
ESE 650
Learning in Robotics

Spring 2019

Instructors
• Faculty

• Pratik Chaudhari: ESE

• C.J. Taylor: CIS

• Teaching Assistants

• Arbaaz Khan

• Ian Miller

• Ty Nguyen

• Zhexian Xie

• Elijah Lee

Gratuitous pictures of robots

What is a robot

The environment

Sensors Computer
Actuators

And
Mechanisms

Course Goals

• The goal of the class will be to introduce
you to some of the manifold ways that
robotic systems learn from data

• One or more robots gathering data and
using it to build a model of their
environment

• Using data collected over multiple trials
to find good strategies for achieving a
goal

Topics

• Module 1 : State Estimation

• Module 2 : Control and Planning

• Module 3 : Reinforcement Learning

• Module 4 : Other Learning Schemes

• Transfer learning, meta-learning, multi-
task learning, self-supervised learning

Course Texts

• Recommended texts

• “Probablistic Robotics”, Thrun, Burgard
and Fox

• “Introduction to Probability”, Blitzstein
and Hwang

• “Introduction to Linear Algebra”, Strang

Course Logistics
• There is a Canvas page for the course which

will have

• Assignments

• Grades

• Files and handouts

• Course Syllabus

• Link to Piazza site for course

• Link to Gradescope for submitting
assignments

Course Logistics

• There will be a Piazza site linked from the
Canvas page which can be used to ask
questions

• Please make your questions public

• Please use search feature to see if your
question has been addressed in an earlier
post.

Course Organization

• There will be multiple homework involving
both written and programming assignments
(Python) - 50% of grade

• There will be a midterm - 20% of grade

• There will be a final project - 30% of grade

Probability Review

Why Probability

• Probability gives us a language to talk about
what we believe about what we know and
what we don’t know.

• Uncertainty is a fact of life in robotics.

• In sensing

• In actuation

Discrete Probability
• Experiment: any procedure that can be repeated infinitely and has a

well-defined set of possible outcomes.

• Sample space ⌦: the set of possible outcomes of an experiment.

– ⌦ = {HH,HT, TH, TT}

• Event A: a subset of the possible outcomes ⌦

– A = {HH}, B = {HT, TH}

• Probability of an event: P(A) - A function that maps events to numbers
between 0 and 1.

Probability Review
• Probability Axioms:

– P(A) � 0

– P(⌦) = 1

– If {Ai} are disjoint (Ai \Aj = ;), then P(
S

i Ai) =
P

i P(Ai)

• Corollary

– P(;) = 0

– max{P(A),P(B)} P(A [B) = P(A) + P(B)� P(A \ B) P(A) +
P(B)

– A ✓ B) P(A) P(B)

– P (Ac) = 1� P (A)

Probability Review
• Conditional Probability: P(A | B) = P(A\B)

P(B) , P(B) 6= 0

• Total Probability Theorem: If {A1, . . . , An} is a partition of ⌦, i.e.,
⌦ =

S
i Ai and Ai \Aj = ;, i 6= j, then:

P(B) =
nX

i=1

P(B \Ai)

• Bayes Theorem If {A1, . . . , An} is a partition of ⌦, then:

P(Ai | B) =
P(B | Ai)P(Ai)Pn

j=1 P(B | Aj)P(Aj)

• Independent events: P(
T

i Ai) =
Q

i P(Ai)

– observing one does not give any information about another

– in contrast, disjoint events never occur together: one occurring tells
you that others will not occur and hence, disjoint events are always
dependent

Probability Review

• �-algebra: a collection of subsets of ⌦ closed under complementation and
countable unions.

• Measurable space: a tuple (⌦,F), where ⌦ is a sample space and F is
a �-algebra.

• Measure: a function µ : F ! R satisfying µ(A) � µ(;) = 0 for all A 2 F
and countable additivity µ([iAi) =

P
i µ(Ai) for disjoint Ai.

• A measure µ is �-finite on (⌦,F), if ⌦ can be obtained as the countable
union [nAn of sets An 2 F of finite measure, µ(An) < 1.

We can also talk about experiments that produce real
number values but this requires more work.

Probability Review
• Probability measure: a measure that satisfies µ(⌦) = 1.

• Probability space: a triple (⌦,F ,P), where ⌦ is a sample space, F is a
�-algebra, and P : F ! [0, 1] is a probability measure.

Random Variables
• Random variable X: an F-measurable function from (⌦,F) to (R,B),

i.e., a function X : ⌦ ! R s.t. the preimage of every set in B is in F .

• Cumulative Distribution Function (CDF) F (x) of a random vari-
able X: a function F (x) := P(X x) that is non-decreasing, right-
continuous, and limx!1 F (x) = 1 and limx!�1 F (x) = 0.

• Probability Distribution Function (PDF) f(x) such that

F (x) =

Z x

�1
f(y)dy = P(X x)

• Density/mass function f(x) of a random variable X
Continuous RV Discrete RV
X : (⌦,F ,P) ! (R,B,P �X�1) X : (⌦, 2⌦,P) ! (R,B,P �X�1)
f(x) � 0 f(x) = P(X = x) � 0R
f(y)dy = 1

P
i f(i) = 1

F (x) =
R x
�1 f(y)dy = P(X x) F (x)=

P
i2Z,ix f(i) = P(X x)

P(X = x) = F (x)� F (x�) = lim✏!0

R x
x�✏ f(y)dy = 0

P(a < X b) = F (b)� F (a) =
R b
a f(x)dx

Probability Density Function

Probability that a random
variable takes a value in this
interval

Probability Review
• Lebesgue Integration: The integral

R
gdµ of a measurable function g on

measurable space (⌦,F) with a �-finite measure µ can be defined. In the
case that µ has a pdf p, the Lebesgue integral is equivalent to a Riemann
integral:

R
gdµ =

R
g(x)p(x)dx.

• Expectation: Given a random variable X : (⌦,F ,P) ! (Rn,Bn,P�X�1)
and a measurable function g : (Rn,Bn,P � X�1) ! (Rm,Bm,L), the
expectation of g(X) is defined as follows:

E[g(X)] =

Z

⌦
g(X(!))dP(!) =

Z

Rn

g(x)dP(X�1(x)) =

Z

Rm

ydL(y)

When X has a pdf p and g has a pdf l, the above simplifies to:

E[g(X)] =

Z

Rn

g(x)p(x)dx =

Z

Rm

yl(y)dy

• Variance of a random variable X: V ar[X] := E
⇥
(X � E[X])(X � E[X])T

⇤
=

E
⇥
XXT

⇤
� E[X]E[X]T

Joint Distribution
• The joint distribution of random variables {Xi}ni=1 on (⌦,F ,P) defines

their simultaneous behavior and is associated with a cumulative distri-
bution function F (x1, . . . , xn) := P(X1 x1, . . . , Xn xn). The CDF
Fi(xi) of Xi defines its marginal distribution.

• Random variables {Xi}ni=1 on (⌦,F ,P) are jointly independent i↵ for
all {Ai}ni=1 ⇢ F , P(Xi 2 Ai, 8i) =

Qn
i=1 P(Xi 2 Ai)

• Let X and Y be random variables and suppose EX, EY , and EXY exist.
Then, X and Y are uncorrelated i↵ EXY = EXEY or equivalently
Cov(X,Y) = 0.

• Independence implies uncorrelatedness

• Two random variables X and Y are orthogonal if E[XTY] = 0

Joint Distribution

Conditional PDFs

Conditional PDF

Probabilistic Robotics

Introduction

Probabilities
Bayes rule

Bayes filters

2

Discrete Random Variables

• X denotes a random variable.

• X can take on a countable number of values in
{x1, x2, …, xn}.

• P(X=xi), or P(xi), is the probability that the
random variable X takes on value xi.

• P() is called probability mass function. 

• E.g. 02.0,08.0,2.0,7.0)(=RoomP

.

3

Continuous Random Variables

• X takes on values in the continuum.

• p(X=x), or p(x), is a probability density
function. 

• E.g.

∫=∈
b

a

dxxpbax)()),(Pr(

x

p(x)

4

Joint and Conditional Probability

• P(X=x and Y=y) = P(x,y)

• If X and Y are independent then  
 P(x,y) = P(x) P(y)

• P(x | y) is the probability of x given y 
 P(x | y) = P(x,y) / P(y) 
 P(x,y) = P(x | y) P(y)

• If X and Y are independent then 
 P(x | y) = P(x)

5

Law of Total Probability, Marginals

∑=
y

yxPxP),()(

∑=
y

yPyxPxP)()|()(

∑ =
x

xP 1)(

Discrete case

∫ =1)(dxxp

Continuous case

∫= dyypyxpxp)()|()(

∫= dyyxpxp),()(

6

Bayes Formula

evidence
prior likelihood

)(
)()|(

)(

)()|()()|(),(

⋅
==

⇒

==

yP
xPxyP

yxP

xPxyPyPyxPyxP

7

Normalization

)()|(
1)(

)()|(
)(

)()|()(

1

xPxyP
yP

xPxyP
yP

xPxyP
yxP

x
∑

==

==

−η

η

yx

x
yx

yx

yxPx

xPxyPx

|

|

|

aux)|(:

aux
1

)()|(aux:

η

η

=∀

=

=∀

∑

Algorithm:

8

Bayes Rule  
with Background Knowledge

)|(
)|(),|(),|(

zyP
zxPzxyP

zyxP =

9

Conditioning

• Total probability:

∫
∫
∫

=

=

=

dzzPzyxPyxP

dzzPzxPxP

dzzxPxP

)(),|()(

)()|()(

),()(

10

Conditional Independence

)|()|(),(zyPzxPzyxP =

),|()(yzxPzxP =

),|()(xzyPzyP =

 equivalent to

 and

11

Simple Example of State Estimation

• Suppose a robot obtains measurement z
• What is P(open|z)?

12

Causal vs. Diagnostic Reasoning

•P(open|z) is diagnostic.
•P(z|open) is causal.
•Often causal knowledge is easier to

obtain.
• Bayes rule allows us to use causal

knowledge:

)(
)()|()|(

zP
openPopenzPzopenP =

count frequencies!

13

Example

• P(z|open) = 0.6 P(z|¬open) = 0.3

• P(open) = P(¬open) = 0.5

67.0
3
2

5.03.05.06.0
5.06.0)|(

)()|()()|(
)()|()|(

==
⋅+⋅

⋅
=

¬¬+
=

zopenP

openpopenzPopenpopenzP
openPopenzP

zopenP

• z raises the probability that the door is open.

14

Combining Evidence

•Suppose our robot obtains another
observation z2.

•How can we integrate this new
information?

•More generally, how can we estimate 
P(x| z1...zn)?

15

Recursive Bayesian Updating

),,|(
),,|(),,,|(),,|(

11

1111
1

−

−−
=

nn

nnn
n

zzzP
zzxPzzxzP

zzxP
…

……
…

Markov assumption: zn is independent of z1,...,zn-1 if
we know x.

)()|(

),,|()|(

),,|(
),,|()|(),,|(

...1
...1

11

11

11
1

xPxzP

zzxPxzP

zzzP
zzxPxzP

zzxP

ni

in

nn

nn

nn
n

∏
=

−

−

−

=

=

=

η

η …

…
…

…

16

Example: Second Measurement

• P(z2|open) = 0.5 P(z2|¬open) = 0.6

• P(open|z1)=2/3

625.0
8
5

3
1

5
3

3
2

2
1

3
2

2
1

)|()|()|()|(
)|()|(),|(

1212

12
12

==
⋅+⋅

⋅
=

¬¬+
=

zopenPopenzPzopenPopenzP
zopenPopenzP

zzopenP

• z2 lowers the probability that the door is open.

17

Coherence of Bayes Rule
• Note that in this example it does not matter whether we consider the

measurement z1 or z2 first. We will end up with the same result. In this

sense Bayes rule is coherent since it gives the same result regardless of the

order in which the information is accumulated.

• One way to see this is to observe that in the discrete case the update

p(x|z) = p(z|x)p(x)
p(z)

= p(x)
p(z|x)
p(z)

can be viewed as a matrix vector multiplication where p(x) and p(x|z) are
row vectors denoting our belief about x before and after the measurement

respectively and
p(z|x)
p(z) is a diagonal matrix which captures the measure-

ment model and the required scaling. Since diagonal matrices commute

we can apply all relevant measurements in any order and get the same

result.

State Estimation

State of a system
• We will use the term state denoted by the symbol xt to denote

the aspects of the world that we want to estimate

• Some examples of state include:

• Robot position

• Robot velocity

• Map of environment

• Configuration of joints

• Location and velocity of other cars or pedestrians

• Air pressure outside vehicle

• Rotational speed of propellors

• Note state is often vector-valued

Time

• Note that we use the subscript t in xt to denote the
fact that the state of the world typically evolves over
time.

• Since we are typically implementing our estimation
system on a digital computer time is often discretized

Measurements
• We will use the symbol zt to denote sensor

measurements that the robot acquires over time.

• Some examples of measurement include

• GPS measurements

• Image measurements

• Switch readings

• LIDAR readings

• Outputs of a person detection system

• Sensor measurements can be vector valued and can
be continuous or discrete

Measurement Model

• In the sequel we will assume that the sensor measurements we receive can
be predicted from the state of the robot. More precisely we will assume
that we can model the probability of a sensor output conditioned on the
state of the robot

P (zt|xt)

• Note that this probabilistic model allows us to account for the fact that
our sensor measurements may contain random errors. If there were no
such errors we could simply model the measurements as a deterministic
function of the state.

Actions

• We will use the symbol ut to denote actions or
control outputs that the robot emits over time

• For instance the robot may move its wheels or
extend its arms or open a valve that actuates a
pneumatic element

Action Model
• In the sequel we will assume that we can model the evolution of the state

of the system over time using another conditional probability distribution.

P (xt|xt�1, ut)

• This model assumes that the state of the system can be predicted given

the last state of the system, xt�1, and the current control input, ut. Once

again this model is probabilistic to account for the fact that our model

may have inaccuracies or other random aspects.

• Note that this model is Markovian, that is it assumes that the next state

can be predicted solely from the current state and control without consid-

ering any previous states. This is a non-trivial assumption and you will

typically need to define your state carefully to satisfy it.

State Estimation

• The goal of state estimation is to maintain a probability distribution that
represents our knowledge, or lack thereof, about the state of the world
conditioned on all of the measurements we have seen and all of the actions
we have taken.

p(xt|z1, u1, z2, u2, z3, u3, · · · , zt�1, ut�1)

• We will sometimes denote this distribution as our belief distribution

bel(xt)

Example

• The figure to the right
depicts a robot moving
along a straight corridor.
The state we want to
estimate is its position
which is discretized into
a finite set of cells

x

bel(x)

(a)

x

bel(x)

x

p(z|x)

(b)

x

bel(x)

(c)

x

bel(x)

x

p(z|x)

(d)

x

bel(x)

(e)

Figure 8.1 Grid localization using a fine-grained metric decomposition. Each pic-
ture depicts the position of the robot in the hallway along with its belief bel(xt),
represented by a histogram over a grid.

Sensor Model

x

bel(x)

(a)

x

bel(x)

x

p(z|x)

(b)

x

bel(x)

(c)

x

bel(x)

x

p(z|x)

(d)

x

bel(x)

(e)

Figure 8.1 Grid localization using a fine-grained metric decomposition. Each pic-
ture depicts the position of the robot in the hallway along with its belief bel(xt),
represented by a histogram over a grid.

• We assume that the robot is equipped with a sensor which it uses to detect
doors returning a yes or no answer, zt. The sensor isn’t entirely accurate
and we capture this with the following sensor model.

p(zt = 1| door) = 0.8

p(zt = 1| no door) = 0.1

Action Model

x

bel(x)

(a)

x

bel(x)

x

p(z|x)

(b)

x

bel(x)

(c)

x

bel(x)

x

p(z|x)

(d)

x

bel(x)

(e)

Figure 8.1 Grid localization using a fine-grained metric decomposition. Each pic-
ture depicts the position of the robot in the hallway along with its belief bel(xt),
represented by a histogram over a grid.

• At any point the robot can move left, move right or stay in the same place.

• If it chooses to move the probability that it actually moves is 0.8 otherwise
it fails to move and ends up in the same place.

• In the special case where the robot is at the far left or far right and
elects to move left or right respectively it will stay in the same place
with probability one. You can assume that this corresponds to hitting a
physical wall.

Action Update
• Let’s consider a simple example where the corridor is divided into 5 cells.

In the beginning we will assume that we believe that the robot is equally
likely to be in any of the 5 cells.

bel(x0) =
⇥
0.2 0.2 0.2 0.2 0.2

⇤

• At time 1 the robot issues a command to move one step right. We can
compute our new belief state as follows:

bel(x1|x0, u1) = 0.2⇥
⇥
0.2 0.8 0 0 0

⇤
+ (1)

0.2⇥
⇥
0 0.2 0.8 0 0

⇤
+ (2)

0.2⇥
⇥
0 0 0.2 0.8 0

⇤
+ (3)

0.2⇥
⇥
0 0 0 0.2 0.8

⇤
+ (4)

0.2⇥
⇥
0 0 0 0 1

⇤
(5)

=
⇥
0.04 0.2 0.2 0.2 0.36

⇤
(6)

• Note this is an application of the Law of Total Probability

Markov Matrix
• Note that this update step can be viewed as a matrix vector multiplication

where bel(x0) is a row vector denoting the current belief state which we
multiply by a matrix representing the state transition probabilities of the
Markov process, p(x1|x0, u1).

bel(x1) = bel(x0)p(x1|x0, u1)

bel(x1) = bel(x0)M01

M01 =

0

BBBB@

0.2 0.8 0 0 0
0 0.2 0.8 0 0
0 0 0.2 0.8 0
0 0 0 0.2 0.8
0 0 0 0 1

1

CCCCA

• The matrix M01 is a Markov matrix that captures the transition proba-
bilities between time steps 0 and 1. Note that the sum of the entries along
each row is 1.

• We can imagine a sequence of transition matrices that represent the phases
of a Discrete Markov Process, M01,M12,M23,M34... and can use these to
model the evolution of the belief state as follow:

bel(x4) = bel(x0)M01M12M23M34

Sensor Update
• Let’s assume that in this corridor there are doors at the first position and

the fourth position.

• Let’s consider the case where the belief state at some time t is given by

bel(xt) =
⇥
0.1 0.2 0.3 0.2 0.2

⇤

• Let’s assume that at time t we take a measurement, zt, which reports a 1
indicating the possible presence of a door.

• We can use Bayes Rule to update our belief given this new measurement.

p(x|z) = p(z|x)p(x)
p(z)

p(x|z) / p(z|x)p(x)

• Given the measurement we update our belief state as follows

b̄el(xt|zt) /
⇥
0.8⇥ 0.1 0.1⇥ 0.2 0.1⇥ 0.3 0.8⇥ 0.2 0.1⇥ 0.2

⇤

/
⇥
0.08 0.02 0.03 0.16 0.02

⇤

• As a final step we can normalize the array so that the entries sum to 1.

32

Coherence of Bayes Rule

• Another way to look at this is to observe that in the discrete case the
update

p(x|z) = p(z|x)p(x)
p(z)

= p(x)
p(z|x)
p(z)

can be viewed as a matrix vector multiplication where p(x) and p(x|z) are
row vectors denoting our belief about x before and after the measurement
respectively and p(z|x)

p(z) is a diagonal matrix which captures the measure-
ment model and the required scaling. Since diagonal matrices commute
we can apply all relevant measurements in any order and get the same
result. This explains the coherence of Bayes rule.

