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Chapter 11

What is intelligence?2

Reading
1. Bishop 1.1-1.5

2. Goodfellow Chapter 1

3. “A logical calculus of the ideas immanent in nervous activity” by
Warren McCulloch and Walter Pitts (McCulloch and Pitts, 1943).

4. “Computing machinery and intelligence” by Alan Turing in
1950 (Turing, 2009).

What is intelligence? It is hard3

to define, I don’t know a good def-4

inition. We certainly know it when5

we see it. All humans are intelli-6

gent. Dogs are plenty intelligent.7

Most of us would agree that a house8

fly or an ant is less intelligent than9

a dog. What are the common fea-10

tures of these species? They all can11

gather food, search for mates and re-12

produce, adapt to changing environ-13

ments and, in general, the ability to14

survive.15

Let us ask a different question. Are plants intelligent? Plants have sensors,16

they can measure light, temperature, pressure etc. They possess reflexes,17

e.g., sunflowers follow the sun. This is an indication of “reactive/automatic18

intelligence”. The mere existence of a sensory and actuation mechanism is not19

an indicator of intelligence. Plants cannot perform planned movements, e.g.,20

they cannot travel to new places.21

A Tunicate in Figure 1.1 is an interesting plant however. Tunicates are22

invertebrates. When they are young they roam around the ocean floor in search23

of nutrients, and they also have a nervous system (ganglion cells) at this point24

5
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Figure 1.1: A Tunicate on the ocean floor

of time that helps them do so. Once they find a nutritious rock, they attach25

themselves to it and then eat and digest their own brain. They do not need it26

anymore. They are called “tunicates” because they develop a thick covering27

(shown above) or a “tunic” to protect themselves.28

Is a program like AlphaGo intelligent? There is a very nice movie on29

Netflix on the development of AlphaGo and here’s an excerpt from the movie30

(https://youtu.be/YrTRKh4FPio). The commentator in this video is wondering31

how Lee Se-dol, who was one of the most accomplished Go players in the32

world then, might defeat this very powerful program; this was I believe after33

AlphaGo was up 3-0 in the match already. The commentator says so very34

nonchalantly: if you want to defeat AlphaGo all you have to do is pull the35

plug.36

A key indicator of intelligence (and this is just my opinion) is the ability to37

move around in the physical world. With this comes the ability to affect your38

environment, preempt antagonistic agents in the environment and take actions39

that achieve your desired outcomes. You should not think of intelligence40

(artificial or otherwise) as a process that takes a dataset stored on your hard-41

disk and makes some predictions of its labels. It is much richer than that. If I42

dropped my keys at the back of the class, I cannot possibly find them without43

moving around, using priors of where keys typically hide, gathering more data,44

manipulating objects etc. The ability to do so is the hallmark of intelligence.45

The purpose of intelligence is really just survival.46

1.1 Key components of intelligence47

If you agree with my definition, we can write down the three key parts that an48

intelligent, autonomous agent possesses as follows.49

Perception refers to the sensory mechanisms to gain information about50

the environment (eyes, ears, tactile input etc.). Action refers to your hands,51

legs, or motors/engines in machines that help you move on the basis of this52

information. Cognition is kind of the glue in between. It is in charge of53

crunching the information of your sensors, creating a good “representation” of54

the world around you and then undertaking actions based on this representation.55

The three facets of intelligence are not sequential and intelligence is not merely56

https://youtu.be/YrTRKh4FPio
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a feed-forward process. Your sensory inputs depend on the previous action57

you took.58

1.1.1 What is learning?59

This class will focus on learning. It is a component, not the entirety, of60

cognition. Learning is in charge of looking at past data and predicting what61

future data may look like. Cognition is much more than that, it also involves62

assimilating knowledge, handling situations when the current data does not63

match past data, e.g., arithmetic problems you solved in elementary school64

used your skills of algebraic manipulation to handle new problems.65

Examples of other classes that address various aspects of intelligence are:66

• Perception: CIS 580, CIS 581, CIS 68067

• Learning: CIS 520, CIS 521, CIS 522, CIS 620, CIS 700, ESE 54568

• Control: ESE 650, MEAM 620, ESE 50569

Imagine a supreme agent which is infinitely fast and clever can interpret its70

sensory data and compute the best actions for any task, say driving, it wishes.71

One would think learning on the past data is not essential to cognition, certainly72

not for this supreme agent. However, learning is essential to cognition. Priors73

help you if you are not as fast as the supreme agent or if you want to save74

some compute time/energy during decision making.75

You should not think of a deep network or a machine learning model
as a mechanism that directly undertakes the actions. It is better suited to
provide a prior on the possible actions that an autonomous agent should
take; other algorithms that rely on real-time sensory data will be in charge
of picking one action out of these predictions. The objective of the
learning process is really to crunch the data and learn a prior.

1.2 Intelligence: The Beginning (1942-50)76

Let us give a short account of how our ideas about intelligence have evolved.77

The story begins in 1942 in Chicago. These are Warren McCulloch who78

was a neuroscientist and Walter Pitts who studied mathematical logic. They79

built the first model of a mechanical neuron and propounded the idea that80

simple elemental computational blocks in your brain work together to perform81

complex functions. Their paper (McCulloch and Pitts, 1943) is an assigned82

reading for this lecture.83
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Around the same time in England, Alan Turing was forming his initial84

ideas on computation and neurons. He had already published his paper on85

computability by then. This paper (Turing, 2009) is the second assigned86

reading for this lecture. 1
87

88

McCulloch was inspired by Turing’s idea that of building a machine that could89

compute any function in finitely-many steps was powerful. In his mind, the90

neuron in a human brain, which either fires or does not fire depending upon91

the stimuli of the neurons connected to it, was a binary object; rules of logic92

where a natural way to link such neurons, just like the Pitt’s hero Bertrand93

Russell rebuilt modern mathematics using logic.94

1If you need more inspiration to go and read it, the first section is titled “The Imitation Game”.
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Together, McCulloch & Pitts’ and Turing’s work already had all the germs95

of neural networks as we know them today: non-linearities, networks of a96

large number of neurons, training the weights in situ etc.97

Let’s now move to Cambridge, Massachusetts. Norbert Wiener, who was98

a famous professor at MIT, had created a little club of enthusiasts around99

1942. They would coin the term “Cybernetics” to study exactly the perception-100

cognition-action loop we talked about. You can read more in the original101

book titled “Cybernetics: or control and communication in the animal and102

the machine” (Wiener, 1965). You can also look at the book “The Cybernetic103

Brain” (Pickering, 2010) to read more.104

Figure 1.2: The famous four of the first era of intelligence. (From right to left) Norbert
Wiener, Grey Walter, Warren McCulloch and Walter Pitts

1.2.1 Representation Learning105

Perceptual agents, from plants to humans, perform measurements of physical106

processes (“signals”) at a level of granularity that is essentially continuous.107

They also perform actions in the physical space, which is again continuous.108

Cognitive science on the other hand thinks in terms of discrete entities, “con-109

cepts, ideas, objects, categories” etc. These can be manipulated with tools110

in logic and inference. What is the information that is transferred from the111

perception system to the cognition system, or from cognition to control? An112

agent needs to maintain a notion of an internal representation that is the object113

being passed around.114

We will often talk about Claude Shannon and information theory for115

studying these kind of ideas. Shannon devised one such representation learning116

scheme: that for compressing, coding, decoding and decompressing data. The117

key idea to grasp here is that the notion of information in information theory118

is slightly different from the one we need in machine learning. Compression,119

decompression etc. care about never losing information from the data; machine120

learning necessarily requires you forget parts of your data. If the model focuses121

too much on the grass next to the dogs in the dataset, it will “over-fit” to the122

data and next time when you see grass, it will end up predicting a dog.123
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Figure 1.3: This course’s content is (surprisingly) closely related to Wiener’s book on
Cybernetics.

Figure 1.4: Grey Walter’s cybernetic tortoises named Elmer and Elsie were one of the
first electronic autonomous robots (https://youtu.be/lLULRlmXkKo). Walter wanted to
create an artificial brain, he wanted to show how neuron-like components connected
together can give to complex behaviors, in this case this is a light sensitive robot that
tracks the source of light.

https://youtu.be/lLULRlmXkKo
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Figure 1.5: Claude Shannon studied information theory. This is a picture of a maze
solving mouse that he made around 1950, among the world’s first examples of machine
learning (read more at https://www.technologyreview.com/2018/12/19/138508/mighty-
mouse.

The study of intelligence has always had this diverse flavor. Computer124

scientists trying to understand perception, electrical engineers trying to under-125

stand representations and mechanical and control engineers building actuation126

mechanisms.127

1.3 Intelligence: Reloaded (1960-2000)128

The early period created interest in intelligence and developed some basic129

ideas. The first major progress of what one would call the second era was130

made by Frank Rosenblatt in 1957. Rosenblatt’s model called the perceptron is131

a model with a single binary neuron. It was a machine designed to distinguish132

punch cards marked on the left from cards marked on the right, and it weighed133

5 tons (https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-134

way-ai-60-years-too-soon). The input integration is implemented through the135

addition of the weighted inputs that have fixed weights obtained during the136

training stage. If the result of this addition is larger than a given threshold, the137

neuron fires. When the neuron fires its output is set to 1, otherwise it is set to138

0. It looks like the function139

f(x;w) = sign(w>x) = sign (w1x1 + . . . xdxd) .

Rosenblatt’s perceptron (Rosenblatt, 1958) had a single neuron, it cannot140

distinguish between complex data. This is what Marvin Minsky and Seymour141

Papert discussed in a famous book Minsky and Papert (2017). This book was142

widely perceived as a death knell for the perceptron and interest in neuron-143

based artificial intelligence (connectionist approach) waned.144

This coupled with the rise of symbolic reasoning in the early 1970s and145

resulted in what one would call the first AI winter.146

https://www.technologyreview.com/2018/12/19/138508/mighty-mouse
https://www.technologyreview.com/2018/12/19/138508/mighty-mouse
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
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147

There was resurgence of ideas around neural networks, mostly fueled by148

the (re)-discovery of back-propagation by Rumelhart et al. (1985). Multi-layer149

networks were in vogue due to back-propagation working well. Convolutional150

neural networks built upon a large body of work starting from two neuro-151

scientists Hubel and Wiesel who did very interesting experiments in the 60s152

to discover visual cell types (Hubel and Wiesel, 1968) and Fukushima who153

implemented convolutional and downsampling layers in his famous Neocogni-154

tron (Fukushima, 1988). Yann LeCun demonstrated classification of handwrit-155

ten digits using CNNs in the early 1990s and used it to sort zipcodes (LeCun156

et al., 1989, 1998). Neural networks in the late 80s and early 90s was arguably,157

as popular a research area as it is in 2020 today.158

Support Vector Machines (SVMs) were invented in Cortes and Vapnik159

(1995). These were (are) brilliant machine learning models with extremely160

good performance, were much easier to train than neural networks because161

they had a strong foundation in theory and, in general were a delight to use as162

compared to neural networks. Kernel methods, although known much before163

in the context of the perceptron (Aizerman, 1964; Scholkopf and Smola, 2018),164

made SVMs very powerful. The rise of Internet commerce in the late 90s165

meant that a number of these algorithms found widespread and impactful166

applications. Others such as random forests (Breiman, 2001) further led the167

progress in machine learning. Neural networks, which worked well when they168

did but required a lot of tuning and expertise to get to work, lost out to this169

competition. However, there were other neural network-based models in the170

natural language processing (NLP) community such as LSTMs (Hochreiter171

and Schmidhuber, 1997) which remained popular through this period.172

1.4 Intelligence: Revolutions (2006-)173

The growing quantity of data and computation came together in late 2000s to174

create ideas like deep Belief Networks (Hinton et al., 2006), deep Boltzmann175

machines (Salakhutdinov and Larochelle, 2010), large-scale training using176

GPUs (Raina et al., 2009) etc. The watershed moment that got everyone’s177

attention was when Krizhevsky et al. (2012) trained a convolutional neural178
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network to show dramatic improvement in the classification performance on179

a large dataset called ImageNet. This is a dataset with 1.4 million images180

collected across 1000 different categories. Performing well on this dataset181

was considered very difficult, the best approaches in 2011 (ImageNet chal-182

lenge used to be an annual competition until 2016) achieved about 25% error.183

Krizhevsky et al. (2012) managed to obtain an error of 15.3%. Many signifi-184

cant results in the world of neural networks have been achieved since 2012.185

Today, deep networks in their various forms run a large number of applications186

in computer vision, natural language processing, speech processing, robotics,187

physical sciences such as chemistry and biology, medical sciences, and many188

many others (LeCun et al., 2015).189

This progress in deep learning has been driven by the availability of data190

and cheap computation. Most importantly, it is driven today by the intense191

curiosity of people from diverse fields of inquiry. Deep learning in its modern192

form is a very young field. As is typical in new research fields, consolidation193

of ideas is difficult to come by. The dramatic progress today is driven by ideas194

that are often-quixotic and a large number of open problems remain in how195

we may build a more sophisticated understanding of deep networks.196

1.5 A summary of our goals in this course197

This course will take off from around late 1990s (kernel methods) and develop198

ideas in deep learning that bring us to 2020. Our goals are to199

1. become good at using modern deep networks, i.e., implementing them,200

training them, modeling specific problems using ideas in deep learning;201

2. understanding why techniques in deep networks work.202

After taking this course, we expect to be able to not only develop methods203

that use deep learning, but more importantly improve existing ideas using204

foundational understanding of the mathematics behind these ideas and develop205

new ways of improving deep learning theory and practice.206



Chapter 2207

Linear Regression,208

Perceptron, Stochastic209

Gradient Descent210

Reading
1. Bishop 3.1, 4.1, 4.3

2. Goodfellow Chapter 5.1-5.4

2.1 Problem setup for machine learning211

Nature gives us data X and targets Y for this data.212

X → Y.

Nature does not usually tell us what property of a datum x ∈ X results in a213

particular prediction y ∈ Y . We would like to learn to imitate Nature, namely214

predict y given x.215

What does such learning mean? It is simply a notion of being able to216

identify patterns in the input data without explicitly programming a computer217

for prediction. We are often happy with a learning process that identifies218

correlations: if we learn correlations on a few samples (x1, y1), . . . , (xn, yn),219

we may be able to predict the output for a new datum xn+1. We may not need220

to know why the label of xn+1 was predicted to be so and so.221

Let us say that Nature possesses a probability distribution P over (X,Y ).222

We will formalize the problem of machine learning as Nature drawing n223

independent and identically distributed samples from this distribution. This is224

denoted by225

Dtrain =
{

(xi, yi) ∼ P
}n
i=1

is called the “training set”. We use this data to identify patterns that help make226

predictions on some future data.227

14
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What is the task in machine learning?228

SupposeDtrain consists of n = 50 RGB images of size 100×100 of two kinds,229

ones with an orange inside them and ones without. 104 is a large number of230

pixels, each pixel taking any of the possible 2553 values. Suppose we discover231

that one particular pixel, say at location (25, 45), takes distinct values in all232

images inside our training set. We can then construct a predictor based on233

this pixel. This predictor, it is a binary classifier, ä How many such binary classifiers
are there at most?

perfectly maps the training234

images to their labels (orange: +1 or no orange: -1). If xkij is the (ij)th pixel235

for image xk, then we use the function236

f(x) =

{
yk if xkij = xij for some k = 1, . . . , n

−1 otherwise.

This predictor certainly solves the task. It correctly works for all images in the237

training set. Does it work for images outside the training set?238

Our task in machine learning is to learn a predictor that works outside the239

training set. The training set is only a source of information that Nature gives240

us to find such a predictor.241

Designing a predictor that is accurate on Dtrain is trivial. A hash
function that memorizes the data is sufficient. This is NOT our task in
machine learning. We want predictors that generalize to new data outside
Dtrain.

2.1.1 Generalization242

If we never see data from outside Dtrain why should we hope to do well on it?243

The key is the distribution P . Machine learning is formalized as constructing244

a predictor that works well on new data that is also drawn independently from245

the distribution P . We will call this set of data the “test set”.246

Dtest.

This assumption is important. It provides coherence between past and future247

samples: past samples that were used to train and future samples that we will248

wish to predict upon.249

How to find such predictors that work well on new data? The central idea250

in machine learning is to restrict the set of possible binary functions that we251

consider.252

We are searching for a predictor that generalizes well but only have
the training to ascertain which predictor works well.

The right class of functions f cannot be too large, otherwise we will find253

our binary classifier above as the solution and that is not too useful. The class254

of functions cannot be too small either, otherwise we won’t be able to predict255

difficult images. If the predictor does not even work well on the training set,256

why should we expect it to work on the test set!257

Finding this correct class of functions with the right balance is what258

machine learning is all about.

ä Can you now think how is
machine learning different from
other fields you might know such as
statistics or optimization?259
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2.2 Linear regression260

Let us focus on a simpler problem. We fix the class of functions, our predictors,261

to only have linear classifiers. We will consider that our data X ⊂ Rd and262

labels Y ⊂ R. If the labels/targets are real-valued, we call it is a regression263

problem. Our predictor for any x ∈ X is264

f(x;w, b) = w>x+ b. (2.1)

This is a linear function in the data x with parameters w ∈ Rd and b ∈ R.265

Different settings of w and b give access to different functions f . Picking266

a particular function f is therefore akin to picking particular values of the267

parameters. Parameters are also called weights. We can visualize what this268

predictor does in two ways, consider the case of d = 2.269

Figure 2.1: Linear least squares with X ⊂ R2.

Figure 2.1 shows the hyperplane corresponding to a particular (w, b) with270

the data xi, yi (in red). Each hyperplane is a particular predictor f(x;w, b).271

You can also think of the function f as a point in three dimensional space272

w ∈ R2 and b ∈ R.273

Predicting the target accurately using this linear model would require us274

to find values (w, b) that minimize the average distance to the hyperplane of275

each sample in the training dataset. We write this as an objective function.276

`(w, b) :=
1

2n

n∑
i=1

(
yi − ŷi

)2

=
1

2n

n∑
i=1

(
yi − w>xi − b

)2 (2.2)

where we have written the prediction as277

ŷi = w>xi + b.

The quadratic term for each datum 1
2

(
yi − ŷi

)2

is known as the loss function.278

The objective above is thus an average of the loss for each datum. ä Why use the average, as opposed
to say the maximum value?

Finding the279
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best weights w, b now boils down to solving the optimization problem280

w∗, b∗ = argmin
w∈Rd,b∈R

`(w, b) (2.3)

How to solve the optimization problem? We will learn many techniques to281

solve problems of the form (2.3). We have a simple case here and therefore282

can use what you did did in HW0. The solution is given by283

w∗ = (X̃>X̃)−1X̃>Y (2.4)

where we have denoted by X̃ ∈ Rn×(d+1) the matrix whose ith row is the284

datum with a constant entry 1 appended at the end [xi, 1]. Similarly Y ∈ Rn285

is a vector whose ith entry is the target yi.

ä When is our solution to least
squares regression in (2.4) not
defined?

ä What are we losing by fitting a
linear predictor? Will this work if
the true model from which Nature
generates the data was different, say
a polynomial?

286

Figure 2.2: Least squares fitting using polynomials. As the degree of the polynomial
M increases the predictor f fits the training data (in blue) better and better. But such
a well-fitted predictor may be very different from the true model from which Nature
generated the data (in green). The red curve in the fourth panel in these cases is said to
have been over-fitted.

2.2.1 Maximum Likelihood Estimation287

There is another perspective to fitting a machine learning model. We will288

suppose that our training data was created using a statistical model. We write289

this as290

y = w>x+ b+ ε (2.5)

Of course we do not know whether Nature used this particular model f(x;w, b) :=291

w> + b to create the data, it might have created the data using some other292

model. This discrepancy between the models is modeled as noise ε. Noise in293

machine learning comes from the fact that we the user do not know Nature’s294

model. ä Can you think any other sources
of noise? For instance, if you
scraped some images from the
Internet, how will you label them?

295

What model is appropriate for the noise ε? There can be many models296

depending upon your experiment (think of a model that predicts the arrival297
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time of a bus at the bus stop, what noise would you use?). For our purpose we298

will use zero-mean Gaussian noise299

ε ∼ N(0, σ2
ε )

that does not depend on the sample x. The probability that a sample (xi, yi)300

in our dataset Dtrain was created using our statistical model is then301

p(yi|xi, w, b) = N(w>xi + b, σ2
ε ).

We have assumed that the data was drawn iid by Nature so the likelihood of302

our entire dataset is303

p(Dtrain|w, b) =

n∏
i=1

p(yi|xi, w, b).

Finding good values of w, b can now be thought of as finding values that304

maximize the likelihood of our observed data305

w∗, b∗ = argmin
w,b

− log p(Dtrain|w, b). (2.6)

Observe that our objective is written as the minimization of the negative log-306

likelihood. This is equivalent to maximizing the likelihood because logarithm307

is monotonic function. We can now rewrite the objective as308

− log p(Dtrain|w, b) =
n

2
log(σ2

ε ) +
n

2
log(2π) +

1

2σ2
ε

n∑
i=1

(
yi − w>xi − b

)2
.

Notice that only the third term depends on w, b. The first term is a function309

of our chosen value σ2
ε , the second term is a constant. In other words, finding310

maximizing the likelihood boils down to solving the optimization problem311

w∗, β∗ = argmin
w,b

1

2σ2
ε

n∑
i=1

(
yi − w>xi − b

)2
. (2.7)

This objective is nothing other than our least squares regression objective with312

σ2
ε set to 1. This objective known as the maximum likelihood objective (MLE).313

ä How does using a different value
of σε in (2.7) change the least
squares solution in (2.4)?

314

Maximum likelihood objective has an interesting offshoot. In the least315

squares case, given an input x all that our fitted model could predict was316

ŷ = w∗>x+ b∗.

MLE has helped us fit a statistical model to the data. So we can now predict317

the entire distribution318

p(y|x,w∗, b∗) = N(w∗>x+ b∗, σ2
ε ).

The solution of least squares is the mean of the Gaussian random variable319

y|x,w∗, b∗, the variance of this random variance is σ2
ε . So instead of just pre-320

dicting ŷ the machine learning model can now give the probability distribution321

p(y|x,w∗, b∗) as the output and the user is free to use it as they wish, e.g.,322

compute the mean, the median, the 5% probability value of the right tail etc.323
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2.3 Perceptron324

ä Is a linear model appropriate if
our data was natural images? What
properties have we lost by restricting
the classifier to be linear?

o The linear classifier remains
unchanged if we reorder the pixels
of all images consistently in our
entire training set and the weights w.
The images will look nothing like
real images to us. The perceptron
does not care about which pixels in
the input are close to which others.

Let us now solve a classification problem. We will again go around the model325

selection problem and consider the class of linear classifiers. Assume binary326

labels Y ∈ {−1, 1}. To keep the notation clear, we will use the trick of327

appending a 1 to the data x and hide the bias term b in the linear classifier. The328

predictor is now given by329

f(x;w) = sign(w>x)

=

{
+1 if w>x ≥ 0

−1 else.

(2.8)

We have used the sign function denoted as sign to get binary {−1,+1} outputs330

form our real-valued prediction w>x. This is the famous perceptron model of331

Frank Rosenblatt. We can visualize the perceptron the same way as we did for332

linear regression.333

Let us now formulate an objective to fit/train the perceptron. As usual, we334

want the predictions of the model to match those in the training data.335

`zero-one(w) :=
1

n

n∑
i=1

1{yi 6=f(xi;w)}. (2.9)

The indicator function inside the summation measures the number of mistakes336

the perceptron makes on the training dataset. The objective here is designed to337

find weights w that minimizes the average number of mistakes, also known as338

the training error. Such a loss that measures the mistakes is called the zero-one339

loss, it incurs a penalty of 1 for a mistake and zero otherwise.340

ä Can you think of some quantity
other than the zero-one error that we
may wish to optimize?

2.3.1 Surrogate Losses341

The zero-one loss is the clearest indication of whether the perceptron is work-342

ing well. It is however non-differentiable, so we cannot use powerful ideas343

from optimization theory to minimize it. This is why surrogate losses are con-344

structed in machine learning. These are proxies for the loss function, typically345

for the classification problems and look as follows.346

The hinge loss is one such surrogate loss. It is given by347

`hinge(w) = max(0,−y w>x).

If the predicted label ŷ = sign(w>x) have the same sign as the true label y,348

the hinge-loss is zero. If they have opposite signs, the hinge loss increases349

linearly. The exponential loss350

`exp(w) = e−y (w>x)

or the logistic loss351

`logistic(w) = log
(

1 + e−yw
>x
)

are some other popular losses for classification.352

ä Draw the three losses to observe
their differences.
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2.4 Stochastic Gradient Descent353

We will now fit a perceptron using the hinge loss using a very simple optimiza-354

tion technique. At each iteration, this algorithm updates the weights w in the355

direction of the negative gradient. So first, let us compute the gradient of the356

hinge loss. It is easily seen to be357

d`hinge(w)

dw
=

{
−y x for incorrect prediction
0 else.

(2.10)

We will use a naive algorithm to update the weights. Here is how it goes.358

The Perceptron algorithm
Perform the following steps for iterations t = 1, 2, . . ..

1. At the tth iteration, sample a datum with index ωt ∈ {1, . . . , n}
from Dtrain uniformly randomly, call it (xωt , yωt).

2. Update the weights of the perceptron as

wt+1 =

{
wt + yωtxωt if sign(wt

>
xωt) 6= yωt

wt else.
(2.11)

In other words, the perceptron weights is changed only if it makes a mistake359

on the sample (xωt , yωt). The updated perceptron improves its mistake on this360

sample. Observe that a mistake happens if the sign of wt>xωt and yωt are361

different, the product yωtw>xωt is therefore negative. The updated weights362

of the perceptron now satisfy363

yωt(wt + yωtxωt)>xωt = yωt
〈
wt, xωt

〉
+ (yωt)

2 〈xωt , xωt〉
= yωt

〈
wt, xωt

〉
+ ‖xωt‖22.

In simple worlds, the value of yωt 〈w, xωt〉 increases as a result of the update,364

it becomes more positive. If the perceptron makes mistakes on the same365

datum repeatedly, this value is eventually going to become positive. Of course,366

mistakes on other data in the training set may steer the perceptron towards367

other directions and it may continue to cycle ad infinitum, but it is easy to show368

that it ceases its updates when all data are correctly classified. More precisely,369

if the training data are such that they can be correctly classified using a linear370

predictor, then the perceptron will find this predictor after a finite number of371

iterations.372

We have seen a powerful algorithm for machine learning. This algorithm is373

called stochastic gradient descent (SGD) and it is very general: so long as you374

can take the gradient of the objective you can execute SGD. The algorithm for375

fitting the perceptron above was given by Rosenblatt in 1957 and is popularly376

known as the “perceptron algorithm”. It is interesting to note that it is simply377

the instantiation of SGD which was known before Robbins and Monro (1951)378

for the hinge loss.379

ä You may have seen the hinge loss
written as
`hinge(w) = max(0, 1− y w>x).
Why the difference?
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2.4.1 The general form of SGD380

SGD is a very general algorithm. We can use it so long as you have a dataset381

and an objective that is differentiable. Consider an optimization problem that382

looks like383

w∗ = argmin
w

1

n

n∑
i=1

`i(w)

where the function `i denotes the loss on the sample (xi, yi) and w ∈ Rp384

denotes the weights. Solving this problem using SGD corresponds to iteratively385

updating the weights using386

wt+1 = wt − η d`ωt(w)

dw

∣∣∣
w=wt

.

We have chosen to be a bit more precise and the sample over which we compute387

the gradient is ωt. This is a random variable with domain and we will use ωt388

to denote its index.389

ωt ∈ {1, . . . , n} .

The gradient of the loss `ωt(w) with respect to w is denoted by390

∇ `ωt(wt) :=
d`ωt(w)

dw

∣∣∣
w=wt

=


∇w1 `

ωt(wt)
∇w2

`ωt(wt)
...

∇wp `ωt(wt)


∈ Rp.

The gradient∇ `ωt(wt) is therefore a vector in Rp. We have written391

∇w1
`ωt(wt) =

d`ωt(w)

dw1

∣∣∣
w=wt

for the scalar-valued derivative of the objective `ωt(wt) with respect to the392

first weight w1 ∈ R. We can therefore write SGD as393

wt+1 = wt − η∇ `ωt(wt). (2.12)

The non-negative scalar η ∈ R+ is called the step-size or the learning rate. It394

governs the distance traveled along the negative gradient −∇ `ωt(wt) at each395

iteration.396



Chapter 3397

Kernels, Beginning of neural398

networks399

Reading
1. Bishop 6.1-6.3

2. Goodfellow 6.1-6.4

3. “Random features for large-scale kernel machines” by Rahimi and
Recht (2008).

3.1 Digging deeper into the perceptron400

3.1.1 Convergence rate401

How many iterations does a perceptron need to fit on a given dataset? We402

will assume that the training data are bounded, i.e., ‖xi‖ ≤ R for some R and403

for all i ∈ {1, . . . , n}. Let us also assume that the training dataset is indeed404

linearly separable, i.e., a solution w∗ exists for the perceptron weights with405

training error exactly zero. This means406

yiw∗>xi > 0 ∀i.

We will also assume that this classifier separates the data well. Note that407

the distance of each input xi from the decision boundary (i.e., all x such that408

w∗>x = 0) is given by the component of xi in the direction of w∗ if the label409

is y∗ = +1 and in the direction −w∗ if the label is negative. In other words,410

yiw∗>xi

‖w∗‖
= ρi

gives the distance to the decision boundary. The quantity on the right hand411

side is called the margin, it is simply the distance of the sample i from the412

22
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decision boundary. If w∗ is the classifier with the largest average margin,413

ρ = min
i∈{1,...,n}

ρi

is a good measure of how hard a particular machine learning problem is.414

You can now try to prove that after each update of the perceptron the inner415

product of the current weights with the try solution 〈wt, w∗〉 increases at least416

linearly and that the squared norm ‖wt‖2 increases at most linearly in the417

number of updates t. Together the two will give you a result that after t weight418

updates419

t ≤ R2

ρ2
(3.1)

all training data are classified correctly. Notice a few things about this expres-420

sion.421

1. The quantity R2

ρ2 is dimension independent; that the number of steps422

reach a given accuracy is independent of the dimension of the data will423

be a property shared by optimization algorithms in general.424

2. There are no constant factors, this is also the worst case number of425

updates; this is rare.426

3. The number of updates scales with the hardness of the problem; if the427

margin ρ was small, we need lots of updates to drive the training error428

to zero.429

3.1.2 Dual representation430

Let us see how the parameters of the perceptron look after training on the entire431

dataset. At each iteration, the weights are updated in the direction (xt, yt)432

or they are not updated at all. Therefore, if αi is the number of times the433

perceptron sampled the datum (xi, yi) during the course of its training and got434

it wrong, we can write the weights of the perceptron as a linear combination435

w∗ =

n∑
i=1

αiyixi. (3.2)

where αi ∈ {0, 1, . . . , }. The perceptron therefore using the classifier436

f(x,w) = sign(ŷ)

where ŷ =

(
n∑
i=1

αiyixi

)>
x

=

n∑
i=1

αiyixi
>
x.

(3.3)
o As you see in (3.3), computing
the prediction for a new input x
involves, either remembering all the
weights w at the end of training, or
storing all the

{
αi
}
i=1,...,n

along
with the training dataset. The latter
is called the dual representation of a
perceptron and the scalars

{
αi
}

are
called the dual parameters.

437

Remember this special form: the inner product of the new input x with438

all the other inputs xi in the training dataset is combined linearly to get the439

prediction. The weights of this linear combination are the dual variables which440

is a measure of how many tries it took the perceptron to fit that sample during441

training.442
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3.2 Creating nonlinear classifiers from linear ones443

Linear classifiers such as the perceptron, or the support vector machine (SVM)444

can be extended to nonlinear ones. The trick is essentially the same that we445

saw when we fit polynomials (polynomials are nonlinear) using the formula for446

linear regression. We are interested in mapping input data x to some different447

space, this is usually a higher-dimensional space called the feature space.448

x 7→ φ(x).

The quantity φ(x) is called a feature vector.449

Figure 3.1

For example, in the polynomial regression case for scalar input data x ∈ R450

we used451

φ(x) :=
[
1,
√

2x, x2
]>

to get a quadratic feature space. The role of
√

2 will become clear shortly.452

Certainly this trick of polynomial expansion also works for higher dimensional453

input454

φ(x) :=
[
1, x1, x2,

√
2x1x2, x

2
1, x

2
2

]>
.

Having fixed a feature vector φ(x), we can now fit a linear perceptron on the455

input data
{
φ(xi), yi

}
. This involves updating the weights at each iteration as456

wt+1 =

{
wt + ytφ(xt) if sign(w>t φ(xt)) 6= yt

wt else.
(3.4)

At the end of such training, the perceptron is457

w∗ =

n∑
i=1

αiyiφ(xi)

and predictions are made by first mapping the new input to our feature space458

f(x;w) = sign

(
n∑
i=1

αiyiφ(xi)>φ(x)

)
. (3.5)

Notice that we now have a linear combination of the features not the data459

directly.460

ä The concept of a feature space
seems like a panacea. If we have
complex data, we simply map it to
some high-dimensional feature and
fit a linear function to these features.
However, the “curse of
dimensionality” coined by Richard
Bellman states that to fit a function
in Rd the number of data needs to be
exponential in d. It therefore stands
to reason that we need a lot more
data to fit a classifier in feature
space than in the original input
space. Why would we still be
interested in the feature space then?
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3.3 Kernels461

Observe the expression of the classifier in (3.5). Each time we make predictions462

on the new input, we need to compute n inner products of the form463

φ(xi)>φ(x).

o Feature spaces can become large
very quickly. What is the
dimensionality of φ(x) for a
tenth-order polynomial with a
three-dimensional input data?

If the feature dimension is high, we need to enumerate the large number of464

feature dimensions if we are using the weights of the perceptron, or these inner465

products if we are using the dual variables. Observe however that even if the466

feature vector is large, we can compactly evaluate the inner product467

φ(x) =
[
1,
√

2x, x2
]

φ(x′) =
[
1,
√

2x′, x′
2
]

φ(x)>φ(x′) = 1 + 2xx′ + (xx′)2 = (1 + xx′)
2
.

for input x ∈ R. Kernels are a formalization of exactly this idea. A kernel468

k : X ×X → R.

is a symmetric, positive semi-definite function of its two arguments for which469

it holds that470

k(x, x′) = φ(x)>φ(x)

for some feature φ. Few examples of kernels are471

k(x, x′) =
(
x>x′ + c

)2
,

k(x, x′) = exp
(
−‖x− x′‖2/(2σ2)

)
.

3.3.1 Kernel perceptron472

We can now give the kernel version of the perceptron algorithm. The idea is to473

simply replace any inner product in the algorithm that looks like φ(x)>φ(x′)474

by the kernel k(x, x′).475

Kernel perceptron
Initialize dual variables αi = 0 for all i ∈ {1, . . . , n}. Perform the

following steps for iterations t = 1, 2, . . ..

1. At the tth iteration, sample a data point with index ωt from Dtrain

uniformly randomly, call it (xωt , yωt).

2. If there is a mistake, i.e., if

0 ≥ yωt
(

n∑
i=1

αiyiφ(xi)>φ(xωt)

)

= yωt

(
n∑
i=1

αiyik(xi, xωt)

)
,

then update
αωt ← αωt + 1.
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Notice that we do not ever compute φ(x) so it does not matter what the476

dimensionality of the feature vector is. It can even be infinite, e.g., for the477

radial basis function kernel. Observe also that we do not maintain weights478

w. We instead maintain the dual variables
{
α1, . . . , αn

}
while running the479

algorithm.480

ä Kernels look great, you can fit
perceptrons in powerful feature
spaces using essentially the same
algorithm. How expensive is each
iteration of the perceptron?

o When ML algorithms are
implemented in a system, there exist
tradeoffs between the feature-space
version and the Gram matrix version
of linear classifiers. The former is
preferable if the number of samples
in the dataset is large, while the
latter is used when the
dimensionality of features is large.

Note that the kernel perceptron computes the kernel over all data samples481

in the training set at each iteration. It is expensive and seems wasteful. The482

Gram matrix denoted by G ∈ Rn×n483

Gij = k(xi, xj) (3.6)

helps address this problem by computing the kernel on all pairs in the training484

dataset. With this in hand, we can modify step 2 in the kernel perceptron using485

yt

(
n∑
i=1

αiyik(xi, xt)

)
= yt(α� Y )>Get.

where et = [0, . . . , 0, 1, 0, . . .] with a 1 on the tth element, α =
[
α1, . . . , αn

]
486

denotes the vector of all the dual variables, Y =
[
y1, . . . , yn

]
is a vector of all487

the labels, and the notation α� Y =
[
α1y1, . . . , αnyn

]
denotes the element-488

wise (Hadamard) product. This expression now only involves a matrix-vector489

multiplication, which is much easier than computing the kernel at each iteration.490

Gram matrices can become very big. If the number of samples is n = 106, not491

an unusual number today, the Gram matrix has 1012 elements. The big failing492

of kernel methods is that they require a large amount of memory at training493

time. Nystrom methods compute low-rank approximations of the Gram matrix494

which makes operations with kernels easier.495

ä Logistic regression with a loss
function

`logistic(w) = log
(

1 + e−yw
>x
)

is also a linear classifier. Write
down how you will fit a logistic
regression using stochastic gradient
descent; this is similar to the
perceptron algorithm. Write down
the feature-space version of the
algorithm and a kernelized logistic
regression that uses the Gram
matrix.

3.3.2 Mercer’s theorem496

This theorem shows that given any kernel that satisfies some regularity proper-497

ties can be rewritten as an inner product.498

­ A function f : X → R is square
integrable iff∫

x∈X
|f(x)|2 dx <∞.

Theorem 3.1 (Mercer’s Theorem). For any symmetric function k : X ×499

X → R which is square integrable in X ×X and satisfies500 ∫
X×X

k(x, x′) f(x) f(x′) dx dx′ ≥ 0 (3.7)

for all square integrable functions f ∈ L2(X), there exist functions φi : X →501

R and numbers λi ≥ 0 where502

k(x, x′) =
∑
i

λiφ
>
i (x) φi(x

′)

for all x, x′ ∈ X . The condition in (3.7) is called Mercer’s condition. You will503

also have seen it written as for any finite set of inputs
{
x1, . . . , xn

}
and any504

choice of real-valued coefficients c1, . . . , cn a valid kernel should satisfy505 ∑
i,j

cicjk(xi, xj) ≥ 0.

There can be an infinite number of coefficients λi in the summation.506
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Remark 3.2 (Checking if a function is a valid kernel). Note that Mercer’s507

condition states that the Gram matrix of any dataset is positive semi-definite:508

u>Gu ≥ 0 for all u ∈ Rn.

This is easy to show.509

u>Gu =
∑
ij

uiujGij

=
∑
ij

uiujφ(xi)
>φ(xj)

=

(∑
i

uiφ(xi)

)> ∑
j

ujφ(xj)


= ‖
∑
i

uiφ(xi)‖2

≥ 0.

The integral in Theorem 3.1 in Mercer’s condition is really just the continuous510

analogue of the vector-matrix-vector multiplication above. So if you have a511

function that you would like to use as a kernel, checking its validity is easy by512

showing that the Gram matrix is positive semi-definite.513

Kernels are powerful because they do not require you to think of the feature514

and parameter spaces. For instance, we may wish to design a machine learning515

algorithm for spam detection that takes in a variable length of feature vector516

depending on the particular input. If x[i] is the ith character of a string, a good517

feature vector to use is to consider the set of all length k subsequences. The518

number of components in this feature vector is exponential. However, as you519

can imagine, given two strings x, x′520

this string is interesting521

txws sbhtqg is iyubqtnhpqg522

you can write a Python function to check their similarities with respect to some523

rules you define. Mercer’s theorem is useful here because it says that so long524

as your function satisfies the basic properties of a kernel function, there exists525

some feature space which your function implicitly constructs.526

3.4 Learning the feature vector527

The central idea behind deep learning is to learn the feature vectors φ
instead of choosing them a priori.

How do we choose what set of feature vectors to learn from? For instance, we528

can pick all polynomials; we can pick all possible Gabor filters that you saw529

in HW 1; we can also pick all possible string kernels.530
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3.4.1 Random features531

Suppose that we have a finite-dimensional feature φ(x) ∈ Rp. We saw in the532

perceptron that533

f(x;w) = sign

(∑
i

wiφi(x)

)
where φ(x) = [φ1(x), . . . , φp(x)] and w = [w1, . . . , wp] are the feature and534

weight vectors respectively. We will set535

φ(x) = σ
(
S>x

)
, (3.8)

where S ∈ Rd×p is a matrix. The function σ (·) is a nonlinear function of its536

argument and acts on all elements of the argument element-wise537

σ(z) = [σ(z1), . . . , σ(zp)]
>
.

