algorithms for multiple-agents that share the same urban infrastructure while provably satisfying road rules.

This work has been incorporated into the world’s first autonomous taxi service launched by nuTonomy
in Singapore in 2016.

3 FUTURE WORK

3.1 Near-term: Deep Learning

Analysis in the continuum: The continuous-time limit provides powerful tools for the analysis and design
of optimization algorithms17 and I intend to continue working on it, towards the design of algorithms for
deep learning. I aim to exploit ideas such as under-damped Langevin dynamics18 from statistical physics
for non-convex optimization and mean-field games19, optimal transportation20 from PDEs for the design of
large-scale distributed training algorithms for deep networks.

Non-equilibrium phenomena: These are only now beginning to be explored, and little has been done to
exploit them yet21,22. For instance, Markov Chain Monte Carlo samplers on deep networks automatically
benefit from these effects. Connections of these ideas to generalization in deep learning may lead to
improved design and training of deep networks, which I intend to explore.

This dual theme, analysis and informed design of algorithms for deep learning, will constitute the core of my
first NSF proposal submission.

3.2 Long-term: Embodied Intelligence

Reinforcement learning: Scaling robot learning to real-world data and creating models that work for diverse
robot sensors and actuators are present challenges that stand in the way of incorporating learning into robots.
To mitigate these, I intend to leverage upon rich sources of data such as videos for imitation learning and
devise algorithms for transfer learning policies that can be implemented on diverse robots and rapidly
adapted to new operating environments. My ongoing work in this area, supervising a junior graduate student,
composes pre-learned controllers, e.g., for hands and legs, to synthesize complex motions such as running,
leveraging upon simulation and data with weak or no supervision.

Joint perception, learning and control: It is challenging to ascertain the performance of an autonomous
system which performs actions on the basis of imperfect real-world data fed into machine learning models
learned on curated datasets; uncertainty in sensing the environment further exacerbates this. Modern machine
learning methods are agnostic to data modality. I intend to leverage upon this to quantify the uncertainty of
the perception-learning-control loop and design robotic systems with provable guarantees, of safety and of
optimality.

Intelligent beings are embodied: in a battle for survival, the best chess-playing program will lose to any
dog. I see the physical form with its capacity to manipulate the surroundings as the hallmark of intelligence.
Crucial to achieving this are perception and control. My explorations on learning and robotics are an effort
to understand these two aspects of Embodied Intelligence and integrating them will be my focus for the
foreseeable future.
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