33

Bayes Filters: Framework

• Given:
• Stream of observations z and action data u:

• Sensor model P(z|x).
• Action model P(x|u,x’).
• Prior probability of the system state P(x).

• Wanted:
• Estimate of the state X of a dynamical system.
• The posterior of the state is also called Belief:

),,,|()(11 tttt zuzuxPxBel …=

},,,{ 11 ttt zuzud …=

34

Markov Assumption

Underlying Assumptions
• Static world
• Independent noise
• Perfect model, no approximation errors

),|(),,|(1:1:11:1 ttttttt uxxpuzxxp −− =
)|(),,|(:1:1:0 tttttt xzpuzxzp =

35

Bayes Filter Algorithm

1. Algorithm Bayes_filter(Bel(x),d):
2. η=0
3. If d is a perceptual data item z then
4. For all x do
5.
6.
7. For all x do
8.
9. Else if d is an action data item u then

10. For all x do
11.
12. Return Bel’(x)

)()|()(' xBelxzPxBel =
)(' xBel+=ηη

)(')(' 1 xBelxBel −=η

')'()',|()(' dxxBelxuxPxBel ∫=

111)(),|()|()(−−−∫= tttttttt dxxBelxuxPxzPxBel η

36

Summary

• Bayes rule allows us to compute
probabilities that are hard to assess
otherwise.

• Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

• Bayes filters are a probabilistic tool for
estimating the state of dynamic
systems.

37

Comments

•This implementation of a Bayes filter
represents the probability distribution
over the state with a histogram

•This scales badly as we increase the
number of dimensions in the state space

•Other implementations of the Bayes
Filter idea that we will consider will use
different representations of the PDF with
different strengths and weaknesses

38

Bayes Filters are Familiar!

• Kalman filters
• Particle filters
• Hidden Markov models
• Dynamic Bayesian networks
• Partially Observable Markov Decision

Processes (POMDPs)

111)(),|()|()(−−−∫= tttttttt dxxBelxuxPxzPxBel η

39

Hidden Markov Model

• This generic model captures the idea of a
hidden state, x, indirectly observed through
a set of output measurements, z.

• State evolves in a Markovian fashion

),|(),,|(1:1:11:1 ttttttt uxxpuzxxp −− =
)|(),,|(:1:1:0 tttttt xzpuzxzp =

Hidden Markov Models
• Given a hidden markov model consider the problem of finding a sequence

of states that are in best agreement with a set of observations.

max
x1,x2,x3

p(x1, x2, x3|z1, z2, z3)

• Note that because of Bayes rule and the structure of the Markov Model
we can rewrite as follows

p(x1, x2, x3|z1, z2, z3) =
p(z1|x1)p(z2|x2)p(z3|x3)p(x1, x2, x3)

p(z1, z2, z3)

• Further
p(x1, x2, x3) = p(x0)p(x1|x0)p(x2|x1)p(x3|x2)

• Putting it all together

p(x1, x2, x3|z1, z2, z3) =
p(z1|x1)p(z2|x2)p(z3|x3)p(x0)p(x1|x0)p(x2|x1)p(x3|x2)

p(z1, z2, z3)

Example
• Consider a markov model of the weather where the world has three states,

sunny, cloudy and rainy. Suppose that the following matrix captures the
transitions between those three states:

0

@
0.5 0.2 0.3
0.2 0.6 0.2
0.3 0.6 0.1

1

A

egs. if the current day is sunny the probability that the next day will be
cloudy is 0.2 according to this table.

• Suppose we have an indirect measurement of the weather in terms of ele-
vated umbrella sales. The probability of elevated umbrella sales given the
that the weather is sunny, cloudy or rainy are 0.1, 0.4 and 0.8 respectively.

• Given a prior distribution of the weather on day 0, (0.3, 0.2, 0.5), and
a sequence of umbrella readings (elevated, normal, elevated), what is the
most likely sequence of weather states over the three days?

Naive Approach
• One naive approach to solving this problem would be to enumerate all pos-

sible sequences of weather conditions for the three days, egs. (sunny, rainy,

cloudy) and then compute the associated probability, p(x1, x2, x3|z1, z2, z3).
Then we could determine which sequence is most probable.

• The problem with this approach is that it scales poorly. If there are N
possible states and we are considering T time steps we would have to

compute NT
probabilities.

Viterbi Algorithm
• There is a more e�cient way to tackle this problem which leverages the

structure of the HMM.

• One way to see this is by taking the log of the probability we are trying
to maximize:

p(x1, x2, x3|z1, z2, z3) =
p(z1|x1)p(z2|x2)p(z3|x3)p(x0)p(x1|x0)p(x2|x1)p(x3|x2)

p(z1, z2, z3)

log p(x1, x2, x3|z1, z2, z3) = log p(z1|x1) + log p(z2|x2) + log p(z3|x3) + log p(x0) +

log p(x1|x0) + log p(x2|x1) + log p(x3|x2)

� log p(z1, z2, z3) (1)

• To maximize the probability we can minimize � log p(x1, x2, x3|z1, z2, z3).
Since the probabilities are all between 0 and 1 the negative logs will be
non-negative values.

• Note that the term log p(z1, z2, z3) is a constant given the observed mea-
surements so it doesn’t a↵ect the optimization

Viterbi Algorithm

A B

• This diagram shows how we can recast the optimization problem as one
of finding the shortest path between 2 points, A and B, in a trellis graph.

• At each stage of the trellis graph the edge weights model one aspect of the
sum being minimized, � log(p(x0)), � log p(x1|x0), � log p(z1|x1) etc.

• In this diagram the edge weights in the last phase linking to node B are
all 0.

� log(p(x0)) � log(p(z1|x1)) � log(p(z2|x2)) � log(p(z3|x3))

� log(p(x1|x0)) � log(p(x2|x1)) � log(p(x3|x2))

sunny

cloudy

rainy

Viterbi Algorithm

A B

8

10

7

4

1

5
11

• The optimization problem can be solved e�ciently by considering each
stage in the trellis in turn from left to right. At each stage each node
computes the shortest distance to the start node by considering the short-
est distances in the previous stage. We need only record the shortest path
distance for each node and its parent in the previous stage.

• When the algorithm reaches the final stage we can trace back through the
parent pointers to recover the optimal path/state assignment.

• This is an example of Dynamic Programming where our optimization is
split over a number of stages and the partial results from one stage of the
optimization are used in the next.

Viterbi Algorithm

A B

• When the algorithm reaches the final stage we can trace back through the
parent pointers to recover the optimal path/state assignment.

• If there are N possible states and T time steps the overall computational
complexity is N2T since each of the T stages considers N2 possibilities.

sunny

cloudy

rainy

ESE 650
Learning in Robotics

Spring 2019

Kalman Filter

• Goal to introduce the Kalman Filter for
state estimation

• Much like the discrete Bayes filter from the
previous lecture the goal here is to
maintain an estimate for the state of a
system as we perform actions and take
measurements

• The representation of probability will be
different

Linearity of Expectation

• If X and Y are random variables then

E[X + Y] = E[X] + E[Y]

This is actually more surprising than it looks because it is true regardless
of the structure of the joint probability distribution function P (X,Y).

• If Z = X + Y then:

E[(Z � E(Z))2] = E[((X + Y)� (E(X) + E(Y)))2]

= E[((X � E(X)) + (Y � E(Y)))2]

= E[(X � E(X))2] + E[(Y � E(Y))2] + 2E[(X � E(X))(Y � E(Y))]

= �2
x + �2

y + 2�xy

Linearity of Expectation

• Let X and Y denote random variables with joint probability distribution
function fxy. The probability distribution function of the sum Z = X+Y
is given by.

fz(z) = fz(z) =

Z 1

�1
fxy(z � t, t)dt

• In the special case that X and Y are independent we have fxy(x, y) =
fx(x)fy(y) where fx and fy are the marginal distributions. This yields
the convolution result shown below:

fz(z) =

Z 1

�1
fx(z � t)fy(t)dt

Relevant Inequalities

• Chebyshev’s inequality

P (|(X � µ)| � a) �2

a2

This gives us a bound on how likely the value of a random variable is to
stray from the mean.

Normal Distribution 1D
f(x) = 1

�
p
2⇡

exp{�(x�µ)2

2�2 }

Summing Normal RVs

• If X and Y are normally distributed random variables then their sum
Z = X + Y will also be normally distributed with mean

E[X + Y] = E[X] + E[Y]

and variance
�2
z = �2

x + �2
y + 2�xy

Covariance Matrices
• Given a vector valued random variable x 2 Rn. The covariance matrix

associated with the distribution is defined as follows.

⌃ = E[(x� µ)(x� µ)T]

where µ = E(x).

• Note that by construction ⌃ is a symmetric, positive semi definite matrix
which means it can be factored as follows:

⌃ = ✓⇤✓T

Where ✓ 2 Rn⇥n is an orthonormal matrix of eigenvectors ✓T ✓ = I and ⇤
is a diagonal matrix with non-negative entries.

• Note that the trace of the matrix tr(⌃) represents the sum of the eigen-
values and reflects the total amount of uncertainty in the distribution

Matrix Trace
• The trace of a square matrix, A 2 Rn⇥n, tr (A), is simply the sum of the

diagonal entries.

• The trace of a square matrix computes the sum of the eigenvectors of the
matrix

• If A and B are matrices then

tr (AB) = tr (BA)

Note that A and B don’t need to be square, only their product does, and
in general AB 6= BA.

• If P,Q 2 Rm⇥n then

tr(PTQ) = tr(QTP) =
mX

i=1

nX

j=1

QijPij

so this operation can be thought of as taking the inner product of two
compatible matrices.

Normal Distribution
• The multivariate normal distribution is defined by

f(x) =
1p

det(2⇡⌃)
exp{�1

2
(x� µ)T⌃�1(x� µ)}

where µ and ⌃ denote the mean and covariance respectively

• The isocontours of the PDF correspond to ellipses where the center corre-
sponds to µ and the axes and dimensions of the ellipse are defined by the
eigenvalues and eigenvectors of ⌃

Summing Normal RVs
• If X and Y are normally distributed random variables then their sum

Z = X + Y will also be normally distributed with mean

E[X + Y] = E[X] + E[Y]

and variance
�2
z = �2

x + �2
y + 2�xy

• if X and Y are vector valued then the covariance matrix of Z is computed
as follows:

⌃z = ⌃x + ⌃y + ⌃xy + ⌃yx

• In the special case where X and Y are independent and, hence, uncorre-
lated the variances simplify as follows:

�2
z = �2

x + �2
y

⌃z = ⌃x + ⌃y

Linear functions of RVs
• If X is a vector valued, normally distributed random variable in Rn and

A 2 Rm⇥n is a constant matrix then the random variable Y = AX is also
a normally distributed random variable in Rm with mean as follows:

µy = E(Y) = E(AX) = AE(X) = Aµx

• The covariance of Y can be computed as follows:

⌃y = E[(Y � µy)(Y � µy)
T]

= E[(AX �Aµx)(AX �Aµx)
T]

= E[(A(X � µX))(A(X � µX))T]

= E[A(X � µX)(X � µX)TAT]

= AE[(X � µX)(X � µX)T]AT

= A⌃xA
T

Estimators

Minimum Variance Linear Estimator
• Let’s imagine we have two scalar estimators, x̂1 and x̂2, for the same

state variable x. Let’s further assume that x̂1 and x̂2 are conditionally

independent given x

• Our goal is to form a new unbiased estimator as a linear combination of

the original 2 that has the minimum variance.

x̂3 = k1x̂1 + k2x̂2

E[k1x̂1 + k2x̂2] = x) k1 + k2 = 1

• Computing the variance of x̂3

�2
3 = k21�

2
1 + k22�

2
2

�2
3 = k21�

2
1 + (1� k1)

2�2
2

• Minimizing variance with respect to k1 yields the following optimal com-

bination

x̂3 =
�2
2

�2
1 + �2

2

x̂1 +
�2
1

�2
1 + �2

2

x̂2

�2
3 =

�2
1�

2
2

�2
1 + �2

2

• Note that the variance of the new estimator is less than the variance of

the original two estimators.

Minimum Variance Linear Estimator
• Let’s imagine we have two vector estimators, x̂1 and x̂2, for the same

state variable x. Let’s further assume that x̂1 and x̂2 are conditionally

independent given x

• Our goal is to form a new unbiased estimator as a linear combination of

the original 2 that has the minimum variance.

x̂3 = K1x̂1 +K2x̂2

E[x̂3] = K1x̂1 +K2x̂2 = x) K1 +K2 = I

• Computing the variance of x̂3

⌃3 = K1⌃1K
T
1 +K2⌃2K

T
2

⌃3 = K1⌃1K
T
1 + (I �K1)⌃2(I �K1)

T

Minimum Variance Linear Estimator
• Consider the scalar valued function tr (ABAT) where BT = B. Taking

derivatives with respect to the matrix A yields.

@

@A
tr (ABAT) = 2AB

• Computing the variance of x̂3

⌃3 = K1⌃1K
T
1 +K2⌃2K

T
2

⌃3 = K1⌃1K
T
1 + (I �K1)⌃2(I �K1)

T

• Minimizing tr(⌃3) with respect to by setting @
@K1

⌃3 = 0 yields

K1⌃1 � (I �K1)⌃2 = 0

K1 = ⌃2(⌃1 + ⌃2)
�1 K2 = ⌃1(⌃1 + ⌃2)

�1

• So the optimal linear estimator is.

x3 = ⌃2(⌃1 + ⌃2)
�1x1 + ⌃1(⌃1 + ⌃2)

�1x2

Measurement System

• Now we will consider the case where we have a measurement z that is
related to the state of the system x as follows:

z = Cx+ �

where � : N (0, Q), that is it is normally distributed with zero mean and a
covariance of Q.

• Note that in general the measurement vector z is not the same dimension
as the state vector x

Combining Information
• Given that we have an existing estimate for the state of the system x̂0

with mean x and covariance ⌃0 and a measurement vector, z = Cx + �,
what is the best way to combine them linearly to make a new estimator
x̂?

• Again we will assume a linear combination

x̂ = K 0x̂0 +Kz

• We want the estimator to be unbiased so we want E(x̂) = x.

E(x̂) = x

E(K 0x̂0 +K(Cx+ �)) = x

(K 0 +KC)x = x

(K 0 +KC) = I

K 0 = I �KC

(1)

Combining Information
• Our best linear estimator has the form

x̂ = (I �KC)x̂0
+Kz = x̂0

+K(z � Cx̂0
)

We now want to find the optimal value of K which is the value that

minimizes the trace of the covariance of the resulting estimator

• In computing the covariance of x̂ we will assume that x̂0
and z are inde-

pendent. This means that the covariance of the sum is just the sum of the

covariances.

⌃ = (I �KC)⌃
0
(I �KC)

T
+KQKT

• Optimizing the trace of ⌃ with respect to K

@

@K
tr(⌃) = 0

�2(I �KC)⌃
0CT

+ 2KQ = 0

K(C⌃
0CT

+Q) = ⌃
0CT

K = ⌃
0CT

(C⌃
0CT

+Q)
�1

Kalman Gain Matrix
• This expression yields the Kalman gain matrix which is the optimal form

of this linear filter.

K = ⌃0CT (C⌃0CT +Q)�1

x̂ = x̂0 +K(z � Cx̂0)

• This expression gives us the optimal way to combine a measurement with
our existing state estimate when the measurement is a linear function of
the state and the error in the measurement is independent of the error in
the state.

State Update
• Let us consider the case where we have a system where the state of the

system evolves over time according to the following expression.

xt = Atxt�1 +Btut + ✏t

Where ut denotes the control input and ✏t : N (0, Rt) represents random
additive zero mean error with covariance Rt reflecting the fact that there
is error in the system.

• At time t � 1 we have an estimate for the state of the system x̂t�1 with
mean xt and covariance ⌃t�1. We want to construct an estimate for what
the state will be at time t. We can do this directly from the state update
expression assuming that x̂t�1 and the error ✏t are uncorrelated.

x̂t = Atx̂t�1 +Btut

⌃t = At⌃t�1A
T
t +Rt

Kalman Filter
• Taken together these two updates rules define the Kalman filter which

seeks to maintain an estimate for the state in the form a vector x̂t and an
associated covariance matrix ⌃t.

• Whenever the system applies a control input ut we update the state es-
timate according to the following expressions where Rt is the covariance
matrix for the additive noise in the update:

x̂t = Atx̂t�1 +Btut

⌃t = At⌃t�1A
T
t +Rt

• And when we have a measurement zt = Ctxt + �t, we update the state
estimate according to the measurement rule where Qt is the covariance
matrix for the additive error in the measurement. Where x̂0

t and ⌃0
t denote

the mean and covariance of the estimate before the update.

Kt = ⌃tC
T
t (Ct⌃tC

T
T +QT)�1 (1)

x̂t = x̂0
t +Kt(zt � Ctx̂

0
t) (2)

⌃t = (I �KtCt)⌃
0
t (3)

Kalman Filter Notes
• The attraction of the Kalman filter is that it is easy and e�cient to im-

plement.

• Our belief about the state is represented with a normal distribution char-

acterized by a mean and a variance. Note that this means that the distri-

bution cannot be multimodal.

• The Kalman filter is optimal when the following conditions hold:

– The state of the system evolves linearly in the following sense:

xt = Atxt�1 +Btut + ✏t

– The additive errors on the state evolution normally distributed and

independent of each other and of the state ✏t : N (0, Rt)

– The measurements are a linear function of the state

zt = Ctxt + �t

– The additive errors in the measurements are normally distributed

and independent of each other and of the state. �t : N (0, Qt)

Linear functions of RVs
• If X is a vector valued, normally distributed random variable in Rn and

A 2 Rm⇥n is a constant matrix then the random variable Y = AX is also
a normally distributed random variable in Rm with mean as follows:

µy = E(Y) = E(AX) = AE(X) = Aµx

• The covariance of Y can be computed as follows:

⌃y = E[(Y � µy)(Y � µy)
T]

= E[(AX �Aµx)(AX �Aµx)
T]

= E[(A(X � µX))(A(X � µX))T]

= E[A(X � µX)(X � µX)TAT]

= AE[(X � µX)(X � µX)T]AT

= A⌃xA
T

Affine Transformations
Rn Rm

y = Ax+ b

E(X) = µx

E[(X � µX)(X � µX)T] = ⌃x

E(Y) = Aµx + b

E[(Y � µY)(Y � µY)
T] = A⌃xA

T

µx

⌃x ⌃y

µy

Nonlinear Transformations
Rn Rm

E(X) = µx

E[(X � µX)(X � µX)T] = ⌃x

µx

⌃x ⌃y

µy
y = f(x)

µy ⇡ f(µx)

E[(Y � µY)(Y � µY)
T] = ⌃y ⇡ J⌃xJ

T

J = rf(x)|µx

y = f(x) ⇡ f(µx) + J(x� µx) = Jx+ (f(µx)� Jµx)

Nonlinear Example
• Consider the following example:

✓
y1
y2

◆
= f

0

@
x1

x2

x3

1

A =

✓
x2
1 + x2x3

sinx2 + cosx3

◆

rf(x) =

✓
2x1 x3 x2

0 cosx2 � sinx3

◆

•

E(x) = µx =

0

@
µx
1

µx
2

µx
3

1

A , V ar(x) = ⌃x

J = rf(x)|µx =

✓
2µx

1 µx
3 µx

2

0 cosµx
2 � sinµx

3

◆

⌃y ⇡ J⌃xJ
T

Kalman Filter In Practice
• In practice it is often di�cult to properly characterize the errors in our

state evolution model and our measurements.

• We assume that the error distributions are Gaussian but don’t verify prop-
erly.