We will abuse notation that denote both the vector version of σ and the element-538

wise version of σ using the same Greek letter. Notice that this is a special539

type of feature vector (or a special type of kernel), it is a linear combination540

of the input elements. What matrix S should we pick to combine these input541

elements? The paper by Rahimi and Recht (2008) proposed the idea that for542

shift-invariant kernels (which have the property k(x, x′) = k(x−x′) one may543

use a matrix with random elements as our S544

S> =

ω1

...
ωp


where ωi ∈ Rd are random variables drawn from, say, a Gaussian distribution545

and the function546

σ(z) = cos(z)

is a cosine function. Using a random matrix is a cheap trick, it lets us create a547

lot of features quickly without worrying about their quality. Our classifier is548

now549

f(x;w) = sign
(
w>σ

(
S>x

))
(3.9)

and we can solve the optimization problem550

w∗ = argmin
w

1

n

n∑
i=1

`hinge(y
i, ŷi) (3.10)

with ŷi = w>σ
(
S>xi

)
and fit the weights w using SGD as before.551

Figure 3.2
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As an example consider the heatmap of Gabor-like kernel k(x, x′) in Fig-552

ure 3.2 on the left. We can think of the decomposition553

left-most picture = k(x, x′) = φ(x)>φ(x′)

= w1σ
(
ω>1 x

)
+ w2σ

(
ω>2 x

)
+ wkσ

(
ω>k x

)
+ . . .

= right-most picture

In other words, the random elements of the matrix S, namely ωk can combine554

together linearly using the trained weights wk to give us a kernel that looks555

like a useful kernel on the left. A large random matrix S allows us to learn556

may such kernels and combine their output linearly.557

3.4.2 Learning the feature matrix as well558

Random features do not work easily for all kinds of data. For instance, if you559

have an image of size 100×100, and you are trying to find a fruit560

561

we can design random features of the form562

φij,kl = 1{mostly red color in a box formed by pixels (ij) and(kl)}.

We will need lots and lots of such features before we can design an object563

detector that works well for this image. In other words, random features do564

not solve the problem that you need to be clever about picking your feature565

space/kernel.

ä What kind of data do you think
random features will work well for?

566

We can now simply motivate deep learning as learning the matrix S in (3.9)567

in addition to the coefficients w. The classifier now is568

f(x;w, S) = sign
(
w>σ

(
S>x

))
(3.11)

but we now solve the optimization problem569

w∗, S∗ = argmin
w,S

1

n

n∑
i=1

`hinge(y
i, ŷi) (3.12)

with ŷi = w>σ
(
S>xi

)
as before. We have hereby seen our first deep network.570

The classifier in (3.11) is a two-layer neural network.571

Moving from the problem in (3.10) to this new problem in (3.12) is a very572

big change.573

1. Nonlinearity. The classifier in (3.11) is not linear anymore. It is a574

nonlinear function of its parameters w, S (both of which we will call575

weights).576
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2. High-dimensionality. We added a lot more weights to the classifier,577

the original classifier had w ∈ Rp parameters to learn while the new578

one also has S ∈ Rd× p more weights. The curse of dimensionality579

suggests that we will need a lot more data to fit the new classifier.580

3. Non-convex optimization. The optimization problem in (3.12) much581

harder than the one in (3.10). The latter is a convex function (we582

will discuss this soon) which are easy to minimize. The former is583

a non-convex function in its parameters w, S because they interact584

multiplicatively, such functions are harder to minimize. We could write585

down the solution of the perceptron using the final values of the dual586

variables. We cannot do this for a two-layer neural network.587



Chapter 4588

Deep fully-connected589

networks, Backpropagation590

Reading
1. Bishop 5.1, 5.3

2. Goodfellow 6.3-6.5

3. Notes at http://cs231n.github.io/optimization-2/

4.1 Deep fully-connected networks591

A deep neural network takes the idea of a two-layer network to the next step.592

Instead of having one matrix S in the classifier593

f(x; v, S) = sign
(
v>σ

(
S>x

))
a deep network has many matrices S1, . . . , SL594

f(x; v, S1, . . . , SL) = sign
(
v>σ

(
S>L . . . σ

(
S>2 σ(S>1 x)

)
. . .
))
. (4.1)

We will call each operation of the form σ
(
S>k . . .

)
, as a layer. Consider the595

second layer: it takes the features generated by the first layer, namely σ(S>1 x),596

multiplies these features using its feature matrix S>2 and applies a nonlinear597

function σ(·) to this result element-wise before passing it on to the third layer.598

A deep network creates new features by composing older features.

This composition is very powerful. Not only do we not have to pick a599

particular feature vector, we can create very complex features by sequentially600

combining simpler ones. For example Figure 4.1 shows the features (more601

31

http://cs231n.github.io/optimization-2/
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precisely, the kernel) learnt by a deep neural network. The first layer of602

features are called Gabor-like, they are similar to ones you constructed in HW603

1. These features are combined linearly along with a nonlinear operation to604

give richer features (spirals, right angles) in the middle panel. The third layer605

combines the lower features to get even more complex features, these look606

like patterns (notice a soccer ball in the bottom left), a box on the bottom right607

etc.608

Figure 4.1

The optimization problem for fitting a deep network is written as609

v∗, S∗1 , . . . , S
∗
L = argmin

v,S1,...,SL

1

n

n∑
i=1

`hinge(y
i, ŷi). (4.2)

where the output prediction is now610

ŷ = v>σ
(
S>L . . . σ

(
S>2 σ(S>1 x)

)
. . .
)
.

Notice that if fitting a two-layer network was difficult, then fitting a multi-layer611

neural network like (4.1) is even harder. There are lots of parameters and612

consequently we need a lot more data to fit such a model. The optimization613

problem in (4.2) is also naturally much harder than its two-layer version. The614

benefit for going through this difficulty is many fold and quite astounding.615

1. Not having to pick features is very powerful. Notice that we do not need616

to worry about what kind of data x is at the input. So long as we can617

write it into a vector, the classifier as written in (4.1) works. In other618

words, the same type of classifier works for image-based data, data from619

natural language processing, speech processing, and many other types.620

This is the primary reason why a large number of scientific field are621

adopting deep networks.622

2. Before the resurgence of deep learning, each of these fields essentially623

had their own favorite kernels they preferred, these kernels were de-624

signed across decades of insights from that specific field (wavelets in625

signal processing, keypoint detectors and descriptors in computer vision,626

n-grams in NLP etc.). It was very difficult for a researcher to use ideas627

from a different field. With deep learning, this has become much easier.628

There is still a significant amount of domain insight that you need to629

make deep networks work well but the bar for entering a new field is630

much lower.631
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3. Deep neural networks are universal approximators. In simple words, it632

means that provided the deep network has enough number of layers and633

enough number of features in each layer, it can fit any dataset. This is a634

theorem in approximation theory.635

4.1.1 Some deep learning jargon636

We have defined the essential parts of a deep network. Let us briefly take a637

look at some typical jargon you will encounter as you read more.638

Activation function. The nonlinear function σ(·) in (4.1) is called the acti-639

vation function (motivated from the threshold-based activation of McCulloch-640

Pitts neuron). It is also called a nonlinearity because it is the only nonlinear641

operation in the classifier. There are many activation functions that have been642

used over the years.643

1. Threshold644

threshold(x) =

{
1 if x ≥ 0

0 else.

2. Sigmoid/Logistic645

sigmoid(x) =
1

1 + e−x
.

3. Hyperbolic tangent646

tanh(x) =
ex − e−x

ex + e−x

4. Rectified Linear Units (ReLU)647

relu(x) = |x|+
= max(0, x).

5. Leaky ReLUs648

σc(x) =

{
x if x > 0

c x else.

6. Swish649

σ(x) = x sigmoid(x).

Different activation functions work differently. ReLU nonlinearities are the650

most popular and we will see the reasons why they work better than older ones651

such as sigmoid/tanh nonlinearities in the backpropagation section.652

Logits for multi-class classification. The output653

ŷ = v>σ
(
S>L . . . σ

(
S>2 σ(S>1 x)

)
. . .
)

ä How would you use a binary
classifier to classify 10 classes?

are called the logits corresponding to the different classes. This name comes654

from logistic regression where logits are the log-probabilities of belonging655

to one of the two classes. A deep network affords an easy way to solve a656

multi-class classification problem, we simply set657

v ∈ Rp×C
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where C is the total number of classes in the data. Just like logistic regression658

predicts the logits of the two classes, we would like to interpret the vector ŷ as659

the log-probabilities of an input belonging to one of the classes. ä What would the shape of w be if
you were performing regression
using a deep network?

660

Mid-level features. The features at any layer can be studied once you create661

a deep network. You pass an input image x and compute662

hl = S>l . . . σ
(
S>2 σ(S>1 x)

)
. . . (4.3)

to get the pre-activation output of the lth layer. The post-activation output is663

given by applying the nonlinearity664

σ(hl).

Sometimes people will call the σ(hL) as the feature created by a deep network;665

the rationale here is that just like a kernel-based classifier uses features φ(x)666

and fits a linear classifier to these features we may think of the feature of a667

deep network to be σ(hL). These features are often very useful, e.g., you can668

use a pre-trained deep network on the ImageNet dataset in PyTorch within669

two lines of code and use these features to fit a linear classifier for classifying670

fruits. Training a deep network yourself on ImageNet is quite difficult.671

Hidden layers/neurons. The intermediate layers that create the features672

h1, . . . , hL are called the hidden layers. A feature is the same as a neuron;673

think of the McCulloch-Pitts picture, just like a neuron takes input from all the674

other neurons connected to it via some weights , a feature is computed using675

a weighted combination of the features at the lower layer. We will say that a676

neural network is wide if it has lots of features/neurons on each hidden layer.677

We will say that it is thin if it has few features/neurons on each hidden layer.678

4.1.2 Weights679

It is customary to not differentiate between the parameters of different layers of680

a deep network and simply say weights when we want to refer to all parameters.681

The set682

w := {v, S1, S2, . . . , SL}

is the set of weights. This set is typically stored in PyTorch as a set of matrices,683

one for each layer.684

Important. Every time we want to write down mathematical equations,
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we will imagine w to be a large vector. This is less cumbersome notation.
We denote by p the dimensionality of w and imagine that

w ∈ Rp.

The dimensionality p keeps things consistent with linear classifiers where
the features were φ(x) ∈ Rp. When you use PyTorch to implement an
algorithm that requires you to iterate over the weights, you will iterate
over elements of the set. Using this new notation, we will write down a
deep classifier as simply

f(x,w) (4.4)

and fitting the deep network to a dataset involves the optimization problem

w∗ = argmin
w

1

n

n∑
i=1

`(yi, ŷi). (4.5)

We will also sometimes denote the loss of the ith sample as

`i(w) := `(yi, ŷi).

4.2 The backpropagation algorithm685

We would like to using SGD to fit a deep network on a given dataset. As we686

saw in Chapter 2, if the loss function is denoted by `ωt(w) where ωt was the687

index of the datum sampled at iteration t, we would like to update the weights688

using689

wt+1 = wt − η d`ωt(w)

dw

∣∣∣
w=wt

.

We have used a scalar η > 0 as the step-size or the learning rate. It governs the690

distance traveled along the negative gradient at each iteration. Let us ignore691

the index of the datum ωt in this section, imagine ωt = 1. Implementing SGD692

therefore boils down to computing the gradient693

d`(w)

dw
.

Backpropagation is an algorithm for computing the gradient of the
loss function for a deep network.

4.2.1 One hidden layer with one neuron694

Consider the linear regression problem with one layer and one datum:695

`(w) =
1

2
(y − vσ(w>x))2
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where σ(·) is some activation function and our weights are {v, w}. Let us696

understand the computational graph of how the loss is computed:697

w, x 7−→︸︷︷︸
layer 1

z
σ7−→︸︷︷︸

layer 2

h
v7−→︸︷︷︸

layer 3

vh
y7−→︸︷︷︸

layer 4

`. (4.6)

where h = σ(z) and z = w>x. Each node in this graph is either the input/out-698

put or an intermediate result of the computation. The gradient of the loss with699

respect to the weights using the chain rule is700

∂`

∂v
= (y − vσ(w>x))

(
−σ(w>x)

)
(4.7)

and701

∂`

∂w
= (y − vσ(w>x))

(
−vσ′(w>x)

)
(x) . (4.8)

1. Caching computations for the chain rule. The first idea behind
backpropagation is to realize that quantities like (y − vσ(w>x))
or z = w>x are computed multiple times in the chain rule in (4.7)
and (4.8). If we can cache these quantities we can compute the
chain rule-based gradient for the different parameters quickly.

2. Forward computation. The second idea behind backpropagation
is to realize that quantities like (y − vh), h = σ(z) and z = w>x
are outputs of the third, second and first layers respectively. In other
words, the quantities we need to cache in the chain rule computation
are simply the outputs of the individual layers.

3. Backward computation. The third observation is to see that the
quantity σ′(z) in (4.8) is the derivative of the output of the ac-
tivation function, namely h = σ(z) with respect to z, its input
argument

σ′(z) =
dh
dz
.

This derivative is combined with the forward computation (y− vh)
to get the gradient with respect to the weights w.

Backpropagation is simply a book-keeping exercise that caches the for-
ward computation of the graph in (4.6) and uses these cached values to
compute the derivative of the loss ` with respect to the parameters of each
layer sequentially.

We will use a clever notation to denote the backprop gradient which will702

make all this process very mechanical and easy. Denote by703

v =
d`
dv

(4.9)

the derivative of the loss ` with respect to a parameter v. Effectively, for our704

simple two layer (one neuron) neural network, we are interested in computing705

the quantities706

w, v.
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Let us also denote the output of the second linear layer (layer 3)707

e = vh.

Now observe the following “forward computation”

z = w>x (4.10)
h = σ(z) (4.11)
e = vh (4.12)

` =
1

2
(y − e)2

. (4.13)

Let us imagine that we have cached all the quantities on the left hand side708

of the equalities above. We use these quantities to perform the “backward”709

computation.710

d`
d`

= ` = 1.

R 3 e = `
d`
de

= −1 (y − e) = ` (−(y − e)) . (from (4.13))

R 3 v = e
de
dv

= − (y − e) h = e h. (from (4.12))

R 3 h = e
de
dh

= e (v). (from (4.12))

R 3 z = h
dh
dz

= h σ′(z). (from (4.11))

Rd 3 w = z
dz
dw

= z x. (from (4.10))

Rd 3 x = z
dz
dx

= z w. (from (4.10))

Remark 4.1. An interesting mnemonic to remember backprop by is to see711

that if the forward graph is712

z = w1x1 + w2x2

the backprop gradient is w1 = z x1 and w2 = z x2. If x1 was large and713

dominated the computation of z during the forward propagation, then w1714

which is the multiplier of x1 also gets a dominant share of the backprop715

gradient z. The backprop gradient is shared equitably among the different716

quantities that took part in the forward computation. This is useful to remember717

when you build neural networks with complex architectures on your own: if718

there is a part of the network whose activations are very small and it is being719

combined with another part of the network whose activations have a large720

magnitude, then the former is not going to going to get a large enough backprop721

gradient.722
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o An example adversarial input to a
deep networkRemark 4.2 (Gradient with respect to the input x). Notice that we obtain723

the gradient of the loss with respect to the input x724

d`
dx

as a by-product of backpropagation. Backpropagation computes the gradient725

of the input activations to each layer v because this is precisely the gradient726

that is propagated downwards. So the gradient x should not be surprising,727

after all x is nothing but the input activation to the first layer. This gradient728

is useful, you can use to find what are called adversarial examples, i.e., input729

images which look like natural images to us humans but contain imperceptible730

noise that gives a large value of x.731

4.2.2 Implementation of backpropagation732

Consider our neural network classifier given by733

f(x; v, S1, . . . , SL) = sign
(
w>σ

(
S>L . . . σ

(
S>2 σ(S>1 x)

)
. . .
))
.

Figure 4.2: A schematic of forward and backward computations in backpropagation.

When you build such a multi-layer network in PyTorch, the kth layer is734

automatically equipped with two member functions.735

736
def forward(self, hˆ{k-1}, S_k):737

# computes the output of the kˆth layer738

# given output of previous layer hˆk and739

# parameters of current layer S_k740

return hˆk741

742

def backward(self, hˆk, d loss/dhˆ{k}, S_k):743

# computes two quantities744

# 1. d loss/d{S_k}745

# 2. d loss/d{hˆ{k-1}}746

return d loss/d{S_k}, d loss/d{hˆ{k-1}}747748

Such forward and backward functions exist for every layer, including the749

nonlinearities. If you implement a new type of layer in a neural network, say a750

new nonlinearity, you only need to write the forward function. The autograd751

module inside PyTorch automatically writes the backward function by looking752

at the forward function. This is why PyTorch is so powerful, you can build753

complex functions inside your deep networks without really bothering to754

compute the derivatives yourself.755
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Convolutional Architectures757

Reading
1. Goodfellow 9

2. “Striving for simplicity: The all convolutional net”, by (Springen-
berg et al., 2014)

We have been talking about “fully-connected” neural networks till now.758

There are a few problems that are apparent even in our limited experience.759

Fully-connected layers have lot of parameters. If an input image is of size760

100×100 = 104 grayscale pixels and we would like to classify it as belonging761

to one out of 1000 classes, we need 10M parameters. It is difficult to perform762

so many add-multiply operations quickly even on sophisticated hardware.763

Further, the curse of dimensionality never goes away; we need lots of data to764

fit these many parameters.

ä Let us consider an example using
local connections instead of a
fully-connected layer. If each output
neuron is connected to only 25
pixels of the 100×100 image and
there are 1000 output neurons, how
many weights will this layer have?

765

Natural data is full of “nuisances” that are not useful for tasks such as766

classification. E.g., illumination, viewpoint, and occlusions767

768

or even semantic ones shown below769

39
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770

Do fully connected networks work for such different images?771

Nuisances can be defined as operations that act on the data before you772

get to see it (nature creates these nuisances). Some of them are special and773

they have a group structure, i.e., they satisfy certain algebraic conditions774

https://en.wikipedia.org/wiki/Group (mathematics). For instance, images of775

the same chair taken from different vantage points are projections of different776

rigid body transformations of the camera. Some other nuisances such as occlu-777

sions do not have a group structure, e.g., there is no rigid body transformation778

that allows us to backcalculate the pixels belonging to a person standing behind779

a car. Convolutional layers are a simple way to tackle one particular kind of780

nuisance, that of translations.781

5.1 Basics of the convolution operation782

So far, we have seen that the basic unit of a neural network is783

σ(w>x).

The basic unit of a convolutional neural network is784

σ(x ∗ w)

where the ∗ denotes a convolution operation. Consider two one-dimensional785

vectors x ∈ R3 and w ∈ R3; we will imagine these to be arrays of infinite786

length with all the entries at indices [4,∞) set to zero; this is known as787

zero-padding the input788

x = [2,−1, 1, 0, 0, . . .]

w = [1, 1, 2, 0, 0, . . .].

o In the signal processing literature,
the words filter and kernels are used
equivalently, so convolutional filters
are also often called convolutional
kernels.The convolution of x with w (which is called the filter) is denoted by789

(x ∗ w)k =

∞∑
τ=0

xτ wk−τ . (5.1)

The element (x ∗ w)k at the kth index is a composition of all the terms in the790

summation on the right hand side. The term wk−τ for negative arguments is791

https://en.wikipedia.org/wiki/Group_(mathematics)
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interpreted as a mirror flip of the vector w. For continuous functions, you will792

have seen the expression793

(x ∗ w)(t) =

∫ t

0

x(τ)w(t− τ) dτ.

for the convolution operation.

ä Discuss the convolution of two
square waves x,w.

For our vectors x,w with three entries the794

convolution operation looks as follows.795

Figure 5.1: Flip and filter style computation of a convolution corresponding to the
summation in (5.1).

Remark 5.1 (Some identities regarding convolutions). Notice that we can796

change the variable of integration and set s = t− τ to get797

(x ∗ w)(t) =

∫ t

0

x(τ)w(t− τ) dτ

= −
∫ 0

t

x(t− s) w(s) ds

=

∫ t

0

w(s) x(t− s) ds

= (w ∗ x)(t).

Convolutions are therefore commutative; you can show similarly that they are798

also distributive (f ∗ g) ∗ h = f ∗ (g ∗ h). Convolution is a linear operator,799

you can show that800

(f + g) ∗ h = (f ∗ h) + (g ∗ h)

for any integrable functions f, g, h.801
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Remark 5.2 (Padding for implementing convolutions). In order to imple-802

ment the summation in convolution, we need to pad the input vector x by803

zeros. How many zeros should we pad it by? You will notice that if the kernel804

w has 2k + 1 elements, the input vector x need not be padded all the way to805

infinity, we only need to pad it with k extra elements.806

o Most deep learning libraries
implement a slightly different
operation instead of convolution,
even though they call it a
convolution. They implement the
cross-correlation operation

(x ∗ w)k =

∞∑
τ=0

xτ wk+τ .

In simple words, the kernel w is not
mirror flipped about the Y axis
before computing the summation
in (5.1). While such an operation is
not strictly a convolution (you can
see the difference if you consider an
asymmetric kernel w,
cross-correlation and convolution
are the same for symmetric kernels),
the difference does not matter for
deep learning because the kernel w
is learned during training. You can
mirror flip the kernel after training
and interpret the network as indeed
performing a convolution with the
flipped kernel.

5.1.1 Convolutions of 2D images807

Convolutions work in the same way for two-dimensional or three-dimensional808

input signals. The kernel w will be a matrix of size k × k in the former case809

and of size k × k × k in the latter.810

(x ∗ w)i,j =

∞∑
s=0

∞∑
t=0

xs,t wi−s,j−t. (5.2)

Figure 5.2: Flip and filter style computation of a convolution for a 2D input image
corresponding to the summation in (5.2).

5.1.2 Some examples811

1. Since convolution is a linear operator we should be able to write it as a812

matrix-vector multiplication. We take the kernel, flip it and sweep it left813

and right to get the rows of the matrix.814

(2,−1, 1) ∗ (1, 1, 2) =


1
1 1
2 1 1

2 1
2


 2
−1
1

 .
The matrix is called a Toeplitz matrix https://en.wikipedia.org/wiki/Toeplitz matrix.815

Two-dimensional convolutions can be written as a matrix-matrix multi-816

plication using a similar construction; see https://stackoverflow.com/questions/16798888/2-817

d-convolution-as-a-matrix-matrix-multiplication.818

https://en.wikipedia.org/wiki/Toeplitz_matrix
https://stackoverflow.com/questions/16798888/2-d-convolution-as-a-matrix-matrix-multiplication
https://stackoverflow.com/questions/16798888/2-d-convolution-as-a-matrix-matrix-multiplication
https://stackoverflow.com/questions/16798888/2-d-convolution-as-a-matrix-matrix-multiplication
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2. Lots of non-trivial transformations of the image are possible using slight819

changes in the weights. E.g., blurring820

821

or sharpening using a slight change in the weights822

823

We can also detect edges824

825

This filter is called the Sobel filter and is an integral part of image826

pre-processing pipelines in computer vision.827

3. Just like fully-connected layers, we can also stack up convolutions. The828

effective receptive field, i.e., the pixels that are considered by the kernel829

in the convolutional operation increases as we go up the layers.830

4. The operation S>x has S ∈ Rd×p weights and returns a vector in Rp. A831

convolution operator returns a vector (x ∗w) ∈ Rd using K parameters832

in the kernel w. It is important to note that a lot of parameter sharing833

is happening while computing the values of the output neurons. You834

can find some animations at https://colah.github.io/posts/2014-07-Conv-835

Nets-Modular and https://colah.github.io/posts/2014-07-Understanding-836

Convolutions.837

5. Padding the input by zeros is common in signal processing because838

the signals are usually a function of time. We can do a bit better for839

images than zero padding (RGB = (0, 0, 0)) which is akin to creating840

an artifact of a dark black border around the image. Reflection padding841

is a technique (torch.nn.ReflectionPad2d in PyTorch) that mirrors the842

pixels at the boundary and does not create such artifacts.843

https://colah.github.io/posts/2014-07-Conv-Nets-Modular
https://colah.github.io/posts/2014-07-Conv-Nets-Modular
https://colah.github.io/posts/2014-07-Conv-Nets-Modular
https://colah.github.io/posts/2014-07-Understanding-Convolutions
https://colah.github.io/posts/2014-07-Understanding-Convolutions
https://colah.github.io/posts/2014-07-Understanding-Convolutions
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Remark 5.3 (Dilated convolutions). You don’t need to use a kernel that844

looks like a contiguous array. We can create holes in the kernel and expand845

the receptive field. Dilated convolutions do precisely this.846

847

These operators are very useful for image segmentation because they capture848

correlations across large parts of the input image while still enabling the849

parameter sharing of a convolutional layer.850

Remark 5.4 (Separable convolutions). There are 9 weights in a 3×3 kernel.851

Even convolutional layers can get really big, e.g., a standard CNN used for852

ImageNet has about 25M weights and is almost entirely convolutional. Thus853

we might want to reduce the number of weights even further. Separable854

convolutions are a trick to doing so. Consider a 3×3 kernel and split it into855

two kernels of 3×1 and 1×3856 3 6 9
4 8 12
5 10 15

 =

3
4
5

× [1 2 3
]
.

Using the original kernel requires 9 multiply operations to compute each pixel857

value. Using the split kernels requires only 6, it also has fewer weights. These858

are called separable convolutions. The Sobel filter which we saw before can859

be written as a separable convolution860 1 0 −1
2 0 −2
1 0 −1

 =

1
2
1

 [1 0 −1
]

because it measures the gradient of the image intensity independently in the861

two directions. Separable convolutions are very useful when you can use862

high-dimensional data in deep learning, e.g., medical images out of MRI are863

4-dimensional images (width, height, depth, channel).864

ä Can we write every 2D
convolutional filter as a separable
convolution? The answer is no: you
will notice that a separable kernel is
a rank-1 matrix. The singular value
decomposition (SVD) of a separable
kernel A is therefore

A = u v>

for two vectors u, v (we
incorporated the singular value into
u and v). Can we however
approximate any convolutional
kernel as a sum of separable
convolutions? The answer to this is
yes: observe using the SVD of the
kernel A ∈ Rp×p that it can be
written as

A =

p∑
i=1

uiv
>
i .

where ui, vi are the singular vectors.
You don’t have to pick all the
factors, if you pick a few terms in
this summation, you get a good
spectral approximation of the matrix
A. You will see in Section 5.3 how
the convolutional layer in a deep
network is structured and may allow
the network to learn a complicated
kernel A even if the operations are
only separable uiv>i .

5.2 How are convolutions implemented?865

Convolutions are the most heavily used operator in a deep network. We866

therefore need to implement them as efficiently as we can. There are a few867

different ways of implementing convolutions.868

1. Write a simple for loop. This works well if the kernel is small in size.869

2. We can expand out the kernel as a matrix and in this way a convolutional870

layer is simply a matrix-vector multiplication. This method is most871

commonly implemented and works well for sizes up to 5×5.872
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3. We can use the Fast Fourier Transform (FFT) to compute the convolution873

as874

x ∗ w = F−1 [F [x] F [w]] .

This is efficient for large kernels, say greater than 7×7.875

Typically, deep learning libraries will choose an algorithm for convolution in876

run-time after looking at your neural architecture; you do not have to worry877

about the specific algorithm. A library called cuDNN from Nvidia implements878

a bunch of convolution algorithms on GPUs efficiently. PyTorch will pick one879

of these algorithms by checking how long it takes for the first forward-pass880

on your deep network. o You can set
torch.cudnn.benchmark = False to
stop this.

But the fact remains that large kernels which allow881

a larger receptive field (long-range correlations in the input image) are more882

expensive to compute than smaller kernels. Architectures such as Inception883

that we will see soon are an attempt to get a large receptive field while still884

keeping computations in the convolutional layer small.885

Remark 5.5 (Stride in convolutional layers). If you see the documentation886

for the convolutional layer in PyTorch at (https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html)887

you will also see a parameter known as stride. Stride simply means that the888

output889

(x ∗ w)k =

∞∑
τ=0

xτwk−τ

is not computed at all values of k; if the stride is set to 2, the output is computed890

only at every alternate value of k. Note that the default stride as seen in the891

definition of convolution is 1. Since images change very little from pixel to892

pixel, this is a neat trick to reduce the redundancy of computing the convolution893

again and again over similar input. The important artifact of using a stride894

larger than 1 is that the output (x ∗w) is no longer the same length (even after895

padding) as the input, is half the length if the stride is 2.896

5.3 Convolutions for multi-channel images in a897

deep network898

ä We said that convolutional filters
are used to learn the correlations
across nearby pixels. What would be
the utility of 1×1 convolutions?

We will now study how the convolutional layer is implemented in a typical899

deep network. ä If there are 10 input channels and
25 output channels, how many
parameters does a convolutional
layer with a 5×5 kernel have? What
is the size of the output feature map
if convolution is performed with a
stride of 2? Does stride change the
number of parameters in a
convolutional layer?

Let us denote the 2D convolution operation on a single-channel900

2D image A ∈ Rw×h by a kernel w ∈ Rk×k by901

A ∗ w = B ∈ Rw×h.

Imagine that we have an RGB input image of sizew×h; the RGB indicates that902

there are three input channels, one for each color. The input to a convolutional903

layer in a deep network is therefore an array of size 3× w × h. Typical deep904

learning libraries, when they implement a convolutional layer with a kernel w905

of size k × k, will output an image of size c× w × h where c are the number906

of channels in the image at the output of the layer.907

Effectively, a convolutional layer maps908

R3×w×h 3 A 7→ B ∈ Rc×w×h.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
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Figure 5.3: Convolutional layer in a typical deep network

The layer performs the operation909

vj +

3∑
i=1

Ai ∗ wij = Bj

where Ai for i ∈ {1, 2, 3} denotes the ith channel of the input image and Bj910

for j ∈ {1, . . . , c} denotes the jth channel of the output image, and the kernel911

wij ∈ Rk×k is the convolutional kernel. The scalar vj ∈ R denotes the bias.912

Effectively, there are 3c different kernels in one layer and the convolutional913

layer sums up the result of convolutions on all the input channels and adds a914

bias to create each output channel.915

5.4 Translational equivariance using convolutions916

We now discuss the most important reason for using convolutions in deep917

networks. Let us take our 1-dimensional signal x and translate it by ∆ units to918

the right919

x′(t+ ∆) := x(t).

You will see from the definition of convolution in (5.1) that the convolution920

also gets translated921

(x′ ∗ w)k =

∞∑
τ=0

x′τwk−τ

=

∞∑
τ=0

xτ−∆wk−τ

=

∞∑
s=−∆

xswk−s−∆ (s = τ −∆)

= (x ∗ w)k−∆.

(5.3)
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In other words, if you translate the signal by ∆ then the output of convolution922

is also translated by the same amount923

(x′ ∗ w)k+∆ = (x ∗ w)k.

This property is called equivariance. Equivariance also holds for 2D convolu-924

tions.

o Translational equivariance is
much more insightful for 2D images.
Let us consider an example.

Equivariance to translations allows us to build an important property in925

a deep network. If we have a convolutional kernel that has weights such that926

the output is high for a certain object (star in adjoining picture, vertical/slanted927

strips in your Gabor filter homework), the output of a convolutional layer is928

such that the features also “move” if the input moves in the receptive field.929

We can easily build a binary classifier using such equivariant features. If930

we want to build a star classifier, we simply check if some features in the931

output are large after convolution, e.g., we check if the largest feature in the932

2D-feature map is greater than some pre-determined threshold933

f(x,w) := 1{maxij{(x∗w)ij}≥ε}. (5.4)

o The pre-activation features of a
convolutional layer are sometimes
called the feature map.

934

5.5 Pooling to build translational invariance935

We would like to build a classifier such that if the object moves to some other936

location in the input image, the output of the classifier remains unchanged, i.e.,937

the deep network detects a test image as a cat even if it is in some other part938

of the image in the training data. Equivariance is only one part of the story to939

doing so. Remember that the last layer in a deep network looks like940

f(x,w) = sign
(
v>hL

)
= sign

(
p∑
i=1

vih
L
i

)
.

Even if the features hL are equivariant when the input x is translated in the941

2D plane, the inner product v>hL cannot be equivariant. Essentially, if a few942

weights vi are trained to check for objects like cat/dog in one particular part of943

the image, even if the features hL move accordingly, the output v>hL need944

not be constant because the weights vi at those new locations of features may945

be different.946

In other words, we want features of a deep network to be invariant to947

translations in the input.948

o Making the weights of the top
layer v all equal to 1 will solve this
problem, but this is of course a very
poor classifier. It smears the entire
input signal hL together by just
averaging the features and therefore
does not have much discriminative
power; it cannot easily build a
multi-class classifier for instance.

Pooling is an operation that smears out the features locally in the
neighborhood of each pixel.

We can use our idea of setting all the weights to 1 to get what is called the949

average pooling operation. It is a linear operation and equivalent to convolving950

the input features using a kernel951

wavg-pool =
1

9

1 1 1
1 1 1
1 1 1

 . (5.5)



48

The average-pooling kernel is fixed during training and does not have any952

weights, otherwise it would be just another convolutional kernel.953

o Average pooling blurs the image.
We saw this in the example
in Section 5.1.2. Such blurring at
intermediate layers gives some
translational invariance by smearing
out the features.

Average pooling does not solve our problem of making the features in-954

variant; the smeared out version simply moves less than ∆ when the input955

translates by ∆. If we add many average pooling layers at various stages in a956

deep network, we make the features move even less and this may be sufficient957

to allow for weights v to be discriminative.958

Max-pooling is another operation that builds invariance. It takes in an959

input x ∈ Rw×h and computes960

(max-pool(x))ij = max
−k≤s≤k

max
−k≤t≤k

xi−s,j−t. (5.6)

Figure 5.4: Max-pooling with a 2×2 kernel and a stride of 2 reduces the size of the
input image by half. A stride of 1 would preserve the image size but would give less
invariance.

This is a clever way of building invariance, you simply take the maximum961

value of the input in a window of size k × k, so even if the input translates962

by k pixels in either direction, the output of a max-pooling layer remains963

the same. If we add multiple max-pooling layers at intermediate depths in a964

deep network, we achieve translational invariance in a convolutional neural965

network.

ä Does max-pooling make sense for
a fully-connected network? There is
no equivariance property in such a
network, so even if we do perform
max-pooling, it is just like another
activation function operating on the
features.

966

Remark 5.6 (Max-pooling destroys information). As we see in Figure 5.4,967

max-pooling destroys a lot of information in the input image. The result of968

max-pooling is a much smaller feature map. This results in a large loss of969

information in the input data and often leads to a loss of discriminative power,970

i.e., accuracy, during training. This trade-off between building a classifier that971

is invariant to changes in the input and discriminative enough to distinguish972

between many different categories is fundamental.973

ä We have talked about invariance
to translations in this lecture.
Images taken from a fish-eye
camera, or MRI images of the brain,
are such that objects rotate in the
field of view.

Can you think of a trick to build
invariance to rotations?

Max-pooling has a side-benefit, it reduces the number of operations in a974

deep network and the number of parameters by sequentially reducing the size975

of the feature map with layers. This is useful because a typical image you get976

from an autonomous car is easily about 10MP (107 pixels) and we need to977

boil it down into, say 10 categories that are relevant to driving, i.e., hL ∈ R10.978

Max-pooling is a very useful for this, with the caveat that too much pooling979

will dramatically reduce the signal in the input image.980



Chapter 6981

Data augmentation, Loss982

functions983

Reading
1. Bishop Chapter 5.5.3, 4.3

2. Goodfellow Chapter 7.4

6.1 Data augmentation984

In the previous chapter, we looked at convolutions as a way to reduce the985

parameters in a deep network, but more importantly as a way of building986

equivariance/invariance to translations. There are a lot of nuisances other than987

translation that do not have a group structure which precludes operations such988

as convolutions that we can perform to generate equivariance/invariance.989

In this section, we will discuss techniques to build invariance to nuisances990

that are more complex than just translations, these techniques will seem brute-991

force but they also allow us to handle more complex nuisances. The main trick992

is to augment the data, i.e., create variants of each input datum in some simple993

way such that we know that its label is unchanged. If our original dataset is994

D =
{

(xi, yi)
}
i=1,...,n

we create an augmented dataset995

DT =
{

(T (xi), yi)
}
i=1,...,n

∪D. (6.1)

where T is some operation of our choice. We have therefore expanded the996

number of samples in the training dataset to 2n instead of the original n.997

Effectively, data augmentation is a technique to create a dataset that is sampled998

from some other data distribution P than the original one.999

49
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6.1.1 Some basic data augmentation techniques1000

The most popular data augmentation techniques are setting T to be changes1001

in brightness, contrast, cropping the image to simulate occlusions, flipping1002

the image horizontally or vertically, jittering the pixels of the input image to1003

simulate noise in the CCD of the camera/weather, padding the image which1004

changes the borders of the input image, warping the image using a projection1005

that simulates the same picture taken from a different viewpoint, thresholding1006

the RGB color channels, zooming into an image to simulate changes in the1007

scale etc.1008

You can see these operations at https://fastai1.fast.ai/vision.transform.html#List-1009

of-transforms.

o FastAI is a wrapper on top of
PyTorch and is an excellent library
to learn for doing your course
projects.

1010

6.1.2 How does augmentation help?1011

A number of such augmentations are applied to the input data while training a1012

deep network. This increases the number of samples n we have for training1013

but note that different samples share a lot of information, so the effective novel1014

samples has not increased by much. Let us get an idea of when augmentation1015

is useful and when it is not. Consider a regression and classification problem1016

as shown below.1017

Figure 6.1: Cows live in many different parts of the world. A classifier that also uses
background information to predict the category is likely to make mistakes when it
is run in a different part of the world. Augmenting the input dataset on the left by
replacing the background to include a mountain or a city is therefore a good idea if
we want to run the classifier in a different part of the world. This will also force the
classifier to ignore the background pixels when it classifies the cow, in other words
the classifier is forced to become invariant to backgrounds by brute-force showing it
different backgrounds.

In essence, data augmentation forces the model to tackle a larger dataset1018

than our original dataset. The model is forced to learn what nuisances the1019

https://fastai1.fast.ai/vision.transform.html#List-of-transforms
https://fastai1.fast.ai/vision.transform.html#List-of-transforms
https://fastai1.fast.ai/vision.transform.html#List-of-transforms
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designer would like it to be invariant to. Compare this to the previous chapter:1020

by replacing fully-connected layers with convolutions and pooling we made1021

the model invariant to translations. In principle, we could have trained a fully-1022

connected deep network on a very large augmented dataset with translated1023

objects. In principle, this would make the fully-connected network invariant1024

to translations as well.1025

6.1.3 What kind of augmentation to use when?1026

In the example with regression, we saw that the regressor on the augmented1027

data was essentially linear and had much less discriminative power than a1028

polynomial regressor. This was of course by design, we chose to augment the1029

data. If the test data for the problem came from the polynomial instead of our1030

augmented distribution, the new classifier will perform poorly.1031

Figure 6.2: The second panel shows the original scene with a mirror flip (i.e., across the
horizontal axis) while the third panel shows the original scene after a water reflection
(i.e., flip across the vertical axis). The latter is an image that is very unlikely to occur
in the real world, so it is not a good idea to use it for training the model.

By being invariant to a larger set of nuisances than necessary, we are
wasting the parameters of the model and risk getting a large error if the
test data was not from the augmented distribution. By being invariant
to a smaller set of nuisances than necessary, we are risking the situation
that the test data will have some new nuisances which the classifier
will perform poorly on. It is important to bear in mind that we do not
always know what nuisances the model should be invariant to, the set
of transformations in data augmentations necessarily depends—often
critically—upon the application.