• We often make simplifying assumptions about the form of the covariance
matrices, for example assuming that they are diagonal.

• We often apply Kalman filtering techniques to situations where the state
evolution model and the measurement model are non-linear using lin-
earization (EKF).

Extended Kalman Filter
• There are many circumstances where the state of our system and/or the

measurements are not linearly related to the state.

• We may choose to model state evolution as follows.

xt = g(xt�1, ut) + ✏t

where g is a non-linear function and ✏t : N (0, Rt)

• And our measurement process as follows:

zt = h(xt) + �t

where h is a non-linear function and �t : N (0, Qt)

• Note that we continue to assume Gaussian additive noise

Extended Kalman Filter
• We can approximate the state update function by an a�ne function by

linearizing about our current state estimate x̂t�1

xt = g(xt�1,ut) + ✏t

Linearizing about x̂t�1

xt ⇡ Gt�1(xt�1 � x̂t�1) + g(x̂t�1,ut) + ✏t

Where

Gt�1 =
@g

@x

����
x̂t�1

• With this approximation we get

E(x̂t) = g(x̂t�1,ut)

and the covariance propagates as follows:

⌃t = Gt�1⌃t�1G
T
t�1 +Rt

Extended Kalman Filter
• Similarly we can approximate the measurement function by an a�ne func-

tion by linearizing about our current state estimate before the sensor up-
date, x̂0

t.

zt = h(xt) + �t

Linearizing about x̂0
t

zt ⇡ Ht(xt � x̂0
t) + h(x̂0

t) + �t

Where

Ht =
@h

@x

����
x̂0
t

• We can use this approximation to transform our measurement into a more
Kalman filter friendly form as follows:

z0t = zt � h(x̂0
t) +Htx̂

0
t ⇡ Htxt

Extended Kalman Filter
• Given this approximation, z0t , we can apply the standard Kalman update

to get.

x̂t = x̂0
t +Kt(z

0
t �Htx̂

0
t)

Where

Kt = ⌃0
tHt(Ht⌃

0
tH

T
t +Qt)

�1

• Then we notice that

z0t �Htx̂
0
t = zt � h(x̂0

t)

• Which yields

x̂t = x̂0
t +Kt(zt � h(x̂0

t))

and
⌃t = (I �KtHt)⌃

0
t

Extended Kalman Filter
• Putting it all together, whenever the system applies a control input ut we

update the state estimate according to the following expressions where Rt

is the covariance matrix for the additive noise in the update:

x̂t = g(x̂t�1,ut)

⌃t = Gt�1⌃t�1G
T
t�1 +Rt

• And when we have a measurement zt = h(xt) + �t, we update the state
estimate according to the measurement rule where Qt is the covariance
matrix for the additive error in the measurement.

Kt = ⌃tH
T
t (Ht⌃

0
tH

T
t +Q

T)�1 (1)

x̂t = x̂0
t +Kt(zt � h(x̂0

t)) (2)

⌃t = (I �KtHt)⌃
0
t (3)

1

Robot Mapping

Unscented Kalman Filter

Cyrill Stachniss

2

KF, EKF and UKF

!  Kalman filter requires linear models
!  EKF linearizes via Taylor expansion

 Is there a better way to linearize?

Unscented Transform

Unscented Kalman Filter (UKF)

3

Taylor Approximation (EKF)

Linearization of the non-linear
function through Taylor expansion

4

Unscented Transform

Compute a set of (so-called)
sigma points

5

Unscented Transform

Transform each sigma point
through the non-linear function

6

Unscented Transform

Compute Gaussian from the
transformed and weighted points

7

Unscented Transform Overview

!  Compute a set of sigma points
!  Each sigma points has a weight
!  Transform the point through the non-

linear function
!  Compute a Gaussian from weighted

points

!  Avoids to linearize around the
mean as the EKF does

8

Sigma Points

!  How to choose the sigma points?
!  How to set the weights?

9

Sigma Points Properties

!  How to choose the sigma points?
!  How to set the weights?
!  Select so that:

!  There is no unique solution for

10

Sigma Points

!  Choosing the sigma points

 First sigma point is the mean

11

Sigma Points

!  Choosing the sigma points

column vectors matrix square
root

scaling parameter dimensionality

12

Matrix Square Root

!  Defined as
!  Computed via diagonalization

13

Matrix Square Root

!  Thus, we can define

!  so that

14

Cholesky Matrix Square Root

!  Alternative definition of the matrix
square root

!  Result of the Cholesky decomposition
!  Numerically stable solution
!  Often used in UKF implementations
!  L and have the same Eigenvectors

15

Sigma Points and Eigenvectors

!  Sigma point can but do not have to
lie on the main axes of

16

Sigma Points Example

17

Sigma Point Weights

!  Weight sigma points

for computing
the mean

for computing the covariance

parameters

18

Recover the Gaussian

!  Compute Gaussian from weighted and
transformed points

19

Example

20

Examples

21

Unscented Transform Summary

!  Sigma points

!  Weights

22

UT Parameters

!  Free parameters as there is no unique
solution

!  Scales Unscented Transform uses

Influence how far the
sigma points are
away from the mean

Optimal choice for
Gaussians

23

Examples

24

Examples

25

EKF Algorithm

26

EKF to UKF – Prediction

replace this by sigma point
propagation of the motion

Unscented

27

UKF Algorithm – Prediction

28

EKF to UKF – Correction

replace this by sigma point
propagation of the motion

use sigma point propagation for the
expected observation and Kalman gain

Unscented

29

UKF Algorithm – Correction (1)

30

UKF Algorithm – Correction (1)

(from EKF)

31

UKF Algorithm – Correction (2)

32

UKF Algorithm – Correction (2)

(see next slide)

33

From EKF to UKF – Computing
the Covariance

34

UKF vs. EKF

35

UKF vs. EKF (Small Covariance)

36

UKF vs. EKF – Banana Shape

EKF approximation

UKF approximation

37

UKF vs. EKF

Courtesy: E.A. Wan and R. van der Merwe

38

UT/UKF Summary

!  Unscented transforms as an
alternative to linearization

!  UT is a better approximation than
Taylor expansion

!  UT uses sigma point propagation
!  Free parameters in UT
!  UKF uses the UT in the prediction and

correction step

39

UKF vs. EKF

!  Same results as EKF for linear models
!  Better approximation than EKF for

non-linear models
!  Differences often “somewhat small”
!  No Jacobians needed for the UKF
!  Same complexity class
!  Slightly slower than the EKF
!  Still requires Gaussian distributions

40

Literature

Unscented Transform and UKF
!  Thrun et al.: “Probabilistic Robotics”,

Chapter 3.4
!  “A New Extension of the Kalman Filter

to Nonlinear Systems” by Julier and
Uhlmann, 1995

!  “Dynamische Zustandsschätzung” by
Fränken, 2006, pages 31-34

1

Robot Mapping

Short Introduction to Particle
Filters and Monte Carlo
Localization

Cyrill Stachniss

2

Gaussian Filters

!  The Kalman filter and its variants can
only model Gaussian distributions

3

Motivation

!  Goal: approach for dealing with
arbitrary distributions

4

Key Idea: Samples

!  Use multiple samples to represent
arbitrary distributions

samples

5

Particle Set

!  Set of weighted samples

!  The samples represent the posterior

state
hypothesis

importance
weight

6

Particles for Approximation

!  Particles for function approximation

!  The more particles fall into an interval,
the higher its probability density

How to obtain such samples?

7

Importance Sampling Principle

!  We can use a different distribution g
to generate samples from f

!  Account for the �differences between
g and f ��using a weight w = f / g

!  target f
!  proposal g
!  Pre-condition:

 f(x)>0 ! g(x)>0

7

8

Importance Sampling Principle

9

Particle Filter

!  Recursive Bayes filter
!  Non-parametric approach
!  Models the distribution by samples
!  Prediction: draw from the proposal
!  Correction: weighting by the ratio

of target and proposal

The more samples we use,
the better is the estimate!

10

Particle Filter Algorithm

1. Sample the particles using the
proposal distribution

2. Compute the importance weights

3. Resampling: �Replace unlikely
samples by more likely ones�

11

Particle Filter Algorithm

12

Monte Carlo Localization

!  Each particle is a pose hypothesis
!  Proposal is the motion model

!  Correction via the observation model

13

Particle Filter for Localization

14

Application: Particle Filter for
Localization (Known Map)

15

Resampling

!  Survival of the fittest: �Replace
unlikely samples by more likely ones�

!  “Trick” to avoid that many samples
cover unlikely states

!  Needed as we have a limited number
of samples

16

w2

w3

w1 wn

Wn-1

Resampling

w2

w3

w1 wn

Wn-1

!  Roulette wheel
!  Binary search

!  O(n log n)

!  Stochastic universal
 sampling
!  Low variance

!  O(n)

17

Low Variance Resampling

18
initialization

19
observation

20
resampling

21
motion update

22
measurement

23
weight update

24
resampling

25
motion update

26
measurement

27
weight update

28
resampling

29
motion update

30
measurement

31
weight update

32
resampling

33
motion update

34
measurement

35

Summary – Particle Filters

!  Particle filters are non-parametric,
recursive Bayes filters

!  Posterior is represented by a set of
weighted samples

!  Not limited to Gaussians
!  Proposal to draw new samples
!  Weight to account for the differences

between the proposal and the target
!  Work well in low-dimensional spaces

36

Summary – PF Localization

!  Particles are propagated according to
the motion model

!  They are weighted according to the
likelihood of the observation

!  Called: Monte-Carlo localization (MCL)
!  MCL is the gold standard for mobile

robot localization today

ESE 650
Learning in Robotics

Spring 2019

Rigid Transforms
• A rigid transformation, g, from R3 to R3 satisfies the following properties

for all u, v, w 2 R3

–
kg(u)� g(v)k = ku� vk

Where kxk =
p
xTx

–
g((u� w)⇥ (v � w)) = (g(u)� g(w))⇥ (g(v)� g(w))

Cross Product
• The cross product of two vectors u, v 2 R3 produces a new vector or-

thogonal to the first two by the right hand rule with magnitude given by
sin ✓kukkvk. Where ✓ denotes the angle between the two vectors

• Algebraically the cross product in R3 can be computed as follows.

a⇥ b =

0

@
a2b3 � a3b2
a3b1 � a1b3
a1b2 � a2b1

1

A = âb

• â denotes the skew symmetric matrix in R3⇥3 derived from the entries of
the vector a 2 R3. Note R3 is the only vector space where there is a one
to one mapping from the vector space to the set of corresponding skew
symmetric matrices.

â =

0

@
0 �a3 a2
a3 0 �a1
�a2 a1 0

1

A

Skew Symmetric Matrices
• Where symmetric matrices are defined by the equation

AT = A, A 2 Rn⇥n

Skew symmetric matrices are defined by the equation.

AT = �A, A 2 Rn⇥n

• You can think of them as the symmetric matrices evil twin with equal and
opposite properties

• Note that every square matrix B 2 Rn⇥n can be expressed as a sum of
symmetric and skew symmetric parts as follows.

B =
1

2
(B +BT) +

1

2
(B �BT)

Rigid Transforms
• Let’s consider the set of rigid transformations where g(0) = 0, that is the

origin is preserved.

• Since g preserves the Euclidean norm we have:

kg(x)� g(0)k = kx� 0k) kg(x)� 0k = kx� 0k) kg(x)k = kxk

• Now let’s consider two vectors x, y 2 R3

kg(x)� g(y)k2 = kx� yk2

Observe that

ka� bk2 = (a� b)T (a� b) = ata� 2atb+ btb = kak2 + kbk2 � 2atb

Expanding both sides of the first equation yields

kg(x)k2 + kg(y)k2 � 2g(x)tg(y) = kxk2 + kyk2 � 2xty

) g(x)tg(y) = xty

Since kg(x)k = kxk and kg(y)k = kyk

• So we conclude that rigid transformations that preserve the origin also

preserve inner products

Rigid Transformations
• Let {e1, e2, e3} be the standard orthonormal basis for R3. Since the trans-

form g preserves inner products we can conclude that {g(e1), g(e2), g(e3)}
must also be an orthonormal basis for R3.

• Further if x =
P3

i=1 xiei then g(x) =
P3

i=1 xig(ei) since g(x)tg(ei) =
xtei = xi

• This means that:

g(x) =
3X

i=1

xig(ei) =
�
g(e1) g(e2) g(e3)

�
0

@
x1

x2

x3

1

A = Rx

Where R =
�
g(e1) g(e2) g(e3)

�
2 R3⇥3 is a matrix with orthonormal

columns

Determinant
• Remember that the transformation g also preserves cross products

(g(u)� g(w))⇥ (g(v)� g(w)) = g((u� w)⇥ (v � w))

Let w = 0 and g(w) = 0 and we get

g(u)⇥ g(v) = g(u⇥ v) 8u, v 2 R3

• Now

det(R) = det
��
g(e1) g(e2) g(e3)

��

= g(e1)
T (g(e2)⇥ g(e3))

= g(e1)
T (g(e2 ⇥ e3))

= eT1 (e2 ⇥ e3)

= det
��
e1 e2 e3

��

= 1 (1)

SO(3)
• The set of all orthonormal matrices in R3⇥3 with determinant +1 is re-

ferred to as SO(3)

SO(3) = {R 2 R3⇥3 | RT
R = I, det(R) = +1}

• Elements of SO(3) represent rotations about an axis.

• SO(3) is a group with respect to the operation of matrix multiplication.

Groups
A group is an algebraic structure composed of a set, G, and a group operation,
·, that satisfies the following axioms:

• Closure : a · b 2 G 8a, b 2 G

• Associativity : a · (b · c) = (a · b) · c 8a, b, c 2 G

• Identity and Inverse : 9e 2 G such that:

a · e = a 8a 2 G

and
8a 2 G 9a�1 2 G such that a · a�1 = e

The element e is referred to as an identity element.

Orthonormal Matrices
• Consider the case of a matrix Q 2 Rm⇥n where the columns of Q form an

orthonormal basis.
Q = [û1, û2, · · · ûn]

• From our description of the vectors ûi we can conclude that.

QT Q = In

Since the entries in QT Q correspond to the inner products of the columns
of Q.

• In the special case where Q is a square matrix , Q 2 Rn⇥n, we can conclude
that Q�1 = QT . That is, the matrix is invertible and its inverse is its
transpose. We like these kinds of matrices because they are simple to deal
with.

Qx = b) x = QT b

Orthonormal Matrices
• Square orthonormal matrices actually form a subgroup of the group of

invertible n⇥ n matrices denoted by O(n) ⇢ GL(n).

• To prove that square orthogonal matrices are in fact a subgroup all we
have to show is that the set contains the identity, trivial, and that the set
is closed under matrix multiplication.

Q1, Q2 2 O(n) (1)

(Q1Q2)
T (Q1Q2) = Q

T
2 Q

T
1 Q1Q2 (2)

= Q
T
2 InQ2 (3)

= Q
T
2 Q2 (4)

= In (5)

So if Q1 and Q2 are both square orthonormal matrices then their product
will be as well.

Orthonormal Matrices
• Square orthonormal matrices preserve the Euclidean norm:

x = Qy) QT x = y

kxk2 = xT x (1)
= (Qy)T (Qy) (2)
= yT QT Qy (3)
= yT Iy (4)

kxk2 = kyk2 (5)

Alternative view of Rotations
• Consider a point r(t) 2 R3 that’s being rotated around an axis denoted

by a unit vector ! 2 R3 with an angular velocity of 1 radian per second.

• The instantaneous linear velocity of the point is given by

ṙ(t) = ! ⇥ r(t) = !̂r(t)

• This is a linear di↵erential equation which can be solved as follows.

r(t) = exp(!̂t)r(0)

Substituting ✓ for t yields.

r(✓) = exp(!̂✓)r(0)

• Definition of matrix exponential

exp(A) = I +A+
A2

2!
+

A3

3!
+

A4

4!
+ · · · =

1X

i=0

Ai

i!

Alternative view of Rotations
• A rotation about a fixed axis ! by an angle ✓ can be represented by the

matrix
R = exp(!̂✓)

• Proving that R 2 SO(3)

R
T
R = exp(!̂✓)T exp(!̂✓)

= exp(!̂T
✓) exp(!̂✓)

= exp(�!̂✓) exp(!̂✓)

= exp(�!̂✓ + !̂✓)

= exp(0)

= I

Note that the last step is possible because exp(A) exp(B) = exp(A + B)
i↵ AB = BA which is clearly true for !̂ and �!̂

Alternative view of Rotations
• A rotation about a fixed axis ! by an angle ✓ can be represented by the

matrix
R = exp(!̂✓)

• Proving that R 2 SO(3) part 2.

Since R
T
R = I we can easily conclude that det(R)2 = 1. To show that

det(R) = +1 we note that det(exp(!̂✓)) is a continuous function of ✓ and
that when ✓ = 0, R = I and det(R) = +1. So we conclude that it must
remain +1 for all ✓ by continuity.

Alternative view of Rotations
• Expanding the exponential

R = exp(!̂✓) = I + !̂✓ +
!̂2✓2

2
+

!̂3✓3

3!
+ · · ·

• In general
âb̂ = bat � atbI

Note that !t! = 1 so
!̂2 = !!T � I

and
!̂3 = !̂(!!T � I) = �!̂

• More generally
!̂2i = !̂2(�1)i+1

!̂2i+1 = !̂(�1)i+1

• This means that R can be expressed as follows grouping odd and even
powers of !̂.

R = I + (✓ � ✓3

3!
+

✓5

5!
� ✓7

7!
· · ·)!̂ + (

✓2

2!
� ✓4

4!
+

✓6

6!
� ✓8

8!
· · ·)!̂2

Rodrigues Formula
• This means that R = exp(!̂✓) can be expressed as follows grouping odd

and even powers of !̂.

R = I + (✓ � ✓3

3!
+

✓5

5!
� ✓7

7!
· · ·)!̂ + (

✓2

2!
� ✓4

4!
+

✓6

6!
� ✓8

8!
· · ·)!̂2

• This expansion leads to the Rodrigues formula that relates an angle ✓ and
axis ! to the corresponding rotation matrix.

R = I + sin ✓ !̂ + (1� cos ✓) !̂2

Recovering angle axis
• Given a rotation matrix R 2 SO(3) we can recover the corresponding

angle and axis using the Rodrigues formula as follows.

R = I + sin ✓ !̂ + (1� cos ✓) !̂2

• trace(R) = 1 + 2 cos ✓ : We can compute the angle ✓ from this.

• R�R
T = 2 sin ✓ !̂ : We can recover the axis ! from this skew symmetric

matrix.

Euler’s Theorem
• Euler’s theorem states that every matrix R 2 SO(3) can be written as

exp(!̂✓) for some choice of ! and ✓.

Unit Quaternions
• Unit quaternions provide an alternative representation of rotations.

• The set of unit quaternions can be thought of as the set of tuples (u0, u)
where u0 2 R and u 2 R3 such that u2

0 + utu = 1.

• This set forms a group under the operation of quaternion multiplication
defined as follows.

(u0, u) · (v0, v) = (u0v0 � uT v, u0v + v0u+ u⇥ v)

This group is referred to as the Symplectic Group Sp(1).

• There is a 2 to 1 mapping between elements of Sp(1) and SO(3) which
can be defined by the following mapping.

H(u0, u) = (u2
0 � uTu)I + 2u0û+ 2uuT

You can verify that H(u0, u) 2 SO(3). Note that (u0, u) and (�u0,�u)
map to the same matrix.

Quaternions
• Given a quaternion, q = (u0, u), we can define its conjugate as follows

q
⇤ = (u0,�u).

• Given a vector x 2 R3 we can form a quaternion (0, x).

• You can show that
q · (0, x) · q⇤ = (0, H(q)x)

• You can also show that

H(q1 · q2) = H(q1)H(q2)

• This means that we can represent rotations using quaternions, 4 numbers
instead of 9, and easier to normalize. We can then perform quaternion
multiplications instead of matrix multiplications.

• Lastly we have the following important relationship.

q = (cos
✓

2
, sin

✓

2
!)) H(q) = exp(!̂✓)

Summary
• We have discussed three di↵erent ways of representing rotations

– As matrices R 2 SO(3) ⇢ R3⇥3, RTR = I, det(R) = 1

– Angle axis representations ✓ 2 R,! 2 R3

– Unit quaternions (u0, u) such that u2
0 + uTu = 1

• These representations are related by the Rodrigues formula

R = exp(!̂✓) = I + sin ✓!̂ + (1� cos ✓)!̂2

and by the equations

q = (cos
✓

2
, sin

✓

2
!)) H(q) = exp(!̂✓)

and
H(u0, u) = (u2

0 � uTu)I + 2u0û+ 2uuT

Euler Angles
• Any rotation matrix can be represented as the product of three successive

rotations around the coordinate axis

Rx(↵) =

0

@
1 0 0
0 cos↵ � sin↵
0 sin↵ cos↵

1

A

Ry(�) =

0

@
cos� 0 sin�
0 1 0

� sin� 0 cos�

1

A

Rz(�) =

0

@
cos � � sin � 0
sin � cos � 0
0 0 1

1

A

• Note that there is no way to construct a one to one mapping between
triples of angles and rotation matrices. Such parameterizations will always
involve singularities because the spaces are topologically di↵erent.

SE(3)
• Consider a rigid transform, g, such that g(0) = t. If we consider h(x) =

g(x) � t. This will also be a rigid transformation and h(0) = 0. This
means that h(x) = Rx for some R 2 SO(3).

• This allows us to conclude that every rigid transformation can be written
in the following form

g(x) = Rx+ t

Where R 2 SO(3) and t 2 R3.

• The set of rigid transformations of R3 is referred to as SE(3) The Special
Euclidean group on R3

1

Robot Mapping

Grid Maps

Cyrill Stachniss

2

Features vs. Volumetric Maps

Courtesy by E. Nebot

3

Features

!  So far, we only used feature maps
!  Natural choice for Kalman filter-based

SLAM systems
!  Compact representation
!  Multiple feature observations improve

the position estimate (EKF)

4

Grid Maps

!  Discretize the world into cells
!  Grid structure is rigid
!  Each cell is assumed to be occupied or

free space
!  Non-parametric model
!  Require substantial memory resources
!  Does not rely on a feature detector

5

Example

6

Assumption 1

!  The area that corresponds to a cell is
either completely free or occupied

free
space

occupied
space

7

Representation

!  Each cell is a binary random
variable that models the occupancy

8

Occupancy Probability

!  Each cell is a binary random
variable that models the occupancy

!  Cell is occupied
!  Cell is not occupied
!  No knowledge
!  The state is assumed to be static

9

Assumption 2

!  The cells (the random variables) are
independent of each other

no dependency
between the cells

10

Representation

!  The probability distribution of the map
is given by the product over the cells

cell map

11

Representation

!  The probability distribution of the map
is given by the product over the cells

example map
(4-dim vector)

4 individual cells

12

Estimating a Map From Data

!  Given sensor data and the poses
 of the sensor, estimate the map

binary random variable

Binary Bayes filter
(for a static state)

13

Static State Binary Bayes Filter

14

Static State Binary Bayes Filter

15

Static State Binary Bayes Filter

16

Static State Binary Bayes Filter

17

Static State Binary Bayes Filter

18

Static State Binary Bayes Filter

Do exactly the same for the opposite event:

19

Static State Binary Bayes Filter

!  By computing the ratio of both
probabilities, we obtain:

20

Static State Binary Bayes Filter

!  By computing the ratio of both
probabilities, we obtain:

21

Static State Binary Bayes Filter

!  By computing the ratio of both
probabilities, we obtain:

22

Log Odds Notation

!  Log odds ratio is defined as

!  and with the ability to retrieve

23

Occupancy Mapping
in Log Odds Form
!  The product turns into a sum

!  or in short

24

Occupancy Mapping Algorithm

highly efficient, only requires to compute sums

25

Occupancy Grid Mapping

!  Developed in the mid 80’ies by
Moravec and Elfes

!  Originally developed for noisy sonars
!  Also called “mapping with know poses”

Range Sensors

• There are a variety of sensors that are used to
measure the range to objects in the scene.

• These sensors are commonly used to help a robot
perceive it’s environment and navigate accordingly

CIS 390

Ultrasonic Sensors

• Work by sending out an ultrasonic ‘chirp’ and recording the time
between the emission and the returned signal.

• Often a pretty wide measurement cone 15 degrees for this unit

CIS 390

Automotive RADAR

• Much like Ultrasonic sensors it works by sending out
a radio wave pulse and measuring the phase
difference of the return. Typically lower resolution
than LIDAR but cheaper.

CIS 390

LIDAR
• Light Detection and Ranging

o Scanning sensor - egs. Velodyne
o Laser unit generates a focused beam – return circuitry

measures phase difference between emitted and returned
light signal and determines range

CIS 390

FLASH Lidar Systems - PMD

• Solid state – single image sensor with multiple pixels.
Range measured to multiple points simultaneously.

• Pros
o smaller size – can be integrated into cell phones

• Cons
o Smaller effective range

CIS 390

LIDAR

• Pros
o Direct measurement of range – easy to interpret and

integrate
• Cons

o Relatively low resolution
o Power consumption
o Range dependent on power of light source and reflectivity of

surfaces

CIS 390

Solid State LIDAR

• Several companies are working to develop solid state
LIDAR like this unit from Quanergy

• The advantage would be no moving parts hence
higher reliability and lower cost.

CIS 390

27 | IEEE-CPMT Workshop – Autonomous Cars Prof. Rao R. Tummala

Solid State Lidar

� Uses an optical phased array as a transmitter (no micro
mirrors), which steers laser pulses by shifting the phase.

26

Inverse Sensor Model for
Sonars Range Sensors

In the following, consider the cells
along the optical axis (red line)

27

Occupancy Value Depending on
the Measured Distance

z+d1 z+d2

z+d3 z

z-d1

measured dist.

prior

distance between the cell and the sensor

28

z+d1 z+d2

z+d3 z

z-d1

Occupancy Value Depending on
the Measured Distance

measured dist.

prior
“free”

distance between the cell and the sensor

29

z+d1 z+d2

z+d3 z

z-d1

Occupancy Value Depending on
the Measured Distance

distance between the cell and the sensor

measured dist.

prior

“occ”

30

Occupancy Value Depending on
the Measured Distance

z+d1 z+d2

z+d3 z

z-d1

measured dist.

prior
“no info”

distance between the cell and the sensor

11

Typical Sensor Model
for Occupancy Grid Maps

Combination of a linear function and a
Gaussian:

31

Example: Incremental Updating
of Occupancy Grids

32

Resulting Map Obtained with
Ultrasound Sensors

33

Resulting Occupancy and
Maximum Likelihood Map

The maximum likelihood map is obtained by
rounding the probability for each cell to 0 or 1.

34

Inverse Sensor Model for Laser
Range Finders

35

Occupancy Grids
From Laser Scans to Maps

36

Example: MIT CSAIL 3rd Floor

37

Uni Freiburg Building 106

20

Tech Museum, San Jose

CAD map occupancy grid map

38

Summary

!  Occupancy grid maps discretize the
space into independent cells

!  Each cell is a binary random variable
estimating if the cell is occupied

!  Static state binary Bayes filter per cell
!  Mapping with known poses is easy
!  Log odds model is fast to compute
!  No need for predefined features

21

Alternative: Simple Counting

•For every cell count
• hits(x,y): number of cases where a beam

ended at <x,y>
• misses(x,y): number of cases where a

beam passed through <x,y>

• Value of interest: P(reflects(x,y))

),misses(),hits(
),hits()(][

yxyx
yxmBel xy

+
=

22

The Measurement Model

ï
ï
î

ïï
í

ì

=-

=-
=

Õ

Õ
-

=

-

=
1

0
,),,(),,(

1

0
,),,(

, ,

,

,

0 if)1(

1 if)1(
),|(

nt

tntt

nt

t

z

k
ntknxfznxf

z

k
ntknxf

tnt

mm

m
mxzp

V

V

1, =ntV

1. pose at time t:

2. beam n of scan t:

3. maximum range reading:

4. beam reflected by an object: 0, =ntV

ntz ,
tx 0 n1

),,(,ntt znxfm

27

Difference between Occupancy
Grid Maps and Counting

• The counting model determines how
often a cell reflects a beam.

• The occupancy model represents
whether or not a cell is occupied by
an object.

• Although a cell might be occupied by
an object, the reflection probability of
this object might be very small.

28

Example Occupancy Map

29

Example Reflection Map

glass panes

30

Example
• Out of 1000 beams only 60% are reflected from a

cell and 40% intercept it without ending in it.
• Accordingly, the reflection probability will be 0.6.
• Suppose p(occ | z) = 0.55 when a beam ends in a

cell and p(occ | z) = 0.45 when a cell is
intercepted by a beam that does not end in it.

• Accordingly, after n measurements we will have

• Whereas the reflection map yields a value of 0.6,
the occupancy grid value converges to 1.

2.0*4.0*6.0*4.0*6.0*

9
11

9
11*

9
11

55.0
45.0*

45.0
55.0 nnnnn

÷
ø
ö

ç
è
æ=÷

ø
ö

ç
è
æ

÷
ø
ö

ç
è
æ=÷

ø
ö

ç
è
æ

÷
ø
ö

ç
è
æ

-

31

Summary
• Occupancy grid maps are a popular approach to represent

the environment of a mobile robot given known poses.
• In this approach each cell is considered independently from

all others.
• It stores the posterior probability that the corresponding area

in the environment is occupied.
• Occupancy grid maps can be learned efficiently using a

probabilistic approach.
• Reflection maps are an alternative representation.
• They store in each cell the probability that a beam is

reflected by this cell.
• We provided a sensor model for computing the likelihood of

measurements and showed that the counting procedure
underlying reflection maps yield the optimal map.

39

Literature

Static state binary Bayes filter
!  Thrun et al.: “Probabilistic Robotics”,

Chapter 4.2

Occupancy Grid Mapping
!  Thrun et al.: “Probabilistic Robotics”,

Chapter 9.1+9.2

Lecture 9

Markov Decision Processes (MDPs)

Reading

• (Thrun) Chapter 15

• (Sutton & Barto) Chapters 3–4

• Optional: (Bertsekas) Chapter 1 and 4

This is the beginning of Module 2, this module is about “how to act”. The first module was about
“how to sense”. The prototypical problem in the first module was how to assimilate the information
gathered by all the sensors into some representation of the world. In the next few lectures, we will
assume that this representation is “good”. It is accurate in terms of its geometry (small variance of
the occupancy grid, small innovation in the Kalman filter etc.) and it has all the necessary semantics,
e.g., objects are labeled as cars, buses, pedestrians etc (we will talk about how to do this in Module 4).
The prototypical problem then is how to move around in this world, or affect the state of this world to
achieve a desired outcome, e.g., drive a car from some place A to another place B.

9.1 Dynamic programming

Let us denote the state of a robot (and the world) by xk 2 X ⇢ Rn at the kth timestep. We can
change this state using a control input uk 2 U ⇢ Rp and this change is written as

xk+1 = fk(xk, uk) (9.1)

for k = 0, 1, . . . , T � 1 starting from some initial given state x0. The function fk is the dynamics.
The time T is some time-horizon up to which we care about controlling the system. The state-space
is X (which we will assume does not change with time k) and the control-space is U .

1

2 LECTURE 9. MARKOV DECISION PROCESSES (MDPS)

Question 1 (Expanding the state-space). Writing the dynamics as fk(xk, uk) is a big modeling
assumption. The next state xk+1 could also depend on xk�1 for instance, which our dynamics does
not allow. Does this mean that we are stuck solving a very restricted set of problems?

(9.1) tells us how the state evolves given a control input uk at each timestep. How do we pick uk?
When you walk to school and turn right on Walnut, this control input is dependent on a lot of things,
e.g., the place where you wish to end up at time T , the place you started at namely your home x0,
and certainly the spot that you are current at xk. We will take a very general view and formalize the
problem as follows. Consider a cost function

qk(xk, uk) 2 R

which gives a scalar real-valued output for every pair (xk, uk). This models the fact that you do not
want to walk more than you need to, i.e., we would like to minimize qk. You also want to make
sure you reach the lecture venue, let’s write this down as another cost function to minimize qT (xT).
Altogether, you want to pick control inputs (u0, u1, . . . , uT�1) such that

J(x0;u0, u1, . . . , uT�1) = qf (xT) +
T�1X

k=0

qk(xk, uk) (9.2)

is minimized. The cost qf (xT) is called the terminal cost, it is high if xT is not the lecture room and
small otherwise. The cost qk is called the run-time cost, it is high for instance if you have to use large
control inputs, e.g., xk is a climb. We want to find control sequences that minimize the total cost
above, i.e., we want to solve

J⇤(x0) = min
uk2U,k=0,...,T�1

J(x0;u0, . . . , uT�1) (9.3)

9.1.1 Discrete, finite dynamic programming

If the state-space X and control-space U are discrete and finite sets, we can solve (9.3) as a shortest
path problem using very fast algorithms. Consider the following picture. This is what would be called
a transition graph for a deterministic finite-state dynamics.

9.1. DYNAMIC PROGRAMMING 3

The graph has one source state x0. Each node in the graph is xk, each edge depicts taking a certain
control uk. Depending on which control one picks, we transition to some other state xk+1 given by
the dynamics fk(xk, uk). On each edge we write down the cost qk(xk, uk) and “close” the graph
with a dummy terminal node with the cost q(xT) on every edge leading to a terminal time sink state
T . Minimizing the cost in (9.3) is now the same as finding the shortest path in this graph from the
source to the sink. The algorithm to do so is quite simple and is called Dijkstra’s algorithm after
Edsgar Dijkstra who used it around 1956 as a test program for a new computer named ARMAC
(http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html).

1. Q is a set of nodes that are unvisited; all nodes in the graph are added to it. S is an empty set.
An array called dist maintains the distance of every node in the graph from the source node x0.
Initalize dist(t) = 0 and dist = 1 for all other nodes.

2. At each step, if Q is not empty, pop a node v 2 Q such that v /2 S with the smallest dist(v). Add
v to S. Update the dist of all nodes u connected to v. For each u, if

dist(u) > dist(v) + dist(u, v)

udpate the distance of u to dist(v) + dist(u, v), if this condition is not true do nothing.

The algorithm terminates when the set Q is empty.

You might know that there are many other variants of Dijkstra’s algorithm, e.g., the A⇤ algorithm that
are quicker to find shortest paths. We will look at these a few lectures from now.

Question 2. Shortest path algorithms do not work if there are cycles in the graph because the shortest
path is not unique. Are there cycles in the above graph?

Question 3. What should one do if the state/control space is not finite? Can we still use Dijkstra’s
algorithm?

9.1.2 Dynamic programming

The principle of dynamic programming is a formalization of the idea behind Dijkstra’s algorithm. It
was discovered by Richard Bellman in the 1940s. The idea behind dynamic programming is quite
intuitive: it says that the remainder of an optimal trajectory is optimal. Suppose that we find the
optimal control sequence (u⇤

0, u
⇤
1, . . . , u

⇤
T�1) for the problem in (9.3). There is a unique sequence of

states (x0, x⇤
1, . . . , x

⇤
T) that this gives rise to. Each successive state is given by

x⇤
k+1 = fk(x

⇤
k, u

⇤
k)

with x⇤
0 = x0. The principle of optimality, or the principle of dynamic programming, states that if

one starts from a state x⇤
k at time k and wishes to minimize the “cost-to-go”

qk(x
⇤
k, uk) +

T�1X

i=k+1

qi(xi, ui) + qf (xT)

4 LECTURE 9. MARKOV DECISION PROCESSES (MDPS)

over the (now assumed unknown) sequence of controls (uk, uk+1, . . . , uT�1), then the optimal
control sequence for this truncated problem is exactly (u⇤

k, . . . , u
⇤
T�1). The proof of this assertion is

easy: if the truncated sequence were not optimal starting from x⇤
k there exists some other optimal

sequence of controls for the truncated problem, say (v⇤k, . . . , v
⇤
T�1). If so, the solution of the original

problem where one takes controls v⇤k from this new sequnces for timesteps k, k+1, . . . , T � 1 would
have a lower cost. Hence the original sequence of controls would not be optimal.

The essense of dynamic programming is to solve the larger, original problem by sequentially solving
the truncated sub-problems. At each iteration, Dijkstra’s algorithm constructs the functions

J⇤
T (xT), J

⇤
T�1(xT�1), . . . , J

⇤
0 (x0)

starting from JT ⇤ and proceeding backwards to J⇤
T�1, J

⇤
T�2 The array dist(v) at iteration k

is really just J⇤
T�k(xv). If we write down all this intuition mathematically, dynamic programming

looks as follows.

Principle of dynamic programming.

1. Initialize J⇤
T (x) = qf (x) for all x 2 X .

2. For all times k = 0, . . . , T � 1, set

J⇤
k (x) = min

uk2U

n
qk(x, uk) + J⇤

k+1(fk(x, uk))
o

(9.4)

for all x 2 X .

After running the above algorithm we have the optimal cost-to-go for each state x 2 X at each time
t 2 {0, . . . , T}. We really only wanted J⇤

0 (x0) but had to do all this extra work of computing J⇤
k for

all the states. How much is the complexity of running this algorithm? Assume that the cost of the
minimization over U is neglible, it is a bunch of comparisons between floats. The operations at each
iteration at |X| for setting the values J⇤

k (x) for all x 2 X . So the total complexity is O(T |X|).

If Dijkstra’s algorithm is run on a graph with n vertices and m edges, its computational complexity is
O(n+m log n). You might know that using a minor modification of Dijkstra’s algorithm you can
obtain the shortest path from any vertex to the goal vertex of a graph, with the same computational
complexity. If we again ignore the cost of comparison of the distances in step 2 of the algorithm, the
complexity is O(n) which is equal to O(T |X|) because that is the number of vertices in the transition
graph. The term |X| is often a hurdle: this is because the number of states |X| is exponential in the
dimensionality of the state-space. This was called the curse of dimensionality by Bellman.

Question 4 (Cost of dynamic programming is linear in the time-horizon T). Notice a very
important difference between (9.4) and (9.3). The latter has a minimization over a sequence of
controls (u0, u1, . . . , uT�1) while the former has a minimization over only the control at time k, uk

over T iterations. The former is much much easier to solve. Why?

9.2. MARKOV DECISION PROCESSES (MDPS) 5

A related question is: the principle of dynamic programming figures out a way to solve an optimization
problem over a really large control-space (the space of all control trajectories) using a linear number
of optmization problems. Can we do this for all optimization problems?

Question 5 (Is the head of the optimal trajectory optimal?). The tail of an optimal trajectory in
dynamic programming is optimal. Perhaps the head is also optimal for something? Consider the
following example: if there is a state x⇤

k that lies on the optimal trajectory, one would expect that the
trajectory from x0 to x⇤

k is optimal for the cost
Pk�1

i=0 qk(xk, uk). This is however not true. Imagine
a situation where there are two paths to go to x⇤

k, path A is longer but comes down a large slope and
allows the agent to pick up a lot of speed and helps travel much further beyond x⇤

k without using
much control. Path B does not go down the slope, it is shorter and allows the agent to stop at x⇤

k if
desired. The optimal way to reach x⇤

k if the horizon were simply k timesteps is therefore through
path B; if the agent used path A it would have to use a large control to lose all the speed and come to
a stop at x⇤

k. If the horizon were T timesteps and we were interested in exploiting the speed gained
on path A for future timesteps, that’d be the optimal trajectory that passes through x⇤

k.