ä If you are building a classifier for
detecting cars, motorbikes, people
etc. for autonomous driving
application, do you want to be the
invariant to rotations?Data augmentation requires a lot of domain expertise and often plays a1032

huge role in the performance of a deep network. You should think about what1033

kind of augmentations you will apply to data for speech processing, or for data1034

from written text.1035

6.2 Loss functions1036

We next discuss the various loss functions that are typically used for training1037

neural networks. As usual, we are given a dataset1038

D =
{

(xi, yi)
}
i=1,...,n

.
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6.2.1 Regression1039

MSE loss. If the labels are real-valued yi ∈ R, e.g., we are predicting the1040

price of housing in Boston given features of the houses (like you did in HW1041

0), we are solving a regression problem and the loss function to use for a deep1042

network is also simply the regression loss.1043

`mse(w) :=
1

2
(f(x;w)− y)

2 (6.2)

Recall, that we assume in machine learning that the training dataset contains1044

independent and identically drawn samples. Real data often does not satisfy1045

this iid assumption and a model fitted via regression may not work well if the1046

data are correlated. A popular trick to handle such situations in regression to1047

take a logarithmic transformation of the input, i.e., fit a model to log x using1048

the loss1049
1

2
(f(log x;w)− y)

2
;

we can compute the logarithm element-wise for vector valued inputs.1050

Huber loss. The square-residual loss in (6.2) works in most cases but it does1051

not work well if there are outliers in the data. Outliers are data in the training1052

set that are noisy or did not come from the true model. In such cases, we can1053

use the Huber loss. If the residual is r = f(x;w)− y, the Huber loss is1054

`huber(w; δ) =

{
1
2 |r|

2 if |r| ≤ δ
δ
(
|r| − 1

2δ
)

else.
(6.3)

Observe that this does not penalize the model egregiously if the predictions1055

are bad (|r| ≥ δ) for a particular datum. Doing so prevents the outliers from1056

biasing the loss towards themselves and ruining the residuals for the other1057

data.1058

o We can perform regression in a
clever way: first set all weights
wi = 0 and iteratively allow a subset
of the weights (say the ones that
improve the residuals the most) to
become non-zero; non-zero weights
are fitted using `mse. This is known
as forward selection. Backward
selection starts with weights w∗

which minimize `mse and iteratively
prune the weights. Both forward and
backward selection are techniques to
fit a model w∗ with sparse weights.MAE loss. The absolute-error loss (or `1)1059

`mae(w) = |f(x;w)− y| (6.4)

has a similar motivation: it does not penalize the residual on the outliers.1060

Using a subset-selection technique or the `mae loss leads to sparse weights1061

w∗. This makes the model more interpretable than a model fitted using `mse1062

loss. This is easy to understand for linear models: input dimensions corre-1063

sponding to weights w∗i that are zero do not take part in making predictions.1064

So one may answer questions of the form “is variable xi a relevant predictor1065

of the target y”.1066

Variable importance. For linear models, another way to answer the same1067

question is to fit two models, one with wi fixed to zero and all other weights1068

fitted using the MSE loss (6.2) and another model without fixing wi; the1069

difference between the average square residuals in the two cases is a measure1070

of how important the feature xi is for the prediction. These techniques are1071

called variable importance methods. We can also undertake the same program1072

for nonlinear models on non-image based data.1073

Quantile loss. The quantile loss is another simple trick to make the model1074

more robust to outliers and get more information from the model than simply1075

the prediction f(x;w). Observe that if we have targets Y that are random1076



53

variables with cumulative distribution function F (y) = P(Y ≤ y), the τ th
1077

quantile of Y is given by1078

QY (τ) = F−1(τ) = inf {y : F (y) ≥ τ}

for τ in(0, 1). We now learn a predictor for QY (τ) = f(x;w). It turns out1079

(you can try to prove this) that this corresponds to the loss function1080

`quantile(w; τ) =

{
r(τ − 1) if r < 0

rτ else.

= r
(
τ − 1{r<0}

)
.

(6.5)

where r = y − f(x;w) is the residual. A standard technique is to fit multiple1081

models using the quantile loss for different quantiles, say τ = 0.25, 0.5, 0.751082

and give multiple predictions of the target f(x;wτ ). A typical example of1083

quantile linear regression looks as follows.1084

1085

6.2.2 Classification: Cross-Entropy loss1086

We next discuss the case when the targets are categorical and we wish to train1087

a discriminative model that classifies the input into one of these m categories1088

y ∈ {1, . . . ,m} .

One hot encoding.1089

An alternative representation of the targets in classification is so-called the1090

one-hot encoding where y is transformed to1091

one-hot(y) = ey ∈ Rm;

the vector ey has a 1 at the yth element and zeros everywhere else. The notation1092

ey denotes the yth row of the identity matrix Im×m.1093

Predicting class probabilities.1094

Instead of using the regression loss by treating y as a real-valued quantity, it1095

is more natural to predict the log-probability log p(k|x) for every category k1096

using weights w and predict the category using1097

f(x;w) = argmax
k

log pw(k|x). (6.6)
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Just like we denoted the raw predictions of the model by ŷ in linear/logistic1098

regression, we will denote1099

Rm 3 ŷ = v>σ
(
S>L . . . σ

(
S>2 σ(S>1 x)

)
. . .
)

(6.7)

where v ∈ Rp×m. As we saw in Chapter 4, ŷ are also called logits. Observe1100

that the logits ŷ are simply vectors in Rm. How can we transform these logits1101

to get log pw(k|x) for all k ∈ {1, . . . ,m} as the output of the model?1102

Logistic loss.1103

Linear logistic regression has a scalar output ŷ ∈ R which is interpreted as the1104

log-odds of the class probabilities1105

log
p(1|x)

p(0|x)
= ŷ = w>x. (6.8)

This expression can be rewritten as p(1|x) = sigmoid(ŷ). The likelihood of1106

data x under this model for yi ∈ {0, 1} is1107

pw(
{

(x1, y1), . . . , (xn, yn)
}

) =

n∏
i=1

pw(1|xi)y
i

pw(0|xi)1−yi .

Maximizing this probability (MLE) is the same as minimizing the log-probability1108

`logistic(w) := − log pw(
{

(x1, y1), . . . , (xn, yn)
}

)

= −
n∑
i=1

yipw(1|xi) + (1− yi)pw(0|xi)
(6.9)

In other words, the logistic loss is simply maximum-likelihood estimation for1109

the model (6.8).1110

ä We saw a different expression for
the logistic loss in Chapter 3

`logistic(w) = log
(
1 + e−yŷ

)
.

What is the difference?

Binary Cross-Entropy loss.1111

Let us turn back to neural networks and multi-class classification. Imagine1112

if each logit of a neural network in (6.7) acts independently, i.e., it predicts1113

whether there is class k in this input or not without paying heed to what1114

the other logits predict. This is not very prudent, for instance, if we know1115

beforehand that there is only one object in the input image, then such a1116

classifier is likely to have lots of false positives. Nevertheless, observe that1117

this is exactly like running m independent binary logistic classifiers with the1118

same feature hL ∈ Rp. We can write the loss for such a classifier succinctly as1119

`bce(w) = −
m∑
k=1

one-hot(y)k log pw(k|x). (6.10)

If the ground-truth labels yi are such that there is only one class in each input1120

image, all entries of one-hot(yi) at other categories will be zero, so this loss1121

penalizes only the output of one of the m independent logistic classifiers.1122
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6.2.3 Softmax Layer1123

Observe that our classifier which employs m binary logistic classifiers for1124

predicting all the categories independently does not predict a valid probability1125

distribution because1126
m∑
k=1

pw(k|x)

is not always equal to 1. We can however posit that the model predicts logits ŷ1127

that are proportional to the log-probabilities1128

log pw(k|x) ∝ ŷk

⇒ pw(k|x) =
eŷk/T∑m

k′=1 e
ŷk′/T

.
(6.11)

The result pw(k|x) is a valid distribution on k because it sums up to 1. This1129

operation, namely taking the logits ŷ and constructing a probabilities out of1130

them is called as a softmax operator. The constant T in (6.11) is called the1131

temperature. A large value of T results in a smoother probability distribution1132

pw(k|x) because the individual values of the logits matter less. A small value1133

of T results in a very large weight due to the exponent on the largest logit and1134

the distribution pw(k|x) is therefore highly spiked. The temperature is set to 11135

by default in PyTorch.1136

o You will often see people calling

log

m∑
k′=1

eŷk′/T

as the “softmax” of vector ŷ. This is
actually a more appropriate usage of
the word because

log

m∑
k=1

eŷk/T ≈ max
k
ŷ

if one of the entires of ŷ is much
larger than the others, or if T → 0.
We will however use the word
“softmax” to refer to the operation of
transforming ŷ into pw(k|x)
because we do not have any need for
this softened version of the max
operator.

The cross-entropy loss is now simply the maximum-likelihood loss after1137

the softmax operation1138

`ce(w) = −
m∑
k=1

one-hot(y)k log pw(k|x)

= − ŷy
T

+ log

(
m∑
k′=1

eŷk′/T

)
.

(6.12)

Observe that the logit corresponding to the true class ŷy is being pushed higher;1139

at the same time, if the logits of the incorrect classes are large they are being1140

pulled down in the summation. This is an important point to keep in mind:1141

the cross-entropy loss after softmax affects all logits, not just the logit of the1142

correct class.1143

6.2.4 Label smoothing1144

The correct logit in (6.12) is encouraged to go to +∞ while the incorrect logits1145

are encouraged to go to −∞. This can lead to dramatic over-fitting when the1146

number of classes m is very large. Label smoothing is a trick that alleviates1147

the problem: instead of using a one-hot encoding of the true label y, it uses1148

the encoding1149

label-smoothing(y)k =

{
1− ε if k = y,
ε

m−1 else.
(6.13)
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The cross-entropy loss with this new encoding is now1150

`label-smoothing-ce(w) = −
m∑
k=1

label-smoothing(y)k log pw(k|x)

= −(1− ε) log pw(y|x)− ε

m− 1

∑
k 6=y

log pw(k|x)

(6.14)
If you take the derivative of this loss with respect to ŷ you will see that the1151

value of ŷ that minimizes the loss is1152

ŷ∗k =

{
log ((m− 1)(1− ε)/ε) + α if k = y

α else.
(6.15)

where α is an arbitrary real number. Notice that logits for both the correct and1153

the incorrect classes are finite in this case, they no longer blow up to infinity.1154

6.2.5 Multiple ground-truth classes1155

If there are multiple classes that are all present in the input image, i.e., if the1156

ground truth data has multiple labels, we can easily use the vector1157

multi-hot(y) =
∑
k

ek

for all the present classes k and set1158

`bce(w) = −
m∑
k=1

multi-hot(y)k log pw(k|x) (6.16)

in the BCE loss. We can also use this trick in the cross-entropy loss after the1159

softmax operator but it will not work well because the softmax operator is1160

designed to amplify only the largest logit in ŷ; if we tried the network would1161

still be incentivized to predict only one class instead of all classes.1162
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Bias-Variance Trade-off,1164

Dropout,1165

Batch-Normalization1166

Reading
1. Bishop 1.3, 3.2, 14.2-14.3

2. Goodfellow 5.1-5.4, 7.1-7.3

3. Dropout Srivastava et al. (2014)

4. Batch-Normalization Ioffe and Szegedy (2015)

In this chapter, we will take our first look at how machine learning classi-1167

fiers generalize to new data. We will first discuss the so-called Bias-Variance1168

Tradeoff which indicates that the variance of the predictions of a model can1169

be reduced by increasing its bias. Regularization is a technique to give us1170

control over this tradeoff. We will then see a few popular regularization tech-1171

niques, in particular two that are important in deep learning called Dropout1172

and Batch-Normalization.1173

7.1 Bias-Variance Decomposition1174

Ideally, we want a classifier that accurately captures the regularity in the data1175

but also works well for unseen data. Turns out this is typically impossible to1176

both simultaneously. We will introduce this using regression.1177

Given our dataset D =
{

(xi, yi)
}
i=1,...,n

we fit a model f(x;w) ∈ F1178

where F is some class of models, say all neural networks with a given archi-1179

tecture; we will keep the dependence of f on w implicit in this section because1180

we don’t need it. We use a loss `(f(x), y) = |f(x)− y|2 to fit this model by1181

57
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minimizing1182

R̂(f) =
1

n

n∑
i=1

|f(xi)− yi|2 (7.1)

This is of course the training loss, also called the empirical risk. A classifier1183

that minimizes R̂(f) works well on the training data. If we want to measure1184

how well a model works on new data from the distribution P we are interested1185

in the the population risk1186

R(f) =

∫
|f(x)− y|2 P (x, y) dx dy

= E
x

[∫
|f(x)− y|2 P (y|x) dy

]
.

(7.2)

It turns out that because the loss is quadratic, we can write down the minimizer1187

of the population risk, formally, as1188

f∗(x) = E
y

[y|x] . (7.3)

In other words, the optimal regressor is the conditional expectation of the1189

targets y given a datum x. Since we do not know the data distribution P , we1190

cannot compute the model f∗. We now compare some regression f that we1191

may have obtained by minimizing (7.1) with the optimal f∗.1192

Observe that1193

(f(x)− y)
2

= (f(x)− f∗(x) + f∗(x)− y)
2

= (f(x)− f∗(x))
2

+ 2 (f(x)− f∗(x)) (f∗(x)− y) + (f∗(x)− y)
2
.

Substitute this expression in (7.2) to get1194

R(f) = E
x

[∫
(f(x)− f∗(x))

2

]
+ E

(x,y)∼P

[
(f∗(x)− y)

2
]

(7.4)

Observe that the cross-term1195

E
x

[∫
2(f − f∗)(f∗ − y)P (y|x) dy

]
= 0

vanishes because f∗(x) = E [y|x] =
∫
yP (y|x)dy. In the first term, there is1196

no y because the distribution P (y|x) when integrated with respect to y is 1.1197

The decomposition in (7.4) is insightful. The first term tells us how far our1198

model f(x) is from the optimal f∗(x). The second term tells us how much1199

the optimal model itself is from the data (x, y). The second term is not under1200

our control because it does not depend on f(x) at all. This term1201

Bayes error = E
(x,y)∼P

[
(f∗(x)− y)

2
]
. (7.5)

is irreducible error of any classifier f . It is only zero if the data (x, y) is1202

coming from a deterministic source, i.e., there is no noise in the true targets y1203

created by Nature and Nature’s model (it is important to realize that this model1204

is not f∗) is deterministic.

o You can think of the Bayes error
as being non-zero if the sensor used
to measure y is noisy, there is no
way we can get deterministic data in
that case. If on the other hand the
sensor is perfect, e.g., a large
number of humans are annotating
data very carefully like we often do
in modern machine learning, the
Bayes error is essentially zero.

1205

We will now investigate the first term better. Notice that the model f is1206

created using a finite dataset. Let us emphasize it as1207

f(x;D)
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and rewrite the first term in (7.4) as1208

(f(x;D)− f∗(x))
2

=
(
f(x;D)− E

D
[f(x;D)] + E

D
[f(x;D)]− f∗(x)

)2

=
(
f(x;D)− E

D
[f(x;D)]

)2

+
(
E
D

[f(x;D)]− f∗(x)
)2

+ 2
(
f(x;D)− E

D
[f(x;D)]

) (
E
D

[f(x;D)]− f∗(x)
)
.

Recall that the dataset is a random variable as well, it is a bunch of draws1209

from the joint distribution P . Effectively, f(x;D) which is our fitted model1210

is a random variable that depends on the randomness of D. We now take the1211

expectation over the dataset D on both sides of this equation.1212

E
D

[
(f(x;D)− f∗(x))

2
]

= E
D

[(
E
D

[f(x;D)]− f∗(x)
)2
]

︸ ︷︷ ︸
(bias)2

+E
D

[(
f(x;D)− E

D
[f(x;D)]

)2
]

︸ ︷︷ ︸
variance

.

(7.6)
The cross-term again vanishes when we take the expectation over the dataset.1213

The first term is called the squared bias: it is the gap between the predictions of1214

our model compared to the optimal model f∗ created across many experiments1215

each with a different datasetD. The second term is the variance and it measures1216

how sensitive the model f(x;D) to getting a particular dataset D to train on,1217

if it is very sensitive a model fitted on D does not work well on most others1218

datasets and consequently the variance is large. We will parse these quantities1219

further soon.

o Here is a good mnemonic to
remember. Imagine the center of the
bull’s eye as the optimal classifier f∗

and our darts as the model f(x;D).
1220

We have therefore shown that1221

R(f) = (bias)2 + variance + Bayes error (7.7)

Recall that we want to minimize the population riskR(f). We cannot do much1222

about the Bayes error. If the model f(x;D) is large and is fitted very well

Figure 7.1: Population risk as a function of model capacity

1223

on the dataset D, i.e., if its predictions match true y (notice that the optimal1224

models predictions f∗ are also close to y), the gap between the predictions1225

of the fitted model and the optimal model is small on the dataset D. In other1226
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words, if our model is large we will have a small bias. The bias of a model1227

decreases as we consider larger models f(x;D). If our dataset is small, the1228

model f(x;D) is likely to have a large variance because it has not seen a large1229

amount of data. The effect increases for larger models because they may use a1230

larger number of nuisances i.e., features that are not relevant to prediction of1231

targets. We call this over-fitting.1232

If we plot a picture of how the bias and variance change as model capacity1233

(you can think of capacity simply as the number of parameters in a model for1234

now) increases, we see a famous U-shaped curve for the sum of squared bias1235

and variance shown in Figure 7.1. Given a dataset D we should pick a model1236

that lies at the bottom of this curve to get a good population risk; this model1237

makes a good tradeoff between bias and variance.1238

The caveat is that we do not have access to a lot of different datasets to1239

measure the bias or the variance. This is why the bias-variance trade-off,1240

although fundamental in machine learning/statistics and a great thinking tool,1241

is of limited direct practical value.1242

Bias-variance tradeoff for classification1243

We have only talked about the bias-variance trade-off for regression. The1244

development for classification is not very different and same principles hold.1245

We first define an optimal classifier1246

f∗(x) = argmin
f∈F

E
(x,y)∼P

[`(y, f(x))]

for a loss function `. The bias, variance of a given classifier f(x;D) relative1247

to this optimal classifier and the Bayes error are given by1248

bias = E
x

[`(f∗(x), f(x;D))]

variance = E
D

[`(f(x;D), f avg(x))]

Bayes error = E
(x,y)∼P

[`(y, f∗(x))] .

(7.8)

where f avg(x) = argminf ED [`(y, f(x))]; under the MSE loss this is the1249

average of predictions of regressors on different datasets, for the MAE loss1250

this is the median of the predictions of models trained on different datasets,1251

for the zero-one loss it is the most frequent prediction of models trained on1252

different datasets. We again have a trade-off that is obtained by decomposing1253

the population risk1254

E
(x,y)∼P

[
E
D

[`(y, f(x;D))]
]

= bias + c2variance + c1Bayes error.

where c1, c2 are constants. You can read more about this in Pedro (2000).1255

Double-descent1256

The surprising thing is that for deep networks, we do not see this classical1257

bias-variance trade-off. The population risk looks like1258
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Figure 7.2: Double-descent curve: the validation error of deep networks decreases even
if more and more complex models are fitted on the same data; there is no apparent
over-fitting and growth in the variance of the classifier.

in what is now called the “double-descent” curve. The population risk of1259

deep networks keeps decreasing even if we fit very large models on relatively1260

small datasets, e.g., CIFAR-10 has 50,000 images, the model you will fit in1261

HW 2 has about 1.6M weights and is considered a very small model by today’s1262

standards. We will see some heuristic derivation into why the population1263

risk may look like this for deep networks but understanding this phenomenon1264

which goes flat against established knowledge in machine learning is one of1265

the big open problems in the study of deep networks today.1266

7.1.1 Cross-Validation1267

We have seen that the bias-variance trade-off requires us to consider multiple1268

datasets. In practice, we only have one dataset that we collected by running an1269

experiment. If this data is large, we can split it into two three parts1270

data = training set ∪ validation set ∪ test set.

The validation set is used to compare multiple models that we fit on the training1271

set and pick the best performing one. This model is then run on the test set1272

to demonstrate how well we have learned the data. The test set is necessary1273

because across your design efforts to fit different models, you will evaluate1274

on the validation set multiple times and this may lead to over-fitting on the1275

validation set.1276

o 4-fold cross-validation.If the available data is not a lot, we want to use as much of the data as1277

possible for training. If however only use a small fixed validation set for1278

comparing models, we risk making mistakes in our choices. Cross-validation1279

is a solution to this problem: it trains k different models, each time a fraction1280

(k − 1)/k of the data is used as the training set and the remainder is used as1281

the validation set. The validation performance of k models obtained by this1282

process is averaged and used as a score to evaluate a particular model design1283

(architecture, hyper-parameters etc).1284

Some practical tips1285

It is useful to think of the bias-variance trade-off when you fit deep networks1286

in practice. If the training or test error is high, there are a number of ways to1287

improve performance using the bias-variance tradeoff as a thinking tool.1288
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1289

In the first regime on the left, we have high validation error across cross-1290

validation folds and low training error. This indicates that we have a high1291

variance in the bias-variance trade-off. Typical techniques to counter this is to1292

use a smaller model, get more data, or bagging a set of models together (will1293

cover this in Section 7.3). In the second regime on the right, if the test error1294

and the training error are close to each other but both are large, the model is1295

likely to have high bias. In these cases, we should fit a more complex model1296

(say increase the number of weights, or pick a different architecture), add1297

more features to the training data (in the non-deep-learning setting) to give our1298

model more discriminative features to use, or use boosting (we will cover this1299

in Section 7.3).1300

Cautionary Tale1301

You will however notice that a lot of research papers in deep learning simply1302

use validation data as test data. Their reasons for doing so are as follows.1303

All researchers have the same large dataset from which they would create a1304

potential test set, the researchers therefore also know the ground-truth labels of1305

test images and it is difficult to trust them not to peek at the ground-truth labels1306

to choose between models. If the test data is hidden from everyone, we need a1307

centralized server for evaluating everyone’s results. This is difficult because1308

research is fundamentally about discovering new knowledge. Kaggle competi-1309

tions or the ImageNet Challenge http://image-net.org/challenges/LSVRC are1310

few instances where such a centralized server is available.1311

It is therefore debatable whether the current practice of using validation set1312

as the test set should be considered valid. On the positive side, it makes results1313

across different publications comparable to each other; if everyone reports the1314

error of their model on the same validation set, it is easy to compare Algorithm1315

A versus Algorithm B. On the negative side, this incentivizes extensive hyper-1316

parameter tuning and risks results that are over-fitted on the validation data,1317

e.g., new fields such as neural architecture search are particularly problematic1318

in this context. This is also the main reason for the current “style of research”1319

where folks judges the merit of machine learning research simply by checking1320

whether Algorithm A gets better validation error than Algorithm B on standard1321

datasets. This is not the correct way to do scientific research. The more1322

appropriate way to instantiate the scientific method is to first formulate a1323

hypothesis, e.g., is gene X correlated with cancer Y, then collect data that1324

allows us to evaluate such an hypothesis and undertake appropriate statistical1325

precautions report whether the hypothesis stands/does not stand.1326

That said, there are researchers who have evaluated others’ claims (ob-1327

tained using validation data, namely A better than B) on independent test data1328

http://image-net.org/challenges/LSVRC
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and reached similar conclusions, see for example https://arxiv.org/abs/1902.10811,1329

so the evaluation methodology is broken but the progress is real.1330

7.2 Weight Decay1331

The set of models with smaller complexity are a subset of the set of models1332

with larger complexity, e.g., if you are fitting a polynomial regression, you can1333

consider the subset of models with coefficients of the higher-order terms equal1334

to zero and have thus created the set linear regressors. Effectively, the space of1335

models looks as follows.1336

Figure 7.3: A cartoon of the space of models. The n in the picture refers to number of
parameters in the model, not the number of data.

Let’s say we are fitting a class of models with large complexity and are1337

unsure whether the variance in the bias-variance trade-off will be large. We1338

can either collect more data, or we can modify the loss function to encourage1339

the training process to pick models of lower complexity.1340

Restricting the space of models that the training process searchers
over to fit the data is called regularization. We will denote regularizers by

regularizer = Ω(w)

and modify our loss function for fitting data to be

`′(w;x, y) := `(w;x, y) + Ω(w).

Weight decay is one of the simplest regularization techniques and uses1341

Ω(w) =
α

2
‖w‖22. (7.9)

This is more widely known as `2 regularization because we use the `2 norm1342

of the weights as the regularizer. It is also called Tikonov regularization, a1343

name that comes from the literature on partial differential equations. The name1344

weight decay comes from the neural networks literature of the 1980s. The1345

gradient of the modified loss is1346

∇ `′(w;x, y) = ∇ `(w;x, y) + α w,

which gives1347

wt+1 = (1− η α)wt − η∇ `(wt;x, y);

where η is the learning rate. In other words the weights w are encouraged1348

to become smaller in magnitude when SGD takes a step using the negative1349

gradient.1350

https://arxiv.org/abs/1902.10811
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If we have a linear regression problem with f(x;w) = w>x and X,Y are1351

the matrices for the data and targets respectively, the regularized objective is1352

1

2
‖Y −Xw‖22 +

α

2
‖w‖2

and you can compute the minimizer by taking derivatives and setting them to1353

zero to be1354

w∗ =
(
X>X + αI

)−1
X>Y.

In other words, weight decay for linear regression adds elements to the diagonal1355

of the data covariance matrix X>X . This results in a smaller inverse and1356

thereby a smaller magnitude of w∗. Notice that if the covariance matrix1357

is rank deficient, the regularized matrix is no longer rank deficient. If the1358

covariance matrix has a large condition number (ratio of the largest and1359

smaller eigenvalue), which makes taking the inverse numerically difficult, the1360

regularized matrix has a better condition number.1361

7.2.1 Do not do weight decay on biases1362

If the input data and targets in linear regression are centered we do not need a1363

bias parameter in our model. Notice however that if the dataset is not centered,1364

the bias parameter is essential. Should we perform weight decay on the bias1365

parameter in this case? The weight decay penalty prevents the bias parameter1366

to adapt to the non-zero mean of the data. This is also important to keep in1367

mind while training neural networks. We should not impose weight decay1368

regularization on the bias parameters of the convolutional and fully-connected1369

layers.1370

o Weight decay is closely related to
other norm-based penalties, e.g., `1
regularization sets

Ω`1(w) = α‖w‖1.

As we discussed briefly in Chapter 6,
such a regularizer encourages the
weights to become sparse. Sparsity
penalties are very common in the
signal processing literature (e.g.,
compressed sensing, phase retrieval
problems) but they are less common
in the deep learning literature.

7.2.2 Maximum a posteriori (MAP) Estimation1371

MAP estimation gives a Bayesian perspective to regularization in machine1372

learning. In maximum likelihood (ML) estimation, we were interested in1373

solving for weights that maximize the likelihood of the observed data:1374

w∗MLE = argmin
w
− 1

n

n∑
i=1

log pw(yi|xi;w).

MAP estimation enforces some prior knowledge we may have about the1375

weights w. In Bayesian statistics, such prior knowledge is represented as a1376

probability distribution, known as the prior, on the parameters w before we1377

see any data in the training process, i.e., a priori probability1378

prior = p(w)

MAP estimation is regularized ML estimation. Given a prior distribution,1379

we can use Bayes law to find the posterior distribution on the weights after1380

observing the data1381

p(w|D) =
p(D|w) p(w)

p(D)
(7.10)
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Remember that the left hand side is a legitimate probability distribution with1382

the denominator given by1383

Z := p(D) =

∫
p(D|w) p(w) dw.

The denominator Z called the “evidence” or the partition function lies at the1384

heart of all statistics, we will see why in Module 4.1385

MAP estimation finds the weights that maximize this a posteriori proba-1386

bility1387

w∗MAP = argmax
w
{log p(D;w) + log p(w)}

= − 1

n

n∑
i=1

log pw(yi|xi;w) + Ω(w) + logZ(D)

= − 1

n

n∑
i=1

log pw(yi|xi;w) + Ω(w).

(7.11)

In the second step, we have denoted the log-prior by Ω1388

log prior(w) := Ω(w).

The final step follows because Z(D) is not a function of the weights w and1389

can therefore can be ignored in the optimization.1390

Frequentist vs. Bayesian point of view1391

This section was our first view into Bayesian probabilities, as opposed to1392

frequentist methods where we estimate probabilities by counting how many1393

times a certain event occurs across our experiments. Frequentist probabilities1394

are not designed to handle all situations. For instance we may be interested in1395

estimating the probability of a very unlikely event, say that of the sun going1396

supernova. This event has of course not happened yet and a frequentist notion1397

of probability where we repeat the experiment many times and estimate the1398

probability as the fraction of times the event occurs is not appropriate. The1399

Bayesian point of view provides a natural way to answer these questions and1400

the key idea is to encode our belief that the sun cannot go supernova as a prior1401

probability.1402

An alternate way to think about this is that the weights w of a model are1403

considered a fixed quantity that we are supposed to estimate in a frequentist1404

setting. The likelihood p(D;w) is used to compare different models w and if1405

one wanted an estimate of how much error we are making in our estimate, we1406

would compute the variance in the Bias-variance tradeoff namely, the variance1407

of our estimate across different draws of the dataset D. In the Bayesian point1408

of view, there is a single dataset D and the uncertainty of our estimate of w∗1409

would be expressed as the variance of the posterior distribution p(w|D) in1410

Bayes law.1411

Weight decay regularization is MAP estimation with Gaussian prior1412

Weight decay can be seen as using a Gaussian prior1413

pweight-decay(w) ∝ e−
‖w‖22

(2α−1) .
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This is a multi-variate Gaussian distribution with mean zero and a diagonal1414

covariance matrix with α−1 on the diagonal. The denominator is a function of1415

α−1 and we do not need to worry about it while performing MAP estimation1416

because it does not depend on w.1417

In other words, we have seen that weight decay in the training objective1418

can be thought of as a MAP estimation using a Gaussian prior instead of ML1419

estimation.1420

The Gaussian prior captures our a priori estimate of the true weights:1421

the probability of the weights w being large is low (it is distributed as a1422

Gaussian/Normal distribution). The likelihood term fits the weights to the1423

data but instead of relying completely on the data which may result in a large1424

variance (in cases when data is few), we also rely on the prior while fitting the1425

model. This reasoning is captured in Bayes law.1426

Similarly, a sparsity penalty is MAP estimation with a Laplace prior For1427

scalar random variables, the Laplace distribution is given by1428

p(w) =
1

2b
e−
|x−µ|
b .

If we have1429

Ω(w) = ‖w‖1
we can see that regularized ML, i.e., MAP estimation corresponds to using a1430

Laplace prior on the weights w.1431

7.3 Dropout1432

We will next look at a very peculiar regularization technique that is unique to1433

deep networks. Consider a two-layer network given by1434

ŷ = v>dropout
(
σ
(
S>x

))
.

Dropout is an operation that is defined as1435

dropout1−p(h) = h� r (7.12)

where r ∈ {0, 1}p is a binary mask and the notation � denotes element1436

multiplication. Each element of this mask rk is a Bernoulli random variable1437

with probability 1− p1438

rk =

{
0 with probability p
1 with probability 1− p.

o It is important to remember that a
new dropout mask r is chosen for
every input in the mini-batch.

In simple words, dropout takes the input activations h and zeros out a random1439

subset of these; on an average p fraction of the activations are set to zero and1440

the rest are kept to their original values. In pictures, it looks as follows.1441
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Figure 7.4: Dropout picks a random sparse subnetwork of a large deep network using
the mask.

ä The dropout mask is chosen at
random for each image. Let us
imagine that we have one dropout
layer after every fully-connected
layer. For the network shown in the
figure with two hidden layers and 5
neurons at each layer, how many
distinct sparse networks could be
chosen for each input if p = 0.5?

The default Dropout probability is p = 0.5 in PyTorch, i.e., about half of1442

the activations are set to zero for each input. Although you will see a lot of1443

online code and architectures with this default value, you should experiment1444

with the value of p, different values often given drastically different training1445

and validation errors.1446

7.3.1 Bagging classifiers1447

Bagging, which is short for bootstrap aggregation, can be explained using1448

a simple experiment. Suppose we wanted to estimate the average height µ1449

of people in the world. We can measure the height of N individuals and1450

obtain one estimate of the mean µ. This is of course unsatisfying because1451

we know that our answer is unlikely to be the mean of the entire population.1452

Bootstrapping computes multiple estimates of the mean µk over many subsets1453

of the data N and reports the answer as1454

µ := mean(µk) + stddev(µk).

Each subset of the data is created by sampling the original data withN samples1455

with replacement. This is among the most influential ideas in statistics (Efron,1456

1992) because it is a very simple and general procedure to obtain the uncer-1457

tainty of the estimate.1458

Effectively, the standard deviation of our new bootstrapped estimate of1459

the mean is simply the standard deviation in the Bias-Variance trade-off with1460

the big difference that we created multiple datasets D by sub-sampling with1461

replacement of the original dataset.1462

Bagging is a classical technique in machine learning (Breiman, 1996) that1463

trains multiple predictive models f(x;wk) for k ∈ {1, . . . ,M}, one each for1464

bootstrapped versions of the training dataset
{
D1, . . . , DM

}
. We aggregate1465

the outputs of all these models together to form a committee1466

f(x;w1, . . . , wM ) =
1

M

M∑
k=1

f(x;wk).

You can see that this procedure reduces the sum of the squared-bias and1467

variance of the model (the first term in (7.4)) in the bias-variance trade-off by1468
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a factor of M if the errors with respect to the optimal classifier f∗ of all the1469

models
{
wk
}

are zero-mean and uncorrelated. In other words, the average1470

error of a model can be reduced by a factor of M by simply averaging M1471

versions of the model.1472

Bagging is always a good idea to keep in your mind. The winners1473

of most high-profile machine learning competitions, e.g., the Netflix Prize1474

(https://en.wikipedia.org/wiki/Netflix Prize) or the ImageNet challenge, have1475

been bagged classifiers created by fitting multiple architectures on the same1476

dataset. Even today, random forests are among the most popular algorithms1477

in the industry; these are ensembles of hundreds of models called decision1478

trees on bootstrapped versions of data. A lot of times, if we are combining1479

diverse architectures in to the committee, we do not even need to bootstrap the1480

data. Bagging does not work when the errors of the different models are not1481

uncorrelated; this is however easy to fix by censoring out features in addition1482

to boostrapping like it is done while training a random forests.1483

7.3.2 Some insight into how dropout works1484

Consider the following, very heuristic but nevertheless beautiful, argument in1485

the original paper on dropout (Srivastava et al., 2014).1486

We will remove the nonlinearities and consider only a single layer linear1487

model with dropout directly applied to the input layer f(x; v) = v>dropout(x).1488

Linear regression minimize the objective ‖y−Xw‖22 and similarly the dropout1489

version of linear regression for our model would minimize1490

min
w

E
R

[
‖y − (R�X)w‖22

]
(7.13)

where each row of the matrixR consist of the dropout mask for the ith row xi of1491

the data matrixX . Think carefully about the expectation overR on the outside,1492

since we choose a random dropout mask each time an input is presented to1493

SGD, the correct way to write dropout is using this expectation over the masks.1494

Each entry of R is a Bernoulli random variable with probability 1− p of being1495

1. Note that1496

E
R

[R�X] = (1− p)X

and the (ij)th element is1497 (
E
R

[
(R�X)>(R�X)

])
ij

=

{
(1− p)2

(
X>X

)
ij

if i 6= j

(1− p)
(
X>X

)
ii

else.

We can use these two expressions to compute the objective in (7.13) to be1498

E
R

[‖y − (R�X)w‖2] = ‖y − (1− p)Xw‖2 + p(1− p)w>diag(X>X)w︸ ︷︷ ︸
Ω(w)

.

In other words, for linear regression, dropout is equivalent to weight-decay1499

where the coefficient α in (7.9) depends on the diagonal of the data covariance1500

and is different for different weights. If a particular data dimension varies a1501

lot, i.e., (X>X)ii is large, dropout tries to squeeze its weight to zero. We can1502

also absorb the factor of 1− p into the weights w to get1503

E
R

[‖y − (R�X)w‖2] = ‖y−Xw̃‖2 +

(
p

1− p

)
w̃>diag(X>X)w̃︸ ︷︷ ︸

Ω(w)

(7.14)

https://en.wikipedia.org/wiki/Netflix_Prize
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where w̃ = (1− p)w. This makes the regularization more explicit, if p ≈ 0,1504

most activations are retained by the mask and regularization is small.1505

o Training with dropout is
equivalent to introducing weight
decay on the weights. Remember
however that this argument is only
rigorous for linear regression models
(the derivation essentially remains
the same for matrix factorization).
This connection of dropout with
weight decay will also be apparent
in Module 4 when we look at how to
train a Bayesian deep network.

Next, bagging provides a very intuitive understanding of how dropout1506

works in a deep network at test time. We now write out the classifier explicitly1507

as1508

f(x;w, rk) =

d∑
i=1

wi
(
xi � rki

)
;

note that the mask rk is not a parameter of the model, we have simply chosen to1509

make it more explicit for the sequel. We now imagine each mask as creating a1510

bootstrapped version of the model; different masks rk give different classifiers1511

even if the weights v and the input x is the same for all.1512

It is important to realize that there is no subsampling of training dataset1513

happening here like classical boosting; we are instead forming multiple models1514

by adding randomness to how the input is propagating through the deep1515

network. For a linear classifier this is equivalent because1516

d∑
i=1

wi
(
xi � rki

)
=

d∑
i=1

(
wi � rki

)
xk =: f(x;wk);

we can either mask out the input or mask the weights and think of the masked1517

weights wk as a new model.1518

Remark 7.1. You will often see folks in the literature say that dropout regular-1519

izes by preventing co-adaptation of the neurons at each hidden layer. The moti-1520

vation for this statement is that the weights of the succeeding layer cannot fixate1521

too much upon a particular feature at the input because the feature can be ze-1522

roed out by the dropout mask. This prevents too much specialization of neurons1523

in the hidden layer and ensures that the prediction is made using a large number1524

of diverse features, not just a few specific ones. This is not a rigorous argument1525

but it is a reasonable argument in view of the experiments of Hubel and Wiesel1526

(see http://centennial.rucares.org/index.php?page=Neural Basis Visual Perception).1527

The human brain is robust to large parts of it going missing/inhibited.1528

Bagging is expensive at test time, it involves having to compute the predic-1529

tions of all the models in the committee. In the case of dropout, in this linear1530

heuristic argument, we can compute the committee prediction to be1531

f(x;w) =
1

M

M∑
k=1

d∑
i=1

(
wi � rki

)
xk

=

d∑
i=1

(
wi �

1

M

M∑
k=1

rki

)
xk

≈
d∑
i=1

(wi � (1− p))xk.

(7.15)

This is very fortunate, it indicates that given weights w of a model trained1532

using dropout, we can compute the committee average over models created1533

using dropout masks simply by scaling the weights by a factor 1 − p. This1534

should not be surprising, after all the equivalent training objective in (7.14)1535

http://centennial.rucares.org/index.php?page=Neural_Basis_Visual_Perception


70

has w̃ = (1− p)w as the effective weights of the weights. Another important1536

point to note is that there is no masking of activations at test time.1537

Although the argument in this section works only for linear models, we1538

will bravely extend the intuition to deep networks.1539

7.3.3 Implementation details of dropout1540

The recipe for using dropout is simple: (i) the activations at the input of each1541

dropout layer are zeroed out using a Bernoulli random variable of probability1542

1 − p ( the PyTorch layer takes the probability of zeroing out activations as1543

argument which is p in our derivations; (ii) at test time, the weights of layers1544

immediately preceding dropout are scaled by a factor of 1− p to compute the1545

predictions of the “committee”.1546

Inverted Dropout. It is cumbersome to remember the parameter p that was1547

used for training at test time. Deep learning libraries use a clever trick: they1548

simply scale the output activations of dropout layer by 1/(1−p) during training.1549

Training or testing the modified model using dropout gives an extra factor of1550

(1− p) like (7.14) and (7.15) respectively and therefore the final model can be1551

used as is without any further scaling of the weights or activations.1552

The operation model.train() in PyTorch sets the model in the training1553

mode. This is a null-operation and does not do anything for fully-connected,1554

convolutional, softmax etc. layers. For the dropout later, it sets a boolean1555

variable in the layer that samples the Bernoulli mask for all the input activations1556

and scales the output activations by 1/(1− p). The complementary operation1557

is model.eval() in PyTorch which you should use to set the model in1558

evaluation mode. This is again a null-operation for other layers but for the1559

dropout layer, it resets this boolean variable to indicate that no Bernoulli masks1560

should be sampled and no masking should be performed.1561

7.3.4 Using dropout as a heuristic estimate of uncertainty1562

We can extend the motivation from bagging to use dropout as a cheap heuristic1563

to get an estimate of the uncertainty of the prediction at test time. Suppose1564

we use dropout at test time just like we do it at training time, i.e., each time1565

one test input is presented to the deep network, we sample multiple Bernoulli1566

masks r1, . . . , rM and compute multiple predictions for the same test input1567 {
f(x;w, r1), . . . , f(x;w, rM )

}
.

The variance of these predictions can be used as heuristic of the uncertainty1568

of the deep network while making predictions on the test input x. This is an1569

estimate of the so-called aleatoric or statistical uncertainty. It captures our1570

understanding that the weights w of a trained deep network are inherently1571

uncertain and different training experiments, in particular, different masks rk1572

will give rise to different weights. The variance across a few sampled masks1573

thus indicates how uncertain the model is about its predictions. Dropout is a1574

neat and cheap trick for this purpose; it is quite commonly used in this fashion1575

in medical applications where it is important to not only predict the outcome1576

but also characterize the uncertainty of this prediction. We will see more1577

powerful ways to compute aleatoric uncertainty in Module 4.1578
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Remark 7.2. Broadly speaking, the connection of dropout with weight decay1579

is contentious. If it were rigorous, we should be able to get the same perfor-1580

mance as dropout by using appropriate weight decay (this is a good idea for1581

the course project!). In practice, the validation error using dropout is very1582

good and cannot be achieved by tweaking weight decay. Another aspect is1583

that since we would like to average over lots of dropout masks in the training1584

process, networks with dropout should be trained for many more iterations of1585

SGD than networks without dropout to get the same training error. The benefit1586

is that the test error is much better for dropout. What exactly dropout does is1587

a subject of some mystery and there are other alternative explanations (e.g.,1588

Bayesian dropout in Module 4).1589

Our understanding of dropout is no different than that of these blind1590

scientists trying to identify an elephant.1591

1592

7.4 Batch-Normalization1593

Batch-Normalization (BN) is another layer that is very commonly used in deep1594

learning. BN is very popular with more than 20,000 citations in about 5 years.1595

1596

7.4.1 Covariate shift1597

Covariate shift is a common problem with real data. The experimental con-1598

ditions under which training data was gathered are subtly different from the1599

situation in which the final model is deployed. For instance, in cancer diagno-1600

sis the training set may have an over-abundance of diseased patients, often of1601

a specific subtype endemic in the location where the data was gathered. The1602

model may be deployed in another part of the world where this subtype of1603

cancer is not that common.1604

The mis-match between training and test data distribution is called covari-1605

ate shift. Even if the labels depend on some known way y|x on the covariates,1606
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i.e., given the genetic features of a person x their likelihood of a cancer y is1607

the same regardless of which part of the world the person is from, the fact that1608

we do not have training data from the entire population of the world forces the1609

classifier to be tested on a data distribution that is different from what it was1610

trained for.1611

Figure 7.5: Covariate shift correction for a regression problem

Covariate shift is outside our fundamental assumption in Chapter 1 that1612

training and test data come from the same distribution. It is however a problem1613

that is often seen in practice and typical ways to counter it basically look as1614

follows.1615

1. Train a classifier ŵ on the available training data D.1616

2. Update the trained classifier using data from the test distribution D′ =1617 {
(xi, yi)

}
i=n+1,...,n+m

in addition to the original training dataset1618

w∗ = argmin
w

1

n+m

n+m∑
i=1

pi `i(w) + Ω(w − ŵ) (7.16)

where pi is some weighing factor that indicates how similar the datum1619

(xi, yi) is to the test data distribution. The regularization Ω(w − w∗)1620

forces the new weights w∗ to remain close to the old weights ŵ.1621

The above methods go under the umbrella of doubly robust estimation. We1622

will not study it in this course. The results look similar to the ones shown1623

in Figure 7.5.1624

7.4.2 Internal covariate shift1625

If we are working under the standard machine learning assumption of test1626

data drawn from the same distribution as the training data, then there is no1627

covariate shift.1628

Recall that we whiten the inputs, say using Principal Component Analysis1629

(PCA), for linear regression in order to decorrelate the input features; you can1630

using a simple argument of how this changes the condition number of the data1631
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covariance matrix X>X and accelerates the convergence of gradient descent1632

using a calculation similar to the final problem in HW 2.1633

Deep networks are like any other model in this aspect and whitening of1634

the inputs is also beneficial; the ZCA transform (or Mahalanobis whitening)1635

is a close cousin of PCA and usually works better for image-based data. It is1636

natural to expect that since each layer of a deep network takes the activations1637

of the preceding layer as input, we should whiten the activations before the1638

computation in the layer. The authors of the BN paper came upon an interesting1639

through what is clearly a mistake.

o This is the mistake in the original
BN paper.

Their reasoning was based on a simple1640

example: if we have a mini-batch of inputs
{
x1, . . . , xb

}
and our layer simply1641

adds a learnable bias b to this1642

h = x+ b.

If this layer whitens its output before passing it on to the next layer, we will1643

have1644

ĥ := h− 1

b

b∑
i=1

xi.

The output ĥ does not depend on the bias b. They argued, incorrectly, that the1645

back-propagation update of the bias b is equal to ĥ. This is not true of course1646

because1647

b = ĥ
dĥ
db

= 0

in our notation where h = d`/dh. Nevertheless the motivation of the batch-1648

normalization operation is sound, we would like to whiten the input activations1649

to each layer of a deep network.1650

Batch-Normalization is a technique for whitening the output activa-
tions of each layer in a deep network.

Naively, this would involve computing expressions of the form1651

ĥ = (Cov(h))
−1/2

(
h− 1

b

b∑
i=1

hi

)
.

This is not easy to do because the features are high-dimensional vectors, the1652

covariance matrix Cov(h) is a very large matrix. This makes computing ĥ1653

difficult for every mini-batch. Nevertheless, whitening helps and here is how1654

it is done in the batch-normalization module:1655

ĥ =
h− E(

{
h1, . . . , hb

}
)√

Var({h1, . . . , hb}) + ε
. (7.17)

The constant ε in the denominator prevents ĥ from becoming very large in1656

magnitude if the variance is small for a particular mini-batch. It is important1657

to note that both the expectation and the variance are computed for every1658

feature. Let us make this clear: if h ∈ Rb×p, i.e., p features for this layer,1659
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the ith ∈ {1, . . . , b} input of the mini-batch and the jth ∈ {1, . . . , p} of the1660

feature for ĥ is given by1661

ĥij =
ĥij − 1

b

∑b

i=1 hij√
Var({h1j , h2j , . . . , hbj)}

.

Let us give names to these parameters1662

Rp 3 µ = E(
{
h1, . . . , hb

}
)

Rp 3 σ2 = Var(
{
h1, . . . , hb

}
).

(7.18)

The authors of the original BN paper decided that mere normalization may not1663

be enough, e.g., if you normalize the activations after a sigmoid activation,1664

the layer may essentially become linear because the activations are prevented1665

from going too far to the right or too far too the left of the origin. This brings1666

the second key idea in BN, that of affine scaling of the output ĥ. The BN layer1667

really implements two1668

ĥ = a

(
h− E(

{
h1, . . . , hb

}
)√

Var({h1, . . . , hb}) + ε

)
+ b. (7.19)

where a, b ∈ Rp, i.e., each feature has its own multiplier a and bias b. The1669

final BN operation in short is therefore1670

ĥ = a

(
h− µ√
σ2 + ε

)
+ b.

The affine scaling parameters a, b are the only parameters in BN
that are updated using backpropagation. The mean µ and variance σ2 are
unique to every mini-batch and therefore do not have any backpropagation
gradient.

Execute the following code in your Jupyter notebook and check how
the BN layer is implemented in PyTorch

import torch.nn as nn
m = nn.BatchNorm1d(15)
print(m.weight, m.bias)
print(m.running_mean, m.running_var)

The weight and bias here are the affine scaling parameters; and run-
ning mean, running var are µ, σ2 respectively. You will see that re-
quires grad is True only for the former.

BN for convolutional layers1671

The activations of a convolutional layer are a 4-dimensional matrix (or a1672

tensor)1673

h ∈ Rb×c×w×h.

The distinction between convolutional layers compared to fully-connected1674

layers is that the convolutional filter weights are shared for the whole input1675

channel w × h. We can therefore think of each channel as a feature and1676

compute the BN mean and standard deviation over the batch dimension, as1677

well as the width and height. In pseudo-code, this looks as follows.1678
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1679
# t is still the incoming tensor of shape [bb, c, w, H]1680

# but mean and stddev are computed along (0, 2, 3) axes and1681

have just [c] shape1682

mean = mean(t, axis=(0, 2, 3))1683

stddev = stddev(t, axis=(0, 2, 3))1684

for i in 0..bb-1, x in 0..h-1, y in 0..w-1:1685

out[i,:,x,y] = normalize(t[i,:,x,y], mean, stddev)16861687

Running updates of the mean and variance in BN1688

BN computes the statistics over mini-batches. Even if we trained a model1689

using mini-batch updates we would still like to be able to use this model at1690

test time with a single input; it may not always be possible to wait for a few1691

test images to make predictions. The weights of the network are trained to1692

work with whitened features so we definitely need some way to whiten the1693

features of a test input, ignoring the whitening at test time will result in wrong1694

predictions.1695

The BN layer solves this issue by maintaining a running average of the1696

mean and variance statistics of mini-batches during training. Effectively, the1697

buffers running mean, running var (note that these are not parameters/weights,1698

they are not updated using backprop) are updated after each mini-batch during1699

training as1700

running meant+1 = ρ running meant + (1− ρ) µ

running vart+1 = ρ running vart + (1− ρ) σ2.

The parameter ρ is called a momentum parameter for the BN layer and makes1701

sure that updates to running mean/var are slow and one mini-batch cannot1702

affect the stored value too much. Note that whitening is still performed at1703

training time using µ, σ2; we simply record the running average in the buffers1704

running mean/var. If model.train() is called, then the mini-batch statistics are1705

used to whiten the features. If model.eval() is called, then the stored buffers1706

running mean/var are used to whiten the outputs.1707

How is all this related to internal covariate shift?1708

You might be surprised that nothing in this section is related to covariate shift1709

that we discussed at the beginning. Let us try to understand heuristically why1710

BN is said to help with internal covariate shift.1711

Each layer of a deep network treats its input activations as the data and1712

predicts the output activations. As the weights of different layers are updated1713

using backprop during training, the distribution of input activations keeps1714

shifting. Effectively, each layer is constant suffering a covariate shift because1715

the layers below it are updated and the weights of the top layers have to adapt1716

to this shifting distribution. This is what is known as internal covariate shift.1717

BN normalizes the output activations to approximately have zero mean and1718

unit variance and therefore reduces the internal covariate shift.

o There are many caveats with this
heuristic argument. The main one is
to observe that the backpropagation
gradient of all layers is coupled, so it
is not as if the layers are updated
independently of each other and
cause interval covariate shifts to the
other layers; the updates of all the
weights in the network are coupled
and it is unclear why (or even if)
internal covariate shift occurs.

1719

7.4.3 Problems with batch-normalization1720

There are two big problems with BN.1721
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1. The affine parameters are updated using backpropagation and small1722

changes mini-batch statistics which can result in large changes to the1723

whitened output (h−µ)/
√
σ2 + εwill result in very large updates to a, b.1724

This makes the affine parameters problematic when you train networks.1725

In general, it is a good idea to first fit a model without the affine BN1726

parameters, you can do so by using affine=False in nn.BatchNorm1d.1727

2. The mean and variance buffers of the BN layer are updated using run-1728

nings statistics of the per-mini-batch statistics. This does not affect1729

training because the statistics of each mini-batch are computed inde-1730

pendently, but it does affect evaluation because the buffers are used to1731

whiten the features of the test input. If the test input has slightly different1732

pixel intensity statistics than the training image, then the BN buffers are1733

not ideal for whitening and such images are classified incorrectly.1734

BN before ReLU or ReLU before BN1735

Should we apply BN before or after the nonlinearity? The purpose of a BN1736

layer is to keep the activations close to zero in their mean and a standard-1737

deviation of one. Imagine if we are using a ReLU nonlinearity after BN,1738

about half of our features h have negative values which the rectification will1739

set to zero. In this case the distribution of features given to the next layer is1740

not zero-mean, unit-variance so we are not achieving our goal of whitening1741

correctly. Further, it is possible that the bias parameter b in BN is negative1742

in which case the activations could mostly be negative and ReLU will set all1743

of them to zero and result in a large loss in information. On the other hand,1744

if we have BN after ReLU, the input to the BN layer has a lot of zeros and1745

we are now computing mean/variance over a number of sparse features; the1746

mini-batch mean/variance estimated here may not be accurate therefore BN1747

may not perform its job of correctly whitening its outputs. You can read more1748

about similar problems at http://torch.ch/blog/2016/02/04/resnets.html1749

As you can see, BN is an incredibly intricate operation without necessarily1750

sound theoretical foundation for all the moving parts. But it works, training1751

a deep fully-connected network is very difficult without BN, and even for1752

convolutional layers it often makes training insensitive to the choice of learning1753

rate. You should think about BN very carefully in your implementations; a lot1754

of problems of the kind, “I trained my model, it gives a good training error1755

but very poor validation error”, or “I am fine-tuning from this task, but get1756

very poor validation error on a new task”, or other problems in reinforcement1757

learning, meta-learning, transfer learning etc. can be boiled down to an1758

incorrect/inaccurate understanding of batch-normalization. This is further1759

complicated by the interaction with other operations such as Dropout, e.g.,1760

see https://arxiv.org/abs/1801.05134. Studying the effect of BN in meta-1761

learning/transfer-learning is a good idea for a course project.1762

How does Dropout affect BN?1763

Since dropout is active during training, the buffered statistics are the running1764

mean/variance of the dropped out activations. Dropout is not used at test time,1765

so the test time statistics, even for the same image can be quite different. A1766

simple way to solve this problem is to run the model in training model once1767

on the validation set (without making weight updates using backpropagation)1768

http://torch.ch/blog/2016/02/04/resnets.html
https://arxiv.org/abs/1801.05134
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for the BN buffers to settle to their non-droppped out values and then compute1769

the validation error; this usually results in a marignal improvement in the1770

validation error.1771

Variants of BN1772

There are variants of batch-normalization that have cropped out to alleviate1773

some of its difficulties. For instance, layer normalization1774

(https://arxiv.org/abs/1607.06450) normalizes across the features instead of1775

the mini-batch which makes it work better for small mini-batches. Another1776

variant known as group-normalization computes the mean/variance estimate1777

in BN across multiple partitions of the mini-batch which makes the result of1778

group-normalization independent of the batch-size. These variants work in1779

some cases and do not work in some cases and often the specific normalization1780

is largely dependent on the problem domain, e.g., group normalization works1781

better for image segmentation but layer normalization and batch-normalization1782

do not so well there.1783

https://arxiv.org/abs/1607.06450


Chapter 81784

Recurrent Architectures,1785

Attention Mechanism1786

Reading
1. Goodfellow 10.1-10.3, 10.5-10.7, 10.9-10.12

2. D2L.ai book Chapters 8, 9, 10

3. Paper on long short-term memory (Hochreiter and Schmidhuber,
1997)

4. Paper on the Transformer architecture (Vaswani et al., 2017)

In this chapter we will consider data that is a function of time. Typical1787

examples of such data are videos and sentences in written/spoken language.1788

Some typical problems that we are interested in solving given such data are1789

classifying the activity going on in a video, classifying the object that is being1790

described in a sentence. We can also think of generative models for such1791

temporal data, i.e., forecasting how the video/sentence will look like a few1792

time-steps into the future using the approaches in this chapter.1793

We will look at three kinds of neural architectures, namely Recurrent1794

Neural Networks (RNNs), and the Long Short-Term Memory (LSTM) and1795

Attention modules, that are typically used to model such data.1796

8.1 Recursive updates in a Kalman filter, suffi-1797

cient statistics1798

Consider a scalar signal in time ht ∈ R that evolves according to some1799

dynamics1800

ht+1 = aht + ξt;

with the scalar a ∈ R that we have modeled and the noise ξt ∈ R reflects our1801

understanding that the scalar a in our model of evolution of the signal ht may1802

78
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not be the same as that of Nature. We model this discrepancy by setting ξt to1803

be zero-mean Gaussian noise that is i.i.d across time1804

ξt ∼ N(0, σ2
ξ ).

Let us say that our dataset consists of observing the signal for some time1805

{x1, x2, . . . , xt}. Think of ht being the location of a car at time t and our1806

dataset being the observation of the trajectory of vehicle up to time t. Assume1807

that we do not observe the true trajectory of the vehicle, but observe some1808

noisy estimate of the state at each time1809

xt = ht + νt

where νt ∼ N(0, σ2
ν) is the noise in our observation.1810

In this section, we will estimate the true signal at the next time instant1811

ĥt+1. A good estimate is the one that minimizes the MSE loss with the true1812

(unknown) signal1813

argmin
ĥt+1

E
ξ1,ν1,...,ξt+1,νt+1

(ht+1 − ĥt+1

)2

| x1, . . . , xt, xt+1︸ ︷︷ ︸
“dataset”

 . (8.1)

The expectation is taken over the noise because there could be many trajectories1814

that the system could have taken, each corresponding to a particular realization1815

of the noise.1816

Our estimate should only depend on the dataset1817

ĥt+1 = function (x1, . . . , xt, xt+1) .

Since predictions are likely to be required across a long range of time, we1818

want to construct a recursive update for ĥt+1 that takes in the estimate at the1819

previous time-step ĥt and updates it using the most recent observation xt+1.

o In machine learning parlance,
this setup is called online learning
where data occur sequentially one
after other and you train/update the
model to incorporate the latest
datum; future predictions of this
model are made using this updated
model.

1820

Kalman filter updates sufficient statistics1821

Like we computed the optimal predictor in the bias-variance tradeoff for1822

regression as the conditional distribution of the labels given the data, it is1823

possible to prove that the best estimate ĥt+1 is the conditional mean given1824

past data1825

ĥt+1 = E [ht+1 | x1, x2, . . . , xt+1] .

Not surprisingly, to estimate the location of the car at time t+ 1, you need to1826

watch the entire past trajectory of the car.1827

However, surprisingly, a powerful and deep result in control theory is1828

that for our problem (where the model of the signal is linear with additive1829

Gaussian noise and our observations xt are a linear function of ht corrupted1830

with Gaussian noise) we only need to recursively update of the first two1831

moments of our estimate. If we have1832

ĥt+1 = N(µt+1, σ
2
t+1)

where1833

µt+1 = E
[
ĥt+1 | x1, . . . , xt+1

]
σt+1 = var

(
ĥt+1 | x1, . . . , xt+1

)
.

(8.2)



80

and update the mean and variance recursively using their values at the previous1834

time-step as1835

µt+1 = µt + kt

(
xt+1 − aĥt

)
σt+1 = σ2

t (1− kt)

kt =
a2σ2

t + σ2
ν

a2σ2
t + σ2

ν + σ2
ξ

.

(8.3)

You can derive this part very easily. Show that if the objective in (8.1) was1836

minimal at time t, then the expressions in (8.3) also minimize it at time t+ 1.1837

This algorithm is known as the Kalman filter is one of the most widely used1838

algorithms for estimation of signals based on their observation. The key1839

property to remember for us from the Kalman filter is the following.1840

The two quantities µt, σt capture all the information from the past
trajectory x1, . . . , xt. Instead of creating our MSE estimate ĥt using the
entire data as shown in (8.1), if we maintain these two quantities and
recursively update them using (8.3) we obtain the best MSE estimate.

In other words, µt, σt are sufficient statistics of the data x1, . . . , xt
for the problem of estimating the next state ht+1. The notion sufficient
statistic means that you do not need anything beyond these two to estimate
any function of the data x1, . . . , xt+1. A statistic is simply any function
of data, therefore a sufficient statistic is a quantity such that if you have
it, you can throw away all the data without losing any information. Not
all statistics are sufficient, and not all sufficient statistics look like a few
moments of data; for more interesting signals the sufficient statistics are
non-trivial and difficult to find.

The structure of neural architectures for sequence modeling is inti-
mately related to the above result. Just like a CNN learns the best features
that classify the input data, a recurrent model learns the best statistics
of the past sequence (sufficient) that predict the future elements of the
sequence.

8.2 Recurrent Neural Networks (RNNs)1841

The data to an RNN is a set of n sequences1842

D =
{

(xi1, y
i
1), (xi2, y

i
2), . . . , (xiT , y

i
T )
}
i=1,...,n

.

Each sequence has length T and each element of the sequence xit ∈ Rd. There1843

can be labels at every time-step, e.g., these labels can be, say, ground-truth1844

annotations of the activity “playing with a basketball” going on the video at that1845

time, or also forecasting the inputs by one (or more) time-steps yit := xit+1.1846
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Figure 8.1: A recurrent model predicting the next word in a sentence.

Focus on one particular sequence {(x1, y1), . . . , (xT , yT )} from the dataset.1847

To predict the labels yt at each time instant, the RNN would like to maintain a1848

statistic, let us denote it by1849

hit = ϕ ((x1, y1), . . . , (xt, )) .

where ϕ is some function that we would like to build. Similar to a Kalman1850

filter we hope to learn a sufficient statistic, in this case sufficiency means that1851

the quantity ht can predict the target yt. o Note that just like we cannot
claim that the features learned by a
CNN are sufficient features, i.e., the
only information from the data
necessary to predict the targets, we
cannot claim that ht is a sufficient
statistic of the past sequence. If the
RNN/CNN is making predictions
accurately, then it is reasonable to
expect that we have learned
something close to a sufficient
statistic.

Again, we would like to update the1852

statistic recursively.1853

ht+1 = ϕ (ht, xt+1) ; (8.4)

notice the similarity with the updates in (8.3) where updates to µt, σt also used1854

the latest observation xt+1. We will also have the RNN use the latest input1855

xt+1. You can think of ht as a summary of the past sequence or some memory1856

that is updated recursively. This summary/statistic is also called the “hidden1857

state” in the RNN literature.1858

We do not know what function ϕ to pick so we are going to learn it using1859

parameters. We will set1860

ht+1 = σ (wh ht + wx xt+1) ; (8.5)

where wh ∈ Rp×p, wx ∈ Rp×d are weights that multiply the previous statis-1861

tic and the current input to calculate the current statistic. Again σ(·) is a1862

nonlinearity that is applied element-wise.1863

Weights of an RNN are not a function of time. It is important to observe1864

that the weights wh, wx do not change as the sequence moves forward. The1865

same function is used to update the statistic at different points of time; notice1866

that this does not mean that the statistic hit remains the same across t. In this1867

sense, an RNN is effectively the same neural model unrolled into the future as1868

it takes in inputs of a sequence.1869

Output predictions can now be made as usual by learning weights1870

ŷt = v>ht. (8.6)

The loss function of an RNN is a sum of the error in the predictions for all1871

time-steps1872

T∑
t=1

`(yt, ŷt) (8.7)

and we can train the RNN by updating weights wh, wx using backpropagation.1873

In some problems, you may only have targets for the final time-step yT (say1874
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predicting whether it is going to rain right now or not based on the weather1875

data of the past few hours); this does not change much conceptually, we will1876

simply have only one term in the summation of the loss above.1877

ä How should we initialize the first
hidden vector h0 in an RNN? We
have not seen any element of the
sequence yet, so the value of h0 has
no meaning per se. Typically, h0 is
initialized either using Gaussian
noise; it is sometimes also initialized
to zeros.

Multi-layer RNNs1878

We have created a single-layer RNN in (8.5). We can use the same idea to1879

create a multi-layer RNN the same way that we did for CNNs. We combine1880

different parts of the hidden state/statistic and use these as features. In an1881

RNN, it is traditional to combine the features both from the lower layer and1882

features form the previous time-step of the same layer. As a picture it looks as1883

follows

1884

We can write an expression for this as1885

hl+1
t = σ

(
wtt h

l+1
t−1 + whh h

l
t

)
.

Again we have used trainable weights wtt ∈ Rp×p and whh ∈ Rp×p to1886

compute the hidden state/statistic/activations of the top layer. For a multi-layer1887

RNN with L layers, the predictions at each time step are given by1888

ŷt = v>hLt .

The utility of having multiple layers in an RNN is similar to that of a CNN,1889

more layers let us create more complex predictors than the recurrent perceptron-1890

style predictor in (8.6) by learning a richer set of features.1891

8.2.1 Backpropagation in an RNN1892

Let us see how to compute the gradient of the loss function with respect to the1893

weights of an RNN in order to train the model using SGD. We will consider a1894

sequence of two time-steps for a single-layer RNN1895

h1 = σ(ux1) where we set h0 = 0

ŷ1 = vh1

h2 = σ(ux2 + wh1)

ŷ2 = vh2

(8.8)
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The weights we would like to update are u, v and w. o Computational graph of a
single-layer RNN. Please ignore the
notation in this figure and see (8.8).

Let us say that the loss1896

function is only computed at the final time-step t = 2 as ` := `(y2, ŷ2) =1897

‖y2 − ŷ2‖2. Using our notation for backpropagation we have1898

d`
d`

= ` = 1

ŷ2 = `
d`

dŷ2

= −(y2 − ŷ2).

v = ŷ2
dŷ2

dv
= −(y2 − ŷ2) h2

h2 = ŷ2 v

u = h2 σ
′(ux2 + wh1) x2

...

You should write down the update steps completely for an RNN making1899

predictions at each time-step, using the loss function1900

` := ‖y1 − ŷ1‖2 + ‖y2 − ŷ2‖2

and see how the gradient of the loss at each time-step with respect to weights1901

“accumulates” inw, v and u. Backpropagation in RNNs is also called backpropagation-1902

through-time (BPTT). There is nothing special going on inside BPTT, it is1903

simply backpropagation applied to a computational graph that is unrolled in1904

time.1905

8.2.2 Handling long-term temporal dependencies1906

Implementations of BPTT for RNNs has a number of numerical issues.1907

Gradient vanishing1908

Notice that the gradient1909

u = h2 σ
′(ux2 + wh1) x2

= −(y2 − ŷ2)v σ′(ux2 + wh1) x2.

in our backprop equations depends on the gradient of non-linearity. If we have1910

a sigmoid non-linearity and the input activations to it ux2 + wh1 have large1911

magnitude, the output h2 will be saturated. This results in u, h2 having small1912

magnitudes. Further notice that u also depends upon products of the weights v1913

and the inputs x2. If you unroll this further for a few more time-steps (like we1914

did in HW2) you will see that even future activations ht are recursive products1915

of past activations with weights. It is easy to observe that if we have a matrix1916

A and a vector x the product1917

lim
k→∞

Akx (8.9)

goes to zero if the largest eigenvalue ofA is less than 1, i.e., λmax = ‖A‖2 < 1.1918

The product goes to positive/negative infinity if the largest eigenvalue is greater1919
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than 1 if x has a non-zero inner product with the corresponding eigenvector.1920

In other words, if the length of the sequence is long, the recursive computation1921

in an RNN entails that the activations can blow up to infinity in both cases,1922

this can also lead to gradient explosion; they can also become zero which can1923

result in gradient vanishing.1924

The same is also true for CNNs with many layers: the weights of the lower1925

layers get their backprop gradient after it goes through multiple nonlinearities1926

(ReLUs lead to saturation as well if the input is negative) and can therefore1927

receive a small gradient. While typical CNNs have 10 or so layers, typical1928

RNNs handle sequences of length 50–100 (or more). The chance of having1929

vanishing gradients to the weights is thus much higher in RNNs.1930

You would think that if the objective is a sum of the loss at each time;1931

this alleviates the problem of gradient vanishing. But there is a deeper point1932

we are trying to make here. The backprop gradient is an indication of how1933

much we should change u, h2 to make more accurate predictions at some1934

future time-step yt. If t � 2, the value of h2 does not play a strong role in1935

making predictions too far into the future. In other words, the predictions1936

of the RNN become myopic we do not learn statistics that are a function of1937

the entire past trajectory, the statistics are highly dominated by the near past1938

which makes it difficult to capture long-range correlations in the sequence and1939

predict high-level concepts.1940

Which nonlinearities are good for RNNs?1941

Think about which nonlinearities are good for training RNNs. Gradient van-1942

ishing is a large problem with sigmoids whereas both gradient vanishing and1943

gradient explosion can occur for ReLU nonlinearities. You might be tempted1944

to design a nonlinearity that does not saturation on either side of the origin but1945

such nonlinearities look closer to and closer to an identity mapping and as we1946

have a seen a linear model is much less powerful than a nonlinear model. In1947

other words, gradient explosion/vanishing is a problem in BPTT for RNNs but1948

there is really no effective solution to it.1949

Gradient clipping1950

We can avoid gradient explosion from ruining the weights being updated by1951

gradient descent using gradient clipping. There are many ways of implement-1952

ing this idea. The most prevalent one is to clip the `2 norm of the gradient to a1953

pre-specified value. The SGD update is modified to be1954

wt+1 = wt − η clipc(∇ `ωt(wt))

where ∇ `ωt(wt) is the gradient of the objective on the sample with index1955

ωt ∈ {1, . . . , n} in the dataset computed at weights ωt and clipping performs1956

the operation1957

clipc(v) =
cv

‖v‖2 + ε

where c is a pre-specified value and it is the `2 norm of the clipped gradient.1958

The scalar ε in the denominator prevents numerical issues when the gradient1959

magnitude is small.

o The function clip grad norm
performs gradient clipping. When
you observe it closely you will
realize that it is really scaling the
gradient and should therefore be
called gradient scaling.

1960
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Sometimes you instead clip the per-weight gradient at values [−c, c], i.e.,1961

if the gradient vector is v ∈ Rp and vk is the gradient at the kth element1962

clipc(v) = [min(max(−c, v1), c), . . . ,min(max(−c, vp), c)] .

Orthogonal initializations1963

All eigenvalues of an orthogonal matrix have an absolute value of 1. If A is an1964

orthogonal matrix, we have1965

A>A = I.

This helps when we perform repeated multiplication with the weight matri-1966

ces in forward-backward propagation because the norm of the intermediate1967

products does not change1968

‖Akx‖2 = ‖x‖

if A is orthogonal. The weight matrices of an RNN are typically initialized1969

as orthogonal matrices; this is easy to do by first initializing the matrix using1970

random Gaussian entries as usual and then setting the actual weights to be the1971

left singular vectors after computing an SVD of the matrix.

ä If the weights of an RNN are
initialized as orthogonal matrices,
do they remain so all through
training after multiple steps of SGD?

1972

Moving window over the data1973

We wrote down SGD updates as sampling a random (input,target) pair from1974

the dataset at each iteration. The data for an RNN consists of a number of1975

trajectories/sequences. We can sample one (or a mini-batch) of such sequences1976

and a contiguous chunk of each of those sequences as a mini-batch in an RNN1977

Dmini-batch =
{

(xi1, y
i
1), . . . , (xi25, y

i
25)
}
∪{

(xj5, y
j
5), . . . , (xi30, y

i
30)
}
∪{

(xk13, y
j
13), . . . , (xi38, y

i
38)
}
∪

...

The hidden state h0 of the RNN is initialized to zero/randomly at the beginning1978

for all these trajectories.1979

We can also play a neat trick while sampling mini-batches in an RNN to1980

give it the ability to handle more long-range correlations. The mini-batch is1981

treated as a moving window over the data and it is rolled forward sequentially,1982

i.e.,1983

Dmini-batch 1 =
{

(xi1, y
i
1), . . . , (xi25, y

i
25)
}
∪{

(xj1, y
j
1), . . . , (xi25, y

i
25)
}
∪{

(xk1 , y
j
1), . . . , (xi25, y

i
25)
}
∪ . . .

and the next mini-batch is chosen to be1984

Dmini-batch 2 =
{

(xi25, y
i
25), . . . , (xi50, y

i
50)
}
∪{

(xj25, y
j
25), . . . , (xi50, y

i
50)
}
∪{

(xk25, y
j
25), . . . , (xi50, y

i
50)
}
∪ . . .
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In this case, we simply copy the hidden state/statistic h25 of the previous mini-1985

batch as the initialization h0 for the next mini-batch. While creates strong1986

correlations in the consecutive mini-batches and data for SGD is not sampled1987

iid, it is a clever trick to increase the effective rage of temporal correlations1988

modeled in the RNN without essentially any special operations. You can see1989

an implementation of this idea at1990

https://github.com/pytorch/examples/blob/master/word language model/main.py#L1311991

1992

Roughly speaking, data that consists of sequences of length up to 25
can be trained with RNNs.

8.3 Long Short-Term Memory (LSTM)1993

Innovations on top of the basic RNN architecture try to improve their ability1994

to handle long-range correlations in the data. We saw that the updates to the1995

hidden state/statistic ht is the key to doing so. The architectures called LSTMs,1996

and their simpler counterparts called GRUs, are mechanisms that give us more1997

control to update the hidden state.1998

8.3.1 Gated Recurrent Units (GRUs)1999

GRUs “gate” the hidden state, i.e., the architecture has a mechanism to control2000

when the hidden state gets updated and when it does not. For instance, if the2001

first symbol in our sequence is very predictive of the future of the sequence2002

we want the RNN to learn to not update the hidden state, and similarly if there2003

are irrelevant words in the middle of the sequence we want the hidden state to2004

not be updated at those time-steps. A GRU also has a mechanism to “reset”2005

the hidden state that reduces the influence of the previous hidden state on the2006

next hidden state.

o The idea that the hidden state is
the memory in sequence models is
more clear in this context. In some
cases we may want to update our
memory after observing a particular
part of the sequence, in some cases
we want to keep the memory
unchanged while in some cases we
may wish to reinitialize the memory
before observing the future data.

2007

Recall that the hidden state for an RNN with a single layer is updated as2008

ht+1 = σ (whht + wxxt+1) .

A GRU has two more variables that are called the reset variable and the2009

zero variable respectively, each created from previous xt, ht using learnable2010

weights2011

rt+1 = sigmoid(wxr xt + whr ht)

zt+1 = sigmoid(wxz xt + whz ht).
(8.10)

The entires of rt, zt are between (0, 1). The update to the hidden state in an2012

RNN is modified to be2013

ht+1 = zt+1ht + (1− zt+1)� tanh (wh (rt+1 � ht) + wxxt+1) . (8.11)

If entires of zt+1 are close to 1, the old state is propagated almost unchanged2014

to result in ht+1; information from xt+1 is essentially ignored in this case.2015

In zt+1 are close to zero, the reset gate is used to decide what the next state2016

ht+1 is: if rt+1 is close to one, the update is the same as that of a conventional2017

RNN, if rt+1 is close to zero, the previous hidden state does not play any role2018

in the update and the update is only dependent on the observation xt+1.2019

o GRUs are very useful recurrent
models because they are more
general than RNNs but at the same
time much simpler than other
models such as LSTMs. In most
cases, it is a good idea to first try to
fit the data using a GRU before
using more complex models.

https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L131
https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L131
https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L131
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8.3.2 LSTMs2020

The design of an LSTM was inspired by logic gates in a computer and is a bit2021

complicated; the original LSTM paper is an assigned reading for this lecture.2022

LSTMs are powerful models in sequence modeling and in spite of being2023

developed all the way back in 1997, they are among the few deep learning2024

models that remained popular through the second AI winter and are still the2025

workhorse of the NLP industry today.2026

An LSTM has three new variables on top of an RNN, these are called the2027

“input, forget, and output” gates respectively2028

it+1 = σ(whi ht + wxi xt+1)

ft+1 = σ(whf ht + wxf xt+1)

ot+1 = σ(who ht + wxo xt+1)

(8.12)

where all the above weight matrices are learnable parameters. In the GRU we2029

had the convex combination using the zero gate in (8.11) to prevent forgetting.2030

In an LSTM we use the two gates ft, it for this purpose. The hidden state of2031

an LSTM is propagated as2032

ht+1 = ot+1 � ct+1 (8.13)

where the variable2033

ct+1 = ft+1 � ct + it+1 � tanh(whc ht + wxcxt+1) (8.14)

is thought of as a memory cell. Understanding crisply what an LSTM ought2034

to learn is a bit difficult but we can think of an LSTM as parameterizing the2035

operations of GRU; convex combination in (8.11) is replaced by a weighted2036

combination using the input and forget gates in (8.14) while the output gate2037

in (8.13) is identity in a GRU.2038

Just like we can handle multiple layers in an RNN, we can also have multi-2039

ple layers in an GRU. Each layer gets its own gates; temporal propagation is2040

performed using the above equations and only the hidden state ht is propagated2041

up to the deeper layers.2042

You will notice that a lot of non-linearities in GRUs/LSTMs are sigmoids2043

and hyperbolic tangents. This is because these gates are interpreted as Boolean2044

variables that the model is supposed to learn. There are two lessons to draw2045

from this. First, if you are modeling some computation and would like to2046

learn a Boolean variable, it is a good idea to compute a learnable function of2047

the inputs and use a sigmoid nonlinearity. Second, vanishing gradients are a2048

problem with LSTMs/GRUs as well, the various mechanisms (reset/zero in2049

GRUs and input/forget/output in LSTMs) alleviate this to an extent but do2050

not eliminate vanishing gradients. Roughly speaking, we can use LSTMs to2051

model sequences of up to length 50.2052

8.4 Bidirectional architectures2053

Until now, we have imagined that we would like to predict the future words in2054

a sequence or design a predictor that uses a statistic of the sequence to predict2055

the output. Our recurrent models were causal in the temporal direction, i.e.,2056

future elements of the sequence did not play a role in the outputs and updates2057
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of the model at time t. This is indeed how a lot of computation is performed,2058

e.g., if you want to predict the next location of a vehicle in a video, you should2059

not build a predictor that uses future frames because this model cannot be2060

run at test time without access to the future frames. However, there are also2061

problems in which you have access to some future observation and estimate2062

the present state. For instance, you may fill in the following blanks totally2063

differently depending upon the context of the future words.2064

2065

I am very .2066

I am very for school.2067

I am very , I need a big dinner.2068

2069

Bidirectional models help us distinguish between the three situations and2070

allow predicting context-specific output. Just like we motivated recurrent2071

models using a Kalman filter and sufficient statistics of the past sequence, we2072

can also derive an analogy with what is called Kalman smoothing (predicting2073

the current state given the past observations and the future observations).2074

Building bidirectional models using RNNs is easy. We have two RNNs2075

running in opposite directions as shown in the following picture.2076

2077

We maintain two sets of weights, one for the forward RNN and the other2078

for the backward RNN. This gives two hidden states, one in the forward2079

direction and another in the backward direction2080

hforward
t+1 = σ(wforward

h hforward
t + wforward

x xt+1)

hbackward
t = σ(wbackward

h hbackward
t+1 + wbackward

x xt).

The concatenation of these two hidden states is now the sufficient statistic of2081

the entire sequence. So the output ŷt is now a function of both these hidden2082

states2083

ŷt = vforward>hforward
t + vbackward>hbackward

t . (8.15)

Let us emphasize that these two directions have nothing to do with back-2084

propagation. There is a backpropagation for the backward directions as well,2085

which updates hbackward
t+1 using hbackward

t . You should do the following exer-2086

cise: imagining that the loss is only computed on the predictions at time t,2087

i.e., ` = `(yt, ŷt) and think of how the backpropagation gradient flows in a2088

bidirectional RNN.2089

Just like we have bidirectional RNNs, we can also build bidirectional2090

GRUs and LSTMs.2091

8.5 Attention mechanism2092

The human perception system is quite limited by its sensors, we do not have2093

eyes at the back of our heads. It is also limited by computation, the human2094
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brain consumes only about 12W of power when it works, about 30% of this2095

power is consumed by the visual system.2096

Figure 8.2: This is a picture of the human brain by a famous neuroscientist named
David Van Essen. Around the early 90s it became clear that brains consist of different
parts, each specialized to processing different kinds of data. The visual system takes
up a bulk (30%) of the real estate.

Our perceptual system is very powerful considering the limits of this com-2097

putation. We discussed reasons for this in Chapter 1, the ability to move gives2098

us the ability to specialize the processing on different parts of the environment2099

instead of passively processing all the incoming data from the sensors. For2100

instance, when you are driving, you look over your shoulder only before you2101

merge on the right, you do not really care to remember where every car in your2102

vicinity is at any given point of time. Similarly, experiments on race car drivers2103

reveal that even at high speeds they do not pay attention to all parts of the2104

environment, a driver typically only cares about two variables, the heading of2105

the car while going into a turn and the distance to the apex of the turn. When2106

you watch TV, you are paying attention to only a small part of the TV screen.2107

You can read more about these experiments at http://ilab.usc.edu/surprise and2108

in the work of many other researchers who study such problems.2109

The human perceptual system is tuned to pay attention to only parts of2110

the input data that is relevant. Attention in machine learning is an attempt to2111

model this phenomenon. It turns out that since understanding which part of a2112

long sequence is relevant to making a prediction at a particular time instant,2113

attention is well-suited to mitigating the problems with long-range correlations2114

in sequence data. We will not go very deep into the architectural intricacies of2115

attention models (you can read the suggested reading material) but we provide2116

an introduction that makes it easy to understand the papers.2117

8.5.1 Weighted regression estimate2118

Consider a regression problem where the true function is drawn in orange and2119

the dataset is shown in blue.2120

2121

http://ilab.usc.edu/surprise
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If we wanted to predict the targets the green line given by2122

ŷ =
1

n

n∑
i=1

yi.

is the world’s dumbest estimator; it predicts the output irrespective of the2123

input x. We can do better using the so-called Watson-Nadaraya estimator in2124

statistics. We compute the weighted combination2125

ŷ(x) =

n∑
i=1

k(x, xi) yi

where kernel k(x, xi) computes some similarity between the input xi in the2126

dataset and the test input x; the kernel weighs the target yi higher if x is close2127

to xi.

Figure 8.3: The left panel shows the Gaussian kernel k(·, xi) for different inputs in the
dataset. The kernel is not normalized so we cannot match the target values yi easily
using a weighted combination of the kernels. The second panel fixes this by picking
a normalized kernel k(x, xi) := k(x,xi)∑

j k(x,xj)
. The estimate of the target ŷ(x) using a

weighted combination of this normalized kernel is a non-parametric estimator of the
targets.

2128

The Watson-Nadaraya estimator in Figure 8.3 is a simple interpolation2129

mechanism and it is also consistent, i.e., as the amount of data n → ∞, the2130

regression error goes to zero. There are no weights in this model. All the2131

intricacy lies in choosing the kernel over the data.2132

An attention layer can be thought of as learning the weighing func-
tion in our regression estimate, and a weighted average instead of an
unweighted average.