Question 6 (Non-additive cost). What if we are dealing with a non-additive cost, e.g., the runtime
cost at time k given by qk is a function of both xk and xk�1? How does the dynamic programming
formulation change?

Remark 7 (Q-factors). The quantity

Q⇤
k(x, uk) = qk(x, uk) + J⇤

k+1(f(x, uk))

is called the optimal Q-factor. It is simply the expression that is minimized in the right-hand side
of (9.4). This nomenclature was introduced by Watkins in his thesis. The Q-learning-style algorithms
deal with Q-factors. Given the Q-factor, we can obtain the value function J⇤

k as

J⇤
k (x) = min

uk2U
Q⇤

k(x, uk). (9.5)

The dynamic programming iteration can also be written completely in terms of the Q-factors

Q⇤
k(x, uk) = qk(x, uk) + min

uk+12U
Qk+1(f(x, uk), uk+1).

9.2 Markov Decision Processes (MDPs)

MDPs are a model for the scenario when we do not completely know the dynamics fk(xk, uk). This
may happen for a number of reasons and it is important to appreciate them in order to understand the
widespread usage of MDPs.

1. We did not do a good job of identifying the function f : X ⇥ U ! X . This may happen when
you are driving a car on an icy road, if you undertake the same control as you do on a clean road,
you might reach a different future state xk+1.

2. We did not use the correct state-space X . You could write down the state of the car as given by
(x, y, ✓, ẋ, ẏ, ✓̇) where x, y are the Euclidean co-ordinates of the car and ✓ is its orientation. This

6 LECTURE 9. MARKOV DECISION PROCESSES (MDPS)

is not a good model for studying high-speed turns, which are affect by other quantities like wheel
slip, the quality of the suspension etc.

We may not even know the full state sometimes. This occurs when you are modeling how users
interact with an online website like Amazon.com, you’d like to model the change in state of the
user from “perusing stuff” to “looking stuff to buy it” to “buying it” but there are certainly many
other variables that affect the user’s behavior. As another example, consider the path that an
airplane takes to go from Philadelphia to Los Angeles. This path is affected by the weather at all
places along the route, it’d be cumbersome to incorporate the weather to find the shortest-time
path for the airplane.

3. We did not measure the state correctly. This is the situation that we talked about in Module 1,
namely your sensors may not be able to measure the state x accurately. There are multiple ways
of talking about this, the Kalman filter estimates bxt = E[xt | y0, . . . , yt] as the optimal estimate
of the true state and use the contorl input u(x̂) in place of u(x). You can also imagine that the
true system lives within some envelope of your dynamical system.

(picture here)

4. We did not use the correct control-space U for the controller. This is akin to the second point
above. The gas pedal which one may think of as the control input to a car is only one out of the
large number of variables that affect the running of the car’s engine.

MDPs are a drastic abstraction of all the above situations. We write

xk+1 = fk(xk, uk) + wk (9.6)

where the “noise” wk is not under our control. The quantity wk is not arbitrary however, we assume
that

1. noise wk is a random variable and we know its distribution. For example, you ran your car lots of
times on icy road and measured how the state xk+1 deviates from similar runs on a clean road.
The difference between the two is modeled as wk. Note that the distribution of wk may be a
function of time k.

2. noise at different timesteps ✏1, ✏2, . . . , ✏T�1 is independent.

Instead of a deterministic transition from xk to xk+1, we now have

xk+1 ⇠ P(xk+1 | xk, uk).

which is just another way of writing (9.6). The latter is a probability table of size |X|⇥ |U |⇥ |X| akin
to the transition matrix of a Markov chain except that there is a different transition matrix for every
control u 2 U . The former version (9.6) is more amenable to analysis. MDPs can be alternatively
called stochastic dynamical systems, we will use either names for them in this course.

The moral of this section is to remember that as pervasive as noise seems in all problem formulations,
it models different situations depending upon the specific problem. Understanding where noise comes
from is important for real-world applications.

9.3. VALUE ITERATION 7

Question 8 (Where do we find MDPs in real-life?). There are lots of expensive robots in GRASP,
e.g., a Kuka manipulator such as this https://www.youtube.com/watch?v=ym64NFCWORY costs
upwards of $100,000. Is it a stochastic dynamical system?

Question 9 (Handling noise correlated in time). How will you handle the situation where noise at
different timesteps is correlated? Say wk is correlated with its immediate next noise input wk+1.

9.3 Value iteration

Let us now think of solving the problem (9.3) for a stochastic dynamical system. Given the same
control sequence u = (u0, . . . , uT�1) we may get many different state trajectories depending upon
which noise sequence ✏ = (✏0, . . . , ✏T�1) as the realization on a particular run. One modification
that we could make in (9.3) in this case is to look at the expected value of all realizations of
(w0, . . . , wT�1)

E
(w0,...,wT�1)

h
qf (xT) +

T�1X

k=0

qk(xk, uk)
i
.

Remark 10 (A control policy). It is important to note what the controls uk are at each time instant
k. In stochastic dynamic programming we are interested in optimizing over the space of policies
µk(xk). This section therefore finds not a sequence of controls (u0, . . . , uT�1) but a sequence of
policies

⇡ = {µ0, . . . , µT�1} ;

each µk : X ! U maps states to controls. Policies are more general objects than controls. The
reason to use them in the stochastic setting is to allow the control uk = µk(xk) to depend on the
realized state xk instead of simply the time k. This is known as feedback control, without this the
controller cannot adapt to unexpected states xk that may occur due to the noise. This is an important
distinction from the deterministic case.

Now, the optimization problem corresponding to (9.3) is therefore written as

J⇡(x0) = E
(w0,...,wT�1)

h
qf (xT) +

T�1X

k=0

qk(xk, µk(xk))
i

J⇡⇤(x0) = min
⇡2⇧

J⇡(x0).

(9.7)

The optimal policy is ⇡⇤ that achieves this minimum. Remember that the optimal policy is a function
of the state you start in x0.

Dijkstra’s algorithm no longer works if the edges in the graph are stochastic but we can use our formal-
ization of the dynamic programming principle to write the solution for this modified problem. The idea
remains the same, to compute a sequence of cost-to-go functions J⇤

T (xT), J⇤
T�1(xT�1), . . . , J⇤

0 (x0)
proceeding backwards.

8 LECTURE 9. MARKOV DECISION PROCESSES (MDPS)

Principle of dynamic programming for stochastic systems.

1. Initialize J⇤
T (x) = qf (x) for all x 2 X .

2. For all times k = 0, . . . , T � 1, set

J⇤
k (x) = min

uk2U

n
qk(x, uk) + E

wk

⇥
J⇤
k+1(fk(x, uk) + wk)

⇤o
(9.8)

for all x 2 X .

This algorithm works in the same as that of the deterministic case. At each iteration, we solve a
sub-problem. The key difference is that there is an expectation over noise wk in step 2 and the
truncated cost-to-go J⇤

k+1 is evaluated at the state x0 = fk(x, uk, wk). Once we have solved the
minimization on the right hand side of (9.8), we set the optimal policy to be

µ⇤
k(x) = u⇤

k(x).

and the optimal policy is
⇡⇤ =

�
µ⇤
0, . . . , µ

⇤
T�1

.

The update equation in (9.8) changes to

J⇤
k (x) = min

uk2U

n
qk(x, uk) + E

x0⇠P(· |xk,uk)

⇥
J⇤
k+1(x

0)
⇤o

if know the stochastic dynamical system as a table of transition probabilities P(x0
| xk, uk). This

helps understand the computational complexity of the updates: at each iteration we have to do
|X|⇥ |X|⇥ |U | work and there are T such iterations. The total complexity of dynamic programming
for stochastic systems is O(T |X|

2
|U |). The quadratic term in |X| is an even bigger hurdle now

because the number of states |X| is exponential in the dimensionality of the state-space.

Question 11 (Risk-sensitive control). The objective in (9.7) is the most popular way to incorporate
the noise (w0, . . . , wT�1) into our formulation but it is not the only one. Can you think of any other
objective we may wish to use?

9.3.1 Infinite horizon value iteration

Infinite horizon problems consider the case when T ! 1. The problem is also stationary in such a
setting, i.e.,

q(x, u) ⌘ qk(x, u),

f(x, u) ⌘ fk(x, u)

9.3. VALUE ITERATION 9

for all x 2 X and u 2 U . For stochastic dynamical systems, we will also require that the statistics
of the noise do not change with time. Note that the assumption of an infinite number of stages is
never really satisfied in practice; it is a reasonable assumption of long, finite horizon problems. The
assumption of stationarity is often satisfied in practice. System parameters, say the dynamics, may
vary only slowly over time, e.g., degradation of the motors of your robot. Infinite horizon problems
are popular because they give rise to elegant, insightful analysis.

Let us think of optimizing an objective of the form

J⇡(x0) = lim
T!1

E
w0,w1,...

h T�1X

k=0

�kq(xk, µk(xk))
i
. (9.9)

The parameter � 2 [0, 1) is called the “discount” factor. It puts more weight on costs incured in the
early stages and puts less weight on costs incured later on. The policy is again ⇡ = {µ0, µ1, . . . , }.
Remember that the infinite horizon cost is given by the limit of finite horizon costs as the horizon
goes to infinity; this will be the key to solving the problem.

There are two kinds of infinite horizon problems:

1. those with a terminating state and � = 1 where we can keep taking some zero-cost control u to
stay at the state, e.g., your robot has finished moving an object from one place to the other and it
simply stops at the goal state with zero control. In this case the problem is really a finite-horizon
problem masquerading as an infinite horizon problem, with the difference that we do not know the
length of the horizon, it can effectively be random.

2. those with � < 1 where there need not be a terminal state. It can be shown that all such discounted
problems of this form can be converted to the previous form by creating a fake terminal state
where the system transitions to with probability 1� � at each timestep. As a result we only need
to think about the terminal sink state version of the infinite horizon problem.

As before, consider the situation where we computed the optimal cost of sovling the problem in k
steps, this will be denoted by Jk(x) for all x 2 X . A dynamic programming principle is again valid
for quantities J0, J1, J2, . . .

Jk+1(x) = min
u2U

E
w

h
q(x, u) + Jk(f(x, u) + w)

i
(9.10)

Since the terminal cost qf is zero in the infinite horizon setting, we have J0(x) = 0 for all x 2 X .
This iteration (9.10) is called value iteration. Using the intuition that the infinite horizon cost is the
limit of the finite-horizon costs, we can expect that

J⇤(x) = lim
N!1

JN (x)

for all states x 2 X . If someone claimed that J⇤ was the optimal infinite horizon optimal cost, it
should also satisfy the equation (9.10), i.e.,

J⇤(x) = min
u2U

E
w

h
q(x, u) + J⇤(f(x, u) + w)

i
(9.11)

10 LECTURE 9. MARKOV DECISION PROCESSES (MDPS)

for all states x 2 X . Note that this is really a system of equations, one for each state x. The solution
of this system of equations J⇤(x) is the optimal cost-to-go of the infinite horizon problem from a
state x. This equation is called the Bellman equation and we will come to it again soon. The policy is
again easily obtained as the control u that results in the minimization in the Bellman equation

µ⇤(x) = argmin
u2U

E
w

h
q(x, u) + J⇤(f(x, u) + w)

i
.

The optimal policy
⇡⇤ = {µ⇤, µ⇤, . . .}

is stationary now. This is quite intuitive: for an infinite horizon problem the future looks the same
given the starting state x regardless of when we started.

Remark 12 (Order of minimization and expectation in the Bellman equation). The expression
in (9.11) has a minimization over controls u outside the expectation over noise Ew. This is the root
of all trouble when one implements approximate versions of value iteration. If we do not compute
the expectation over the noise accurately, we cannot also find the best control to take accurately.

9.3.2 Transition matrix version of the Bellman equation

Let us say that the states are i 2 {1, . . . , |X| = n}. Infinite horizon problems have a dummy terminal
state where the system may remain indefinitely, let us call it t. We therefore have a transition graph
of the following form.

Given the starting state i and the policy ⇡ = {µ0, µ1, . . . , }, we are interested in finding the minimum
of

J⇡(i) = lim
T!1

E
w0,w1,...

h T�1X

k=0

�k q(ik, µk(ik)) | i0 = i, ⇡
i

J⇤(i) = min
⇡

J⇡(i)

for all states i. We will consider the version xk+1 ⇠ P(· | xk, uk) version this time. The Bellman

9.3. VALUE ITERATION 11

equation (9.11) changes to

J⇤(i) = min
u2U

h
pit(u)q(i, u) +

nX

j=1

pij(u) (q(i, u) + J⇤(j))
i
. (9.12)

The term pit(u)q(i, u) is the expected cost if we terminate at the next instant by transitioning to state
t. The term

Pn
j=1 pij(u)q(i, u) is the expected cost of going to state j in the next instant while the

third term
Pn

j=1 pij(u)J
⇤(j) is the optimal cost-to-go from that state j.

The value iteration algorithm populates J0(1), J0(2), . . . , J0(n) with arbitrary values and generates
a sequence

Jk+1(i) = min
u2U

h
pit(u)q(i, u) +

nX

j=1

pij(u) (q(i, u) + Jk(j))
i
. (9.13)

9.3.3 Some theoretical results

We list down some very powerful theoretical results for value iteration. These results make it work
for a large number of real-world problems and are at all the heart of all modern algorithms. The only
assumption that these results need is that the set of policies ⇧ over which we search is such that the
system always reaches the terminal state after some finite number of timesteps.

1. Convergence of value iteration. Given any initial conditions J0(1), . . . , J0(n), the sequence
generated by value iteration

Jk+1(i) = min
u2U

h
pit(u) q(i, u) +

nX

j=1

pij(u)
⇣
q(i, u) + Jk(j)

⌘i

converges to the optimal cost J⇤(i) for each i = 1, . . . , n.

2. Unique solution of the Bellman equation. The optimal cost function J⇤ = (J⇤(1), . . . , J⇤(n))
satisfies the Bellman equation

J⇤(i) = min
u2U

h
pit(u) q(i, u) +

nX

j=1

pij(u)
⇣
q(i, u) + J⇤(j)

⌘i

and is the unique solution of this equation. In other words, if we find some J 0 = (J 0(1), . . . , J 0(n))
that satisfies the Bellman equation, we are guaranteed that this is indeed the optimal cost function.

3. Bellman equation for a particular policy. Consider a stationary policy ⇡ = (µ, µ, . . . ,). The
cost of executing this policy starting from different states i = 1, . . . , n given by (Jµ(1), Jµ(2), . . . , Jµ(n))
satisfies the equation

Jµ(i) = pit(µ(i)) q(i, µ(i)) +
nX

j=1

pij(µ(i))
⇣
q(i, µ(i)) + Jµ(j)

⌘

12 LECTURE 9. MARKOV DECISION PROCESSES (MDPS)

and is the unique solution of this equation. Further, given any initial condition (J0(1), . . . , J0(n))
the sequence generated by

Jk+1(i) = pit(µ(i)) q(i, µ(i)) +
nX

j=1

pij(µ(i))
⇣
q(i, µ(i)) + Jk(j)

⌘
(9.14)

converges to the cost Jµ(i) for all i = 1, . . . , n. Running these set of updates to obtain the
cost-to-go for a particular policy is called evaluating a policy.

Remark 13 (Discounted cost problems). All the above results remain conceptually similar in the
case with discounted rewards.

The Bellman equation changes to

J⇤(i) = min
u2U

nX

j=1

pij(u)
⇣
q(i, u) + �J⇤(j)

⌘

with the discount factor � that multiplies J⇤ now. Value iteration

Jk+1(i) = min
u2U

nX

j=1

pij(u)
⇣
q(i, u) + �Jk(j)

⌘

and still converges to J⇤(i) upon iteration.

9.4 Policy iteration

Question 14. Value iteration converges exponentially quickly, but asymptotically. The number of
states |X| = n is finite and so is the number of controls |U |. This seems very funny, one would
expected that we should be able to find the optimal cost J⇤(i) in finite time if the problem is finite,
after all we need to find n numbers J⇤(1), . . . , J⇤(n). Where is the catch?

This section will discuss policy iteration which terminates in a finite number of iterations. Even for
large problems where the policy and the cost function are approximately represented, policy iteration

9.4. POLICY ITERATION 13

works better than value iteration. The key idea of policy iteration is quite simple: given a stationary
policy for an infinite horizon problem

⇡ = (µ, µ, . . . ,)

we can evaluate the policy to obtain the cost function Jµ(i) for all states i = 1, . . . , n. Given this
cost function observe that if we find the feedback control

µ̃(i) 2 argmin
u2U

nX

j=1

pij(u)
⇣
q(i, u) + �Jµ(j)

⌘
(9.15)

then the cost of the patched policy
⇡̃1 = (µ̃, µ, µ, . . . ,)

which executes µ̃ for one timestep and then executes µ. denoted by J⇡̃1 is better than Jµ

J⇡̃1 Jµ.

The same thing is also true if we patch the policy for two timesteps

⇡̃2 = (µ̃, µ̃, µ, . . . ,)

in which case we have
J⇡̃2 J⇡̃1 Jµ.

We however known that the limit of patching for lots of timesteps is simply Jm̃u, i.e., the cost of
taking the stationary policy ⇡̃ = (µ̃, µ̃, . . .). We therefore have

Jµ̃(i) Jµ(i), for all i = 1, . . . , n.

Notice that by performing the policy improvement step (9.15), we have improved the cost-to-go for
all states. We can start from any policy µ and iterate upon it this way.

Policy iteration.
For k = 0, 1, . . . ,

1. Pick a policy µk and evaluate it using (9.14) to get Jµk(i) for all i = 1, . . . , n.

2. Perform a policy iteration step

µk+1(i) 2 argmin
u2U

nX

j=1

pij(u)
⇣
q(i, u) + �Jµk(j)

⌘

to compute a new policy µk+1.

14 LECTURE 9. MARKOV DECISION PROCESSES (MDPS)

Policy iteration generates an improving sequence of policies

Jµk+1(i) Jµk(i), for all i and k

and terminates with the optimal policy.

Remark 15 (Computational complexity of policy iteration). Policy iteration works really well in
practice. In the worst case, the number of iterations is |U |

|X|, i.e., it is exponential in the number of
states (Mansour and Singh, 2013). However, in practice it often converges in order |X| iterations.

Bibliography

Mansour, Y. and Singh, S. (2013). On the complexity of policy iteration. arXiv preprint
arXiv:1301.6718.

15

Lecture 11

Linear Quadratic Regulator (LQR)

Reading

• Todorov and Jordan (2002)

• Optional: Applied Optimal Control by Bryson & Ho, Chapter 4-5

• Optional: http://underactuated.csail.mit.edu/lqr.html, Lecture 3-4 at https://ocw.mit.edu/courses/aeronautics-
and-astronautics/16-323-principles-of-optimal-control-spring-2008/lecture-notes

The previous chapter gave two algorithms, namely value iteration and policy iteration, to solve
dynamic programming problems for a finite number of states and a finite number of controls. Solving
dynamic programming problems is difficult if the state/control space are infinite. This chapter
discusses an important special case, that of the Linear Quadratic Regulator (LQR).

11.1 Discrete-time LQR

Imagine a dynamics that is linear in both the states and the controls

xk+1 = Axk +Buk; given x0

and the run-time cost is quadratic

qk(xk, uk) =
1

2

�
x>
k Qk xk + u>

k Rk uk

�

along with a quadratic terminal cost

qf (x) =
1

2
x>Qf x.

1

2 LECTURE 11. LINEAR QUADRATIC REGULATOR (LQR)

The matrices A 2 Rn⇥n and B 2 Rn⇥p are the autonomous and control parts of the dynamics
fk. The run-time cost is governed by our choices Qk 2 Rn⇥n and Rk 2 Rp⇥p: if we want to find
optimal control trajectories such that some dimension of the state, say xk(i), does not have a large
magnitude, we pick a large value on the diagonal entry Qii to achieve this. We will want that matrix
Q is symmetric, positive semi-definite and R is symmetric, positive definite

Q = Q> � 0, R = R> > 0.

This prevents the controller from driving down the cost-to-go to negative infinity by picking certain
controls or staying at certain states. This problem is known as the Linear Quadratic Regulator (LQR).

Consider a deterministic, finite-horizon problem where the cost is given by

J(x0) =
1

2
x>
TQf xT +

T�1X

k=0

1

2

�
x>
k Qk xk + u>

k Rk uk

�
.

As usual, our goal is to find a sequence of controls (u0, . . . , uT�1) that minimizes the cost

J⇤(x0) = min
(u0,...,uT�1)

J(x0; (u0, . . . , uT�1)).

We know the principle of dynamic programming now and can apply it to this problem. First set

JT (x) =
1

2
x>Qf x; for all x.

JT�1(x) = min
u

1

2

n
x>Q x+ u>R u

o

T�1
+ JT (Ax+Bu)

= min
u

1

2

n
x>Q x+ u>R u+ (Ax+Bu)>Qf (Ax+Bu)

o

T�1
.

The {}T�1 simply means that all quantities inside the curly brackets are sub-scripted at time T � 1.
We can now take the derivative of the right-hand-side with respect to the control u and set it to zero.

0 ⌘ d RHS
du

=
1

2

�
Ru+B>Qf (Ax+Bu)

T�1

) u⇤
T�1 =

�
RT�1 +B>QfB

��1
B>QfA xT�1

⌘ �KT�1xT�1.

The second derivative is positive definite

d2 RHS
du2

= RT�1 +B>QfB > 0

so u⇤
T�1 is a minimum of the RHS which is a convex function. The matrix KT�1 is called the

Kalman gain. Notice that the optimal controller is linear in the state.

11.1. DISCRETE-TIME LQR 3

Observe that the optimal cost-to-go is a quadratic

JT�1(x) =
1

2

n
x>Qx+ u⇤>Ru⇤ + (Ax+Bu⇤)> Qf (Ax+Bu⇤)

o

T�1

=
1

2
x>
T�1

n
Q+K>RK + (A�BK)> Qf (A�BK)

o

T�1
xT�1

⌘ 1

2
x>
T�1PT�1xT�1.

This suggests that at each timestep k we can assume

Jk(x) =
1

2
x>Pk x

and compute the optimal LQR controller via recursion as

PT = Qf

Kk =
�
Rk +B>Pk+1 B

��1
B>Pk+1 A

Pk = Qk +K>
k Rk Kk + (A�BKk)

> Pk+1 (A�BKk) ,

for k = T � 1, T � 2, . . . , 0.

(11.1)

These equations are similar to the update equations of the Kalman filter; in fact we will see shortly
how spookily similar the two are. The key difference is that Kalman filter updates run forward in
time starting from the initial covariance. It should not be surprising that because LQR is an optimal
control problem, its update equations run backward in time.

LQR is among the most widely used controllers in the world (can you guess which the most widely
used controller?). There are many amazing observations one can make about the LQR problem which
makes it the cornerstone of linear optimal control theory.

1. The optimal controller
u⇤
k = �Kk xk

is linear in the state.

2. The matrices Pk and Kk do not depend on state xk and can be computed offline, ahead of time.

3. For a finite-horizon problem Kk changes with k even if A,B,Q,R are all constant with time k.

11.1.1 Infinite horizon LQR

Similar to the case with infinite horizon dynamic programming the cost function Pk converges to a
steady state Pss as k ! 1 if the dynamics (A,B) and the run-time cost (Q,R) does not change with
time and if the dynamics (A,B) is stabilizable, i.e., if a certain control u cannot affect a state x1 then
the matrix A is such that the state converges to zero with time. The steady-state cost can be found by
iterating

Pss = Q+A>
n
Pss � PssB

�
R+B>PssB

��1
B>Pss

o
A. (11.2)

4 LECTURE 11. LINEAR QUADRATIC REGULATOR (LQR)

This equation is called the Algebraic Riccati equation.

Question 1 (Linearization). Just like the extended Kalman filter, you can linearize a nonlinear
dynamical system and execute the LQR controller for the linearization. If however you obtain a
system of the form

xk+1 = A xk +B uk + c

for some constant c how can you use the LQR problem formulation? Similarly, if we have linear
terms like

J =
1

2

T�1X

k=0

�
x>
k Q xk + u>

k R uk + q>xk + r>uk

�
.

how should one modify the LQR problem?

Question 2 (Abrupt changes in control). As we discussed, the control in our mathematical problem
formulation (gas pedal in the car) may be only an abstract version of the actual control variables
(the entire state of the engine). Drastically changing the control input may make take our dynamical
model to states where it is not accurate, e.g, the noticeable lag in the car’s response when you floor
the gas pedal. We may wish to ensure that the optimal control uk does not change quickly with time.
How do we do this with LQR?

Question 3 (Tracking with LQR). A lot of problems in robotics will involve tracking a trajectory,
e.g., you recorded a reference trajectory of states and corresponding controls xr

0, x
r
1, . . . , x

r
T and

ur
0, u

r
1, . . . , u

r
T�1 and would like the robot to repeat this trajectory if it starts from some other initial

state. How should one modify the LQR problem to do this?

11.2 Hamilton-Jacobi-Bellman equation

An important abstraction one can make dynamic programming problems is assuming that the dynam-
ics happens in continuous-time and is given by an ordinary differential equation

ẋ = f(x, u); for x(0) = x0.

You can think of this as the limit of the discrete-time dynamics xk+1 = f(xk, uk) as the discretization
time-interval goes to zero. Continuous-time dynamical systems are ordinary differential equations
(ODEs https://en.wikipedia.org/wiki/Ordinary differential equation) and the trajectory of states and
controls are functions of time t

{x(t) : t 2 R+} , {u(t) : t 2 R+} .

Let us imagine that we want to find control sequences that minimize the objective

qf (x(T)) +

Z T

0
q(x(t), u(t)) dt;

11.2. HAMILTON-JACOBI-BELLMAN EQUATION 5

this is again a sum of a terminal cost and a run-time cost. The run-time cost is expressed as an integral
instead of a sum because we are in continuous-time. We want to solve for

J⇤(x0) = min
u(t), t2R+

(
qf (x(T)) +

Z T

0
q(x(t), u(t)) dt

)
. (11.3)

Notice that the minimization is over a function of time u(t) : t 2 R+ as opposed to a sequence of
controls (u0, . . . , uT�1) that we had in the discrete-time case.

The dynamic programming principle is still valid, if we have an optimal control trajectory u⇤(t) : t 2
R+ we can chop it up into two parts at time intermediate time t 2 [0, T] and claim that the tail is
optimal. We write this down as follows.

J⇤(x(t), t) = min
u(s), tsT

n
qf (x(T)) +

Z T

t
q(x(s), u(s)) ds

o

= min
u(s), tsT

n
qf (x(T)) +

Z t+�t

t
q(x(s), u(s)) ds+

Z T

t+�t
q(x(s), u(s)) ds

o

= min
u(s), tsT

n
J⇤(x(t+�t), t+�t) +

Z t+�t

t
q(x(s), u(s)) ds

o
.

We can now take the Taylor approximation of the term J⇤(x(t+�t), t+�t) and substitute back in
this equation to get

0 = @t J
⇤(x(t), t) + min

u(t)2U

n
q(x(t), u(t)) + f(x(t), u(t)) @xJ

⇤(x(t), t)
o
. (11.4)

The term @tJ⇤(x(t), t) is partial derivative of the function J⇤(x, t) with respect to its second argument
evaluated at time t. Similarly the expression @xJ⇤(x(t), t) is the partial derivative evaluated with
respect to its first argument at x(t). Notice that the minimization in (11.4) is only over one control
input u(t) 2 U , the one we should take at time t.

This equation is called the Hamilton-Jacobi-Bellman (HJB) equation. It is the continuous-time
version of the Bellman equation

J⇤
k (x) = min

uk2U

n
qk(x, uk) + J⇤

k+1(fk(x, uk))
o
.

Just like the Bellman equation is solved backwards in time starting from T with J⇤
k (x) = qf (x), the

HJB equation is solved backwards in time by setting

J⇤(x, T) = qf (x).

6 LECTURE 11. LINEAR QUADRATIC REGULATOR (LQR)

11.3 Continuous-time LQR

Let us consider a linear continuous-time dynamics given by

ẋ = A x+B u; x(0) = x0.

We are interested in finding a control trajectory that minimizes, as usual, a cost function that is
quadratic in states and controls

1

2
x(T)>Qf x(T) +

1

2

Z T

0
x(t)>Q x(t) + u(t)>R u(t) dt.

This is a nice setup for using the HJB equation from the previous section. Let us use our intuition
from the discrete-time LQR problem and say that the optimal cost is quadratic in the states, namely,

J⇤(x, t) =
1

2
x>P (t) x(t);

notice that as usual the optimal cost-to-go is a function of the states x and the time t because is the
optimal cost of the continuous-time LQR problem if the system starts at a state x at time t and goes
on until time T � t. We want to check if this J⇤ satisfies the HJB equation

�@tJ
⇤(x, t) = min

u2U

⇢
1

2

�
x>Qx+ u>R u

�
+ (A x+B u)> @xJ

⇤(x, t)

�

from (11.4). Notice that the minimization is over the control input that we take at time t. Also notice
the partial derivaties

@xJ
⇤(x, t) = P (t) x.

@tJ
⇤(x, t) =

1

2
x>Ṗ (t) x.

It is convenient in this case to see that the minimization can be performed using calculus, we
differentiate with respect to u and set it to zero.

0 =
d {}
du

���
u⇤(t)

) u⇤(t) = �R�1 B>P (t) x(t)

, �K(t) x(t).

(11.5)

where K(t) = R�1 B>P (t) is the Kalman gain. The controller is again linear in the states x(t) and
the expression for the gain is very simple in this case, much simpler than discrete-time LQR. Since
R � 0, we also know that u⇤(t) computed here is the global minimum. If we substitute this value of
u⇤(t) back into the HJB equation we have

{}
���
u⇤(t)

=
1

2
x> �PA+A>P +Q� PBR�1B>P

x.

11.4. STOCHASTIC LQR 7

If order to satisfy the HJB equation, we must have that the expression above is equal to �@tJ⇤(x, t).
We therefore have the differential Riccati equation

� Ṗ = PA+A>P +Q� PBR�1B>P. (11.6)

This is an ordinary differential equation in the matrix P . The derivative Ṗ = dP
dt stands for

differentiating every entry of P individually with time t. The terminal cost is 1
2x(T)

>Qf x(T) which
gives the boundary value for the ODE as

P (T) = Qf .

Notice that the ODE for the P (t) travels backwards in time.

11.4 Stochastic LQR

Let us now consider a stochastic LQR problem. We will exploit the continuous-time equations we
just showed. The dynamics looks as

ẋ = Ax+Bu+Bww; x(0) = x0.

The “noise” is a standard Gaussian random variable w ⇠ N(0, I) and uncorrelated in time, i.e., w(t)
is independent of w(t+ s) for all times t, s. This is a “linear” Markov Decision Process.

Remark 4. The above notation is not very precise. Observe that x(t) changes in infinetisimal
increments and a different noise vector w at each time instant means that the trajectory x(t) of the
ODE written above is not continuous. The most appropriate way of writing the above equation is

x(t) = x0 +

Z t

0

�
Ax(s) +Bu(s) +Bww(s)

�
ds

where w(s) ⇠ N(0, I) is a Gaussian random variable at each instant s. The integral of Gaussian
noise is continuous and everything is well-defined mathematically. Handling such notation is the
subject of stochastic calculus and we will not worry about it here.

We are interested in minimizing cost of the form

1

2
E

w(t):t2[0,T]

"
x(T)>Qf x(T) +

1

2

Z T

0
x(t)>Q x(t) + u(t)>R u(t) dt

#
.

We want to find a control trajectory u⇤(t) : t 2 [0, T] that minimizes the cost of the LQR problem
when averaged over all realizations of the noise w(t).

It is an extremely surprising and non-intuitive fact that the optimal control u⇤(t) is the same as that
of (11.5)

u⇤(t) = �K(t) x(t).

8 LECTURE 11. LINEAR QUADRATIC REGULATOR (LQR)

In other words, the optimal controller one should use for the stochastic LQR problem does not
change from the deterministic LQR problem. This result is true only if the noise is Gaussian and the
dynamics is linear, it is not true in general. The total cost incurred by this controller is

J⇤(x0, 0) = E
w(t):t2[0,T]

1

2
x(T)>Qf x(T) +

Z T

0
. . . dt

!

=
1

2
x>
0 P (0) x0 +

1

2

Z T

0
trace

⇥
P (t)BwB

>
w

⇤
dt.

(11.7)

The first term is the same as that of the deterministic LQR problem. The second term is the penalty
we incur for having a noisy dynamical system. This is the minimal cost achievable for continuous
LQR but it is not the same as that of the deterministic LQR. Imagine if Bw is diagonal matrix, i.e.,
noise acts on all states. If there are certain states xii where Pii(t) is large and if Bwii is also non-zero,
then those states contribute a lot to the stochastic LQR cost.

11.5 Linear Quadratic Gaussian

The previous section was an MDP where we have observations of the entire state x(t) at each instant
in time t, even if this state x(t) changes stochastically and we do not really know the future noise
vector w(t). We said that the optimal control is u⇤(t) = �K(t) x(t). What should one do if we
cannot observe the state exactly?

Imagine that we receive observations of the form

y(t) = Cx(t) +Dv.

where v ⇠ N(0, I) is standard Gaussian noise that corrupts our observations y. Again the most
appropriate way of writing this equation is y(t) = y0 +

R t
0 (Cx(s) +Dv) ds but we will not worry

about it. The Kalman filter is interested in estimating the expected value of the state x(t) at time t
given all the observations preceeding it

bx(t) = E
v(s):s2[0,t]

h
x(t) | y(s) : s 2 [0, t]

i
.

The notation above is also a difficult object to define because the observation noise changes continuous,
to be precise one should condition on the “filtration” Y(t); we will not worry about this.

There exists a continuous-time version of the Kalman filter, this is called the Kalman-Bucy filter. If
the covariance of the estimate is

⌃(t) = E
⇥
x(t) x(t)>| Y(t)

⇤
,

the Kalman-Bucy filter updates ⌃(t) using the differential equation

⌃̇ = BwB
>
w +A⌃+ ⌃A> � ⌃ C> �DD>��1

C ⌃; given ⌃(0).

11.6. DUALITY BETWEEN THE KALMAN FILTER AND THE LQR 9

This equation is very close to the Kalman filter equations you saw in Lecture 3. You can read more at
https://en.wikipedia.org/wiki/Kalman filter.

We can now plug in the Kalman-Bucy filter estimate bx(t) into the optimal controller for LQR

u⇤(t) = �K(t) bx(t). (11.8)

This is called the Linear Quadratic Gaussian (LQG): it is just a Kalman/Kalman-Bucy filter operating
in tandem with an LQR/stochastic-LQR controller.

It is very surprising that this choice, namely plugging in bx(t) if we do not know x(t) exactly, is
optimal. Again, this result is true for the case of linear dynamics, linear observations and Gaussian
dynamics and observation noise; the result is not true for other cases. This choice is known as
“certainty equivalence”, a name has been borrowed from risk theory in finance.

11.6 Duality between the Kalman filter and the LQR

Given a dynamical system
ẋ = Ax+Bu+Bww

y = Cx+Dv

where w, v are Gaussian noise with identity covariance, we know that the LQR problem solves for
the optimal controller for the stochastic system that minimizes

E
w

h1
2

Z T

0
x(t)>Qx(t) + u(t)>Ru(t) dt

i

and the Kalman filter solves for the optimal state estimate (with u = 0)

E
v

h
x(t) | y(s) : s 2 [0, t]

i

conditioned on all past observations. The update equation for the covariance matrix ⌃ of the Kalman
filter in continuous time is

⌃̇ = BwB
>
w +A⌃+ ⌃A> � ⌃C> �DD>��1

C ⌃. (11.9)

This version of the Kalman filter is called the Kalman-Bucy filter and you can read more about it at
https://en.wikipedia.org/wiki/Kalman filter. The matrix ⌃ is initialized to some reasonable value, this
initialization is our estimate of the initial covariance of the state before the system starts producing
observations. The LQR problem has a cost-to-go function

J⇤(x, t) =
1

2
x>P (t) x

where the positive semi-definite matrix evolves from its terminal value P (T) = Qf as

� Ṗ = PA+A>P +Q� PBR�1B>P (11.10)

10 LECTURE 11. LINEAR QUADRATIC REGULATOR (LQR)

using the differential Riccati equation.

Let us write the Kalman-Bucy filter’s updates in terms of the inverse of ⌃

⌃�1 = S.

The matrix S is called the information matrix. Use the fact that

d
dt
�
⌃�1

�
= �⌃�1 ⌃̇ ⌃�1

and rewrite (11.9) as

⌃̇ = BwB
>
w +AS�1 + S�1 A> � S�1C> �DD>��1

C S�1

) Ṡ = C> �DD>��1
C �A>S � S A� SCC>S.

(11.11)

This form is called the information-matrix form of the Kalman filter.

The two equations (11.10) and (11.11) look quite similar.

LQR Kalman-Bucy filter

P ⌃�1

A �A
BR�1B> BwB>

w

Q C> �DD>��1
C

t T � t

This is a deep and surprising result that optimal control problems and state estimation problems
are equivalent for linear dynamical systems with linear observations with Gaussian dynamics and
observation noise. This result is not true in general. Effectively, you can solve for the Kalman filter
using the DARE command in MATLAB/Python for solving for the LQR.

Let us analyze this equivalence. Notice that the inverse of the Kalman filter is like the cost matrix of
LQR. The “dynamics” of the Kalman filter is the reserve of the dynamics of the LQR problem, this
shows that the P matrix is updated backwards in time while the covariance ⌃ is updated forwards in
time. The next identity

BR�1B> = BwB
>
w

is very interesting. Imagine a situation where we have a fully-actuated system with B = I and Bw

being a diagonal matrix. This identity suggests that larger the control cost Rii of a particular actuator
i, lower is the noise of using that actuator (Bw)ii, and vice-versa. This is how muscles in your body
have evolved: muscles that are cheap to use (low R) are also very noisy in what they do whereas
muscles that are expensive to use (large R) which are typically the biggest muscles in the body are
also the least noisy and most precise. You can read more about this in the assigned reading Todorov
and Jordan (2002). The next identity

Q = C> �DD>��1
C

11.7. ITERATIVE LQR 11

is related to the quadratic state-cost in LQR. Imagine the situation where both Q,D are diagonal
matrices. If the noise in the measurements Dii is large, this is equivalent to the state-cost matrix
Qii being small; roughly there is no way we can achieve a low state-cost x>Qx in our system that
consists of LQR and a Kalman filter (this combination is known as Linear Quadratic Gaussian LQG
as saw before) if there is lots of noise in the state measurements. The final identity

t = T � t

is the observation that we have made many times before: dynamic programming travels backwards in
time and the Kalman filter travels forwards in time.