8.5.2 Attention layer in deep networks2133

Let us consider a typical kind of attention that is heavily employed in deep2134

learning. It is called the dot-product attention mechanism. This takes in two2135

matrices as input: k ∈ RT×p which is called the “key” and v ∈ RT×p which2136

are called “values”. Given a query vector q ∈ Rp the attention module outputs2137

T∑
i=1

σ
(
k>i q

)
vi (8.16)

where ki denotes the ith row of the matrix and likewise for the values. Observe2138

that the summation is a weighted combination of all the values vi with weights2139
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given by the similarity of the query with each of the keys ki. Just like the2140

Watson-Nadaraya estimator, we would like these weights to be normalized, so2141

we choose2142

σ(k>i q) = softmaxi(k>i q);

the softmax normalization is performed over the time-axis i. In simple words,2143

the expression is a weighted combination of the values where the kernel2144

is computed using a simple dot product and normalization of the kernel is2145

performed using softmax. If a particular query vector q is similar to one of the2146

keys ki, that value vi gets upweighted in the summation.2147

If the query vector is one of the keys ki, we have the so-called self-2148

attention operation.2149

How can we use this in a deep network? First let us consider a standard2150

convolutional network with features hl ∈ Rm×c at the lth layer; we have2151

reshaped the width and height of the feature map into a single dimension of2152

size m, the number of channels is c. If we set the keys, values and queries to2153

be learnable quantities2154

Rm×c 3 k = σ(w>k hl)

Rm×c 3 q = σ(w>q hl)

Rm×c 3 v = σ(w>v hl)

(8.17)

where σ(·) is some nonlinearity, say ReLU, then the output of the attention2155

block would be given by a weighted summation over the features for each2156

pixel given by2157

hl+1
j =

m∑
i=1

softmax
(
k>i qj

)
vi. (8.18)

This is a just a more complex version of the correlation operator. It creates2158

output features hl+1
j ; j ∈ {1, . . . ,m} that captures the similarities between2159

the queries and the keys.2160

o Draw a picture of the
computation in an attention module

8.5.3 Attention as one of the layers of a recurrent networks2161

The attention layer is much more popular for sequence modeling because it2162

offers a very powerful way to mitigate the problem with vanishing/exploding2163

gradients for long sequences. For a sequence of length T , the attention2164

layer computes the same operation as in (8.18). Observe that this expression,2165

rewritten here with the number of features m := T corresponding to the time2166

dimension and the feature size c := p2167

hl+1
j =

T∑
i=1

softmax
(
k>i qj

)
vi

has hidden state hl+1
j that depends on the hidden states of the lower layer2168

hli, i ∈ {1, . . . , T}. Effectively, the attention layer acts as a temporal shortcut2169

that makes the hidden states of an RNN dependent on both past and future2170

hidden states for the sequence. In a picture, this looks as follows.2171
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2172

The recurrent layers compute features in a causal fashion but the attention2173

layer connects all the time-steps together. If you think of how backpropagation2174

gradient flows down from the output layer via the attention, you will realize2175

that the gradient of the loss computed at step t, say `(yt, ŷt) flows back to2176

the hidden states h2 using two paths; the first is the standard BPTT path of2177

the recurrent layers while the second one is a more direct path of the cross-2178

correlation operation in the attention layer. This is a huge benefit because it2179

essentially eliminates problems with gradient vanishing and allows recurrent2180

model very long sequences. Modifications of this attention module can easily2181

handle sequences of a few hundred words.2182

To conclude, attention is a powerful operation and has become very popular2183

in the past 1-2 years. It has been used predominantly for NLP models but2184

also works surprisingly well as a replacement for convolutional layers for2185

image-based data. One can think of the attention module as a fully-connected2186

layer that performs very strong weight sharing.2187

You can read Chapter 10.3 in the D2L.ai book and the original paper on2188

a popular attention-based architecture called the Transformer to know more2189

about this operation.2190
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Background on2192

Optimization, Gradient2193

Descent2194

We have covered the cliff-notes of the practice of deep learning in the previous2195

eight chapters. It is by no means a complete overview. The practice of deep2196

learning is an enticing, mysterious, and sometimes frustrating. The more time2197

you spend playing with code the more you will learn about deep learning. New2198

ideas are routinely discovered using very simple experiments that each of you2199

is capable of running in your Colab now.2200

As we discussed, there three main concepts in machine learning. First, the2201

class of functions f(x;w) that you use to make predictions, this is called the2202

hypothesis class or the architecture. Second, the algorithm you use to find the2203

best model in this class of functions that fits your data; this uses tools from2204

optimization theory. Third is the generalization performance of your classifier.2205

Machine Learning is about picking a good hypothesis class, finding the best2206

model within this class and making sure that the model generalizes.2207

2208

The above process is relatively well-understood for simpler models such2209

as SVMs but the story is quite murky for deep networks. Often in practice,2210

it is never clear which architecture you should pick for your problem (many2211

of you have asked this question in the office hours for instance). Training a2212

deep network involves a number of bells and whistles (some of which like2213

Batch-Normalization and Dropout that we have seen) and if at the end of this2214

exercise we get a high validation error, it is unclear how one should change2215

93
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the parts of the process to improve performance. Disentangling this viscious2216

cycle is what “understanding deep learning” is all about.2217

Goal Module 2 will develop an understanding of optimization and gener-2218

alization for more generic machine learning models first. It will end with an2219

insight into understanding their interplay for deep networks. Module 2 has a2220

different flavor, it is more theoretical. Our goal is to grasp the general concepts2221

behind these theoretical results and understand the training process of deep2222

networks better. This will also help us train deep networks much better in2223

practice.2224

9.1 Convexity2225

Consider a function ` : Rp → R that is convex, i.e., for any w,w′ that lie in2226

the domain (which is assumed to be a convex set) of f and any λ ∈ [0, 1] we2227

have2228

`(λw + (1− λ)w′) ≤ λ`(w) + (1− λ)`(w′). (9.1)

A function `(w) is concave if −`(w) is convex. Some examples of convex2229

functions are2230

• affine functions Aw + b, norms ‖w‖p = (
∑p
i=1|wi|p)

1/p, or ‖w‖∞ =2231

maxk|wk|.2232

• exponential ew for w ∈ R2233

• powers wα for w > 0 and α ≥ 1 or α ≤ 02234

• powers of absolute values |w|p for w ∈ R and p ≥ 12235

Strictly convex functions Strictly convex functions have the property that2236

for all w 6= w′ in the domain (which is assumed to be convex) and λ ∈ (0, 1)2237

`(λw + (1− λ)w′) < λ`(w) + (1− λ)`(w′).

First-order condition for convexity If ` is differentiable, the definition2238

of convexity in (9.1) is equivalent to the following first-order condition. A2239

differentiable function ` with convex domain is convex iff2240

`(w′) ≥ `(w) + 〈∇ `(w), w′ − w〉 . (9.2)

for all w,w′ in the domain. Note that the first-order condition is equivalent2241

to the definition of convexity in (9.1) for differentiable functions. The proof2242

is long but easy; you can see https://www.princeton.edu/ aaa/Public/Teach-2243

ing/ORF523/S16/ORF523 S16 Lec7 gh.pdf for the proof. For strictly convex2244

functions the inequality is strict2245

`(w′) > `(w) + 〈∇ `(w), w′ − w〉 .

https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
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Monotonicity of the gradient for convex functions The first-order con-2246

dition for convexity gives a useful, and equivalent, characterization of the2247

gradient. Write (9.2) for w,w′ in two opposite directions2248

`(w) ≥ `(w′) + 〈∇ `(w′), w − w′〉
`(w′) ≥ `(w) + 〈∇ `(w), w′ − w〉

and add them to get2249

〈∇ `(w)−∇ `(w′), w − w′〉 ≥ 0. (9.3)

It is also true that monotonicity of the gradient implies convexity (try to prove2250

it).2251

Second-order condition for convexity If ` is twice-differentiable with a2252

convex domain, it is convex iff2253

∇2 `(w) � 0 (9.4)

for all w in the domain. The symbol � denotes positive semi-definiteness of2254

the Hessian matrix∇2 `(w)2255

(
∇2 `(w)

)
ij

=
∂2`(w)

∂wi∂wj
.

For strictly convex functions, the inequality in (9.4) is strict, i.e., the Hessian2256

is positive definite. As an example, the least squares objective `(w) = ‖y −2257

Xw‖22 is convex because2258

∇2 `(w) = 2X>X

which is positive definite for any non-singular X .2259

Strongly convex functions A function is strongly convex if there exists an2260

m > 0 such that2261

`(w)− m

2
‖w‖22 is convex. (9.5)

It is easy to see that strict convexity implies convexity. Since the function2262

`(w)−m/2‖w‖2 is convex, it satisfies the definition of convexity:2263

`(λw + (1− λ)w′)− m

2
‖λw + (1− λ)w′‖2

≤ λ
(
`(w)− m

2
‖w‖2

)
+ (1− λ)

(
`(w′)− m

2
‖w′‖2

)
.

(9.6)

But2264

λm

2
‖w‖2 +

(1− λ)m

2
‖w′‖2 − m

2
‖λw + (1− λ)w′‖2 > 0

for λ ∈ (0, 1) for all w 6= w′ because ‖w‖2 is strictly convex which shows2265

that if we have a strongly convex function ` it also satisfies2266

`(λw + (1− λ)w′) < λ`(w) + (1− λ)`(w′).
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In other words, we have2267

strong convexity ⇒ strict convexity ⇒ convexity.

Observe that strongly convexity in (9.6) is a stronger version of Jensen’s in-2268

equality. Strongly convex functions are easier to optimize for algorithms. It2269

will also always be much easier to prove a result in optimization on strongly2270

convex functions. It is easy to see using the second-order condition for con-2271

vexity that an m-strongly convex function has2272

∇2 `(w) � mIp×p.

We will use the following first-order condition for strongly convex func-2273

tions often. A function is m-strongly convex if and only if2274

`(w′) ≥ `(w) + 〈∇ `(w), w′ − w〉+
m

2
‖w′ − w‖2 (9.7)

for any w,w′ in the domain.2275

9.2 Introduction to Gradient Descent2276

In this chapter, we will write `(w) to denote the training objective, i.e., if we2277

have a classifier f(x;w) and a dataset D =
{

(xi, yi)
}
i=1,...,n

of n samples2278

we will denote2279

`(w) :=
1

n

n∑
i=1

`(w;xi, yi).

The objective ` will always be a function of the entire dataset but we will keep2280

the dependence implicit. Note that the number of samples n is usually quite2281

large in deep learning, so the summation above has a large number of terms2282

on the right-hand side.2283

Gradient descent is a simple algorithm to minimize `(w). Before we study2284

its properties, it will help to refresh the following few facts.2285

9.2.1 Conditions for optimality2286

Local and global minima A point w is a local minimum of the function2287

`(w) for all all w′ in a neighborhood of w we have `(w) ≤ `(w′). The point2288

is a global minimum of the function ` if this condition is true for all w′ in the2289

domain, not just the ones in the neighborhood.2290

Local minima are global minima for convex functions This is easy to see2291

using an argument by contradiction. If w is a local minimum that is not the2292

global minimum, there exists a point w′ in the domain such that `(w′) < `(w).2293

The domain of the function is convex, so pick a point v = λw′ + (1 − λ)w2294

and see that2295

`(v)− `(w) ≤ λ (`(w′)− `(w))

using the definition of convexity. Since w is only a local minimum, we can2296

pick λ to be small enough that the left hand side is non-negative. This shows2297

that `(w′) ≥ `(w) but this means that w is a global minimum and we have a2298

contradiction.2299
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Global minimum is unique for strictly convex functions If a function is2300

strictly convex on a convex domain the optimal solution (if it exists) must be2301

unique. Indeed, if there were two solutions w,w′ that were both minimizers2302

we would have2303

`(w) = `(w′) ≤ `(w′′) ∀w′′. (9.8)

We can now apply the definition of convexity to the point v = (w + w′)/2 to2304

get2305

`(v) <
1

2
`(w) +

1

2
`(w′) = `(w).

which contradicts (9.8). The least-squares objective is strictly convex, so the2306

solution is unique global minimizer of the objective.2307

First-order optimality condition Ifw is a local minimum of a continuously2308

differentiable function `, then it satisfies2309

∇ `(w) = 0. (9.9)

If further ` is convex, then ∇ `(w) = 0 is a sufficient condition for global2310

optimality from the above discussion.2311

9.2.2 Different types of convergence2312

Let us assume that we have a continuously differentiable convex function `2313

and let2314

w∗ = argmin
w

`(w)

be the global minimizer of this function.2315

We would like to develop an iterative scheme that takes in the initialization2316

of the weights w0 and updates them to obtain a sequence2317

w0, w1, . . . , wt, . . .

Along this sequence we are interested in understanding the2318

1. convergence of the function value `(wt) to the minimal value `(w∗),2319

and2320

2. convergence of the iterates ‖wt − w∗‖.2321

Descent direction We are going to perform a sequence of updates given by2322

wt+1 = wt + η dt (9.10)

where dt is called the descent direction and the scaler parameter η > 0 is called2323

the step-size and determines how far we travel using this descent direction.2324

Any direction such that2325 〈
∇ `(wt), dt

〉
< 0

is a good descent direction because this leads to a reduction in the value of the2326

function `(wt+1) after the weight update. There are numerous ways to pick a2327

good descent direction. Among the simplest ones is gradient descent which2328
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descents along the direction of the negative gradient and thereby performs the2329

following set of updates2330

wt+1 = wt − η∇ `(wt) (9.11)

given an initial value w0. The step-size (also called the learning rate) is chosen2331

by the user. The step-size need not always be fixed, for instance you chose2332

it to be a function of the number of weight updates t in the homework. A2333

good step-size is one that does not overshoot the minimum w∗.

o Draw a picture of overshooting
using a large step-size.

For instance,2334

after having chosen a particular descent direction dt we can compute the best2335

step-size to use at time t by solving2336

ηt = argmin
η≥0

`(wt + η dt).

This is known as line-search in the optimization literature. You may have seen2337

Newton’s method2338

wt+1 = wt −
(
∇2 `(wt)

)−1∇ `(wt). (9.12)

which does not have a user-tuned step-size and further modifies the descent2339

direction to be the product of the inverse Hessian with the gradient.2340

ä Can you think of an algorithm for
minimizing a function that does not
use the gradient of the function to
compute the descent direction?

9.3 Convergence rate for gradient descent2341

We will next understand how quickly gradient descent converges to the global2342

minimum. There are two concrete goals of this analysis2343

1. to be able to pick the step-size to avoid overshooting without doing2344

line-search, and2345

2. characterize how many iterations of gradient descent to run until we are2346

guaranteed to be within some distance of the global minimum.2347

9.3.1 Some assumptions2348

Before we begin, we will make a few simplifying assumptions on the function2349

`(w). These are quite typical in optimization and ensure that we are not dealing2350

with pathological functions that make minimizing them arbitrarily hard.2351

1. Lipschitz continuity/bounded gradients We will assume that ` is Lip-2352

schitz continuous2353

|`(w)− `(w′)| ≤ B‖w − w′‖2. (9.13)

for some B > 0. You might also see this condition written as2354

‖∇ `(w)‖ ≤ B

for differentiable functions.2355
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2. Smoothness We will always consider functions such that their gradients2356

are L-Lipschitz, i.e.,2357

‖∇ `(w)−∇ `(w′)‖2 ≤ L‖w − w′‖2. (9.14)

If ` is twice-differentiable, this is equivalent to assuming2358

∇2 `(w) � L Ip×p. (9.15)

From the Cauchy-Schwarz inequality which states that2359

〈u, v〉 ≤ ‖u‖ ‖v‖

for two vectors u, v, we have the following implication of smoothness:2360

〈∇ `(w)−∇ `(w∗), w − w∗〉 ≤ L‖w − w∗‖2. (9.16)

A related concept is called co-coercivity of the gradient. The gradient2361

being L-Lipschitz is equivalent to co-coercivity of the gradient with2362

parameter 1/L2363

1

L
‖∇ `(w)−∇ `(w)‖2 ≤ 〈∇ `(w)−∇ `(w′), w − w′〉 . (9.17)

We can see that co-coercivity implies Lipschitz continuity of the gradi-2364

ents∇ `(w) using (9.16) and (9.17). The reverse is also true, Lipschitz-2365

continuity of the gradient implies the Descent Lemma Lemma 9.1 which2366

is seen by applying the Descent Lemma twice for the two functions2367

g(u) = `(u)− 〈∇ `(w′), u〉 and h(u) = `(u)− 〈∇ `(w), u〉.2368

9.3.2 GD for convex functions2369

We begin with the so-called Descent Lemma.2370

Lemma 9.1 (Descent Lemma). For an L-smooth function, we have2371

`(w′) ≤ `(w) + 〈∇ `(w), w′ − w〉+
L

2
‖w′ − w‖2. (9.18)

for any two w,w′ in the domain.2372

Proof. First, you should compare this with the first-order characterization of2373

convexity2374

`(w′) ≥ `(w) + 〈∇ `(w), w′ − w〉 .

The two conditions can be used to sandwich the value of `(wt+1) given the2375

value of `(wt) in gradient descent with room for a quadratic term L
2 ‖w

′−w‖2.2376

This also gives some intuition as to what L-smooth really means; a large value2377

of L means that the function ` decreases quickly. Let v = w+ λ(w′ −w) and2378

use Taylor’s theorem to see that2379

`(w′) = `(w) +

∫ 1

0

〈∇ `(v), w′ − w〉 dλ (9.19)

Subtract 〈∇ `(w), w′ − w〉 from both sides to get2380

`(w′)− `(w)− 〈∇ `(w), w′ − w〉 =

∫ 1

0

〈∇ `(v)−∇ `(w), w′ − w〉 dλ.
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Observe that2381

|`(w′)− `(w)− 〈∇ `(w), w′ − w〉| =
∣∣∣∣∫ 1

0

〈∇ `(v)−∇ `(w), w′ − w〉 dλ
∣∣∣∣

≤
∫ 1

0

|〈∇ `(v)−∇ `(w), w′ − w〉| dλ

≤
∫ 1

0

‖∇ `(v)−∇ `(w)‖ ‖w′ − w‖dλ

≤ L
∫ 1

0

λ ‖w′ − w‖2dλ

=
L

2
‖w′ − w‖2.

This completes the proof after removing the absolute value on the left-hand2382

side.2383

We can use the Descent Lemma twice on two points to w,w′ to get (9.16).2384

Another direct consequence of the Descent Lemma is the following corollary2385

that relates the value `(w) at any point w in the domain to that of the global2386

minimum.2387

Corollary 9.2. For L-smooth convex function `, if w∗ is the global minimizer,2388

then2389

1

2L
‖∇ `(w)‖2 ≤ `(w)− `(w∗) ≤ L

2
‖w − w∗‖2. (9.20)

Proof. Since ∇ `(w∗) = 0, the right-hand side follows directly from the2390

Descent Lemma. To get the left-hand size, let us optimize the upper bound in2391

the Descent Lemma using w′ = w + λv with ‖v‖ = 1 as follows2392

`(w∗) = inf
w′
`(w′) ≤ inf

w′

{
`(w) + 〈∇ `(w), w′ − w〉+

L

2
‖w′ − w‖2

}
= inf
‖v‖=1

inf
λ

{
`(w) + λ 〈∇ `(w), v〉+

L

2
λ2

}
= inf
‖v‖=1

{
`(w)− 1

2L
(〈∇ `(w), v〉)2

}
= `(w)− 1

2L
‖∇ `(w)‖2.

2393

In other words, the gap between the function values `(w) − `(w∗) is upper-2394

bounded by the gap to the minimizer L2 ‖w − w
∗‖2 and lower-bounded by the2395

norm of the gradient 1
2L‖∇ `(w)‖2.2396

Lemma 9.3 (Monotonic progress for gradient descent). For gradient de-2397

scent wt+1 = wt − η∇ `(wt), if we pick the step-size2398

η ≤ 1

L
(9.21)

we have2399

`(wt+1) ≤ `(wt)− η

2
‖∇ `(wt)‖2. (9.22)



101

Further,2400

`(wt+1)− `(w∗) ≤ 1

2η

(
‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
(9.23)

which implies2401

‖wt+1 − w∗‖2 ≤ ‖wt − w∗‖2. (9.24)

Proof. Substitute η ≤ 1/L in the Descent Lemma and simplify to get (9.22).2402

The second result is obtained by2403

0 ≤ `(wt+1)− `(w∗) ≤ `(wt)− `(w∗)− η

2
‖∇ `(wt)‖2

≤
〈
∇ `(wt), wt − w∗

〉
− η

2
‖∇ `(wt)‖2

=
1

2η

(
‖wt − w∗‖2 − ‖wt − w∗ − η∇ `(wt)‖2

)
=

1

2η

(
‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
.

Observe that since the left-hand side is positive, the claim in (9.24) is true.2404

We have therefore shown that if the step-size is not too large (the smooth-2405

ness parameter of the function determines how large the step-size can be)2406

then gradient descent always improves the value of the function with each2407

iteration (9.22). It also improves the distance of the weights to the global2408

minimum at each iteration (9.24).2409

Lemma 9.4 (Convergence rate for gradient descent, convex function). For2410

gradient descent wt+1 = wt − η∇ `(wt) with step-size η < 1/L, we have2411

`(wt+1)− `(w∗) ≤ 1

2 t η
‖w0 − w∗‖2. (9.25)

Proof. We sum up the expression in (9.23) for all times t to get2412

t∑
s=1

`(ws)− `(w∗) ≤ 1

2η

t∑
s=1

(
‖ws−1 − w∗‖2 − ‖ws − w∗‖2

)
=

1

2η

(
‖w0 − w∗‖2 − ‖wt − w∗‖2

)
≤ 1

2η
‖w0 − w∗‖2.

We know from (9.22) that `(wt) is non-increasing, so we can write2413

`(wt)− `(w∗) ≤ 1

t

t∑
s=1

(`(ws)− `(w∗)) ≤ 1

2 t η
‖w0 − w∗‖2.

2414

If we want to find a weights with
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`(wt)− `(w∗) ≤ ε

for a convex function, we need to run gradient descent for at least

O(1/ε)

iterations. This is an important result to remember.

9.3.3 Gradient descent for strongly convex functions2415

Things are much better if the function we are minimizing is strongly con-2416

vex. First we have the following lemma for strongly-convex functions which2417

involves a rewriting co-coercivity condition for strongly convex functions.2418

Lemma 9.5 (Co-coercivity for strongly convex function). If `(w) is m-2419

strongly convex, and L-smooth, then the function g(w) = `(w) − m
2 ‖w‖

2
2420

is convex and L −m-smooth. The co-coercivity condition for ∇ g(w) can2421

therefore be re-written as2422

〈∇ `(w)−∇ `(w′), w − w′〉 ≥ mL

m+ L
‖w − w′‖2 +

1

m+ L
‖∇ `(w)−∇ `(w′)‖2.

(9.26)

Proof. The convexity of g(w) is immediate to see from the definition of strong2423

convexity of `(w). Use the monotonicity of the gradient of g(w) to get2424

0 ≤ 〈∇ g(w)−∇ g(w′), w − w′〉
= 〈∇ `(w)−∇ `(w′), w − w′〉 −m‖w − w′‖2

≤ (L−m)‖w − w′‖2.

We can now rewrite the co-coercivity condition for ∇ g(w) with the smooth-2425

ness parameter L−m and simplify to get (9.26).2426

Lemma 9.6 (Convergence rate of gradient descent for strongly convex2427

functions). For strongly convex functions we have pick a step-size2428

0 < η <
2

m+ L

to get2429

‖wt+1 − w∗‖2 ≤
(

1− η 2mL

m+ L

)
‖wt − w∗‖2. (9.27)

which gives2430

‖wt − w∗‖2 ≤ ct ‖w0 − w∗‖2 (9.28)

where c =
(

1− η 2mL
m+L

)
.2431

Proof. We expand the left hand-side in (9.27) to get2432

‖wt+1 − w∗‖2 = ‖wt − η∇ `(wt)− w∗‖2

= ‖wt − w∗‖2 − 2η
〈
∇ `(wt), wt − w∗

〉
+ η2‖∇ `(wt)‖2

≤
(

1− η 2mL

m+ L

)
‖wt − w∗‖2 + η

(
η − 2

m+ L

)
‖∇ `(wt)‖2

≤
(

1− η 2mL

m+ L

)
‖wt − w∗‖2.
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We have substituted the co-coercivity condition from (9.26) for the inner-2433

product with w′ := wt and w := w∗ to get the first inequality. This implies2434

that the distance to the global minimum ‖wt−w∗‖ decreases multiplicatively;2435

compare this with (9.24) where the progress is additive. The additional as-2436

sumption of strong convexity therefore means that we are making very quick2437

progress towards the global minimum. We can use this inequality repeatedly2438

for all iterations t to get2439

‖wt − w∗‖2 ≤ ct ‖w0 − w∗‖2

where c =
(

1− η 2mL
m+L

)
.2440

Strong convexity enables much faster progress towards the global
minimum. If we want ‖wt − w∗‖ ≤ ε we need

O(log(1/ε))

iterations of gradient descent. This is much less than that for a convex
function. This is called linear convergence because we need a constant
number of iterations to reduce the gap to the optimal in half. The naming
convention is a bit unusual here but you will see that if we plot log‖wt −
w∗‖ (or log (`(wt)− `(w∗))) on the Y-axis and number of iterations t on
the X-axis, we get a straight line for gradient descent on strongly-convex
functions; you can see this from (9.28).

o Plot the convergence rate of
gradient descent for convex and
strongly-convex functions.

We say that the convergence rate of gradient descent for non-strongly
convex functions is sub-linear. The longer we run GD for convex func-
tions, the slower its progress. o In the optimization literature, an

algorithm with

lim
t→∞

`(wt+1)− `(w∗)
`(wt)− `(w∗)

= ρ

is said to be sub-linear if ρ ∈ (0, 1),
linear if ρ = 1 and super-linear if
ρ = 0.

Further, if we pick the largest step-size η = 2/(m+ L) we get

c =

(
κ− 1

κ+ 1

)2

< 1. (9.29)

where κ = L/m is the condition number of the Hessian (it is the ratio
of the largest eigenvalue and the smallest eigenvalue). Larger the condi-
tion number κ, closer to 1 the multiplicative constant c and slower the
convergence rate of gradient descent.

A few more points to note2441

1. The step-size if limited by m+ L but the convergence rate depends on2442

κ = L/m. Smaller the value of c, faster the convergence.2443

2. Larger the L, smaller the ideal step-size η2444

3. You can get the upper bound2445

`(wt)− `(w∗) ≤ L

2
‖wt − w∗‖2 ≤ ctL

2
‖w0 − w∗‖2 (9.30)

using (9.20).2446

You will also see the convergence rate written in many papers as2447

‖wt − w∗‖ ≤ e−4t/κ ‖w0 − w∗‖. (9.31)
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You can get this inequality by using the fact that 1 + x ≤ ex in (9.29). We can2448

use this to pull out the dependence on κ in the convergence rate; for strongly2449

convex functions, gradient descent requires2450

O(κ log(1/ε))

iterations to reach within an ε-neighborhood of the global minimum `(w∗).2451

This suggests that smaller the condition number κ fewer the iterations required.2452

We can intuitively understand why convergence of gradient descent is2453

slower for a large condition number. A large condition number means that2454

some directions of the objective ` are highly curved while some others are2455

very flat. It is difficult to pick one single scalar step-size in such situations that2456

makes quick progress along the flat directions but also does not overshoot the2457

highly curved directions. You might imagine that clever schemes to change the2458

step-size depending upon the local geometry of the function `(wt) could help2459

solve this issue and indeed it does, but such adaptive schemes are expensive to2460

implement computationally. We will see some algorithms that pick different2461

step-sizes for different weights in Chapter 11.

o Draw a picture of this
phenomenon for a quadratic
objective `(w) = 〈w,Aw〉 for
matrices A � 0 with different
condition numbers κ.

2462

9.4 Limits on convergence rate of first-order meth-2463

ods2464

It is a powerful and deep result that we cannot do better than a linear conver-2465

gence rate for optimization methods that only use the gradient of the function2466

`(w). More precisely, for any first-order method, i.e., any method where the2467

iterate at step t given by wt is chosen to be2468

wt ∈ w0 + span
{
∇ `(w0), . . . ,∇ `(wt)

}
,

we have the following theorem by Yurii Nesterov.2469

Theorem 9.7 (Nesterov’s lower bound). If w ∈ Rp, for any t ≤ (p − 1)/22470

and every initialization of weights w0 there exist functions `(w) that are2471

convex, differentiable, L-smooth with finite optimal value `(w∗) such that any2472

first-order method has2473

`(wt)− `(w∗) ≥ 3

32

L‖w0 − w∗‖2

(t+ 1)2
.

Let us read the statement of the theorem carefully. It states that fixed a time2474

t and initial condition w0, we can find a convex function `(w) such that it takes2475

gradient descent at least O(1/ε2) to reach an ε-neighborhood of the optimal2476

value `(w∗). The implication of this theorem is as follows. The convergence2477

rate O(1/ε) we obtained for convex functions is not the best rate we can2478

get. Nesterov’s lower bound suggests that there should be gradient-based2479

algorithms that only require O(1/
√
ε) iterations. Such methods will be the2480

topic of the next Chapter.2481



Chapter 102482

Accelerated Gradient2483

Descent2484

Reading
1. The blog-post titled “Why momentum really works?” at

https://distill.pub/2017/momentum

In the previous chapter we saw two results that characterize how many2485

iterations gradient descent requires to reach within an ε-neighborhood of the2486

global optimum for convex functions. If the function `(w) is convex, GD2487

with a step-size at most 1/L requires O(1/ε) iterations. If the function `(w)2488

is strongly convex, then the step-size can be as large as 2/(m+ L) and GD2489

requires O(κ log(1/ε)) iterations where2490

κ =
L

m

is the condition number of the Hessian ∇2 `(w). A large value of κ means2491

that there are some directions where the function is highly curved and others2492

where it is relatively flat. The main point to remember is that we often do2493

not know a good value for m,L. Since the step-size of GD depends upon the2494

curvature of the function; if the step-size is too large then GD overshoots on2495

the highly curved directions and if the step-size is too small then GD makes2496

slow progress along a direction.2497

We will study two algorithms in this chapter which accelerate the progress2498

of gradient descent.2499

10.1 Polyak’s Heavy Ball method2500

The most natural place to begin is to imagine gradient descent as a kinematic2501

equation. Let wt be the iterate of GD at time t, let us associate to it an auxiliary2502

105

https://distill.pub/2017/momentum
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variable called the “velocity” vt2503

vt :=
wt+1 − wt

η
. (10.1)

Gradient descent can then be written as2504

vt = −∇ `(wt), (10.2)

which allows us to think of the term −∇ `(wt) is the force that acts on a2505

particle to update its position from wt to wt+1. This particle has no inertia, so2506

the force applied directly affects its position. If the magnitude of this gradient2507

is small in a certain direction, the velocity is also small in that direction.2508

We now give our particle some inertia. Instead of the force directly affect-2509

ing the position we will write down Newton’s second law of motion (F = ma)2510

for a particle with unit mass m = 1 as2511

−∇ `(wt) =:
vt+1 − vt

η

=
1

η

(
wt+1 − 2wt + wt−1

)
⇒ wt+1 = wt − η∇ `(wt) +

(
wt − wt−1

)
.

(10.3)

Notice the third term on the right-hand side above, it is the gap between the2512

current weights wt and the previous weights wt−1, if we have2513 〈
wt − wt−1,∇ `(wt)

〉
< 0,

i.e., the change from the previous time-step is along the descent direction,2514

then the weights wt+1 get an extra boost. If instead, the change from the2515

previous direction is not along the gradient descent direction, then the third2516

term reduces the magnitude of the gradient. The third term is effectively the2517

inertia of gradient updates. This method is therefore called Polyak’s Heavy2518

Ball method.2519

We give ourselves some more control over how inertia enters the
update equation using a hyper-parameter ρ

wt+1 = wt − η∇ `(wt) + ρ
(
wt − wt−1

)
. (10.4)

If ρ = 0, we do not use any inertia and Polyak’s method boils down to
gradient descent. Typically, we choose ρ ∈ (0, 1). This inertia is called
momentum in the optimization literature and ρ is called the momentum
coefficient.

Polyak’s method is simple yet very powerful. In the previous chapter, we2520

showed a lower-bound of Nesterov which indicates that first-order optimization2521

algorithm (that only depends on the gradient of the objective) cannot be faster2522

than O(1/
√
ε). It turns out that Polyak’s method converges at this rate, i.e., if2523

we want2524

‖wt − w∗‖ ≤ ε
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we need to run Polyak’s Heavy Ball method forO(1/
√
ε) iterations for convex2525

functions. If the function is strongly convex, the number of iterations comes2526

down to2527

O(
√
κ log(1/ε)).

Both of these are improvements upon their convergence rates for gradient2528

descent. These improvements are also quite a lot, we need quadratically fewer2529

iterations than gradient descent in Polyak’s method and the only incremental2530

cost of doing so is that we have to maintain a copy of the weights wt+1 while2531

implementing the updates in (10.4).2532

An alternative way to write Polyak’s updates We can rewrite the updates2533

in (10.4) using a dummy variable ut as2534

ut = (1 + ρ)wt − ρ wt−1

wt+1 = ut − η∇ `(wt).
(10.5)

This is how these updates are implemented in PyTorch. This is convenient:2535

effectively, the code needs to maintain only the difference ut = (1 + ρ)wt −2536

ρwt−1 in a buffer ut and subtract the gradient ∇ `(wt) from this update to2537

result in the new updates. GD can be implemented with a simple change by2538

setting ut := wt. The dummy variable is initialized to u0 = w0.2539

A yet another way to write Polyak’s updates We can also rewrite the
updates in (10.5) as

ut+1 = ρ ut −∇ `(wt)
wt+1 = wt + η ut+1.

(10.6)

This set of updates brings out idea of momentum more clearly. The
variable ut in this case is exactly the velocity vt that we have seen above
except that it is updated slightly different than our expression (F = ma)
in the first equation. The first term

ut+1 = ρ ut −∇ `(wt)

reduces the velocity ut by a factor ρ before adding the gradient to it.

o Draw Polyak’s updates for a
two-dimensional function.

10.1.1 Polyak’s method can fail to converge2540

The caveat with relying on the inertia of the particle to make progress is that2541

near the global minimum, when the iterates overshoot the global minimum, the2542

inertia is often very different from the gradient. Polyak’s method can become2543

unstable and can result in oscillations under such conditions, e.g.,2544
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2545

However it is a very simple method to accelerate gradient descent and works2546

great in practice.2547

10.2 Nesterov’s method2548

Nesterov’s method is an advanced version of Polyak’s method and removes2549

the oscillations towards the end. Let us understand these oscillations better.2550

We saw that incorporating a notion of inertia in Polyak’s method gave us2551

accelerated convergence; this is intuitive, if the velocity is along the descent2552

direction the particle descends faster. The same inertia hurts towards the end2553

because the velocity can be very different than the gradient when the particle2554

overshoots the minimum.2555

A simple way to fix this is to incorporate damping (friction) into New-2556

ton’s law of motion; you can read about the simple harmonic oscillator at2557

https://en.wikipedia.org/wiki/Harmonic oscillator. We are going to write2558

ma = F − cv.

where m is the mass, c is the coefficient of damping, a and v are acceleration2559

and velocity respectively and F is the force as usual. The effective force2560

decreases with the velocity. Doing so does not slow down the weight updates2561

much when the gradient magnitude is large at the beginning of training. But2562

when the gradient magnitude is small (when the particle is in the neighborhood2563

of the global minimum), this friction prevents excessive overshooting.2564

With that background, let us see how Nesterov’s updates for gradient2565

descent look.2566

We will write a similar set up of updates as that of (10.6). Nesterov’s

https://en.wikipedia.org/wiki/Harmonic_oscillator
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updates correspond to

ut+1 = ρ ut −∇ `(wt + η ρ ut)

wt+1 = wt + η ut+1.
(10.7)

The only difference between (10.7) and (10.6) is the term in blue; ef-
fectively the gradient is computed as if the weights wt moved using the
velocity ut; and then this new velocity ut+1 is used to obtain the new
updates wt+1. Nesterov’s method solves the problem of instability in
Polyak’s method by essentially computing the gradient (the blue term) as
given by the current velocity. You can see how this slows down the up-
dates if the velocity is well-aligned with the gradient; we are reducing the
benefit of inertia/momentum. However, doing so prevents overshooting
as the iterates reach the neighborhood of the global minimum.

An alternative way to write Nesterov’s updates We can rewrite the up-2567

dates in (10.7) to look like those in (10.5), to get2568

ut = (1 + ρ)wt − ρ wt−1

wt+1 = ut − η∇ `(ut).
(10.8)

Again the blue term is the only difference between Polyak’s method and2569

Nesterov’s method. The term ut is conceptually a forecasted version of the2570

weights wt because notice that2571

ut = wt + ρ(wt − wt−1).

The new weightswt+1 are now obtained by thinking of ut as the actual weights.2572

We initialize wt+1 = wt to w0 for t = 0.2573

10.2.1 Yet another way to write Nesterov’s updates2574

We now tie back Nesterov’s updates to our introductory narrative on friction.2575

We will set the damping coefficient (ρ) in (10.8) to a special value2576

ρ =
t− 1

t+ 2
;

effectively as t→∞ the friction becomes larger and larger. This simplifies2577

our updates to2578

ut = wt +
t− 1

t+ 2

(
wt − wt−1

)
wt+1 = ut − η ∇ `(ut).

which upon collapsing together give2579

wt+1 − wt =
t− 1

t+ 2

(
wt − wt−1

)
− η∇ `(ut). (10.9)

We now choose a different way of interpreting these updates. We will imagine2580

that the sequence2581 {
w0, w1, . . . , wt, wt+1, . . .

}
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is the discretization of a smooth curve2582

{W (τ) : τ ∈ [0,∞)} .

How is this curve W (τ) related to the original sequence? We are going to2583

study the updates under the setting2584

τ :=
√
η t. (10.10)

Essentially the time of the discrete-time updates (10.9) increments in intervals2585

of 1, but the time of the curve W (τ) is real-number. Each increment in2586

discrete-time corresponds to
√
η increment of the time τ for the curve W (τ).2587

This gives2588

W (τ) = wt

W (τ +
√
η) = wt+1.

We now do a Taylor expansion for the continuous curve X(τ) to get2589

wt+1 − wt = W (τ +
√
η)−W (τ)

= Ẇ (τ)
√
η +

1

2
Ẅ (τ)η + O(

√
η).

(10.11)

Here2590

Ẇ (τ) =
d

dτ
W (τ), Ẅ (τ) =

d2

dτ2
W (τ)

are the first and second derivative of the curve with respect to time and O(
√
η)2591

denotes higher-order terms. Similarly2592

wt − wt−1 = W (τ)−W (τ −√η)

= Ẇ (τ)
√
η − 1

2
Ẅ (τ)η + O(

√
η).

Note that due to our special scaling of time we have2593

t− 1

t+ 2
= 1− 3

t+ 2
≈ 1− 3

t
= 1−

3
√
η

τ
.

We now do a Taylor expansion of the loss term∇ `(ut) to get2594

∇ `(ut) = ∇ `
(
wt +

t− 1

t+ 2

(
wt − wt−1

))
= ∇ `(wt) + higher order terms
= ∇ `(W (τ)) + O(

√
η).

(10.12)

Substitute (10.11) and (10.12) in (10.9) to get

Ẇ (τ) +
1

2
Ẅ (τ)

√
η + O(

√
η) =

(
1−

3
√
η

τ

)(
Ẇ (τ)− 1

2
Ẅ (τ)

√
η + O(

√
η)

)
−√η ∇ `(W (τ)) + O(

√
η).

This equation is true for all values of η, so we can compare the coefficients of2595 √
η on both sides to get2596

Ẅ +
3

τ
Ẇ +∇ `(W ) = 0. (10.13)
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This equation looks very similar to Newton’s law with friction ma+ cv = F .2597

Again, the term∇ `(W ) is acting as the force, the second derivative Ẅ is the2598

acceleration and the friction term 3
t Ẇ increases with velocity. We have shown2599

that for a particularly chosen value of the momentum coefficient, Nesterov’s2600

updates result in an ordinary differential equation that looks much like that2601

simple harmonic oscillator that most of you have seen before in high-school.2602

This approach gives an alternative, and very simple, way of understanding2603

Nesterov’s updates which is nice because the updates in (10.7) and (10.8) were2604

quite non-intuitive and created by Nesterov through a sheer tour de force.2605

Remark 10.1. Derive a similar ordinary differential equation for Polyak’s2606

updates using the same setting of friction (t − 1)/(t + 2) as that in (10.9).2607

You will notice that if viewed in continuous-time Polyak’s updates are exactly2608

the same as Nesterov’s updates. This suggests that that the continuous-time2609

construct is a more abstract point-of-view and eliminates the subtle differences2610

between the updates between the two algorithms.2611

Such continuous-time constructs are however very useful to understand2612

what these updates actually do, e.g., we know that Nesterov’s (and Polyak’s)2613

updates correspond to having friction in Newton’s law which is not apparent by2614

looking at the equations in (10.8). It is also very easy to obtain the convergence2615

rate of the continuous-time version; it is an ordinary differential equation and2616

we can use a lot of tools from dynamical systems, in particular Lyapunov2617

functions. It will amuse you to know that obtaining the convergence rate for2618

Nesterov’s updates using the continuous-time version (10.13) takes about half2619

a page.2620

10.2.2 How to pick the momentum parameter?2621

Nesterov’s updates converge at a rate that is similar to that of Polyak’s updates.2622

For convex functions, we need2623

O(1/
√
ε)

iterations to get within the ε-neighborhood of the global minimum if we set2624

ρ = (t− 1)/(t+ 2)

in (10.6). If we are minimizing a strongly-convex function we can pick the2625

momentum coefficient to depend on m,L: we can set2626

ρ =

√
κ− 1√
κ+ 1

(10.14)

and η < 2/(m+ L). Doing so entails that we need only2627

O(
√
κ log(1/ε))

weight updates to reach within an ε-neighborhood of the global minimum. The2628

expression in (10.14) gives some insight in how momentum accelerates things.2629

If κ ≈ 1, i.e., the Hessian of the objective is well-conditioned without a big2630

diversity in the curvature in different directions, we do not really need friction2631

ρ ≈ 0 to avoid overshooting close to the minimum; progress in all directions2632

is balanced. On the other hand, if κ� 1, the objective is badly conditioned2633

and the friction coefficient ρ ≈ 1 should be large to avoid overshooting near2634

the global minimum.2635
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How to pick ρ in practice? If we know what m,L are for a given problem2636

(you will see an example of this in HW 4), it is straightforward to pick the2637

momentum coefficient and get accelerated convergence of gradient descent.2638

If we do not know m,L, we pick some constant value of ρ. For instance,2639

ρ = 0.9 is popularly used in most deep learning libraries. Typically, the2640

momentum coefficient is not increased with the number of weight updates2641

using (t− 1)/(t+ 2). You will some heuristics for modifying the momentum2642

coefficient in this week’s recitation.2643
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Stochastic Gradient Descent2645

Reading
1. “Stochastic gradient descent tricks” by Bottou (2012). Great paper

with lots of little tricks of how to use SGD in practice.