Remark 5. The duality between linear controls and linear state-estimation problems is powerful. A
version of this duality was identitified by Kalman in the 60s and for the longest time it was believed
that this duality is unique to linear systems. However, there is a large class of non-linear problems
that also show such duality. You can also read Todorov (2008) to expand upon this section. This
material—quite surprisingly—will form the basis for what is called soft-Q learning in Reinforcement
Learning.

Remark 6. The Kalman duality was discovered and is usually presented in the following way. If we
directly compare (11.10) and (11.9) we get the equivalence

LQR Kalman-Bucy filter

P ⌃
A A>

B C>

R DD>

Q BwB>
w

t T � t

While the equations indeed match with these substitutions, if you follow the discussion above these
equivalences do not really make sense, this version of the Kalman duality is a strong artifact of the
linear setting and does not generalize as discussed in the previous remark.

11.7 Iterative LQR

Remark 7 (Tracking using LQR).

Question 8 (Does iLQR converge?).

Question 9 (Is the iLQR problem convex?).

Remark 10 (Differential dynamic programming).

11.7.1 Receeding horizon LQR

Remark 11 (Model Predictive Control).

Bibliography

Todorov, E. (2008). General duality between optimal control and estimation. In 2008 47th IEEE
Conference on Decision and Control, pages 4286–4292. IEEE.

Todorov, E. and Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination.
Nature neuroscience, 5(11):1226–1235.

12

Lecture 13

Sampling-based Motion Planning

Reading

• Lavalle Chapter 5, 14, 15.3

• Kuffner and LaValle (2000)

Building systems in robotics

• A Perception-Driven Autonomous Urban Vehicle: http://acl.mit.edu/papers/LeonardJFR08.pdf

• MIT’s Entry in the DARPA Robotics Challenge: https://ocw.mit.edu/resources/res-9-003-

brains-minds-and-machines-summer-course-summer-2015/unit-8.-robotics/lecture-8.1-russ-tedrake-

mits-entry-in-the-darpa-robotics-challenge/

• Mine Tunnel Exploration Using Multiple Quadrupedal Robots:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8990018

We will use the course notes hosted at https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-

410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16 410F10 lec15.pdf

from Emilio Frazzoli (ETH/MIT) for this lecture. Please use the handwritten notes for the following

sections. https://github.com/pratikac/smpl is a fast C++ library that implements the RRT
⇤

algo-

rithm, you are encouraged to study this implementation. In practice you can use libraries like

https://ompl.kavrakilab.org/ which implement a host of motion-planning algorithms.

1

2 LECTURE 13. SAMPLING-BASED MOTION PLANNING

13.1 Steering function

13.2 Nearest neighbor algorithms

13.3 Obstacles

13.4 Receeding horizon planning

13.5 Multiple agents

13.6 RRTs for stochastic systems

13.7 Some special dynamical systems

13.7.1 Dubins car

13.7.2 Reeds-Shepp car

13.7.3 Planning for quadrotor

13.7.4 Manipulator

13.8 Robotics as a system

Bibliography

Kuffner, J. J. and LaValle, S. M. (2000). Rrt-connect: An efficient approach to single-query path

planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference

on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 2, pages

995–1001. IEEE.

3

Lecture 16

Imitation Learning

Reading

• An Algorithmic Perspective on Imitation Learning (https://arxiv.org/pdf/1811.06711.pdf)

• The DAGGER algorithm (https://www.cs.cmu.edu/ sross1/publications/Ross-AIStats11-NoRegret.pdf)

• https://www.youtube.com/watch?v=TUBBIgtQL k

16.1 Background

This is the beginning of Module 3 of the course. The previous two modules have been about how to to
estimate the state of the world around the robot (Module 1) and how to move the robot (or the world)
to a desired state (Module 2). Both of these required that we maintain a model of the dynamics of the
robot; this model may be inaccurate and we fudged over this inaccuracy by modeling the remainder
as “noise” in Markov Decision Processes.

The next few lectures introduce different aspects of what is called Reinforcement Learning (RL).
This is a very large field and you can think of using techniques from RL in many different ways.

1. Dynamic programming with function approximation. If you are doing dynamic programming,
you can think of writing down the optimal cost-to-go J⇤(x, t) as a function of some parameters,
e.g., the cost-to-go is

J'(x, t) =
1

2
x(t)>

⇣
some function of A,B,Q,R

⌘

| {z }
function of '

x(t)

for LQR. We know the stuff inside the brackets to be exactly P (t) but, if we did not, it could be
written down as some generic function of parameters '. We know that any cost-to-go that satisfies
the Bellman equation is the optimal cost-to-go, so we can now “fit” the candidate function J✓(x, t)

1

2 LECTURE 16. IMITATION LEARNING

to satisfy the Bellman equation. Similarly, one may also approximate the policy ⇡ using some
parameters ✓.

2. Learning from data. It may happen that we do not know very much about the dynamical system,
e.g., we do not know a good model for what drives customers as they buy items in an online
merchandise platform, or a robot traveling in a crowded area may not have a good model for how
large crowds of people walk around it. One may collect data from these systems fit some model of
the form ẋ = f(x, u) to the data and then go back to the techniques of Module 2. It is typically
not clear how much data to collect. RL gives a suite of techniques to learn the cost-to-go in these
situations by collecting and assimilating the data itself. These techniques go under the umbrella of
policy gradients, on-policy methods etc. One may also simply “memorize” the data provided by
an expert operator, this is called Imitation Learning.

We will look at a number of these methods in the coming lectures.

Imitation Learning is also called “learning from demonstrations”. This is one of the earliest examples
of using a neural network for doing robotics. The Autonomous Land Vehicle in a Neural Network
(ALVINN) project at CMU by Dean Pomerleau in 1988 (
https://www.youtube.com/watch?v=2KMAAmkz9go) used a two-layer neural network with 5 hidden
neurons, about 1000 inputs from the pixels of a camera and 30 outputs. It successfully drove across
the US and Germany. Imitation learning has also been responsible for numerous other early-successes
in RL, e.g., acrobatic maneuvers on an RC helicopter (http://ai.stanford.edu/ acoates/papers/Abbeel-
CoatesNg IJRR2010.pdf).

Imitation Learning seeks to record data from experts, e.g., humans, and reproduce these desired
behaviors on robots. The key questions we should ask are as follows:

1. Who should demonstrate (experts, amateurs, or novices) and how should we record data (what
states, controls etc.)?

2. How should we learn from this data? e.g., fit a supervised regression model for the policy. How
should one ignore bad behaviors in non-expert data?

3. And most importantly, what can we do if the robot encounters a situation which was not in the
dataset. This is called covariate shift in machine learning.

16.2 A tour of Supervised Learning

Let us first see standard supervised learning where it is Nature that gives us data. On this data, it
provides us with a prediction problem:

input data| {z }
X

! predictions| {z }
Y

.

Nature often does not tell us what property of a datum x 2 X results in a particular prediction y 2 Y .
We would like to learn to imitate nature: predict y given x.

16.2. A TOUR OF SUPERVISED LEARNING 3

What does such learning mean? It is simply a notion of being able to identify patterns in the input data
without explicitly programming a computer for prediction. We are often happy with a learning process
that simply identifies correlations: if we learn correlations on a few samples (x1, y1), . . . , (xn, yn),
we may be able to predict the output for a new datum xn+1. We may not need to know why the label
of xn+1 was predicted to be so and so.

Let us say that nature possesses a probability distribution P over (X,Y). It draws n iid samples from
this distribution

Dtrain = {(xi, yi)}
n
i=1

where
(xi, yi) ⇠ P 8i n

and hands Dtrain to us as the “training set”. If we wish to test our predictor on new data then nature
gives us a “test set”

Dtest.

The assumption that the distribution P generates both Dtrain and Dtest is very important. This
distribution provides coherence between past and future samples: past samples that were used to train
and future samples that we will wish to predict upon.

What is the task in machine learning? Imagine Dtrain consists of n = 50 RGB images of size
100⇥100 of two kinds, ones with an orange inside them and ones without. 104 is a large number of
pixels, each of possible intensities 2553. It might happen that we discover one particular pixel, say at
location (25, 45), which takes distinct values in all images inside Dtrain. Here is a predictor: given a
test datum the predictor outputs the label of the first image in the training set whose pixel (25, 45)
matches that of the test datum. Observe that this predictor achieves zero error on Dtrain. Why do you
think this will not work well for images outside Dtrain? For instance, the lighting conditions or the
viewpoint of future images might be different than the ones in Dtrain.

Designing a predictor that is accurate on Dtrain is trivial. A hash function that
memorizes the data is sufficient. This is NOT our task in machine learning. We
want predictors that generalize to new data outside Dtrain.

How to generalize? If we never see data from outside Dtrain why should we hope to do well on it?
The key is the distribution P . It is to constrain the class of predictors we entertain in our search. If
this class is too big we risk finding rules similar to the one constructed above: they are good on the
training data but cannot generalize. If this class is too small we never even predict on the training
data well, surely the performance on the test data will be equally bad. Finding the right class of
functions to fit the data is known as the model selection problem. Regularization in machine learning
is a technique that will help constrain large model classes.

4 LECTURE 16. IMITATION LEARNING

16.3 Behavior Cloning

Let us imagine that we are given access to n trajectories each of length T + 1 time-steps from an
expert demonstrator. We write this as a dataset

D =
�
(xi

t, u
i
t)t=0,1,...,T

i=1,...,n

At each step, we record the state xi
t and the control the expert took at that state ui

t.

How to represent the controller? We would like to learn a deterministic feedback control for the
robot that is parametrized by parameters ✓

u✓(x) : X 7! U.

This may represent many different families of controllers. For example, u✓(x) = ✓x where ✓ 2 Rd⇥p

is a linear controller much like the control for LQR. We could think of some other complicated
function like

u✓(x) = ✓2 � (✓1x)

where ✓1 2 Rp⇥m and ✓2 2 Rm⇥p and � : Rm
7! Rm is some nonlinear function, say a sigmoid.

The parameters are the union of the two parameters on each layer ✓ = {✓1, ✓2}. This is really a
two-layer neural network.

How to fit the controller? Given our chosen model (also known as the architecture) for u✓(x),
fitting the controller involves finding the best value for the parameters ✓ such that u✓(xi

t) ⇡ ui
t for

data in our dataset. There are many ways to do this, e.g., we can solve the following optimization
problem

b✓ = argmin
✓

1

n(T + 1)

TX

t=0

nX

i=1

kui
t � u✓(x

i
t)k

2
2 (16.1)

The difficulty of solving the above problem depends upon how difficult the model u✓(x) is, for
instance, if the model is linear ✓ x, we can solve (16.1) using ordinary least squares. If the model is a
neural network, one would have to use iterative methods to solve the optimization problem above.

Question 1 (Data in BC is not iid). Standard supervised learning makes the assumption that Nature
gives training data that is independent and identically distributed from the distribution P . Is the data
from an expert iid? So is the objective in (16.1) the correct way to fit a policy? Can you suggest ways
of fixing correlations in the data?

Question 2 (Generalization performance of BC). If we fit the model ub✓ well, it will have small
prediction error on states xi

t in the dataset. Can we use this model to run a real robot?

16.3.1 Behavior cloning with a stochastic controller

We have always considered feedback controllers that are deterministic as yet, i.e., there is a single
value of control u that is taken at the state x. Going forward, we will also talk about stochastic
controllers. They will be denoted by

u ⇠ u✓(· | x);

16.3. BEHAVIOR CLONING 5

in this case, u✓(· | x) is a probability distribution on the control space U that depends on the state
x, and in this case the parameters ✓. The control taken at a state x is a sample drawn from this
probability distribution. The deterministic controller is a special case of this setup where

u✓(· | x) = �u✓(x)

is a Dirac-delta distribution at u✓(x). If the control space U is discrete, u✓(· | x) could be a categorical
distribution, if the control space U is continuous, you may wish to think of the controls being sampled
from a Gaussian distribution with some mean µ✓(x) and variance �2

✓(x).

Let’s pick a particular stochastic controller, say a Gaussian. How should we fit the parameters ✓ for
this? We would like to find parameters ✓ that make the expert’s data in our dataset very likely. The
log-likelihood of each datum is

log u✓(u
i
t | x

i
t)

and maximizing the log-likelihood of the entire dataset amounts to solving

b✓ = argmin
✓

1

n(T + 1)

TX

t=0

nX

i=1

� log u✓(u
i
t | x

i
t). (16.2)

Remark 3 (Fitting BC with a Gaussian controller). Notice that if we use a Gaussian distribution

u✓(· | x) = N (µ✓(x), 1)

as our stochastic controller, the objective in (16.2) is the same as that in (16.1). To elaborate upon
this, if

u✓(· | x) = N
�
µ✓(x),�

2
✓(x)

�

we have that

� log u✓(u | x) =
kµ✓(x)� uk22

�2
✓(x)

+ p log �✓(x).

Remark 4 (KL-divergence form of BC). We can slightly generalize the development in this section
by thinking of the expert as using a controller u✓⇤(· | x). The data is drawn by running this controller
for n trajectories, T + 1 time-steps on the system. This dataset is therefore a sample from

pu✓⇤ (x, u)

which is the joint distribution on states and controls. The candidate distribution is pu✓ (x, u) and the
objective in (16.2) can also be written as

b✓ = argmin
✓

KL (pu✓⇤ || pu✓) (16.3)

Written this way, BC can be understood as finding a controller b✓ whose distribution on the states and
controls is close to the distribution of states and controls of the expert.

Some background on KL-divergence. For two distributions p(x) and q(x) supported on a discrete

6 LECTURE 16. IMITATION LEARNING

set X , the Kullback-Leibler divergence between them is given by

KL(p || q) =
X

x2X

p(x) log
p(x)

q(x)
. (16.4)

This formula is well-defined only if for all x where q(x) = 0, we also have p(x) = 0. The KL
divergence is a measure of the distance between two distributions. Notice that it is not symmetric

KL(q || p) =
X

x2X

q(x) log
q(x)

p(x)
6= KL(p || q).

Therefore the KL divergence is not a metric. It is always positive however which you can show using
an application of Jensen’s inequality. For distributions with continuous support, we integrate over the
entire space X and define KL divergence as

KL(p || q) =

Z

X
p(x) log

p(x)

q(x)
dx.

Remark 5 (Worst-case performance of BC). Performance of Behavior Cloning can be quite bad
in the worst case. The authors in Ross and Bagnell (2010) show under certain stylistic models that if
the learnt controller ub✓ differs from the control taken by the expert controller u✓⇤ with a probability ✏
at each time-step, over a horizon of length T time-steps, it can be O(T 2✏) off from the cost-to-go of
the expert as averaged over states that the learnt controller visits. This is because once the robot
makes a mistake and goes away from the expert’s part of the state-space, the future trajectories of the
robot and the expert can be very different.

Remark 6 (Model-free nature of BC). Observe that we have learnt a controller ub✓(· | x) that is,
as usual, a feedback controller and works for entire state-space X . We do not have any idea about
the dynamics of the system however and did not need to know the dynamics in order to arrive at
the controller. The data from the expert is conceptually the same as the model ẋ = f(x, u) of the
dynamics, and you can learn controllers from both. Do you notice a catch?

16.4 DAgger: Dataset Aggregation

The dataset in Behavior Cloning determines the quality of the controller learnt. If we collected very
few trajectories from the expert, they may not cover all parts of the state-space and the behavior
cloning controller has no data to fit the model in those parts.

Let us design a simple algorithm, of the same spirit as iterative-LQR. We start with a candidate
controller, say u✓0(x); you can also start with a stochastic controller u✓0(· | x) if you wish.

DAgger: Initialize dataset D to be the data of the expert. Initialize u✓0 = ub✓ to be the BC
controller for the expert’s data. At iteration k

1. Pick a controller u(x) which uses the expert’s controller u✓⇤ for fraction p of the time-steps

16.4. DAGGER: DATASET AGGREGATION 7

and uses u✓k for the other time-steps

u ⇠ p �u✓⇤ (x) + (1� p) �u✓k
(x).

2. Use u(x) to collect a dataset Dk =
�
(xi

t, u
i
t)t=0,...,T

i=1,...,n

3. Set the new dataset to be D D [Dk

4. Fit a controller u✓k+1 to the dataset D

This algorithm iteratively updates the BC controller ub✓ by drawing new data from the system. The
algorithm bootstraps off the expert’s data. At each iteration, it runs the controller on the real system
and adds the states and the controls to the dataset. In the beginning we may wish to be close to the
expert’s data and use a large value of p, as the fitted controller u✓k+1 becomes good, we can reduce
the value of p and rely less on the expert.

Remark 7. DAgger is an iterative algorithm which expands the controller to handle larger and larger
parts of the state-space. Therefore, the cost-to-go of the controller learnt via DAgger is O(T) off
from the cost-to-go of the expert as averaged over states that the learnt controller visits.

Question 8. What criterion can we use to stop these iterations? We can stop when the incremental
dataset collected Dk is not that different from the cummulative dataset D, we know that the new
controllers are not that different. We can also stop when the parameters ✓k+1 ⇡ ✓k.

Remark 9 (DAgger with expert annotations at each step). We can also cook up a version of
DAgger where we start with the BC controller u✓0 = ub✓ and at each step, we run the controller on
the real system and ask the expert to relabel the data, i.e., record the states xi

t for our trajectories
in step 2 of DAgger and put u✓⇤(xi

t) in the dataset instead of our chosen control ui
t. The dataset D

collected by the algorithm expands at each iteration and although the states xi
t are those visited by

our controller, their annotations are those given by the expert.

Bibliography

Ross, S. and Bagnell, D. (2010). Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661–668.

8

Lecture 17

Policy Gradient

Reading

• Sutton & Barto, Chapter 9–10, 13

• Simple random search provides a competitive approach to reinforcement learning at
https://arxiv.org/abs/1803.07055

• Proximal Policy Optimization Algorithms https://arxiv.org/abs/1707.06347

• Are Deep Policy Gradient Algorithms Truly Policy Gradient Algorithms? https://arxiv.org/abs/1811.02553

• Asynchronous Methods for Deep Reinforcement Learning http://proceedings.mlr.press/v48/mniha16.pdf

This lecture discusses methods to learn the controller that minimizes a given cost functional over
trajectories of an unknown dynamical system. These methods use what is called the “policy gradient”
which will be the main section of this lecture. Recall from the previous class that we were able to fit
stochastic controllers of the form u✓(· | x) that is a probability distribution on the control-space U
for each x 2 X . We fitted u✓ using data from the expert in imitation learning. We did not learn the
cost-to-go for the fitted controller, like we did in the lectures on dynamic programming. This is a
clever choice: it is often easier to learn the controller in a typical problem than to learn the cost-to-go
as a parametric function J✓(x).

Question 1. Can you give an instance when we have computed a controller previously in the class
without coming up with its cost-to-go?

17.1 Setup

In this and the next few lectures we will always consider discrete-time stochastic dynamical systems
with a stochastic controller

xk+1 ⇠ p(· | xk, uk) with noise denoted by ⇠k
uk ⇠ u✓(xk).

1

2 LECTURE 17. POLICY GRADIENT

We are interested in maximizing the expected value of the cummulative rewards over an infinite-
horizon over trajectories of the stochastic system

J(✓) = E
⇠0, ⇠1,...