2. Up to Section 4.2 of “Optimization methods for large-scale machine
learning” by Bottou et al. (2018). This is advanced material, you
do not need to be able to follow it completely.

3. http://fa.bianp.net/teaching/2018/eecs227at/stochastic gradient.html

4. Stochastic Weight Averaging (SWA) by Izmailov et al. (2018).

Stochastic Gradient Descent (SGD) has its roots in stochastic optimization.2646

A stochastic optimization problem looks like2647

w∗ = argmin
w

E
ξ
[`(w, ξ)] (11.1)

where ξ is a random variable. This is a very old and rich area, there was lots2648

of action in it already in the 1950s, e.g., (Kushner and Yin, 2003; Robbins and2649

Monro, 1951). It is also a highly relevant problem: for instance, when a plane2650

goes from Los Angeles to Philadelphia, the route that the plane takes depends2651

on the local weather conditions along its path and airlines will optimize this2652

route using a stochastic optimization problem of the above form. The variable2653

w will be the trajectory of the plane and ξ are the weather conditions which2654

we do not know exactly but may perhaps have estimated a distribution for2655

them. Such problems are very common in other fields like operations research,2656

e.g., optimizing the time at which an Amazon package arrives with various2657

disturbances such as delays in shipping, missing inventory in the warehouse2658

etc.2659

In machine learning, we are interested in solving a slightly different prob-2660

lem called the finite-sum problem. Given a finite datasetD =
{

(xi, yi)
}
i=1,...,n

2661

113

http://fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html
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we minimize2662

`(w) :=
1

n

n∑
i=1

`i(w) (11.2)

where we will use the shorthand2663

`i(w) := `(w;xi, yi)

to denote the loss on the datum (xi, yi) with weights w. Essentially, the2664

random variable ξ in (11.1) represents the samples in the training dataset;2665

with important differences being that neither do we know anything about the2666

distribution of the input data, nor do we have an infinite number of samples.2667

It is difficult to do gradient descent if the number of samples n is large2668

because the gradient is a summation of a large number of terms2669

∇ `(w) =
1

n

n∑
i=1

∇ `i(w).

If the mini-batch size is 1, i.e., at each iteration we sample one of the training2670

samples denoted by2671

ωt ∈ {1, . . . , n}

we update the weights using2672

wt+1 = wt − η∇ `ωt(wt). (11.3)

For a larger mini-batch of size b let us denote the samples in the mini-batch by2673 {
(xω

1
t , yω

1
t ), . . . , (xω

b
t , yω

b
t )
}

where each ωkt ∈ {1, . . . , n} is the index chosen uniformly randomly from2674

the training dataset. We will choose these indices with replacement (analyzing2675

SGD for sampling without replacement is quite hard). The gradient on this2676

sampled mini-batch is denoted by2677

∇ `b(w) :=
1

b

b∑
i=1

`ω
i
t(w) (11.4)

and we update the weights as usual using2678

wt+1 = wt − η∇ `b(wt).

If b = 1, we will denote the gradient by ∇ `ω to keep the notation clear.2679

What is an epoch in PyTorch? We will not think of epochs when we2680

develop the theory for SGD. An epoch is a construct introduced in deep2681

learning libraries for bookkeeping purposes. It also ensures that if Algorithm A2682

obtains so and so training/validation error after 100 epochs, it can be compared2683

directly with Algorithm B which obtains the same training/validation error2684

after, say, 120 epochs, e.g., one can say Algorithm A is faster than Algorithm2685

B at training a network. Instead of sampling a mini-batch of data uniformly2686

randomly with replacement, PyTorch shuffles the entire training set at the2687

beginning of each epoch and samples the mini-batch with replacement during2688
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each epoch. This is reasonable but there will be some discrepancies in the2689

performance of SGD as predicted by theory and obtained by PyTorch on deep2690

networks, especially if the mini-batch size is large.2691

Although we will not discuss this, SGD using mini-batches sampled2692

with replacement is faster than with mini-batches sampled without replace-2693

ment (Recht and Ré, 2012).2694

11.1 SGD for least-squares regression2695

o Draw the objective here for
different values of wi and
understand how SGD works for this
problem.

Let us understand SGD for one dimensional least-squares, our data and targets2696

are xi, yi ∈ R and the objective is2697

`(w) =
1

2n

n∑
i=1

(xiw − yi)2 (11.5)

for the weights w ∈ R. Notice that the objective is a sum of n different2698

quadratics, each quadratic is minimized by different weights2699

w∗(i) :=
yi

xi
;

in other words, each sample in the training dataset would like the weight to2700

be yi/xi to minimize its residual and the least-squares objective which sums2701

up their individual residuals forces them to made trade-offs. Focus on two2702

quantities2703

wmin = min
i
{w∗(i)} , wmax = max

i
{w∗(i)} .

Notice that the interval (−∞, wmax) is the region where the descent direction2704

on any sample in the dataset moves the weights wt to the right. The interval2705

(wmax,∞) is the region where the descent direction on any sample moves2706

the weights to the left. If weights are initialized in the latter region, w0 �2707

maxi w∗(i), successive iterations of SGD will quickly bring the weights to2708

wt ∈ (wmin, wmax) (11.6)

which we will call the “zone of confusion”. Similarly, if weights are initialized2709

wo � wmin, they will move right until iterates reach the zone of confusion.2710

After wt ∈ (wmin, wmax), there is no real convergence of the weights,
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if the learning rate η is fixed, since the samples ωt are sampled uniformly
randomly, depending upon which sample was chosen to compute the
gradient the weights move to the right or the left and therefore keep
shuttling back and forth in this region.

Notice that the objective in (11.5) is convex because it is the sum of
convex functions so there is a unique global minimum namely

w∗ =

∑n
i=1 x

iyi∑n
i=1(xi)2

.

If one were to execute gradient descent on this same problem wt+1 =
wt − η∇ `(wt), we will converge to this value. But since SGD samples
a different sample at each iteration, SGD never converges, it remains in
this large zone (wmin, wmax).

11.2 Convergence of SGD2711

If the learning rate is large, SGD makes quick progress outside the zone2712

of confusion but bounces around a lot inside the zone of confusion. If the2713

learning rate is too small, SGD is slow outside the zone of confusion but does2714

not bounce around too much inside the zone. You can explore how the learning2715

rate changes the dynamics of SGD at2716

http://fa.bianp.net/teaching/2018/eecs227at/stochastic gradient.html.2717

In this section, we will study under what conditions SGD converges to the2718

global minimum and how the learning rate of SGD should be reduced to make2719

it converge quickly. We will first analyze SGD with mini-batch size of 1.2720

Strongly convex functions The proofs for convex functions are tedious, so2721

we will only consider strongly convex functions in this section. As usual the2722

strong convexity parameter is m and smoothness parameter is L. One key2723

thing to notice that these that constants L,m refer to the full objective, i.e.,2724

‖∇ `(w)−∇ `(w′)‖ ≤ L‖w − w′‖

and2725

`(w)− m

2
‖w‖2 is convex.

Here `(w) is the full objective2726

`(w) =
1

n

n∑
i=1

`i(w).

What is the appropriate notion of convergence? The key difference be-2727

tween updates of SGD and those of GD is that SGD updates also depend on2728

the random variable ωt. The iterate ωt is a random variable and therefore2729

instead of simply bounding the gap `(wt)− `(w∗) we will have to obtain an2730

upper bound for2731

E
wt

[
`(wt)

]
− `(w∗).

http://fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html
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Similar to the case of SGD, let us construct a descent lemma for one2732

iteration of SGD update.2733

Lemma 11.1 (Descent Lemma for SGD).

E
ωt

[
`(wt+1)− `(wt) | wt

]
≤ −η

〈
∇ `(wt), E

ωt

[
∇ `ωt(wt)

]〉
+
Lη2

2
E
ωt

[
‖∇ `ωt(wt)‖2

]
.

(11.7)

Proof. First, compare this with the descent lemma for gradient descent (if we2734

substitute wt+1 − wt = −η∇ `(wt) from Chapter 9)2735

`(wt+1)− `(wt) ≤ −η
〈
∇ `(wt),∇ `(wt)

〉
+
Lη2

2
‖∇ `(wt)‖2

The only difference now is that in the case of SGD we have2736

wt+1 − wt = −η∇ `ωt(wt).

The most important different however is that the descent term, namely the2737

left-hand side in (11.7) is conditioned on the random variable wt. The proof of2738

this lemma is easy, we simply substitute the expression for the weight updates2739

of SGD and take an expectation over the index of datum sampled by SGD ωt2740

on both sides of the inequality.2741

The implication of the above lemma is that SGD updates need more refined2742

conditions under which we can claim monotonic progress towards the global2743

minimum. Effectively, we need to make sure that the right-hand side is2744

negative, always irrespective of what the value of the random variable wt is.2745

We would like to upper bound the right-hand side by a deterministic quantity2746

ideally.2747

11.2.1 Typical assumptions in the analysis of SGD2748

1. Stochastic gradients are unbiased. Assume that the stochastic gradi-2749

ent is unbiased2750

∇ `(w) = E
ω

[∇ `ω(w)] (11.8)

for all w in the domain. This is akin to assuming that the way we2751

sample images in the mini-batch is such that the average is always2752

pointing towards the true gradient with a similar magnitude. This is a2753

natural condition and will only change if the sampling distribution is not2754

uniform. This assumption allows to control the first term in the descent2755

lemma.2756

2. Second moment of gradient norm does not grow too quickly. We2757

will assume that there exist scalars σ0 and σ such that2758

E
ωt

[
‖∇ `ω(w)‖2

]
≤ σ0 + σ‖∇ `(w)‖2. (11.9)

This assumption allows to control the second term in the descent lemma2759

for SGD. It assumes that the stochastic estimate of the gradient in2760

SGD ∇ `ωt(w) is not too different than the full gradient `(wt). In2761
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the neighborhood of a critical point (locations where the full gradient2762

∇ `(w) = 0), the stochastic gradient is allowed to grow in a similar2763

fashion as the true gradient except with a scaling factor σ > 0 and a2764

constant σ0.2765

Let us see how the descent lemma changes with these additional assump-2766

tions.2767

Lemma 11.2 (Descent Lemma for SGD with additional assumptions). If2768

SGD gradients are unbiased and the second moment of the stochastic gradients2769

can be bounded, we have2770

E
ωt

[
`(wt+1)− `(wt) | wt

]
≤ −η

〈
∇ `(wt), E

ωt

[
∇ `ωt(wt)

]〉
+
Lη2

2
E
ωt

[
‖∇ `ωt(wt)‖2

]
≤ −η‖∇ `(wt)‖2 +

Lη2

2
E
ωt

[
‖∇ `ωt(wt)‖2

]
= −η

(
1− ηLσ

2

)
‖∇ `(wt)‖2 +

η2Lσ0

2
.

(11.10)

The proof is given in (11.10) itself. Compare this to the corresponding2771

result we have derived for gradient descent in Chapter 92772

`(wt+1)− `(wt) ≤ −η
2
‖∇ `(wt)‖2.

In addition to the negative term −η2‖∇ `(w
t)‖2, we have two additional posi-2773

tive terms2774

η2Lσ

2
‖∇ `(wt)‖2 +

η2Lσ0

2
;

this indicates that depending upon the magnitude of these terms we may not get2775

monotonic improvement of the objective for SGD. There is no such concern2776

for gradient descent, we get monotonic progress at all parts of the domain.2777

We need to pick the learning rate η in such a way that balances the
the right-hand side of (11.10) and makes it negative.

11.2.2 Convergence rate of SGD for strongly-convex func-2778

tions2779

Theorem 11.3 (Optimality gap for SGD). If we pick a step-size2780

η ≤ 1

Lσ

for m-strongly convex and L-smooth function `(w) then the expected optimal-2781

ity gap satisfies2782

E
ω1,ω2,...,ωt

[
`(wt+1)

]
− `(w∗)

≤ ηLσ0

2m
+ (1− ηm)

t

(
`(w0)− `(w∗)− ηLσ0

2m

)
.

(11.11)
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We will not cover the proof of this theorem, it is a direct application of the2783

descent lemma. See Bottou et al. (2018, Theorem 4.6) for an elaborate proof.2784

This theorem beautifully demonstrates the interplay between the step-size2785

and and the variance of SGD gradients. If there is no stochasticity, i.e., σ0 = 02786

and σ = 1, we get the same result as that of gradient descent, namely, the2787

function value `(wt+1) converges at a linear rate (1− ηm)t. Some points to2788

notice2789

1. The random variable wt+1 depends upon all the indices ω1, ω2, . . . , wt2790

that were sampled during updates of SGD and therefore the expectation2791

in (11.11) should be over all these random variables.2792

2. When the stochastic gradient is noisy, we have a non-zero σ0 we can no2793

longer get to the global minimum, there is a first term which does not2794

decay with time.2795

3. If we pick a small η, we get closer to the global minimum but go there2796

quite slowly. On the other hand, we can pick a large η and get to a2797

neighborhood of the global minimum quickly but we will then have a2798

large error leftover at the end.2799

How can we make SGD converge and drive down the first term
in (11.11) to zero? A simple trick is to reduce the learning rate η with
time. We do not want to decay the learning rate too quickly however
because the second term in (11.11) is small, i.e., optimality gap is reduced
quickly by its multiplicative nature, for a large value of the learning rate.
A good schedule to pick is

∞∑
t=1

ηt =∞, and
∞∑
t=1

η2
t <∞. (11.12)

Heuristic for training neural networks The two terms in the convergence2800

rate of SGD explain the widely used heuristic of “divide the learning rate by2801

some constant” if the training error seems plateaued. We are reducing the size2802

of the ball in which SGD iterates bounce around by doing so.2803

Theorem 11.4 (Convergence rate of SGD for decaying step-size). For a2804

schedule2805

ηt =
β

t+ t0
where β >

1

m
and t0 is such that η1 <

1

Lσ

then the expected optimality gap satisfies2806

E
ω1,ω2,...,ωt

[
`(wt+1)

]
− `(w∗) = O

(
1

t+ t0

)
. (11.13)

We will not do the proof. If you are interested, see Bottou et al. (2018,2807

Theorem 4.7). Compare this to the convergence rate of O(κ log(1/ε) for2808

gradient descent for strongly-convex functions. Notice that we converge only2809

at a sub-linear rate for SGD even for strongly convex loss functions. SGD is a2810

much slower algorithm than GD.2811
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Convergence rate for mini-batch SGD The mini-batch gradient ∇ `b(w)2812

is still an unbiased estimate of the full-gradient2813

E
b

[∇ `b(w)] = ∇ `(w)

but the second assumption in SGD improves a bit. Since the mini-batch2814

gradient is averaged over b samples we have2815

E
b

[
‖∇ `b(w)‖2

]
≤ σ0

b
+
σ

b
‖∇ `(w)‖2

if σ0, σ were the constants in (11.9). This changes the convergence rate2816

in Theorem 11.3 to2817

E
ω1,ω2,...,ωt

[
`(wt+1)

]
− `(w∗)

≤ ηLσ0

2mb
+ (1− ηm)

t

(
`(w0)− `(w∗)− ηLσ0

2mb

)
.

(11.14)

Note that the maximum learning rate in Theorem 11.3 is inversely proportional2818

to σ so we can also pick a larger learning rate η < b
Lσ . If we do so, the first2819

and last terms above are not affected by the batch-size but multiplicative term2820

(1− ηm)t is. Since2821

(1− ηm)t ≤ e−tmη

we see that increasing the learning rate by a factor of b will reduce the number2822

of iterations required to reach the zone of confusion by a factor of b. Of2823

course, this comes with the caveat that each iteration also requires O(b) more2824

computation to compute the gradient compared to single-sample SGD.2825

11.2.3 When should one use SGD in place of GD?2826

Theorem 11.4 indicates that SGD is a very slow algorithm, GD is much faster2827

than SGD to minimize strongly convex functions. This gap also exists if we do2828

not have strong convexity: we did not prove this but SGD requires O(1/ε2) to2829

reach an ε-neighborhood of the global optimum for convex functions whereas2830

GD requires a much smaller O(1/ε). One might wonder why we should use2831

SGD at all.2832

It is critical to remember that the objective in machine learning is a sum of2833

many terms2834

`(w) =
1

n

n∑
i=1

`i(w)

One iteration of SGD requires us to compute only ∇ `ωt(w) whereas one2835

update of GD requires us to compute the full gradient ∇ `(w). One weight2836

update of GD is O(n) more expensive than one weight update using SGD. Let2837

us do a back-of-the-envelope computation for convex functions. If we want2838

to reach an ε-neighborhood of the global minimum of a convex function, we2839

need O(1/ε) iterations of GD, which requires2840

O
(n
ε

)
operations. SGD needs O(1/ε2) iterations and therefore requires2841

O
(

1

ε2

)
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operations to reach the ε-neighborhood. This indicates that if our chosen ε-ball2842

is2843

ε /
1

n

GD requires fewer overall operations. But if ε-ball is larger than this, we2844

should use SGD because it is computationally cheaper.2845

SGD is particularly suited to machine learning compared to GD for the2846

following reason. Let εi = `i(wt)− `i(w∗) be the residual on the ith datum2847

in the training dataset. Observe that our ε-neighborhood is2848

ε = `(wt)− `(w∗) =
1

n

n∑
i=1

εi.

If εi is constant and does not depend on the number of training samples n2849

(i.e., say we are happy with the average error over the training dataset being2850

2% even and do not seek a smaller one even if we collect more data) then we2851

should use SGD to train our model because it is cheaper. This is not always2852

the case for other problems, e.g., if you are doing computational tomography2853

(capturing multiple images from a CT-scan machine and trying to reconstruct2854

the heart/lung region in the thoraric cavity), we may seek a more and more2855

accurate answer, i.e., small ε if we have more data.2856

11.3 Accelerating SGD using momentum2857

The convergence rate of SGD is quite bad, it is sub-linear. Roughly speaking,2858

the successive iterates of SGD are computed using different mini-batches; the2859

gradient on each such mini-batch is a noisy approximation of the full-gradient2860

on the training dataset (that of GD). This makes the SGD iterates noisy and one2861

may improve the convergence rate of SGD by simply averaging the weights.2862

This leads to a simple technique to accelerate SGD which we discuss next.2863

Polyak-Ruppert averaging Consider the updates2864

wt+1 = wt − ηt∇ `b(wt)

ut =
w0 + w1 + · · ·+ wt

t
.

(11.15)

In a series of papers, Polyak (1990); Polyak and Juditsky (1992); Ruppert2865

(1988) showed that the quantity2866

E
ω1,...,ωt−1

[
`(ut)

]
− `(w∗)

converges faster than the quantity2867

E
ω1,...,ωt−1

[
`(wt)

]
− `(w∗);

both of these still converge at rate O(1/ε2) but the former has a smaller2868

constant. This is quite surprising and useful: essentially we are still performing2869

mini-batch updates for the weights wt but instead of thinking of wt as the2870

answer, we think of ut as the output of SGD. This averaging of iterates does2871

not change the SGD algorithm. Computing this output requires us to remember2872
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all the past iterations w0, . . . , wt but we can easily approximate that step by2873

exponential averaging of the weights2874

ut = ρ ut−1 + (1− ρ) wt;

exponential averaging is likely to achieve the same purpose with a much2875

smaller memory requirement.2876

Further, this idea of using averaged iterates to speed up stochastic opti-2877

mization algorithms is quite general and also works for algorithms other than2878

SGD. The paper on Stochastic Weight Averaging by Izmailov et al. (2018)2879

performs weight averaging (with quite different motivations) and works very2880

well in practice.2881

11.3.1 Momentum methods do not accelerate SGD2882

We saw that momentum is very useful to accelerate the convergence of gradient2883

descent. The power of momentum lies in making faster progress using the2884

inertia of the particle: if the velocity and the current gradient are aligned with2885

each other (as is the case at the beginning of training when the iterates are far2886

from the global optimum) momentum speeds up things. Towards the end of2887

training when gradients are typically mis-aligned with the velocity, we need2888

friction (as in Nesterov’s updates) to reduce this effect.2889

Observe that in SGD, the gradient is always incorrect; it is after all only2890

a noisy stochastic approximation of the full gradient on the dataset. Since2891

the velocity wt − wt−1 was computed using the previous stochastic gradient,2892

there is no reason to believe that this velocity is accurate and will speed up2893

SGD. Here is a very important point (Kidambi et al., 2018; Liu and Belkin,2894

2018) that you should remember.2895

Momentum methods (Polyak’s or Nesterov’s) do not significantly
accelerate SGD.

To be more precise, we saw that for Nesterov’s updates in GD for strongly-2896

convex functions we have a result of the form2897

‖wt − w∗‖ ≤ e−t/
√
κ ‖w0 − w∗‖

while the constant without momentum is larger, it is e−t/κ. This term is2898

directly related to the second term in Theorem 11.4. The above authors2899

come up with counterexamples to show that Nesterov’s updates with SGD2900

only improve this multiplicative term to something like e−ct/κ for some c; in2901

other words using Nesterov’s updates with SGD only lead to a constant factor2902

improvements in the convergence rate.2903

Accelerating stochastic optimization algorithms is done via the use of2904

control variates (Le Roux et al., 2012). Broadly speaking these methods2905

work by using the previous gradients in SGD
{
∇ `ω1(w1), . . . ,∇ `ωt(wt)

}
to2906

compute some surrogate for the current full gradient∇ `(wt) and compute the2907

descent direction using both this surrogate full gradient and the standard SGD2908

gradient.2909
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Why do we use Nesterov’s method to train deep networks? It is worth-2910

while to think why we use Nesterov’s momentum to train deep networks: (i)2911

we know that momentum does not help speed up training, and (ii) momentum2912

is simply a faster way to minimize the same objective ` so it does not have2913

any regularization properties that help generalization either. We do not have a2914

definitive answer to this question yet but here is what we know.2915

Datasets that we use in deep learning represent quite narrow distributions2916

(natural images of animals, household objects etc.). For instance, the two2917

images below are essentially the same in spite of belonging to different classes.2918

.2919

Most weights of a deep network will have a similar gradient for these images as2920

input, the weights for which the gradient will differ are likely to be the weights2921

at the top few layers of the network. This entails that even if the stochastic2922

gradients are computed on different mini-batches, they are essentially quite2923

similar to each other, and thereby to the full-gradient. More precisely, the2924

covariance of mini-batch gradients2925

Cov (∇ `b(w), ∇ `b′(w)) = E
b,b′

[
(∇ `b(w)−∇ `(w)) (∇ `b′(w)−∇ `(w))

>
]

is a matrix with very few non-zero eigenvalues; only about 0.5% of the2926

eigenvalues are non-zero (Chaudhari and Soatto, 2017) even for large networks.2927

This means that the SGD gradient while training deep networks is essentially2928

the full gradient and we should expect momentum to accelerate convergence2929

in practice.2930

11.4 Understanding SGD as a Markov Chain2931

The preceding development tells us how SGD works and how many iterations2932

of SGD we need to get within an ε-neighborhood of the global minimum2933

for convex functions. Things are not this easy to understand for non-convex2934

functions; essentially if we have two minima u∗, v∗2935

∇ `(u∗) = ∇ `(v∗) = 0

depending upon where GD/SGD are initialized they can converge to different2936

places.

o A non-convex function with two
local minima. The one on the left is
the global minimum but gradient
descent may not always reach here.

In this section, we will look at an alternative way of understanding2937

how SGD works for non-convex functions. The development here will be2938

much more abstract that the preceding section because we want to capture the2939

overall properties of SGD.2940

11.4.1 Gradient flow2941

Let us first talk about gradient descent. Just like we constructed a model for2942

Nesterov’s updates using a differential equation, we will first construct a model2943

for gradient descent using a differential equation. The updates are given by2944

wt+1 − wt = −η∇ `(wt).
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If we again imagine a continuously differentiable curve W (τ) as a model for2945

these discrete-time updates and time2946

dτ := η

we can write a differential equation of the form2947

dW
dτ

= Ẇ (τ) = −∇ `(W (τ)); W (0) = w0. (11.16)

This is called gradient flow. If we wanted to execute gradient flow on a2948

computer, we can do so using Euler discretization2949

Ẇ (τ) ≈ W (τ + ∆τ)−W (τ)

∆τ
= −∇ `(W (τ)).

for any value of the time-step ∆τ . If the time-step ∆τ = η we get exactly2950

gradient descent. More precisely, gradient flow is the limit of gradient descent2951

as the learning rate η → 0. It is important to always remember that gradient2952

flow is a model for GD, not GD itself. Our goal in the remainder of the section2953

is to develop a similar model for SGD.2954

11.4.2 Markov chains2955

Consider the Whack-The-Mole game: a mole has burrowed a network of three2956

holes w1, w2, w3 into the ground. It keeps going in and out of the holes and2957

we are interested in finding which hole it will show up next so that we can give2958

it a nice whack.2959

2960

This is an example of a Markov chain. There is a transition matrix P which2961

determines the probability Pij of the mole resurfacing on a given hole wj2962

given that it resurfaced at hole wi the last time. The matrix P t is the t-step2963

transition matrix2964

P tij = P(wt = wj | w(0) = wi).

If there exist times t, t′ such the both the probabilities2965

P(wt = wj | w(0) = wi) P(w(t′) = wi | w(0) = wj)

are non-zero the two states wi and wj are said to “communicate”2966

wi ←→ wj

The set of states in the Markov chain that all communicate with each other2967

are an equivalence class. This means that the Markov chain can visit any state2968



125

from any other state in this equivalence class with non-zero probability, we2969

just might have to wait for a really long time if P tij ≈ 0 for two states wi, wj .2970

If all the states in the Markov chain belong to the same equivalence class, it2971

is called irreducible. A related concept is that of “positive recurrence”, i.e.,2972

if the Markov chain was at a state w at some time, it comes back to the same2973

state after some finite time. Since the process is Markov it forgets that is just2974

came back to the same state and therefore positive recurrence also means that2975

if we consider an infinitely long trajectory of a Markov chain, the chain visits2976

the same state infinitely many times along this trajectory. You can see the2977

animations at https://setosa.io/ev/markov-chains to build more intuition.2978

Invariant distribution of a Markov chain The probability of being in a2979

state wi at time t+ 1 can be written as2980

P(wt+1 = wi) =

N∑
j=1

P(wt+1 = wi | wt = wj) P(wt = wj).

This equation governs how the probabilities P(wt = wi) change with time t.2981

Let’s do the calculations for the Whack-The-Mole example. Say the mole was2982

at hole w1 at the beginning. So the probability distribution of its presence2983

π(t) =

P(wt = w1)
P(wt = w2)
P(wt = w3)


is such that2984

π1 = [1, 0, 0]>.

We can now write the above formula as2985

π(t+1) = P>π(t)

and compute the distribution π(t) for all times2986

π2 = P>π1 = [0.1, 0.4, 0.5]>;

π3 = P>π2 = [0.17, 0.34, 0.49]>;

π4 = P>π3 = [0.153, 0.362, 0.485]>;

...

π∞ = lim
t→∞

P t π1

= [0.158, 0.355, 0.487]>.

If such a distribution π∞ exists, the Markov chain is said to have “equilibri-2987

ated” or reached an invariant distribution. The numbers P(wt+1 = wi) stop2988

changing with time. We can compute this invariant distribution by writing2989

π∞ = P>π∞.

Does such a limiting invariant distribution π∞ always exist? It turns out that if2990

a Markov chain has a finite number of states then the invariant distribution π∞2991

always exists; this is easy to show yourself. If the Markov chain is irreducible2992

and aperiodic, then the invariant distribution is also unique. We can also2993

compute the π∞ given a transition matrix P : the invariant distribution is the2994

(right-)eigenvector of the matrix P> corresponding to the eigenvalue 1.2995

https://setosa.io/ev/markov-chains
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Periodicity of a Markov chain A state of a Markov chain is periodic with2996

period k if the probability of coming back to the same state is zero for times2997

that are not integral multiples of k and the probability of coming back to the2998

same state is non-zero for all times that are integral multiplies of k. To take a2999

simple example, every number of a clock is a periodic state; the Markov chain3000

comes back to that state at regular intervals. If we cannot find such a time k3001

for a given state, then the state is aperiodic. It is easy to see that if there exists3002

an aperiodic state in one communicating class, then all the other states in that3003

class also have to be aperiodic. It is useful to remember that if a particular3004

state has a non-zero probability of self-transition, then the state is aperiodic.3005

Example 11.5. Consider a Markov chain on two states where the transition3006

matrix is given by3007

P =

[
0.5 0.5
0.4 0.6

]
.

This is an irreducible Markov chain because you can hop between any two3008

states with non-zero probability within one step. It is also recurrent: this is3009

intuitive because say the Markov chain was in state 1, it is easy for it to come3010

back to this state after a few hops. After the chain comes back to state 1, the3011

Markov property means the chain forgets all the past steps and will again3012

come back to state 1. The expected number of times the Markov chain comes3013

back to state 1 is infinite. Each of the two states has a non-zero probability of3014

self-transition, so both of them are aperiodic.3015

We are therefore guaranteed that a unique invariant distribution exists for3016

this Markov chain. In this case it is3017

π1 = 0.5π1 + 0.4π2

π2 = 0.5π1 + 0.6π2.

Note that the constraint for π being a probability distribution, i.e., π1 +π2 = 13018

is automatically satisfied by the two equations. We can solve for π1, π2 to get3019

π1 = 4/9 π2 = 5/9.

Time spent at a particular state by the Markov chain We can observe a3020

long trajectory of a Markov chain and compute the number of times the chain3021

is in a particular state wi. This is directly proportional to π∞(wi). In other3022

words, if the invariant distribution gives small probability to a particular state,3023

if we stop the Markov chain at an arbitrary time during its trajectory, we are3024

very unlikely to find the Markov chain at this state.3025

11.4.3 A Markov chain model of SGD3026

The updates of SGD with mini-batch size b are given by3027

wt+1 − wt = −η∇ `b(wt).

Notice that conditional on the iterate wt, the next iterate wt+1 is independent3028

of wt−1, all these three quantities are random variables because they depend3029

on the input data ω0, . . . , ωt sampled by SGD in the previous time-steps. You3030

should never make the mistake of saying that gradient descent is a Markov3031

chain; there is no randomness in the iterates of GD.3032
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Transition probability of SGD What is the transition probability3033

P(wt+1 | wt)

for SGD? If we take the conditional expectation on both sides3034

E
b

[
wt+1 − wt | wt

]
= −η E

b

[
∇ `(wt)

]
= −η∇ `(wt);

in other words, on-average the change in weights at wt is proportional to the3035

full gradient∇ `(wt). Notice that the change in weights exactly the same for3036

GD; this should not be surprising after all, if the gradient of SGD is unbiased3037

then SGD is GD “on-average”.3038

Variance of SGD weight updates The variance is computed as follows3039

Var
b

(
wt+1 − wt | wt

)
= η2 Var

b

(
∇ `b(wt) | wt

)
= η2 E

b

[(
∇ `b(wt)−∇ `(wt)

) (
∇ `b(wt)−∇ `(wt)

)>]
Notice that the variance of the weight updates in SGD is proportional to the3040

square of the learning rate. We have seen this before, larger the learning rate3041

more noisy the weight update as compared to the update using the full-gradient3042

η∇ `(wt). The variance is a large matrix ∈ Rp×p; this matrix depends on the3043

current weight wt.3044

If we are sampling the data inside a mini-batch with replacement the3045

stochastic gradients are independent for different samples ω1 and ω2 in the3046

mini-batch3047

∇ `ω
1

(w) ⊥⊥ ∇ `ω
2

(w).

In other words3048

E
ω1,ω2

[(
∇ `ω1(wt)−∇ `(wt)

) (
∇ `ω2(wt)−∇ `(wt)

)>]
= 0.

You can use this to show that3049

Var
b

(
wt+1 − wt | wt

)
= η2 Var

ω1,...,ωb

(
1

b

b∑
i=1

∇ `ω
i

(wt)

)

=
η2

b2

b∑
i=1

Var
ωi

(
∇ `ω

i

(wt)
)

=
η2

b
Var
ω

(
∇ `ω(wt)

)
.

(11.17)

The last step follows because we are sampling inputs ωi uniformly randomly3050

and therefore gradients∇ `ωi(wt) are not just independent but also identically3051

distributed. In other words, a mini-batch size of b reduces the variance by a3052

factor of b.3053

SGD is like GD with Gaussian noise We now model the transition proba-3054

bility P(wt+1 | wt) as a Gaussian distribution. Let us denote by W t,W t+1
3055

etc. the updates of this model. We now have3056

W t+1 = W t + ξt
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where ξt is Gaussian noise3057

ξt ∼ N
(
−η∇ `(wt), η

2

b
Var
ω

(
∇ `ω(wt)

))
.

In other words, on-average SGD updates weights like gradient descent, by a3058

term −η∇ `(wt) but SGD’s updates also have a variance.3059

Such equations are called stochastic difference equations and they are quite3060

difficult to understand compared to non-stochastic difference equations (what3061

we see in gradient descent). So we will make a drastic simplification in our3062

model. We will say that the variance of the mini-batch gradients is identity.3063

Our model for SGD is3064

W t+1 = W t − η∇ `(W t) +
η√
b
ξt (11.18)

where we have zero-mean unit-variance Gaussian noise ξt ∼ N(0, Ip×p).3065

Remark 11.6. The above model for SGD is a Markov chain except that the3066

states in the Markov chain is infinite; the number of states in the Whack-The-3067

Mole example were finite. It is easy to see that the above model is not exactly3068

SGD: (i) we assumed the the transition probability was a Gaussian which need3069

not be the case while training a deep network, (ii) we further assumed that3070

the Gaussian noise does not depend on wt and has identity covariance. You3071

can implement the above model on a computer, first you compute the full3072

gradient ∇ `(wt) and then sample Gaussian noise ξt to update the weights to3073

W t+1. This is obviously not equivalent to SGD which updates weights using3074

the stochastic gradient∇ `b(wt).3075

11.4.4 The Gibbs distribution3076

In a Markov chain we were interested in the invariant distribution because that3077

gives us a way to understand where the chain spends most of its time. We can3078

compute the invariant distribution for our model of SGD. It is a very powerful3079

result (which we will not do) and leads to the so-called Gibbs distribution. The3080

probability density of the invariant distribution is given by3081

ρ∞(w) =
1

Z(β)
e−β`(w). (11.19)

The quantity3082

β =
2b

η
(11.20)

and Z(β) is a normalizing constant for probability density3083

Z(β) =

∫
Rp

e−β`(w) dw.

Let us list a few properties of the Gibbs distribution that are apparent3084

simply by looking at the above expression.3085

1. The invariant distribution is reached asymptotically and is the limiting3086

distribution of the weights. For instance the sum of the weights along an3087

infinitely long trajectory converges to the mean of the Gibbs distribution3088

lim
T→∞

1

T

T∑
t=1

W t =

∫
w

w ρ∞(w) dw. (11.21)
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Similarly, the second moment of the weights along a long trajectory of3089

SGD converges to the second moment of the Gibbs distribution; and3090

same for the variance.3091

lim
T→∞

1

T

T∑
t′=1

T∑
t=1

(
W t′

) (
W t
)>

=

∫
w,w′

w w′
>
ρ∞(w) ρ∞(w′) dwdw′.

(11.22)

2. The probability that the iterates of SGD are found at a location w is3092

proportional to e−β`(w). If the training loss `(w) is high, this probability3093

is low and if the training loss is low, the probability is high. The Gibbs3094

distribution therefore shows that if we let SGD run until it equilibriates3095

we have a high chance of finding the iterates that have a small training3096

loss. This observation is powerful because it does not require us to3097

assume that `(w) is convex. However this statement does require the3098

assumption that the steps-size η of SGD does not go to zero; after all3099

SGD iterates stop if η = 0.3100

3. The quantity 1/β is quite common in physics where it is called the3101

“temperature”. This temperature β−1 = η
2b fundamentally governs how3102

the Gibbs distribution looks. Higher the temperature, more the noise in3103

the iterates and vice-versa. If the learning rate η is large or the batch-size3104

b is small, it is easy for our model of SGD to jump over hills. This is3105

the reason why the Gibbs distribution will be spread around the entire3106

domain at high temperature. On the other hand, if temperature is very3107

small, the Gibbs distribution puts a large probability mass in places3108

where the training loss is small and the probability of finding iterates3109

at other places in the domain diminishes. In particular, if β →∞, the3110

Gibbs distribution only puts non-zero probability on the global minima3111

of the loss function `(w).3112

4. Written in another way, if we want the Gibbs distribution to remain the3113

same we should ensure that3114

β−1 =
η

2b
is a constant.

If you increased the batch-size by two times, you should also double the3115

learning rate if you desire that the solutions of SGD are qualitatively3116

similar.3117

5. We have achieved something remarkable by looking at the Gibbs distri-3118

bution. We have discovered an algorithm to find the global minimum of3119

a non-convex loss function.3120

• Start from some initial condition w0;3121

• Take lots of steps of SGD with learning rate η until SGD reaches3122

its invariant distribution, i.e., until it equilibriates;3123

• Reduce the step-size η and repeat the previous step3124

This is only a formal algorithm but in theory it will converge to the3125

global minimum of a non-convex function `(w) if the number of steps3126

is very large. The catch of course is that at each step we have to wait3127

until SGD equilibriates. For many problems, it may take an inordinately3128

long amount of time for SGD to equilibriate.3129
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ä How much time does it take SGD
to equilibriate for a convex loss
function?

It is very important to remember that when we train a deep network
we are executing one run of SGD. The invariant distribution is an abstract
concept that does not really exist on your computer. We have constructed
this model to help us understand how updates of SGD behave.

11.4.5 Convergence of a Markov chain to its invariant dis-3130

tribution3131

For gradient descent and SGD, we had quantities like ‖wt − w∗‖ or `(wt)−3132

`(w∗) that let us measure the progress towards the global minimum. For a3133

non-convex problem, there may not exist a unique global minimum, or there3134

may be multiple local minima in the domain where the gradient vanishes. We3135

discussed in the preceding section how the invariant distribution of SGD is3136

achieved even if the loss `(w) is non-convex. In this section, we will see a3137

simple tool to measure progress towards this distribution.3138

Let us define a quantity called the Kullback-Leibler (KL) divergence3139

between two probability distributions. For two probability distributions p(w)3140

and q(w) supported on a discrete set w ∈W , the KL-divergence is given by3141

KL(p || q) =
∑
w∈W

p(w) log
p(w)

q(w)
. (11.23)

This formula is well-defined only if for all w where q(w) = 0, we also have3142

p(w) = 0. The KL-divergence is a measure of the distance between two3143

distances, it is zero if and only if p(w) = q(w) for all w ∈ W . It is always3144

positive (you can show this easily using Jensen’s inequality). However, the3145

KL-divergence is not a metric because it is not symmetric3146

KL(p || q) 6= KL(q || p) =
∑
w∈W

q(w) log
q(w)

p(w)
.

For probability densities, the KL-divergence3147

KL(p || q) =

∫
w

p(w) log
p(w)

q(w)
dw (11.24)

is defined analogously and has the same properties.3148

We will now show a very powerful result: the KL-divergence of the state3149

distribution of a Markov chain decreases monotonically as the Markov chain3150

converges to its invariant distribution. Although, this result is true for SGD3151

as well, we will only prove it for a Markov chain with finite states. Let the3152

initial distribution of the Markov chain be π0, its transition matrix be P and3153

its invariant distribution be π∞. We will assume that the Markov chain is such3154

that the invariant distribution exists (it is irreducible and recurrent).3155

Let us also assume that a reverse transition matrix3156

P rev
ij = P(wt = wi|wt+1 = wj).
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exists; such Markov chains are called reversible. For any states w,w′ this3157

transition matrix satisfies the definition of conditional probability3158

P(wt+1 = w′|wt = w)P(wt = w) = P(wt = w|wt+1 = w′)P(wt+1 = w′).

In our notation, this becomes3159

P rev
ww′ =

Pw′wπ(w′)

π(w)
=

Pw′wπ(w′)∑
w′ Pw′wπ(w′)

.

Lemma 11.7. For a reversible Markov chain with an invariant distribution3160

π∞, KL(π∞ || πt) decreases monotonically:3161

KL(π∞ || πt+1) ≤ KL(π∞ || πt). (11.25)

Proof. The proof is a simple calculation.3162

KL(π∞ || πt+1) =
∑
w

π∞(w) log
π∞(w)

πt+1(w)

=
∑
w

π∞(w) log
π∞(w)∑

w′ Pw′w π
t(w′)

= −
∑
w

π∞(w) log

∑
w′ Pw′w π

t(w′)

π∞(x)

= −
∑
w

π∞(w) log

(∑
w′

P rev
ww′

πt(w′)

π∞(w′)

)
(substitute definition of P rev for distribution π∞)

≤ −
∑
w

π∞(w)
∑
w′

P rev
ww′ log

πt(w′)

π∞(w′)
(Jensen’s inequality)

=
∑
w′

∑
x

P rev
ww′ π

∞(w) log
π∞(w′)

πt(w′)
(flip the negative sign, exchange sum)

=
∑
w′

π∞(w′) log
π∞(w′)

πt(w′)

= KL(π∞ || πt).

The distance to the invariant distribution π∞ decreases at each step of the3163

Markov chain. A similar statement is true for the reverse KL divergence:3164

KL(πt+1 || π∞) ≤ KL(πt || π∞).

3165

The above result is also true for SGD which, as we discussed, can
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be modeled as a Markov chain with infinite states. It gives us some
very important intuition. Just like gradient descent makes monotonic
progress towards the global minimum w∗, a Markov chain (or SGD)
makes monotonic progress towards its invariant distribution. The big
difference between them is that while we required that the loss function
`(w) is convex for gradient descent to guarantee this monotonic progress,
the loss need not be convex for the case of the Markov chain model of
SGD.

This result does not mean that SGD makes monotonic progress to-
wards the global minimum w∗ = argminw `(w). We choose to look at
SGD not as one particle undergoing (stochastic) gradient descent updates
but rather as a Markov chain. The probability distribution of states of
this Markov chain is then a legitimate object (the distribution πt is the
distribution of weights W t obtained after many independent run of SGD
from different initializations). Although πt is not meaningful across
one run of SGD, we can use it to get an abstract understanding of how
SGD also makes monotonic progress as it converges if we imagine many
independent runs of SGD occurring simultaneously.



Chapter 123166

Shape of the energy3167

landscape of neural3168

networks3169

Reading
1. Goodfellow Chapter 13

2. “Neural Networks and Principal Component Analysis: Learning
from Examples Without Local Minima” by Baldi and Hornik (1989)

3. “Entropy-SGD: Biasing gradient descent into wide valleys”
by Chaudhari et al. (2016)

In this chapter, we will try to understand the shape of the objective for3170

training neural networks. We would like to characterize the difficulty of3171

training neural networks. We know that the objective is not convex and training3172

a network is difficult because of it. But how non-convex is the objective? The3173

questions we want to answer here are of the following form.3174

1. How many global minima exist?3175

2. How many local minima and saddle points exist?3176

3. What is the loss at the local minima or saddle points? If we train with3177

gradient descent or stochastic gradient descent, what loss can we expect3178

to obtain even if we don’t reach the global minimum?3179

4. What is the local geometry of the loss function?3180

5. What is the global topology of the loss function?3181

This will help understand how SGD seems to train deep networks so3182

efficiently and why we often get very good generalization error after training.3183

As a pre-cursor to how the picture of the energy landscape of a neural network3184

looks like, here’s one picture from Li et al. (2018):3185

133
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Figure 12.1: A picture of the training loss. The picture on the left was created by
sampling two directions randomly out of the millions of weights for a residual network
without skip-connections and computing the training loss by discretization of this
two-dimensional space. The picture on the right is a similar picture for the resnet
with skip-connections intact. In this picture, we see that while the training loss is very
complex on the left-hand side with lots of local minima and saddle points, the loss is
much more benign on the right-hand side.

12.1 Introduction3186

Let us introduce a few quantities that will help characterize the energy land-3187

scape. We will consider the case when the function `(w) is twice-differentiable.3188

Global minima are all points in the set3189

{w : `(w) ≤ `(w′) for all w′} .

Note that there may exist many different locations all with the same loss `(w),3190

they would all be global minima in this case.

ä Draw the Gibbs distribution of
SGD if `(w) has multiple global
minima.

Local minima are all points in3191

the set3192 {
w : ∇ `(w) = 0,∇2 `(w) � 0

}
.

i.e., all points w where the Hessian ∇2 `(w) is positive semi-definite. Note3193

that the two conditions (i) first-order stationarity∇ `(w) = 0 and (ii) positive3194

semi-definiteness of the Hessian ∇2 `(w) � 0 also have to be satisfied for all3195

global minima.

ä Draw the Gibbs distribution of
SGD if `(w) has multiple global
minima and multiple local minima.

Critical points are all locations which satisfy only first order3196

stationarity3197

{w : ∇ `(w) = 0} .

Saddle points are critical points but which are neither local minima not3198

local maxima3199 {
w : ∇ `(w) = 0,∇2 `(w) is neither positive nor negative semi-definite

}
.

Non-convex functions, in general, can have all these different kinds of3200

locations in the energy landscape and this makes minimizing the objective3201

difficult. Our goal in this chapter is to learn theoretical and empirical results3202

that help paint a mental picture of what the energy landscape looks like.3203
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12.2 Deep Linear Networks3204

Let us consider the simplest case of linear neural networks first. We will have3205

a two-layer neural network which takes in inputs xi and aims to predict targets3206

yi. For simplicity, we will consider the case when both3207

xi, yi ∈ Rd.

and use the regression loss3208

`(A,B) =
1

2n

n∑
i=1

‖yi −AB xi‖22 (12.1)

We use the standard trick of appending a 1 to the input xi so that we don’t3209

have to carry around biases in our equations.3210

The matrices A,B are the weights of the neural network with3211

A ∈ Rd×p, B ∈ Rp×d.

We will consider the case when p ≤ d. We are interested in finding A and B3212

and will develop some results from Baldi & Hornik’s paper.3213

Least squares solution A simple calculation reveals that for a single-layer3214

network the solution of the problem3215

L∗ = argmin
L

1

2n

n∑
i=1

‖yi − Lxi‖22

is3216

L∗ = Σyx Σ−1
xx (12.2)

where3217

Σyx =
∑
i

yixi
>

Σxx =
∑
i

xixi
>
.

The matrices Σyx and Σxx are the data covaraiance matrices.3218

Projection of a vector onto a matrix It will be useful to define a projection3219

matrix. Say we have a vector v that we want to project on the span of the3220

columns of a full-rank matrix3221

M =
[
m1 m2 . . . mn

]
.

If this projection is v̂ ∈ span {m1, . . . ,mn}, we know that it has to satisfy3222

(v − v̂) ⊥ mk for all k ≤ n ⇒ m>k (v − v̂) = 0.

The vector v̂ is also obtained by a combination of the columns of M , so there3223

exists a vector c which allows us to write3224

v̂ = Mc.
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These together imply3225

c = (M>M)−1M>v̂

and finally3226

v̂ = M(M>M)−1M>︸ ︷︷ ︸
projection matrix

v

=: PM v.

where the matrix PM is called the projection matrix corresponding to the3227

matrix M . o Note that P 2
M = PM , i.e., if we

project the vector twice onto the
column space of M , the second
projection does nothing. Also, any
projection matrix P is symmetric.
To see this, consider two vectors
v, w and the dot products

〈Pv,w〉 , and 〈v, Pw〉 .

In both cases, one of the vectors lies
completely in the column space of
M and therefore the dot product
ignores any component that is
orthogonal to the column space of
M . This means

〈Pv,w〉 = 〈v, Pw〉 = 〈Pv, Pw〉 .

We can now rewrite the first equality
to obtain

(Pv)
>
w = v> (Pw)

⇒ v>P>w = v>Pw

and since this is true for any two
vectors v, w, we have that P = P>.

3228

Back to deep linear networks We know from the homework problem that3229

there is no unique solution to the problem3230

A∗, B∗ = argmin
A,B

1

2n

n∑
i=1

‖yi −AB xi‖22.

If A∗, B∗ are solutions, so are A∗P, P−1B∗ for any invertible matrix P . We3231

also showed in the homework that the objective is not convex. But if we fix3232

either A or B and only optimize over the other, the loss is convex. Notice that3233

the rank of AB is at most p.3234

Fact 12.1 (Critical points ofB ifA is fixed). For anyA, the function `(A,B)3235

is convex in B and has a minimum at3236 (
A>A

)
B̂(A)Σxx = A>Σyx.

If Σxx is invertible and A is full-rank, then we can write3237

B̂(A) = (A>A)−1A>ΣyxΣ−1
xx . (12.3)

Note that these are all locations when the gradient3238

∂`

∂B
= 0.

Fact 12.2 (Critical points of A if B is fixed). We have an analogous version3239

of the previous fact for A: if B is fixed, the loss is convex in A, for full-rank3240

Σxx and B, then for ∂`
∂A = 0, we should have3241

ABΣxxB
> = Σyx B

>. (12.4)

or3242

Â(B) = Σyx B
> (BΣxxB

>)−1
. (12.5)

Fact 12.3 (Critical points of (A,B)). We now solve the equations (12.3)3243

and (12.5) to get a critical point, i.e., the gradient of the objective in both A3244

and B is zero. First3245

W = AB = PA ΣyxΣ−1
xx . (12.6)

from (12.3). Next, multiply on both sides of (12.4) by A> and substitute the3246

above value of W to get that the matrix A should satisfy3247

PAΣ = ΣPA = PAΣPA.

where3248

Σ = ΣyxΣ−1
xxΣxy.
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Fact 12.4 (If W is a critical point, then it can be written as a projection3249

of the least squares solution ΣyxΣ−1
xx on the subspace spanned by some p3250

eigenvectors of Σ). This is an important fact. Let us say we have a full-rank Σ3251

with distinct eigenvalues λ1 > . . . > λd. Let uik be the eigenvector associated3252

with the ithk eigenvalue of Σ. So given any set of p eigenvalues3253

I = {i1, . . . , ip} with 1 ≤ ik ≤ d for all k.

we can define a matrix of rank p3254

UI =
[
ui1 ui2 . . . uip

]
.

Then one can show that the matrices A and B are critical points if and only if3255

there is a set I and an invertible matrix C ∈ Rp×p such that3256

A = UI C

B = C−1U>I ΣyxΣ−1
xx .

(12.7)

You can find the proof in the Appendix of Baldi & Hornik’s paper. Because3257

UI is a matrix of orthonormal vectors we also have3258

PUI = UI U
>
I

and therefore3259

W = PUI ΣyxΣ−1
xx

which is the same form for W as (12.6) in Fact 3 and L∗ in (12.2). In other3260

words, the solution W = AB in a two-layer linear network is given by our3261

original least squares regression matrix followed by an orthogonal projection3262

onto the subspace spanned by p eigenvectors of Σ.3263

Fact 12.5 (If W is the global minimum for a two-layer network, then it is3264

a projection of the solution for a single-layer network onto the subspace3265

spanned by the top p eigenvectors of Σ). You can further show that the3266

objective3267

`(A,B) = trace(Σyy)−
∑
ik∈I

λik . (12.8)

at a critical point (A,B). The first term is a constant with respect to the3268

parameters of the network A,B. The second term is a sum of the eigenvalues3269

of the matrix Σ at indices that we picked in our set UI . What is the index set3270

that minimizes this loss? It is simply the largest p eigenvalues of Σ. This is also3271

a unique value for the loss because we have assumed that all the eigenvalues3272

are distinct. This also solidifies the connection of this model with Principal3273

Component Analysis (PCA), the matrix W is projecting on the sub-space3274

spanned by the top p eigenvectors in the auto-associative case.

ä Based on the previous two facts,
what can you say about the solution
W if p ≥ d and Σ is invertible?
Since the two-layer network simply
projects on the p eigenvalues of Σ, if
p ≥ d and Σ is invertible, the
solution already lies in the
column-space of Σ and therefore
W = L∗.

3275

Fact 12.6 (There are exponentially many saddle points for a two-layer3276

network). There are a total of
(
d
p

)
possible index sets I. One of them as we3277

saw above corresponds to a global minimum. It can be shown that all the3278

others are saddle points. Note that there are exponentially many saddle points.3279

This is an important fact to remember: there are exponentially many saddle3280

points in a hierarchical architecture. Smaller the number of neurons in the3281

hidden layer p (also the upper bound for the rank of the weight matrices),3282
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fewer are the number of saddle points but this also creates a dimensionality3283

bottleneck in the feature space. If p is too small as compared to d we lose3284

large amounts of information necessary to classify the image and the network3285

may not work well.3286

Fact 12.7 (No local minima in a deep linear network, all minima are3287

global minima). The proof of the previous fact (see the Appendix of Baldi3288

and Hornik (1989)) shows that any index set I 6= {1, . . . , p} cannot be a local3289

minimum. There are no local minima for a deep linear network, only global3290

minima and saddle points. This is often said as “linear networks have no bad3291

local minima”.3292

Fact 12.8 (The global minimum is not unique). This is perhaps the most3293

important point of this chapter. The loss at the global minimum is unique,3294

not the global minimum itself. Any full-rank square matrix C ∈ Rp×p of our3295

choice gives a pair of solutions (A,B). How many such solutions are there?3296

There are lots and lots of such solutions, in fact, given any solution with a3297

particular C if we can perturb the C without losing rank (quite easy to do3298

by, say, changing the eigenvalues slightly) we get another solution of a linear3299

network.3300

Fact 12.9 (All the previous results are true for multi-layer linear net-3301

works). The same results are true for deep linear networks (Kawaguchi,3302

2016). These results also hold if dim(yi) = 1, i.e., for the regression case.3303

We used a simple two-layer linear network to obtain an essentially
complete understanding of how the loss function looks like. A schematic
looks as follows.

There are lots of locations where the global minimum of the function is
achieved. There are lots of saddle points in the energy landscape. The
Gibbs distribution for this energy landscape has a lot of modes, one each
at the global minima.

How does weight-decay3304

Ω(A,B) = λ
(
‖A‖2F + ‖B‖2F

)
change the energy landscape of deep linear networks? It changes the number3305

of global minima, only the ones that have the smallest `2 norm remain in the3306

energy landscape. It also reduces the number of saddle points because the3307

Hessian at saddle points has an extra additive term that involves λ.3308
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12.3 Extending the picture to deep networks3309

Let us think carefully about the non-uniqueness of the solution for a two-layer3310

network. We know that all critical points are of the form3311

A = UIC,

B = C−1U>I ΣyxΣ−1
xx .

The gradient at these critical points is zero. Given a particular C, we can3312

perturb it slightly and obtain a new critical point (a new saddle point, or a new3313

global minimum) and this keeps the objective unchanged. Effectively, we have3314

a connected set of global minima and saddle points for a deep linear networks.3315

If one were to try to visualize this energy landscape and extend the picture3316

heuristically to deep networks with nonlinearities, we can think of the global3317

minimum as looking like the basin of the Colorado river.3318

3319

The important point to remember from this picture is that all the points at3320

the basin of the river are solutions that obtain a good training loss. Although3321

gradient-based algorithms (GD/SGD etc.) do not allow us to travel along the3322

river (the gradient is zero along it), if the river basin snakes around in the3323

entire domain, no matter where the network is initialized, we always have a3324

global minimum close to the initialization. Essentially, the objective of deep3325

networks is not convex, but current results indicate that it is quite benign. And3326

this is perhaps the reason why it is so easy to train them.3327



Chapter 133328

Generalization performance3329

of machine learning models3330

This chapter gives a preview of generalization performance of deep networks.3331

We will take a more abstract view of learning algorithms here and focus only on3332

binary classification. We will first introduce a “learning model”, i.e., a formal3333

description of what learning means. The topics we will discuss stem from the3334

work of two people: Leslie Valiant who developed the most popular learning3335

model called Probably Approximately Correct Learning (PAC-learning) and3336

Vladimir Vapnik who is a Russian statistician who developed a theory (called3337

the VC-theory) that provided a definitive answer on the class of hypotheses3338

that were learnable under the PAC model.3339

13.1 The PAC-Learning model3340

Our goal in machine learning is to use the training data in order to construct a3341

model that generalizes well, i.e., has good performance outside of the training3342

data. Formally, we search over a hypothesis space F , e.g., a specific neural3343

net architecture, using the available data to find a good hypothesis f ∈ F . As3344

we motivated in Chapter 2, without further assumptions, we cannot guarantee3345

that this hypothesis works well on test data. We therefore assume two things3346

in this chapter:3347

1. Nature provides independent and identically distributed samples x ∈ X3348

from some (unknown to the learner) distribution P .3349

2. Nature labels these samples with c(x) which is again unknown to the3350

learner.3351

Both training and test data are samples from Nature’s distribution P . We3352

will also assume that even if the true labeler c(x) is unknown to us, we know3353

that it belongs to a chosen hypothesis class c(x) ∈ C and is deterministic, i.e.,3354

Bayes error is zero. Changing this assumption does not change the crux of this3355

theory.3356

Consider a learning algorithm, denoted by L. Given a dataset D =3357 {
(xi, c(xi)

}n
i=1

and a hypothesis class C, the population risk (for classifi-3358

140

https://amturing.acm.org/interviews/valiant_2612174.cfm
https://www.youtube.com/watch?v=Ow25mjFjSmghttps://www.youtube.com/watch?v=Ow25mjFjSmg
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cation) of the hypothesis output by this learning algorithm is3359

R(h) = E
x∼P

[
1{f(x)6=c(x)}

]
Let us assume that the learning algorithm is deterministic for now, i.e., given3360

a training dataset D it returns a unique answer f . Let us assume that the3361

hypothesis class that the learner searches over, named F is the same as the3362

hypothesis class C. What do we want from this algorithm?3363

We expect that it works well for all hypotheses Nature could use to label3364

data c ∈ C and all datasets D drawn from P . The PAC-Learning model3365

postulates the following desiderata upon the learning algorithm.3366

1. We are okay with an answer f with error3367

R(f) ∈ [0, 1/2)

because we only have access to finitely many training data. This is3368

the “approximate correct” part of the PAC-Learning. However the error3369

should decrease as n increases.3370

2. The dataset D is a random variable. This implies that the hypothesis3371

outputted by the learning algorithm f(D) is also a random variable. The3372

above statement therefore should hold with some large probability over3373

draws of the dataset D. In other words, there can be a small probability3374

that a non-representative dataset D is drawn and we do not expect3375

the learner to output a good hypothesis with R(f) < 1/2. However3376

the probability of such failure, let us call it δ ∈ [0, 1/2), should also3377

become smaller if more data is provided. This is the “probably” part of3378

PAC-Learning.3379

We now have a definition of what it means to be a good learning algorithm.3380

Definition 13.1 (PAC-learnable hypothesis class). A hypothesis class C is3381

PAC-learnable if there exists an algorithm L such that for every c ∈ C, for3382

every ε, δ ∈ [0, 1/2), if L is given access to n(ε, δ) i.i.d. training data from P3383

and their corresponding labels c then it outputs a hypothesis hD ∈ C such that3384

PD (R(f) < ε) ≥ 1− δ.

We want the learner to be statistically efficient, i.e., as our desiderata ε, δ3385

get smaller, we should expect n(ε, δ) to not grow too quickly. For instance, we3386

would like n(ε, δ) to be a polynomial function of 1/ε and 1/δ. The minimum3387

number of samples n(ε, δ) required to learn a hypothesis class C is called the3388

sample complexity of C. One is also typically interested in the computational3389

complexity of finding f , e.g., to avoid a brute-force algorithm L that searches3390

over the entire hypothesis class F = C; we will not worry about it here.3391

It is important to notice that PAC-learning assumes nothing about how L is3392

going to use the data, e.g., whether it runs SGD or what surrogate loss it uses,3393

or even whether it performs Empirical Risk Minimization. In this sense, the3394

above learning model is very abstract and we should expect only qualitative3395

answers from this theory.3396

Example 13.2 (Learning Monotone Boolean Formulae). Let x = [x1, . . . , xd]3397

be the datum and c(x) be a conjunction, e.g.,3398

c(x) = x1 ∧ x3 ∧ x4.
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To take a few examples, c(10011) = 0 and c(11110) = 1. Such formulae are3399

called monotone because no literals show up as negated in the formula.3400

We can have the hypothesis class F to be the set of all possible conjunc-3401

tions of d variables x1, . . . , xd. Each literal xi can be in the conjunction or3402

not, so the total number of hypotheses in F is 2d. 1 Observe that since this is3403

exponential in d, an algorithm L that brute-force searches over F will have a3404

large computational complexity. Also observe that since the true hypothesis3405

c ∈ F , there exists an answer f that the algorithm L can output that achieves3406

zero training error, i.e.,3407

min
f∈F

1

n

n∑
i=1

1{f(xi)6=c(xi)} = 0.

But for a fixed amount of data n, there is some probability that the minimizing3408

hypothesis f has zero training error but large population risk. As the number3409

of data n is large, we expect this event to be less and less probable.3410

Consider an algorithm L that does the following. It starts with the hypoth-3411

esis3412

f0(x) = x1 ∧ x2 ∧ · · · ∧ xd
with all literals and for every datum with a label 1, it deletes all literals xi that3413

are not in this datum to update the hypothesis f ; this makes sense because if3414

the deleted literals were zero in some input, f and c would predict different3415

outputs. Remember that since c(x) ∈ F , we cannot have a datum with input3416

1111. . . 1 and output 0.3417

What kind of errors does this algorithm make? If some literal xi was3418

deleted, it is because it had the value xi = 0 on a positively labeled sample.3419

So, it should be deleted, otherwise the hypothesis will output 0. So, we only3420

output a wrong hypothesis if more literals present than those in c(x). So, the3421

output f(x) can only make an error on data labeled 1 by c(x), never on the3422

ones labeled zero. Our algorithm therefore only has false negatives.3423

We now see why requesting more samples diminishes the probability of3424

this event happening. Let pi = Px∼P [c(x) = 1, xi = 0 in x]. Therefore3425

R(h) ≤
∑
xi∈f

pi

If some pi is small, then it does not contribute much to the error. If some3426

pi is large then we make sure to see enough samples so that we remove that xi3427

from f . After all, it only takes one appearance of this event to delete this xi,3428

and the event has probability pi which is large. Rigorously, if all xi in f have3429

pi < ε/d then R(h) < ε. On the other hand, if some xi has pi > ε/d then the3430

probability of having this xi in f is the probability that the event of pi never3431

happens in the draw of n samples. But this new probability is smaller than3432

1− ε/d. And the event will never happen in n i.i.d. draws with probability at3433

most (1 − ε/d)n ≤ e−nε/d. Using the union bound, since there are at most3434

d literals in f , the probability that there is at least one such “bad event” is at3435

most de−nε/d.3436

1Actually the total number of conjunctions is 2d + 1 because for the null-conjuction (without
any literals) we can have the constant c(x) = 0 or c(x) = 1 for all x. We should therefore
explicitly make sure c(111 . . . 11) = 0 is not in the true labeling function. But we ignore this
corner case, and silently assume that only the hypothesis c(x) = 1∀x is in our class C.
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If this bad event never happens the population risk is less than ε. Of course,3437

such a bad event happening would be devastating. For some distributions it3438

could lead the error up to 1. However, in our PAC-learning setting we can3439

accept this as long as it happens rarely with probability at most δ. Since3440

de−nε/d < δ ⇐⇒ n ≥ d

ε
log

d

δ

we are guaranteed to meet the PAC criteria: of error less than ε with probability3441

at least 1− δ.3442

Note that both the sample complexity and computational complexity are3443

polynomial. We have thus shown that the class of Monotone Boolean Formulae3444

is (ε, δ)-PAC learnable.3445

13.2 Concentration of Measure3446

Two very important results from probability theory that we will use are the3447

Union Bound and the Chernoff Bound.3448

13.2.1 Union Bound (or Boole’s Inequality)3449

For any countable set of events, {A1, · · · , An, · · · },3450

P

(⋃
i

Ai

)
≤
∑
i

P [Ai] .

This is a rather loose, but useful, upper bound and is (mostly) embedded in3451

the assumptions of what we call a “probability measure” in probability theory3452

(σ-subadditivity). This essentially means that it can be used without any extra3453

assumptions in practice.

o If we want a better
approximation of the probability of
the union of multiple events and we
know more about the problem at
hand we can use what are called
Bonferroni inequalities.

3454

By the inclusion-exclusion principle for finite set of events {A1, · · · , An},3455

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑

1≤i<j≤n

P (Ai, Aj)+...+(−1)n−1 P (A1, A2, · · · , An)

We can get better approximations of the union, if we use the first k ≤ n terms3456

above. If we stop at odd k, we get an upper bound. If we stop at even k we get3457

a lower bound. The error of the approximation is decreasing with k.3458

3459

ä Where did we use the union
bound in the proof for the
PAC-learnability of the class of
monotone Boolean functions?

ä Try to prove that

P
(

n⋂
i=1

Ai

)
≥ 1−

∑n
i=1 P (Aci )13.2.2 Chernoff Bound3460

Let A1, · · · , An be a sequence of i.i.d. random variables. We focus on the3461

case of Bernoulli random variables where P (Ai = 1) = p. We would like3462
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to estimate p from samples. One way to do this is to compute the empirical3463

average3464

p̂ =
1

n

n∑
i=1

Ai

and estimate how close it is to the true p. We know that as n→∞3465

Weak Law For all ε > 0 we have3466

P (|p̂− p| > ε)→ 0.

This is also known as convergence in probability.3467

Strong Law We have almost sure convergence, i.e.,3468

P
(

lim
n→∞

p̂ = p
)

= 1.

Central Limit Theorem As n→∞, the quantity
√
n(p̂− p) is distributed3469

as a Normal distribution with mean zero and variance p(1− p). Notice that3470

as opposed to the law of large numbers, the central limit theorem also gives3471

us a rate of convergence, i.e., how many samples n are necessary if want the3472

difference to be close to a Normal distribution. If we set σ2 = p(1 − p) we3473

can rewrite the Central Limit Theorem as3474

P (|p̂− p| > ε) ≤ 2e−nε
2/(2σ2).

o This picture makes it easy to
remember concentration inequalities
for an n-dimensional Gaussian
random variable Y .

3475

Chernoff Bound Since σ2 = p(1− p) < 1/4 we have from CLT that3476

P

(∣∣∣∣∣ 1n∑
i

Ai − p

∣∣∣∣∣ > ε

)
≤ 2e−2nε2 .

An easy way to remember the Chernoff bound is that if we want the average3477

of n random variables to be ε-close to their expected value with probability at3478

least 1− δ, then we need3479

n = Ω

(
1

ε2
log

1

δ

)
samples.

ä Do you see any patterns in the
Chernoff bound with sample
complexity in PAC-learning?

3480

Concentration of measure is an exciting area of probability theory and3481

similar results can be obtained for other distributions, other functions than aver-3482

aging of random variables A1, . . . , An etc. Popular inequalities are Markov’s3483

Inequality, Chebyshev’s Inequality and Chernoff Bounds (and Hoeffding’s3484

Inequality as an important special case). They are written in terms of increas-3485

ing tightness, but also of increasing assumptions of what we need to know3486

in order compute them. You can read a very good introduction to this topic3487

at https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-3488

measure/.3489

In general, Markov’s inequality only needs the expectation, Chebyshev’s3490

Inequality needs the variance too, while Chernoff bounds usually need the3491

https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
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whole moment generating function. They are all applications of Markov’s3492

Inequality on higher order statistics. The value of Chernoff bounds is in-3493

creasingly more important when we talk about distributions of few sufficient3494

statistics, like the Bernoulli distribution (or any exponential distribution).3495

13.3 Uniform convergence3496

We now lift the assumption that Nature’s labeling function c ∈ C. After all,3497

even if there exists such a true deterministic c we can never be sure that it is3498

inside F , say the class of neural networks of a specific architecture that we are3499

using. This model is called the Agnostic PAC-Learning model.3500

We will stay within the confinements of Empirical Risk Minimization3501

where we are provided with some samples where we output the hypothesis3502

with the smallest training error3503

R̂(f) =
1

n

n∑
i=1

1{f(xi) 6=yi} minimizing this gives fERM ∈ F .

The population risk is3504

R(f) = E
(x,y)∼P

[
1{fERM(x)6=y}

]
minimizing this gives f∗ ∈ F .

Observe that f∗ is not the Bayes optimal predictor that we saw in the bias-3505

variance tradeoff. This is because the former is restricted to the hypothesis3506

class F while the latter has no such restriction to lie in F , it is simply the3507

optimal hypothesis that minimizes the population risk.3508

Our goal while computing a generalization bound is to ask the fol-
lowing question: if we obtain an ERM hypothesis fERM with a good
training error, then does this also mean that the population risk of the best
hypothesis in the class f∗ is small?

The above question is central, answering it in the affirmative ensures that3509

we are using a correct hypothesis class (say neural architecture) and that the3510

error on the training dataset is a good indicator of the performance on the3511

entire distribution. This involves the following two steps.3512

1. First, we need to make sure that the difference3513 ∣∣∣R̂(fERM)−R(fERM)
∣∣∣→ 0, n→∞.

This is easy, it is akin to the concentration of measure we saw in the3514

previous section.3515

2. Second, we need to ensure that3516

R̂(fERM) ≈ R(f∗)

with high probability for every training dataset of n samples using which3517

fERM is computed. If this is true, it tells us something about the ERM3518

procedure itself, i.e., it tells us whether minimizing the empirical risk3519
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R̂(f) is a good thing if we want to build a classifier that works well on3520

the population.3521

This is difficult to do, after all fERM and f∗ are totally different hypoth-3522

esis. Vapnik set up a powerful construction to do this. He showed that3523

a sufficient condition to achieve the above is that for all hypotheses in3524

F , the empirical risk and population risk are similar. This is known as3525

uniform convergence.3526

Let us now develop the two points above. Since data are drawn iid, we can3527

use the Chernoff bound to get that3528

∀f ∈ F ,P
(∣∣∣R̂(f)−R(f)

∣∣∣ > ε
)
≤ 2e−2nε2 .

If the hypothesis class is finite F , we can use the union bound to show that for3529

any hypothesis, the training error and population risk are close.3530

P
(
∃f ∈ F :

∣∣∣R̂(f)−R(f)
∣∣∣ > ε

)
≤
∑
f∈F

P
(∣∣∣R̂(f)−R(f)

∣∣∣ > ε
)

≤ |F| 2e−2nε2 .

If we want this above probability of a bad event to be less than δ we3531

therefore need3532

n ≥ 1

2ε2
log

2 |F|
δ

(13.1)

training data. Notice how this bound changed from the Monotone Boolean3533

function example: we need O(1/ε) times more samples to get the uniform3534

convergence result.3535

Suppose we had a classifier f with 2% gap (ε = 0.02) between the training3536

error R̂(f) and the validation error (which is a proxy for the population risk3537

R(f)), if we want to reduce this gap by half to 1% (ε = 0.01) , we need3538

4 times as many training data. We could also reduce this gap by fitting a3539

classifier with small |F| but in this case, both the training and validation error3540

will increase even if their gap decreases.3541

Next, we need a relation between the population risk of fERM and the best3542

possible predictor f∗F in our hypothesis class. Observe that3543

R(fERM) ≤ R̂(fERM) + ε (Chernoff bound on fERM)

≤ R̂(f∗) + ε (fERM has the smallest training error)
≤ R(f∗) + 2ε (Chernoff bound on f∗).

The two Chernoff bound inequalities hold with probability at least 1− δ so3544

the final inequality3545

R(fERM) ≤ R(f∗) + 2ε

holds with probability at least 1− 2δ. Substitute this in (13.1) to get3546

R(fERM) ≤ R(f∗) + 2

√
1

2n
log

4 |F|
δ

(13.2)

with probability 1− δ. A result of this kind is called a Vapnik-Chernovenkis3547

(VC) bound or a PAC bound.3548



147

Let us consider our monotone Boolean formulae example again. Since3549

|F| = 2d, if the input dimension is d = 1000 and we set δ = 10−3, the VC-3550

bound predicts the following. In this case, we should imagine running ERM3551

to pick the best hypothesis fERM, not the elimination algorithm we discussed3552

in the section on monotone Boolean formulae.3553

1. With n = 1000 data, we have R(fERM) ≤ R(f∗) + 1.42. This is3554

vacuous/non-informative since the population risk is an expectation of3555

indicator variables and should therefore be less than 1.3556

2. With n = 105, we have R(fERM) ≤ R(f∗) + 0.45. This is informative,3557

it means that the population risk of the classifier obtained by ERM is3558

within 44% of the population risk of the best classifier f∗ in that class.3559

Of course it is only meaningful if f∗ generalizes well, i.e., if R(f∗) is3560

small. This will happen if the hypothesis class F is large enough.3561

3. With n = 106, we have R(fERM) ≤ R(f∗) + 0.04.3562

13.4 Vapnik-Chernovenkis (VC) dimension3563

In the above section, the concept/hypothesis class was assumed to be finite3564

|C| <∞. The union bound of course breaks if this is not the case. Notice that3565

once we pick a neural architecture (hypothesis class), the number of possible3566

models (hypotheses), each with different weight vectors, is infinite. Observe3567

that in the monotone Boolean formulae example, the algorithm L was using3568

the training data to eliminate hypothesis from C, this is not going to work3569

C is not finite. It is therefore a natural question whether we can still learn a3570

hypothesis class with a finite number of training data.3571

Vladimir Vapnik and Alexey Chernovenkis (Vapnik, 2013) developed the3572

so-called VC-theory to answer the above question. Technically, VC-theory3573

transcends PAC-Learning but we will discuss only one aspect of it within the3574

confinements of the PAC framework. VC-theory assigns a “complexity” to3575

each hypothesis f ∈ C.3576

Shattering a set of inputs We say that the set of inputs D = {x1, · · · , xn}3577

is shattered by the concept class C, if we can achieve every possible labeling3578

out of the 2n labellings using some concept c ∈ C. The size of the largest set3579

D that can be shattered by C is called the VC-dimension of the class C. It is3580

a measure of the complexity/expressiveness of the class; it counts how many3581

different classifiers the class can express.3582

If we find a configuration of n inputs such that when we assign any labels3583

to these data, we can still find a hypothesis in C that can realize this labeling,3584

then3585

VC(C) ≥ n.

On the other hand, if for every possible configuration of n+ 1 inputs, we can3586

always find a labeling such that no hypothesis in C can realize this labeling,3587

then3588

n ≤ VC(C).

If we find some n for which both of the above statements are true, then3589

VC(C) = n.
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Some examples.3590

• d-dim Linear Threshold Functions: VC-dim = d+ 1.3591

Figure 13.1: d=2: See that for the lower bound, we found some configuration of the 3
points, such that a linear threshold function always separates the points consistently
with the labels; for any possible labeling. 3 such labellings are shown, convince
yourselves that it can be done for all 8 cases. Observe that we cannot do the same for
4 points. In the figure above one such unrealizable configuration is given (With the
“XOR” labeling). To prove the upper bound we need to talk about ANY configuration
though. See that the only other case for 4 points, is that one point is inside the convex
hull generated from the other 3. Find the labeling that cannot be obtained with linear
classifiers in this case.

• 2 dimensional axis aligned rectangles: VC-dim = 4 (exercise)3592

• Monotone Boolean Formulae: VC-dim = d (exercise).3593

• If the hypothesis class is finite, then3594

VC(F) ≤ log |F| .

• If x ∈ R and our concept class includes classifiers of the form3595

sign(sin(wx))

where w is a learned parameter, then3596

VC =∞.

• For a neural network with p weights and sign activation function3597

VC = O(p log p).

It is a deep result that if the VC-dimension of concept class is finite
V = VC(F) <∞, then this class has the uniform convergence property
(for any f ∈ F , the empirical and population error are close). Therefore,
we can learn this concept class agnostically (without worrying about
whether Nature’s labeling function c is in our hypothesis class F or not)
in the PAC framework with

n = Ω

(
V

ε2
log

V

ε
+

1

ε2
log

1

δ

)
training data. If a hypothesis class as infinite VC-dimension, then it is
not PAC-learnable and it also does not have the uniform convergence
property.
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The above result written in another form looks as follows. For a (finite or3598

infinite) hypothesis class F with finite VC-dimension V = VC(F)3599

R(fERM) ≤ R(f∗) + 2

√
1

n
(2V − log δ) (13.3)

with probability at least 1− δ. This is an important expression to remember:3600

the number of samples n required to learn a concept class scales linearly with3601

the VC-dimension V . A more refined version of this bound looks like3602

R(fERM) ≤ R(f∗) + 2

√
1

n

(
V

(
log

2n

V
+ 1

)
+ log

4

δ

)
. (13.4)

Bounds on the VC-dimension of deep neural networks For general clas-3603

sifiers, it is typically difficult to compute the VC dimension. One instead finds3604

upper and lower bounds for the VC dimension to be used in inequalities of the3605

form (13.4). Bounds on the VC-dimension of deep network architectures are3606

available (Bartlett et al., 2019). With p weights and L layers, an essentially3607

tight VC-dimension looks like3608

Ω
(
p L log

p

L

)
= VC(F) = O(p L log p)

for deep networks with ReLU nonlinearities.3609

This bound is not entirely useful in the VC-theory however. For instance,3610

the ALL-CNN network you used in your homework with p ≈ 106 and L = 103611

has VC ≈ 108. If we use the coarse VC-bound in (13.3) with n = 50, 0003612

samples, we have3613

R(fERM) ≤ R(f∗) + 40

which is a vacuous generalization bound. However, remember that this is3614

simply an upper bound on the generalization error of ERM. It is clear from3615

empirical results in the literature (including your homework problems) that3616

deep networks indeed generalize well to new data outside the training set and3617

that means R(fERM) is small.3618

The gap in applying VC-theory to deep networks therefore likely stems3619

from the need for uniform convergence: we may not need that the empirical3620

and population risk are close for all hypotheses in the class. If we only3621

have uniform convergence within a small subset F ⊂ F and if VC(F ) �3622

VC(F) and if the training algorithms like SGD always find ERM minimizers3623

fERM ∈ F , then VC-theory/PAC-Learning do predict that deep networks will3624

generalize well. Understanding this is the subject of a large body of ongoing3625

research.3626



Chapter 143627

Variational Inference3628

Reading
1. Sections 1-2 of “Variational Inference: A Review for Statisticians”

by Blei et al. (2017).

2. Sections 1-5 of “Auto-Encoding Variational Bayes” by Kingma and
Welling (2013)

3. Chapter 2 of Durk Kingma’s thesis:
https://pure.uva.nl/ws/files/17891313/Thesis.pdf.

4. Bishop Chapter 11.5-11.6

5. Bishop Chapter 10-10.3

6. Lots of great intuition at http://ruishu.io/2018/03/14/vae/

We have been primarily concerned with models for classification and3629

regression as yet in this course. The task there is to match the target (a3630

class identity or a real-valued outcome). We now change tracks to consider3631

generative modeling, these are models that are trained to synthesize new data.3632

Effectively, the task here is not match a target datum, but given a training3633

dataset of images/text, create a model that outputs similar images/text at test3634

time. We will first take a look at variational methods and generative modeling3635

using these methods in this chapter and do implicit generative models such as3636

Generative Adversarial Networks in the next chapter.3637

14.1 The model3638

Imagine how you would draw the image of a dog x on paper. First, you would3639

decide in your mind, its breed, its age, the color of its fur etc. Let us call these3640

quantities “latent factors”. Latent factors can also include things that are not3641

specific to the dog, e.g., the background of your painting (grass, house, beach3642
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etc.), the weather on that day (cloudy, sunny etc.), the viewpoint (zoomed3643

in/far away). We will denote all such quantities by3644

z := latent factors.

Having decided upon all these factors, you realize your painting x. The3645

painting x is not unique given latent factors z, e.g., two people can start off3646

with the same latent factors and draw two totally different pictures.3647

3648

We therefore model the generative process as a obtaining samples from a3649

probability distribution3650

p(x|z).

Given a latent factor z and an image x, the quantity p(x|z) denotes the like-3651

lihood of the sample. Given the painting image x, we do not know what the3652

latent factors are. For instance, it is not easy to say whether the following3653

image is that of a cat or a dog.3654

3655

In other words, the latent factors of data x are not known to us if
we do not take part in the generative process. Nature is in charge of
generating the data and our goal here is to guess the parameters of this
generative model to be able to synthesize new samples that look as if
Nature generated them.

There can be lots of latent factors z. So let us control this complexity and3656

assume that we know a prior over the latent factors3657

prior p(z)

that models our belief of how likely a factor “dog with color blue” is in Nature.3658

Let us imagine Nature’s generative model as running in two steps
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1. First, sample a latent factor z from some distribution, and then

2. sample a datum x ∼ p(x|z).

The central point to appreciate is that we know neither Nature’s distribu-
tion for sampling latents z nor its generative model p(x|z). We will need
to fit both these quantities using a training dataset of images/text.

The purpose of doing so can be many-fold, e.g., we may want to generate3659

new data to amplify the size of our training set, given a part of the input image3660

(say due to occlusions, or image corruption) we may want to complete the rest3661

of it.3662

3663

3664

Most such applications require the knowledge of the latent factors that gener-3665

ated the data. Therefore, formally, we are interested in computing the posterior3666

distribution3667

posterior p(z|x)

given the prior distribution p(z) and samples in a training dataset D =3668 {
xi
}n
i=1

. Notice that we do not need labels for this problem, effectively3669

labels yi = xi itself because our generative model should of course be very3670

good at generating samples from the training data.3671

14.2 Some technical basics3672

14.2.1 Variational calculus3673

We will first take a brief look at what is called variational calculus.3674

A function is something takes in a variable as input and returns the value3675

of the function as the output, e.g., R 3 f(x) = 5 x2 for x ∈ R. Similarly, a3676



153

functional is an object that takes in a function as an input and returns a real3677

number as the output. An example of this is entropy3678

R 3 H[p] = −
∫
p(x) log p(x) dx

which takes in a probability density p as the input and returns a real num-3679

ber. Entropy is therefore a functional. Just like standard calculus where we3680

take derivatives/minimize over functions, we can also take derivatives of the3681

functional.3682

The functional derivative δH[p]
δp (x) is defined in a funny way as3683 ∫

δH[p]

δp
(x) ϕ(x) dx = lim

ε→0

H[p+ εϕ]−H[p]

ε

for any arbitrary function ϕ. Essentially, you perturb the argument to the3684

functional p by some epsilon and see how much the functional changes. The3685

change in the functional is measured using the test function ϕ by integrating3686

its changes δH(p)
δp (x) at each point x in the domain. There may be certain3687

conditions that the perturbation ϕ needs to satisfy, e.g., since p+εϕ should also3688

be probability density, the functional derivative above should only consider3689

test functions ϕ such that3690

∀ε
∫

(p(x) + εϕ(x)) dx = 1⇒
∫
ϕ(x)dx = 0.

The KL-divergence between two probability densities,3691

KL(p || q) =

∫
p(x) log

p(x)

q(x)
dx,

is another such functional; it has two arguments p and q.3692

Variational optimization is concerned with minimizing functionals. For3693

instance, if we have a problem3694

w∗ = argmin
w∈Rp

`(w)

in standard optimization, a variational optimization problem with KL-divergence3695

as the loss given a fixed density p looks like3696

q∗ = argmin
q∈Q

KL(q || p). (14.1)

The variable of optimization is the probability density q and we will denote the3697

domain of the variable by Q. Since we want q to be a legitimate probability3698

density, we should choose3699

Q ⊆ P(X )

where P(X ) denotes the set of all probability densities on some domain X .3700

Picking the domain and objective in variational optimization Picking a3701

good domain Q to minimize over is important. It is similar to the notion of3702

the a hypothesis class in machine learning. If Q is too big, it is difficult to3703

solve the optimization problem but we obtain a better value to KL(q||p). If Q3704
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is too small, the optimization problem may be easy but we may not match the3705

desired distribution p very well. Imagine if p is a mixture of two Gaussians3706

and we pick Q to be a family of uni-modal Gaussian distributions. Since the3707

KL-divergence is zero if and only if the two distributions are equal, we are3708

never going to be able to minimize it completely. On the other hand, if we3709

pick Q to be the family of distributions with 2 or more Gaussian modes, then3710

we can perfectly match p. Essentially, the crux of variational inference boils3711

down to picking a good family of distributions Q that makes solving (14.1)3712

easy.3713

What functional should we use to measure the distance between q and p?3714

The KL-divergence is popular and easy to use in practice but there are many3715

others. For example, when we studied the Gibbs distribution we briefly talked3716

about something called “Wassserstein metric”: if one imagines a mountain of3717

dirt given by distribution q and another mountain of dirt p, the Wassserstein3718

distance W2(q, p) is the amount of work done in transporting the dirt from q3719

to p; it is also called the “earth mover’s distance”. The Wassserstein metric3720

is as legitimate a distance between two distributions as the Kullback-Leibler3721

divergence.3722

14.2.2 Laplace approximation3723

Laplace approximation is a very useful trick that is similar to variational3724

inference. Here is how it works: suppose we have to estimate approximately3725

an expectation of our random variable ϕ(w)3726

E
w∼e−n`(w)

[ϕ(w)] =

∫
e−nf(w) ϕ(w) dw

for some large value of n. The above integral takes many values, some have3727

small `(w) and some have large `(w). The values of w where `(w) is small3728

are the ones that have the highest e−n`(w), especially as n→∞, and therefore3729

the ones that we should pay most attention while approximating the integral.3730

For large n, Laplace approximation replaces the above integral by simply3731 ∫
e−n`(w) ϕ(w) dw ≈

∫
ϕ(w) e−n(`(w∗)+ 1

2 (w−w∗)>∇2 `(w∗)(w−w∗)) dw

= e−n`(w
∗)

∫
ϕ(w) e−

n
2 (w−w∗)>∇2 `(w∗)(w−w∗) dw

(14.2)
where w∗ = argmin `(w) is the global minimum of `(w). The integral is now3732

with respect to a Gaussian distribution and can be done more easily.3733

How does a variational approximation differ from the Laplace approxima-3734

tion? Let us look at an example.3735

3736

https://jeremykun.com/2018/03/05/earthmover-distance
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3737

14.2.3 Digging deeper into KL-divergence3738

Let us take an example to understand KL-divergence better.3739

Figure 14.1 compares two forms of KL-divergence. The green contours rep-3740

resent equi-probability lines (1,2,3 standard deviations) for a two-dimensional3741

correlated Gaussian p(z1, z2). Red contours represent similar equi-probability3742

lines for the variational approximation of this distribution using an uncorrelated3743

Gaussian distribution3744

q(z) = q1(z1)q2(z2)

where both q1, q2 are one-dimensional Gaussians. The variational family3745

q ∈ Q thus consists of factored uncorrelated Gaussians and we are trying3746

to find the best member of this family that approximates the correlated true3747

distribution p(z).3748

Figure 14.1: Comparison between the variational approximation of a correlated Gaus-
sian using forward and reverse KL divergence and a factored Gaussian family.

Left panel (a) in Figure 14.1 shows the result using the forward KL-3749

divergence minimization3750

q∗ = KL(q || p).
while the right panel (b) shows the result for the reverse KL-divergence mini-3751

mization3752

q∗ = KL(p || q).
We see that both these forms capture the mean of the true distribution p(z)3753

correctly. The variance of the two approximations is quite different depending3754

upon which form we employ.

ä Use the expression of the
KL-divergence to convince yourself
why the forward KL under-estimates
the variance while the reverse KL
over-estimates the variance
in Figure 14.1.

3755
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Figure 14.2: Approximating a multi-modal distribution using a uni-modal variational
family.

We next consider the case when a multi-modal probability distribution3756

p(z) is approximated using a unimodal Gaussian distribution. Both these3757

examples are very often seen in practice, the distribution of true data/latent3758

factors is often correlated and multi-modal. We have seen one instance of3759

this: the distribution of weights of a deep network in the Gibbs distribution is3760

multi-modal because of multiple global minima.3761

In panel (a) of Figure 14.2, the reverse KL divergence KL(p ||q) is used to3762

obtain the red contours of q∗. In contrast the forward KL divergence KL(p || q)3763

is used to obtain q∗ in panels (b) and (c). Note that the distribution p is bi-3764

modal and the variational problem is no longer convex in this case; depending3765

upon the initial condition using q, one may get different solutions shown in3766

panels (b) and (c).3767

KL-divergence is not the only distance used in variational inference and3768

there are many many other ones. You should think of these different ways to3769

measure distances between probability distributions in variational inference3770

as different surrogate losses; which one we use is highly problem dependent3771

although the forward KL-divergence KL(q || p) is the most common.3772

14.3 Evidence Lower Bound (ELBO)3773

We now go back to the generative model.3774

We will formalize our goal in generative modeling as computing
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Nature’s true posterior distribution of latent factors

p(z|x).

We have access to a training dataset D =
{

(xi)
}n
i=1

. We do not know
(i) what form Nature’s posterior distribution takes, e.g., Gaussian, multi-
modal distribution etc. and (ii) we do not know the true latent factors z
that Nature uses. So we are going to approximate the true posterior using
some variational family of our choice

Q 3 q∗(z|x) ≈ p(z|x).

This is the basic idea of variational inference: to approximate a complex
distribution p(z|x) using a member of from a simpler family of our
choosing Q. In practice, this variational family Q will be parameterized
by a deep network.

With this background, the mathematical process of executing the above3775

program is quite simple. We will simply minimize the KL-divergence3776

q∗(z|x) = argmin
q∈Q

1

n

n∑
i=1

KL
(
q(z|xi) || p(z|xi)

)
. (14.3)

We next rewrite this KL-divergence above in a special form.3777

0 ≤ KL
(
q(z|xi) || p(z|xi)

)
= E
z∼q(z|xi)

[
log

q(z|xi)
p(z|xi)

]
= − E

z∼q(z|xi)

[
log p(z|xi)

]
+ E
z∼q(z|xi)

[
log q(z|xi)

]
= − E

z∼q(z|xi)

[
log p(z, xi)− log p(xi)

]
+ E
z∼q(z|xi)

[
log q(z|xi)

]
= log p(xi)− E

z∼q(z|xi)

[
log p(z, xi)

]
+ E
z∼q(z|xi)

[
log q(z|xi)

]
.

⇒ log p(xi) ≥ E
z∼q(z|xi)

[
log p(z, xi)

]
− E
z∼q(z|xi)

[
log q(z|xi)

]
This is quite interesting. The left-hand side of this inequality is the log-3778

likelihood of the data under Nature’s distribution, i.e., it is fixed and indepen-3779

dent of what we do. The left-hand side is also called the evidence. The right3780

hand-side3781

ELBO(q, xi) := E
z∼q(z|xi)

[
log p(z, xi)

]
− E
z∼q(z|xi)

[
log q(z|xi)

]
. (14.4)

is a lower bound on the evidence and therefore called the Evidence Lower3782

Bound (ELBO).3783

Next comes a key step: a good generative model should be such that
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the evidence of the training data, i.e., the log-likelihood of this data under
Nature’s distribution, should be large under the model. We therefore want
to maximize the ELBO on our training data

q∗(z|x) = argmax
q∈Q

1

n

n∑
i=1

ELBO(q, xi). (14.5)

to find the posterior distribution of the latent factors q∗(z). Max-
imizing ELBO is equivalent to minimizing the KL-divergence
KL(q(z|xi) || p(z|xi).

We will again solve the optimization problem in (14.5) using stochastic3784

gradient descent. Before we study how to do that, let us consider what model3785

we have developed so far. The solution to this problem3786

q∗(z|x) ≈ p(z|x)

approximates Nature’s posterior distribution. If we maximize ELBO well,3787

given an input x, samples z ∼ q∗(z|x) are likely to be the latent factors that3788

Nature could have chosen while rendering this image. But we still do not know3789

how to synthesize an image x for these latent factors. We now rewrite ELBO3790

in a different form to understand this.3791

ELBO(q, xi) = E
z∼q(z|xi)

[
log p(z, xi)

]
− E
z∼q(z|xi)

[
log q(z|xi)

]
= E
z∼q(z|xi)

[
log p(xi|z) + log p(z)

]
− E
z∼q(z|xi)

[
log q(z|xi)

]
= E
z∼q(z|xi)

[
log p(xi|z)

]
− KL(q(z|xi) || p(z)).

This form of ELBO3792

ELBO(q, xi) = E
z∼q(z|xi)

[
log p(xi|z)

]
− KL(q(z|xi) || p(z)) (14.6)

is very interesting. The first term is Nature’s log-likelihood of datum xi given3793

the latent factor z sampled from our candidate posterior q. The second term3794

is the discrepancy between our variational approximation of the posterior3795

q∗(z|xi) ≈ p(z|xi) and Nature’s true marginal distribution over latent factors3796

p(z). This alternative form of ELBO is conceptually very similar to what we3797

do in standard classification, e.g.,3798

argmin
w

{
`(w) +

α

2
‖w‖2

}
.

We would like our q(z|xi) to be close to Nature’s prior distribution p(z) but at3799

the same time be such that samples from q(z|xi) have a high log-likelihood3800

p(xi|z) of synthesizing images in the training set. The KL-term is therefore a3801

regularizer for the first data-fitting term.3802

14.3.1 Parameterizing ELBO3803

What variational family Q should we choose? Say we parametrized each3804

distribution q(z|xi) by its mean and diagonal of the covariance.3805

Rm 3 z ∼ q(z|xi) = N(µ(xi), σ2(xi)I) ∈ Q(xi)
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where µ(xi), σ2(xi) ∈ Rm. The ELBO in (14.6) is totally independent for3806

each xi in the training dataset, so all i ∈ {1, . . . , n} we can solve for3807

µ∗(xi), σ2(xi) = argmax
µ,σ2

ELBO
(
N(µ(xi), σ2(xi)I), xi

)
.

But this is not a good idea: the parameters µ, σ2 are distinct for each input xi3808

and effectively they are being trained using a dataset of only input image xi.3809

Amortized variational inference is a clever trick that ties together
the variational families Q(xi). We will be using a deep network with
parameters u ∈ Rp that takes xi as the input and gives µ(xi;u), σ2(xi;u)
as the outputs

Encoder : xi 7→︸︷︷︸
parameters u

µ(xi;u), σ2(xi;u).

The variational family Q(xi) that we are considering is therefore the set
of distributions expressed by this deep network with p parameters. The
family Q(xi) is still distinct for each datum xi but they are are all tied
together by the same weights u.

Encoder. We will call this deep network the encoder because it takes
in an input xi and encodes it into µ(xi;u), σ2(xi;u) which parameterize
the distribution of the latent factors.

Decoder. Observe that although we have now parameterized the distribution3810

q(z|xi) using a deep network with weights u, we still do not know how to3811

model the term p(xi|z). After all, this is Nature’s log-likelihood.3812

We have a dataset
{

(xi, zi)
}n
i=1

that consists of the images xi and their3813

corresponding latents zi sampled from our encoder. We are going to model3814

Nature’s rendering process p(x|z) using a deep network. This is a program3815

that we have done many times in the past, e.g., we model the targets in3816

classification yi as samples from the softmax distribution with images xi as3817

the input and train the weights using maximum-likelihood (as you may recall,3818

this is equivalent to the cross-entropy loss).3819

We can repeat that program here: we are going to learn a deep network3820

Decoder : pv(x
i|z) ≈ p(xi|z).

with parameters v ∈ Rp that models Nature’s likelihood p(xi|z).3821

Different possible decoders for MNIST Depending upon the type of data3822

xi, we will code up the deep network in different ways. For instance, if each3823

pixel of xi ∈ R28×28 is grayscale [0, 255] like it is in MNIST, the output of3824

the decoder is a multinomial with size 28× 28× 256. o The distribution of labels yi in
classification was one-hot vectors,
so the softmax layer created a
multinomial distribution on the
classes.

3825

If we take the training dataset as binarized MNIST (if pixel jk is less3826

than 128 set it to 0, else set it to 1), then the output of the decoder has size3827

28× 28× 2 and we can fit this using a logistic distribution at each pixel3828

pv(x
i|z) =

28∏
j,k=1

pv(x
i
jk|z)︸ ︷︷ ︸

logistic distribution for pixel xijk∈{0,1}
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The log-likelihood term in (14.6) will then correspond to the logistic loss as3829

discussed in the Homework.3830

Using a mean-field prior p(z). We do not know what the prior distribution3831

p(z) in (14.6) is. We will choose a simple prior3832

p(z) =

m∏
j=1

pj(zj) (14.7)

where pi(zi) is the distribution of the ith latent factor zi. Such distributions are3833

called mean-field priors (where the distribution of a vector z ∈ Rm is modeled3834

as independent distributions on its components). We will further choose each3835

distribution3836

pj(zj) = N(0, 1)

to be a zero-mean standard Gaussian distribution. This is a Gaussian mean-3837

field prior. Just like the choice of a regularizer is critical in machine learning3838

for obtaining good generalization, the chose of a prior is critical in variational3839

inference for synthesizing good images from the generative model.3840

14.4 Gradient of the ELBO3841

We now have all the ingredients in place for training a variational generative3842

model. Let us summarize our setup.3843

1. Encoder parameters u are weights of a deep network that takes in xi3844

as input and outputs parameters µ(xi), σ2(xi) of the latent distribution.3845

We have tacitly assumed the latent posterior p(z|xi) to be a Gaussian3846

here; if you have a problem where you wish to have a different latent,3847

e.g., all the latent genes that could have caused a particular cancer, then3848

you want to output the parameters of that distribution from the encoder.3849

2. The decoder models the likelihood pv(xi|z) using parameters v.3850

3. The prior p(z) will be a mean-field Gaussian distribution. The prior has3851

no parameters in our case, although you may see research papers where3852

the prior also has its own parameters. A popular choice is to use3853

ELBOβ(q, xi) = E
z∼q(z|xi)

[
log p(xi|z)

]
− β−1 KL(q(z|xi) || p(z))

in place of the standard ELBO. The hyper-parameter β > 0 gives more3854

control over the strength of the prior; this is of course akin to picking3855

the weight-decay coefficient.3856

o The concept of variational
inference and ELBO are much more
general than generative models or
the encoder-decoder structure that
we have developed. Go through the
assigned reading material to learn
more.

The ELBO when rewritten in terms of the encoder and decoder pa-
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rameters looks as follows.

ELBO(u, v;xi) = E
z∼qu(z|xi)

[
log pv(x

i|z)
]
− KL(qu(z|xi) || p(z)).

(14.8)
Our goal is to fit the weights u, v using

u∗, v∗ = argmax
u,v∈Rp

1

n

n∑
i=1

ELBO(u, v;xi). (14.9)

The number of parameters of the encoder and decoder can be different
but for clarity we imagine them to be the same.

(14.9) is an optimization problem and in this section, we will see how to3857

compute the gradient of the objective so that we can solve the problem using3858

SGD.3859

14.4.1 The Reparameterization Trick3860

Focus on the gradient with respect to u of the first term of ELBO3861

∇u E
z∼q(z|xi)

[ϕ(z)] .

We have written log pv(x
i|z) = ϕ(z) to keep the notation clear; we do not3862

care about the exact form of the integrand in this section.3863

If we draw a computational graph for the forward propagation of this term,3864

it looks as follows3865

u, xi → sample z from qu(z|xi)→ ϕ(z).

The intermediate sampling step is troublesome, we do not really know how to3866

use the chain rule of calculus across sampling, i.e., given3867

ϕ(z) :=
d

du
ϕ(z)

we need to compute u = d`/du u. We only know how to apply the chain rule3868

for deterministic operations of the form3869

u, xi → z = some deterministic function g(u, xi)→ ϕ(z),

in which case we use the standard backprop across the function g.3870

The Reparameterization Trick enables us to obtain backpropagation
gradients across sampling operations via a creative use of the Laplace
approximation of the distribution qu(z|xi).

We known from the Laplace approximation that we can compute an ex-3871

pectation over z using a Gaussian centered at the global maximum of the3872
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distribution qu(z|xi) with variance equal to the inverse Hessian at that maxi-3873

mum. Motivated by this, the Reparameterization Trick rewrites the random3874

variable z as3875

z = µ(xi;u) + σ(xi;u)� ε
where3876

ε ∼ N(0, Im×m)

is a sample from a standard multi-variate Gaussian distribution and the notation3877

� denotes element-wise product. Effectively, we imagine that the encoder3878

outputs3879

µ(xi;u) = argmax
z

qu(z|xi)

σ2(xi;u) = diag
([
∇2
z qu(z|xi)

]−1
)
.

Just like the integral in (14.2) was performed over the Gaussian, the integral3880

over z can be rewritten as an integral over ε3881

∇u E
z∼qu(z|xi)

[ϕ(z)] = ∇u E
ε∼N(0,I)

[
ϕ
(
µ(xi;u) + σ(xi;u)� ε

)]
= E
ε∼N(0,I)

[
∇u ϕ

(
µ(xi;u) + σ(xi;u)� ε

)]
≈ 1

N

N∑
j=1

∇u ϕ
(
µ(xi;u) + σ(xi;u)� εj

)
, where εj ∼ N(0, I).

We can take the gradient operator inside the expectation in this case because ε3882

no longer depends on the weights u. The term∇u ϕ
(
µ(xi;u) + σ(xi;u)� εj

)
3883

is a deterministic operation given a sample zj and can be computed using3884

standard backpropagation.3885

14.4.2 Score-function estimator of the gradient3886

Let us look at an alternative way to compute the same gradient.3887

∇u E
z∼qu(z|xi)

[ϕ(z)] = ∇u
∫
ϕ(z) qu(z|xi) dz

=

∫
ϕ(z) ∇u qu(z|xi) dz

=

∫
ϕ(z)

∇u qu(z|xi)
qu(z|xi)

qu(z|xi) dz

=

∫
ϕ(z)∇u log qu(z|xi) qu(z|xi) dz

= E
z∼qu(z|xi)

[
ϕ(z)∇u log qu(z|xi)

]
≈ 1

N

N∑
j=1

ϕ(zj)∇u log qu(zj |xi) ,with zj ∼ qu(z|xi).

(14.10)
The term3888

∇u qu(z|xi)
qu(z|xi)

= ∇u log qu(z|xi) (14.11)

is called the score function of a probability distribution qu. The above cal-3889

culation is quite beautiful: calculating the gradient of the expectation of any3890
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quantity ϕ(z) is equal to the expectation of the same quantity weighted by the3891

score function3892

∇u E
z∼qu

[ϕ(z)] = E
z∼qu

[ϕ(z)∇u log qu] .

Due to this trick, we can compute the gradient using N samples3893

zj ∼ pu(z|xi) (14.12)

from the encoder; this is easy if, say, the encoder outputs the mean and3894

standard-deviation of the distribution of the latents. Given zj , the gradient3895

∇u log qu(zj |xi)

is just the standard back-propagation gradient of the quantity log qu(zj |xi)3896

with respect to weights u of the deep network and can be computed using3897

autograd.3898

The key difference between the Reparameterization Trick and the
score-function estimator is that in the latter, we do not need to make
sure that the gradient d`/dzj can be back-propagated across the sampling
operation. The score-function estimator directly computes the gradient of
the entire expectation by a weighted average across the samples.

Having two different ways of computing the same gradient may seem
redundant but they both are suited to very different applications. The
Reparameterization Trick is not accurate in cases when the distribution
qu(z|xi) is multi-modal because we have only one mean µ(xi) around
which the samples are drawn. The score-function trick does not have this
problem because so long as iid samples are drawn in (14.12) (using any
method, e.g., importance sampling) we obtain true estimate of the gradient.
The problem in score-function estimator lies in that the denominator
qu(z|xi) in (14.11) can take very small values if the particular sample z is
unlikely. The summation (14.10) is a combination of many N , some very
large in magnitude and some very small; the variance of score-function
estimate of the gradient in (14.10) can therefore be quite large in most
problems.

Typically, the Reparameterization Trick is commonly used in gen-
erative models while both the Reparameterization Trick and the score-
function estimator are used widely in Reinforcement Learning.

14.4.3 Gradient of the remaining terms in ELBO3899

The gradient with respect to weights v of the decoder of the first term in ELBO3900

∇v E
z∼qu(z|xi)

[
log pv(x

i|z)
]

is simply the standard backpropagation gradient (the sampling distribution of3901

the encoder does not depend on the weights of the decoder).3902

Let us focus on the second term3903

KL

qu(z|xi) ||
m∏
j=1

pj(zj)

 . (14.13)
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where pj(zj) = N(0, 1) are terms of the mean-field prior. The gradient of this3904

term with respect to weights of the decoder is zero3905

∇v KL

qu(z|xi) ||
m∏
j=1

pj(zj)

 = 0.

Following the reasoning in the Reparameterization Trick, we are positing that3906

qu(z|xi) is a Gaussian distribution:3907

qu(z|xi) = N
(
µ(xi;u), σ2(xi;u)I

)
.

Notice that σ2(xi;u) ∈ Rm is the diagonal of the covariance and therefore3908

the individual marginals qu(zj |xi) and qu(zj′ |xi) for two indices j, j′ are3909

independent. We can therefore write3910

qu(z|xi) =

m∏
j=1

N(µj(x
i;u), σ2

j (xi;u)). (14.14)

The KL-divergence of a univariate Gaussian N(µ1, σ
2
1) with respect to the3911

standard Gaussian is3912

KL
(
N(µ, σ2) || N(0, 1)

)
= log

1

σ
+
σ2 + µ2

2
− 1

2
. (14.15)

The general formula is3913

KL
(
N(µ1, σ

2
1) || N(µ2, σ

2
2)
)

= log
σ2

σ1
+
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2
.

Due to (14.14), the KL-divergence in (14.13) is a sum of the KL-divergences3914

of the individual univariate Gaussians

ä Prove that

KL

 m∏
j=1

qj(zj) ||
m∏
j=1

pj(zj)


=

m∑
j=1

KL(qj(zj) ||pj(zj)).

3915

KL(qu(z|xi) ||p(z)) = −1

2

m∑
j=1

(
log σ2

j (xi;u)− σ2
j (xi;u) + µ2

j (x
i;u) + 1

)
.

(14.16)
The right-hand side of this equation is only a function of u and its gradient can3916

be calculated using standard back-propagation.3917

This completes our development of ELBO. Using the gradient calculated3918

in this section, we can use SGD to maximize the objective in (14.5) and train3919

a generative model.3920

14.5 Some comments3921

Although the mathematics of ELBO seems complicated, it is quite easy to3922

implement generative models using variational inference in practice. You did3923

for a simple MNIST problem in the homework/recitation but if the encoder3924

and decoder are convolutional and deconvolutional architectures respectively,3925

we can get very sophisticated generative models.3926
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Figure 14.3: Samples from a state-of-the-art VAE trained on ImageNet (Razavi et al.,
2019)

Variational inference and information-theoretic methods are a rich (and3927

old) area of research and there are many modifications/innovations to ELBO,3928

e.g., read Alemi et al. (2018) for some simple yet deep modifications.3929



Chapter 153930

Generative Adversarial3931

Networks3932

Reading
1. Andrew Ng’s notes on generative models

http://cs229.stanford.edu/notes/cs229-notes2.pdf

2. The original GAN paper by Goodfellow et al. (2014)

3. “The Numerics of GANs” by Mescheder et al. (2017)

In the previous chapter, we used variational methods to build a generative3933

model for the data. In this case, we are given samples D =
{
xi
}n
i=1

and3934

would like to build a model that can synthesize new data. For every data x that3935

a decoder synthesizes at test time using latent variables z, we can calculate the3936

likelihood3937

x ∼ pv(x|z), for any z ∼ N(0, I).

This likelihood is an indicator of how unlikely the data x is under z. Models for3938

which we can calculate such likelihood are called explicit generative models,3939

i.e., they give a sample x and also report its likelihood. In this chapter, we will3940

look an alternative class of generative models that are implicit, i.e., they only3941

give a sample x but do not report its likelihood.3942

A Generative Adversarial Network (GAN) consists of two neural networks:3943

a Generator and a Discriminator. The Generator works in the same way as the3944

decoder in a variational auto-encoder. Given a sample z from some distribution,3945

most commonly a standard normal, we train a neural network to generate a3946

sample3947

x = gv(z).

GANs differ from explicit models in how they train the generator, the discrim-3948

inator is used for this purpose. We will look at this next.3949

166
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15.1 Two-sample tests and Discriminators3950

We will first take a short trip into an area of statistics known as decision theory.3951

Consider two datasets coming from two distributions p(x) and q(x)3952

D1 =
{
x1, . . . , xn, : xk ∼ p(x)

}
D2 =

{
x1, . . . , xn, : xk ∼ q(x)

}
.

We would like to check if these two distributions are the same given access3953

to only their respective datasets D1 and D2. Let us define the null hypothesis3954

which claims that the two distributions are the same. o The concept of a hypothesis here
is different from what we saw in
generalization/VC-theory.
Hypothesis in decision theory
simply means our hunch about a
particular situation, e.g., p = q.

3955

H0 : p = q

The alternate hypothesis is3956

H1 : p 6= q.

The goal of the so-called “two-sample test” is to decide whether H0 is true or3957

not. A typical two-sample test will construct a statistic (recall from Chapter 73958

that a statistic is any function of the data)3959

t̂

out of the two datasets, e.g., their individual means, their variances, and will3960

use this statistic to accept or reject the null hypothesis, i.e., decide whether3961

H0 is true or false.3962

Let’s say that we pick a threshold tα, and the test statistic t̂ is the difference3963

of the means3964

t̂ =

∣∣∣∣∣ 1n ∑
x∈D1

x− 1

n

∑
x∈D2

x

∣∣∣∣∣ .
Level of a test A statistician will then say that the null hypothesis is valid3965

with level α if3966

PD1∼p, D2∼p
(
t̂ > tα

)
≤ α. (15.1)

In other words, if the null hypothesis were true (both D1 and D2 are drawn3967

from the same distribution p) and if the probability of our empirical statistic3968

t̂ being larger than some chosen threshold tα is smaller than some chosen3969

probability α, then we know that the two distributions are the same despite3970

only having finite data to check. The threshold α is called the p-value in3971

the statistics literature and you will have seen statements like “gene marker3972

XX is correlated with disease YY with p-value of 10−3” or “smokers and3973

non-smokers have different distributions of cancers with p-value of 10−3”.3974

Power of a test The power of a two-sample test is the probability of rejecting3975

the null hypothesis when it is actually false. We want tests with a large power,3976

i.e., we like3977

PD1∼p,D2∼q
(
t̂ > tα

)
(15.2)

being large if the two datasets D1 and D2 are drawn from two different3978

distributions p and q respectively.3979
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The key point to remember about two-sample tests is that they let us
check if two distributions are the same without knowing anything about
the distributions. We only need access to the samples and can run this
test. This is fundamentally different than say

KL(q || p) =

∫
q(x) log

q(x)

p(x)
dx

where we need to know the probabilities q(x), p(x) to compute the dis-
tance between distributions.

Example 15.1. A two-sample test requires three things, a statistic t̂, a level α3980

and a threshold for the statistic tα. The latter two are numbers that a statistician3981

can pick, e.g., picking α = 0.05 is an accepted standard in most biological3982

studies.3983

3984

15.2 Building the Discriminator in a GAN3985

Finding two-sample test statistics for arbitrary distributions is difficult,
especially for high-dimensional problems where the samples are natural
images. The key idea behind a Generator Adversarial Network (GAN) is
to learn the statistic t̂.

A good statistic is the one that lets us distinguish between data that
comes from Nature’s distribution and data that is synthesized by our
generative model. This statistic, which is called the discriminator in GAN,
is a critic of the generative model’s results. It has a high power in (15.2) if
the generated samples are different from those of Nature. Why? Because
in this case for most thresholds tα that we can pick, the power of the
two-sample test in (15.2) will be large.

The discriminator should also be sound, i.e., if the two distributions
are indeed the same (e.g., if our generator is as good as good as Nature’s
renderer), the discriminator should have a low level α in (15.1).

We are going to train a binary classifier3986

du : X 7→ [0, 1]

that will act as the discriminator in a GAN. You should think of the decision3987

boundary of this binary classifier as the difference of the test statistic and our3988

threshold t̂− tα.3989



169

o Notice how rigorous theory is
used as an inspiration for developing
GANs. This is a common theme that
you will see in the deep learning
literature; the models may seem ad
hoc and sprung out of sheer
intuition, but the reason they work
well is often because there are sound
theoretical principles behind them.
Building this skill requires studying
the classical curriculum (ML,
statistics, optimization) but being
creative in applying this curriculum
with deep networks.

We next create a dataset to train this classifier. Given n images from3990

Nature’s distribution p(x) and the distribution of our generator’s images q(x),3991

we will label the former with y = 1 and the latter with y = 0 to create a joint3992

dataset:3993

D1 =
{

(xi, 1)i=1,...,n : xi ∼ p(x)
}

D2 =
{

(xi, 0)i=1,...,n : xi ∼ q(x)
}

D = D1 ∪D2.

Fitting du on this problem can be done simply using the logistic loss wherein3994

du is modeling the log-odds3995

log
P (y = 1|x)

P (y = 0|x)
= du(x).

The logistic loss is therefore3996

u∗ = argmin
u
− 1

n

∑
x∼D1

log du(x)− 1

n

∑
x∼D2

log(1− du(x)). (15.3)

Observe that this is the same logistic loss that we are used to; the only dif-3997

ference being that the entire dataset has 2n samples with all the ones in D13998

having labels y = 1 and all the ones in D2 having labels y = 0.3999

What is the ideal discriminator? The population risk corresponding to the4000

discriminator’s objective in (15.3) is4001

d∗ = argmax
d

E
x∼p

[log d(x)] + E
x∼q

[log(1− d(x))] . (15.4)

We can take the variational derivative of this objective (just like you did in4002

HW 3 to compute the optimal classifier in the bias-variance tradeoff) to get4003

d∗(x) =
p(x)

p(x) + q(x)
. (15.5)

o For a functional

L[d] =

∫
log d(x)p(x) dx

the variational derivative is

δL

δd
(x) =

p(x)

d(x)
.

Similarly, the variational derivative
for

L[d] =

∫
log(1− d(x))q(x) dx

is
δL

δd
(x) =

q(x)

1− d(x)
.

Observe that the ideal discriminator is 1/2 if the two distributions p and q are4004

the same. The intuitive reason for this is that if the data D were really coming4005

from the same distribution, we would never be able to fit a logistic classifier to4006

get better than 50% error because D1 and D2 have different labels in spite of4007

having similar input data.4008

Think of you would use our discriminator to build a two-sample test for a4009

given dataset. If given two datasets D1 and D2 labeled as above4010

t̂ :=
1

n

∑
x∈D1

1{du(x)>0} +
1

n

∑
x∈D2

1{du(x)<0}

and the threshold tα = 1/2. This construction is an example of what is called4011

a “classifier-based two-sample test”; you can read more about it at Lopez-Paz4012

and Oquab (2016).4013

It can be shown that if the two distributions are not the same, the
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Figure 15.1: Schematic of the architecture in a GAN

power of the two-sample test is an increasing function of the statistic
t̂. Therefore if we wanted to maximize the power, maximizing the test
statistic t̂ of the discriminator is a good idea. This makes the discriminator
more and more sensitive to the differences between samples from p and
q.

15.3 Building the Generator of a GAN4014

The second key idea in a GAN is that the generator

gv : Z → X

that maps the latent space Z ⊂ Rm to data space X is trained to minimize
the power of the two-sample test.

The generator gv wants to synthesize data that look like they came
from Nature’s distribution p(x). As the generator’s distribution q comes
closer to p, the accuracy of the discriminator du will degrade (it can-
not distinguish between them as easily) and thereby discriminator will
be forced to make its test statistic more sensitive to subtle differences
between the two distributions.

15.4 Putting the discriminator and generator to-4015

gether4016

The GAN objective combines two objectives: the discriminator updates its4017

weights u to maximize the power and the generator updates its weights v to4018

minimize the power. We will write the population version of the optimization4019

problem as follows.4020

min
v

max
u

Ex∼p(x) [log du(x)] + Ex∼q(x) [log (1− du(x))] (15.6)

Let us fill in a few more details. The dataset of real images consists of samples4021

from Nature’s distribution p(x), so we will write it as a finite sum over our4022

dataset D =
{
xi ∼ p

}n
i=1

. The generator uses samples z from some generic4023

distribution, e.g., a standard Gaussian distribution.4024

min
v

max
u

1

n

∑
x∈D

[log du(x)] + Ez∼N(0,I) [log (1− du(gv(z)))] . (15.7)
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Training a GAN The objective in (15.7) is an example of a min-max op-4025

timization problem. Such problems are quite difficult to solve and this is4026

why training GANs is quite difficult. In practice, we typically resort to a few4027

crude tricks. We sample a mini-batch of real images
{
x1, . . . , xb

}
and another4028

mini-batch of noise vectors
{
z1, . . . , zb

}
. Using these two mini-batches4029

1. we update the generator gv using the gradient of the objective with respect4030

to v.4031

2. update the discriminator du using the gradient of the loss with respect to u.4032

There is no need for the Reparametrization Trick here because there is no4033

expectation being taken over parametrized distributions. This is a big benefit4034

of the GAN formulation as compared to variational inference; the former does4035

not have to be careful while picking a variational family and complex deep4036

networks can be used as the generator or the discriminator easily. Let us next4037

make a few comments about the objective in (15.7).4038

Solving min-max problems is difficult This is a min-max problem: the4039

generator is minimizing the objective and the discriminator is maximizing the4040

objective. Such problems are hard to solve in optimization especially with4041

gradient descent techniques. Consider an example of a saddle point4042

4043

where the loss function increases in one direction and decreases in the other4044

direction. Finding the solution of the min-max objective involves finding the4045

saddle point. It is easy to appreciate that depending on how many steps of4046

gradient descent we take for either of the min/max players we risk falling4047

down or climbing up the hill. There are many many other other factors that4048

make solving such problems hard, e.g., learning rate, momentum, stochastic4049

gradients if we are using mini-batches. Hyper-parameters are very tricky to4050

pick while training GANs and this is often called “instability of training”.4051

A harsh discriminator inhibits the training of the generator The gener-4052

ator has a much more difficult task than the discriminator. During early stages4053

of training, the generator needs to learn how to synthesize images whereas4054

the discriminator can easily distinguish between bad images generated by4055

the generator and good ones from our original dataset using very similar test4056

statistics, e.g., an average of the RGB values all the pixels.4057

The gradient of the second term in the objective is4058

∇v log(1− du(gv(z))) = − ∇v du(gv(z))

1− du(gv(z))
.
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As a function of du(gv(z)) the second term in the objective thus looks like4059

4060

In other words, the gradient with respect to the generator’s weights v is4061

essentially zero if the generator is not working well (this is the case when4062

du(gv(z)) predicts a large negative value). This does not allow the generator4063

to learn well; it is essentially like your advisor shooting down all your ideas.4064

Most GAN implementations therefore modify the second term in the4065

objective to be4066

− E
z∼N(0,I)

[log du(gv(z))]

which does not suffer from the small gradient problem.4067

4068

Synthesizing new images from a GAN The generator samples latent fac-4069

tors z ∼ N(0, I) at test time to synthesize new images. The discriminator is4070

not used at test time.4071

15.5 How to perform validation for a GAN?4072

For variational generative models, we can use the log-likelihood of synthesized4073

images to obtain some understanding of whether the model is working well. If4074

the log-likelihood of new images is similar to the log-likelihood of images in4075

the training data then the new images are good at least as far as the model is4076

concerned even if they may have perceptual artifacts.4077

Doing so is not so easy for implicit models because they do not output the4078

likelihood of the generated samples. Run the generator a few times to eyeball4079

the quality of images it generates.4080
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4081

But this is a very heuristic and qualitative metric.4082

Frechet Inception Distance (FID) A number of other metrics exist for eval-4083

uating generative models. One popular one is the so-called Frechet Inception4084

Distance (FID) where we take any pre-trained model for classification, in this4085

case people typically use the Inception architecture, and evaluate4086

FID(p, q) = ‖µp − µq‖22 + trace
(

Σp + Σq − 2 (ΣpΣq)
1/2
)
.

where µp,Σp are the mean and covariace of the features of an Inception4087

network when real images are fed to it and similarly µq,Σq are the mean/-4088

covariance of the features when GAN-generated images are fed to the same4089

network.4090

The above formula is the Wasserstein distance between the two densities4091

p, q, There are many similar techniques such as the Maximum Mean Dis-4092

crepency (MMD) that can be used to understand the discrepancy between the4093

two distributions once the features are computed using some pre-trained model4094

on their respective images.4095

Roughly speaking, the evaluation methodology in generative models, espe-4096

cially for images, is quite flawed. This is not a new phenomenon in machine4097

learning/statistics because it is a intrinsically difficult problem to measure4098

when two distributions are the same given only finite data from them. The4099

problem is exacerbated in deep generative models because deep networks4100

are very good at over-fitting, e.g., GANs can often end up memorizing the4101

training data, they can generate very realistic images that are essentially the4102

same as those in the training data. Nevertheless, a lot of techniques exist to4103

make GANs synthesize high-quality images. See some examples at Brock4104

et al. (2018); Karras et al. (2017).4105

The key behind the empirical success of GANs is to convert a problem
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about estimating distributions, sampling from them etc. into a classifi-
cation problem. Deep networks are extremely good at classification as
compared to other problems like regression, reconstruction etc. and GANs
leverage this remarkably. This is a trick that you will do well to remember
when you use deep networks in the future: typically you will always
get better results if you manage to rewrite your problem as a classifica-
tion problem. I suspect the real reason for this is that we do not have
good regularization techniques for deep networks for non-classification
problems.

15.6 The zoo of GANs4106

Due to the numerous issues with GANs, there have been a large number of4107

variants and attempts to improve their empirical performance. They fall mainly4108

into the following categories.4109

1. Optimization tricks to train the generator-discriminator pair in a more stable4110

fashion.4111

2. New loss functions that change the binary cross-entropy loss of the discrim-4112

inator to something else. A majority of papers, including the example we4113

saw above, fall into this category.4114

3. Characterizing the kind of critical points, equilibria of the training process;4115

this is a similar line of analysis as the study of the energy landscape of deep4116

networks for standard supervised learning.4117

4. Connections with variational inference suggest that GANs and their training4118

techniques are essentially variational inference in disguise (Nowozin et al.,4119

2016).4120

5. Coming up with new ways of evaluating generative models.4121

In addition to the above lines, there are many other novel and interesting4122

applications such as Cycle-GANs and conditional-GANs.4123
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