" 1X

k=0

�k r(xk, uk)
��� x0, uk ⇠ u✓(· | xk)

#
.

This is the same setup as that in the module on dynamic programming where we thought of the
cost-to-go instead of the cummulative rewards. You can think of the reward as simply the negative of
the cost and vice versa. Note that the expectation is only a function of the parameters of the controller
✓. Finding the best controller therefore amounts to solving for

b✓ = argmax
✓

J(✓). (17.1)

Question 2. Given the best policy with parameters b✓ how will you compute J(✓) numerically? We
can sample n trajectories from the system and compute the empirical estimate of the expectation

bJ(✓) ⇡ 1

n

nX

i=0

TX

k=0

�kr(xi
k, u

i
k)

for some large time-horizon T . Contrast this with the complexity of policy evaluation which was
simply a system of linear equations; evaluating the policy without having access to the dynamical
system is harder.

17.1.1 Trajectory space

We know that the probability of the next state xk+1 given xk is p(xk+1 | xk, uk). The probability of
taking the control uk at state xk is u✓(uk | xk). Let us denote an infinite trajectory by

⌧ = x0, u0, x1, u1,

The probability of observing this entire trajectory is then

p(⌧) =
1Y

i=0

p(xk+1 | xk, uk) u✓(uk | xk).

or the log-likelihood of the trajectory is

log p(⌧) =
1X

i=0

⇣
log p(xk+1 | xk, uk) + log u✓(uk | xk)

⌘
.

The summation

R(⌧) =
1X

k=0

�k r(xk, uk)

is called the discounted return of the trajectory ⌧ . Sometimes we will also talk of the undiscounted
return of the trajectory which is the sum of the rewards up to some fixed finite horizon T without the

17.2. CROSS-ENTROPY METHOD 3

discount factor pre-multiplier.

Remark 3. Observe what is probably the most important point in policy-gradient based reinforcement
learning: the probability of trajectory is an infinite product of terms all of which are smaller than
1 (they are probabilities), so it is essentially zero even if the state-space and the control-space are
finite (even if they are small). Any given infinite (or long) trajectory is very rare under the controller.
Policy-gradient methods sample lots of trajectories from the system and average the returns across
these trajectories. Since the set of trajectories of even a small MDP is so large, sampling lots of
trajectories, or even the most likely ones, is very hard. This is a key challenge in getting RL algorithms
to work.

17.2 Cross-entropy Method

Let us first consider a simple method to compute the best controller. Remember that if we are solving

b✓ = argmax
✓

J(✓)

we can do so using gradient descent and run a sequence of updates

✓k+1 = ✓k + ⌘ rJ(✓).

where the step-size is ⌘ > 0 and rJ(✓) is the gradient of the objective J(✓) with respect to the
parameters ✓. In lieu of computing rJ(✓) which we will do in the next section, let us simply compute
the gradient using a finite-difference approximation. The ith entry of the gradient is

(brJ(✓))i =
J(✓ + ✏ei)� J(✓ � ✏ei)

2✏

⇡
bJ(✓ + ✏ei)� bJ(✓ � ✏ei)

2✏
.

where ei = [0, 0, . . . , 0, 1, 0, . . .] with 1 on the ith entry. We compute all entries of the objective using
this approximation and update the parameters using

✓k+1 = ✓k + ⌘ br J(✓k).

Question 4. How many trajectories does finite-differences take? Can you do something more clever
to estimate the gradient? Instead of picking perturbations ei along the cardinal directions, let us
sample them from a Gaussian distribution

e ⇠ N(0,�2I)

for some chosen �. We can however no longer use the finite-difference formula to compute the
derivative because the noise e is not aligned with the axes. We can however use a Taylor series
approximation to see that

J(✓ + e) ⇡ J(✓) + hrJ(✓), ei

4 LECTURE 17. POLICY GRADIENT

where h·, ·i is the inner product. Given n samples e1, . . . , en observe that

bJ(✓ + e1) = bJ(✓) +
⌦
rJ(✓), e1

↵

bJ(✓ + e2) = bJ(✓) +
⌦
rJ(✓), e2

↵

...
bJ(✓ + en) = bJ(✓) + hrJ(✓), eni .

which is a linear system of equations in rJ(✓). The quantities bJ are estimated as before using
trajectories drawn from the system. We solve this linear system to get an estimate of the gradient
brJ(✓).

The Cross-Entropy Method is a more crude but simpler to implement version of the above least
squares formulation. At each iteration it updates the parameters using the formula

✓k+1 = E
✓⇠N(✓k,�2I)

h
✓ 1{ bJ(✓)> bJ(✓k)}

i
. (17.2)

The CEM therefore samples a few parameters of the policy ✓ from a Gaussian (or really any other
distribution) centered around the current parameters ✓k and updates the parameters in the direction if
it leads to an increase bJ(✓) > bJ(✓k) to be maximized.

Question 5. The CEM seems to be a particularly bad method to maximize J(✓). It is reasonable to
expect that it does not work well for all problems. What problems do you expect it to work well for?
The assigned reading for today’s lecture is a paper which demonstrates a very fast implementation of
the CEM.

17.3 Likelihood-ratio-based methods

Consider the case where we are solving an optimization problem of the form

min
✓

E
⇠
[f(✓, ⇠)]

where the function to be minimized depends on two arguments (✓, ⇠); the first argument are some
parameters ✓ and the second argument is ⇠ which is a stochastic quantity beyond our control (think of
the noise in the MDP). The expectation on the outside is over the argument ⇠ which makes the entire
objective only a function of the parameter ✓. If we were to solve this problem using gradient descent,
we could imagine running

✓k+1 = ✓k � ⌘ r✓

⇢
E
⇠
[f(✓k, ⇠)]

�
.

Expectation is a linear operator and we can push the gradient r✓ inside the expectation to write the
second term as

E
⇠
[r✓f(✓k, ⇠)]

17.3. LIKELIHOOD-RATIO-BASED METHODS 5

which is simply the average of the standard gradient r✓f(✓, ⇠) over the stochastic variable in the
problem ⇠.

Imagine if the problem were instead to minimize

min
✓

E
⇠⇠p✓(·)

[f(⇠)]

where there is only one variable in the problem ⇠ ⇠ p✓(·) whose distribution is parametrized by the
parameters ✓. We can no longer push the gradient into the expectation easily because the distribution
over which the expectation is computed also depends on the parameters ✓. Essentially, we would like
to do the chain rule of calculus but where one of the functions in the chain is an expectation. The
likelihood-ratio trick described next allows us to take such derivatives.

Here is how the computation goes

r E
⇠⇠p✓(·)

[f(⇠)] = r
Z

f(⇠) p✓(⇠) d⇠

=

Z
f(⇠) rp✓(⇠) d⇠ (move the gradient inside, integral is over samples ⇠ which do not depend on ✓)

=

Z
f(⇠) p✓(⇠)

rp✓(⇠)

p✓(⇠)
d⇠

=

Z
f(⇠) p✓(⇠) r log p✓(⇠) d⇠

= E
⇠⇠p✓(⇠)

[f(⇠) r log p✓(⇠)] .

(17.3)
This is called the likelihood-ratio trick to compute the policy gradient. It simply multiplies and
divides by the term p✓(⇠) and rewrites the term rp✓

p✓
= r log p✓.

Remark 6 (Variance of policy gradient). How will you implement the policy gradient on a com-
puter? Can you notice any problems with this implementation? Observe

r E
⇠⇠p✓(·)

[f(⇠)] = E
⇠⇠p✓(⇠)

f(⇠)

r p✓(⇠)

p✓(⇠)

�

⇡ 1

n

nX

i=1

f(⇠i)
r p✓(⇠i)

p✓(⇠i)
.

High variance of the computing the gradient using samples ⇠i for the policy gradient is a characteristic
of the likelihood-ratio trick. The denominator is culprit. Trajectories that have low likelihood better
have low returns or low gradient under the model class. If none of these conditions are true, an
estimator for the gradient will have high variance because the integrand takes values in a large range.
This phenomenon is very common in machine learning, evaluating the log-partition function for
probabilistic models is hard because the integrand may take values across multiple magnitudes.

Question 7. Do you know any other way of computing gradients of expressions where the parameters
are involved in the expectation?

6 LECTURE 17. POLICY GRADIENT

17.3.1 Expression for the policy gradient

Let us get back to reinforcement learning. We can write the objective J(✓) in short as

J(✓) = E
⌧⇠p(⌧ ;✓)

h
R(⌧)

i
.

Observe carefully, this is very bad notation but is unfortunately rampant in the literature on reinforce-
ment learning. The expectation is being taken over the space of trajectories. We have indicated that
this distribution of trajectories of the system depends on the parameters of the stochastic controller ✓
that we wish to optimize. The integrand is R(⌧) which is the discounted return of the infinite-horizon
trajectory. We can now easily use the expression for the gradient in the previous expression to get

rJ(✓) = E
⌧⇠p(⌧ ;✓)

h
R(⌧) r log p(⌧ ; ✓)

i

= E
⌧⇠p(⌧ ;✓)

"
R(⌧) r

TX

k=0

log u✓k(uk | xk) + log p(xk+1 | xk, uk)

!#

= E
⌧⇠p(⌧ ;✓)

"
R(⌧)

TX

k=0

r log u✓k(uk | xk)

!#

= E
⌧⇠p(⌧ ;✓)

"
TX

k=0

�kr(xk, uk)

!
TX

k=0

r log u✓k(uk | xk)

!#
.

(17.4)

The gradient of the dynamics with respect to ✓ is zero because the dynamics does not depend on
✓. Note that for things to be well-defined we have eschewed the infinite-horizon expressions and
replaced them with the finite-horizon version; if you don’t think like this think of our entire RL setup
as being a finite-horizon formulation with � = 1.

We can again estimate this gradient using n trajectories from the system

⌧ i = xi
0, u

i
0, x

i
1, u

i
1,

using the expression

brJ(✓) =
1

n

nX

i=1

TX

k=0

�kr(xi
k, u

i
k)

!
TX

k=0

r log u✓k(u
i
k | xi

k)

!

and update our parameters ✓k using

✓k+1 = ✓k + ⌘ brJ(✓).

17.4. VARIANCE REDUCTION OF THE POLICY GRADIENT 7

17.4 Variance reduction of the policy gradient

Remark 8 (Why do we need variance reduction). Consider an optimization problem

min
✓

1

n

nX

i=1

f(✓; ⇠i)

where ⇠i is the ith datum in a dataset of n samples and we are minimizing the loss (say, the classifica-
tion error) f(✓; ⇠i). This is the empirical version of the stochastic optimization problem where we
were averaging over a random variable ⇠. Gradient descent updates the parameters using

✓k+1 = ✓k � ⌘ r✓

1

n

nX

i=1

f(✓; ⇠i)

!

= ✓k � ⌘
1

n

nX

i=1

r✓f(✓; ⇠i).

Updating the parameters ✓k at each iteration therefore involves computing the gradient of the classifier
f(✓k; ⇠i) on every datum ⇠i and averaging these gradients. The step-size ⌘ is typically chosen as a
hyper-parameter in machine learning (advanced optimization methods such as BFGS will do a clever
job of picking ⌘ but they are slow if n is large).

Stochastic gradient descent (SGD) makes the observation that it may not be necessary to compute the
gradient on all the n data because we don’t know the best step-size to use anyway. SGD samples an
index !t 2 {1, . . . , n} uniformly randomly at each iteration and updates the parameters using

✓k � ⌘ r✓f(✓; ⇠!t).

It thereby requires only one gradient evaluation per iteration; each iteration is much faster than an
iteration of gradient descent. Typically you do mini-batch SGD where you sample !1

t , . . . , w
b
t 2

{1, . . . , n} uniformly randomly and update

✓k � ⌘
1

b

bX

i=1

r✓f(✓; ⇠!i
t
).

for some chosen mini-batch size b > 0.

There is no free lunch, SGD is much slower to converge than GD; it takes many more steps to
minimize the objective. Roughly speaking, if the size of the dataset n is small, GD is better and if n
is large, SGD requires fewer CPU cycles. The inefficiency of SGD depends on the variance of the
gradient

D = Var
!t

r✓f(✓; ⇠!t)�

1

n

nX

i=1

r✓f(✓; ⇠i)

!
;

this is the expression for b = 1. If this is large, the gradient used in SGD is very inaccurate as
compared to its mean gradient which is the gradient of GD.

Accelerating SGD therefore relies on making its stochastic gradient more accurate. Variance reduction

8 LECTURE 17. POLICY GRADIENT

techniques are a mechanism to accelerate SGD and are of critical importance when implementing
policy gradient-based RL.

17.4.1 Control variates

You will perhaps appreciate that computing the accurate policy gradient is very hard in practice. This
is a general concept from the literature on Monte-Carlo integration. It is typically introduced as
follows. Say we have a random variable X and we would like to guess its expected value µ = E[X].
Note that X is an unbiased estimator of µ but it may have a large variance. If we have another random
variable Y with known expected value E[Y], then

bX = X + c(Y � E[Y]) (17.5)

is also an unbiased estimator for µ for any value of c. The variance of bX is

Var(bX) = Var(X) + c2 Var(Y) + 2c Cov(X,Y).

which is minimized for
c⇤ = �Cov(X,Y)

Var(Y)

to
Var(bX) = Var(X)� c⇤2 Var(Y)

=

1�

✓
Cov(X,Y)

Var(Y)

◆2
!

Var(X).

By subtracting Y � E[Y] from our observed random variable X , we have reduced the variance of X
if the correlation between X and Y is non-zero. Most importantly, note that no matter what Y we
plug into the above expression, we can never increase the variance of X; the worst that can happen
is that we pick a Y that is completely uncorrelated with X and end up achieving nothing. Control
variates are at the heart of a number of algorithms in machine learning and statistics.

17.4.2 Building a baseline

The simplest baseline one can build is to subtract a constant from the return. Consider the PG given
by

rJ(✓) = E
⌧⇠p(⌧ ;✓)

h
R(⌧) r log p(⌧ ; ✓)

i

= E
⌧⇠p(⌧ ;✓)

h
(R(⌧)� b) r log p(⌧ ; ✓)

i
.

17.4. VARIANCE REDUCTION OF THE POLICY GRADIENT 9

This is so because

E
⌧⇠p(⌧ ;✓)

⇥
b r log p(⌧ ; ✓)

⇤
=

Z
d⌧ b p(⌧ ; ✓)r log p(⌧ ; ✓)

=

Z
d⌧ b rp(⌧ ; ✓)

= b r
Z

d⌧ p(⌧ ; ✓)

= b r1

= 0.

Remark 9. What is the simplest b we can cook up? Let us write the mini-batch version of the policy
gradient

brJ(✓) =
1

b

bX

i=1

⇥
R(⌧ i) r log p(⌧ i; ✓)

⇤
.

We can set

b =
1

b

bX

i=1

R(⌧ i)

can use the variance-reduced gradient

brJ(✓) =
1

b

bX

i=1

⇥ �
R(⌧ i)� b

�
r log p(⌧ i; ✓)

⇤
.

This is a one-line change in your code for policy gradient so there is no reason not to do it.

Remark 10. What is the best constant b we can use? This involves a similar computation that we
did for the control variate example. You minimize the variance of the gradient estimate

Var
⇣
br✓iJ(✓)

⌘
= E

⌧

⇥
((R(⌧)� bi)r✓i log p(⌧ ; ✓))

2 ⇤�
⇣
E
⌧

⇥
((R(⌧)� bi))r✓i log p(⌧ ; ✓)

⇤⌘2

= E
⌧

⇥
((R(⌧)� bi)r✓i log p(⌧ ; ✓))

2 ⇤�
⇣
br✓iJ(✓)

⌘2
.

Set
Var
⇣
br✓iJ(✓)

⌘

dbi
= 0

in the above expression to get

bi =
Et

h
(r✓i log p(⌧ ; ✓))

2 R(⌧)
i

E⌧
h
(r✓i log p(⌧ ; ✓))

2
i

which is the baseline you should subtract from the gradient of the ith parameter ✓i to result in the
largest variance reduction. This expression is just the expected return but it is weighted by the
magnitude of the gradient, this again 1–2 lines of code.

10 LECTURE 17. POLICY GRADIENT

17.5 An alternative expression for the policy gradient

Let us define an important quantity that helps us think of RL algorithms.

Definition 11 (Discounted state visitation frequency). Given a stochastic controller u✓(· | x) the
discounted state visitation frequency for a discrete-time dynamical system is given by

d✓(x) =
1X

k=0

�k P(xk = x | x0, uk ⇠ u✓(· | xk)).

The distribution d✓(x) is the probability of visiting a state x computed over all trajectories of the
system that start at the initial state x0. If � = 1, this is the steady-state distribution of the Markov
chain underlying the Markov Decision Process where at each step the MDP choses the control
uk ⇠ u✓(xk). The fact that we have defined the discounted distribution is a technicality; this
version is seen in the policy gradient expression. You will also notice that d✓(x) is not a normalized
distribution. The normalization constant is difficult to characterize both theoretically and empirically
and we will not worry about it here; RL algorithms do not require it.

The policy gradient that we saw before can be written in terms of the q -factor as follows.

brJ(✓) = E
x⇠d✓

E
u⇠u✓(· | x)

⇥
q✓(x, u) r✓ log u✓(u | x)

⇤
. (17.6)

The function q✓ is what we have seen before as the cost-to-go in Module 2:

q✓(x, u) = E
⌧⇠p(⌧ ;✓)

[R(⌧) | x0 = x, u0 = u] ; (17.7)

it is the infinite-horizon discounted cummulative reward (return) if the system starts at state x and
takes the control u in the first step and runs the controller u✓(· | x) for all steps thereafter. We will
make the dependence of q✓ on the parameters ✓ of the controller explicit. This function is also often
called the action-value function.

The derivation is easy although tedious, you can find it in the Appendix of the paper “Policy gradient
methods for reinforcement learning with function approximation” at https://papers.nips.cc/paper/1713-
policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf.

Remark 12. Compare the above formula for the policy gradient with the one we had before in (17.4)

brJ(✓) = E
⌧⇠p(⌧ ;✓)

⇥
R(⌧) r log p(⌧ ; ✓)

⇤

= E
⌧⇠p(⌧ ;✓)

"
TX

k=0

�kr(xk, uk)

!
TX

k=0

r log u✓(uk | xk)

!#
.

This is an expectation over trajectories; (17.6) is an expectation over states x sampled from the
discounted state visitation frequency. The control uk in (17.6) is sampled from the stochastic
controller at each time-step k and so is the one in the above expression except that it is implicit
as shown in the equality via (17.4). The most important distinction is that (17.6) involves the
expectation of the action-value function q✓ weighted by the gradient of the log-likelihood of picking

17.5. AN ALTERNATIVE EXPRESSION FOR THE POLICY GRADIENT 11

each control action. There are numerous hacky ways of deriving (17.6) from (17.4) but remember
that they are fundamentally different expressions of the same policy gradient.

This expression allows understanding of a number of properties of reinforcement learning.

1. While the algorithm collects the data, states that are unlikely under the distribution d✓ contribute
little to (17.6). In other words, the policy gradient is insensitive to such states. The policy update
will not consider these unlikely states.

2. The opposite happens for states which are very likely. For two controls u1, u2 at the same state x,
the policy increases the log-likelihood of taking the controls weighted by their values q✓(x, u1)
and q✓(x, u2). This is the “definition” of reinforcement learning. In the expression (17.4) the
gradient was increasing the likelihood of trajectories with high returns, here it deals with states
and controls.

17.5.1 Implementing the new expression

Suppose we have a stochastic control that is a Gaussian

u✓(u | x) = 1

(2⇡�2)p/2
e�

ku�✓>xk2

2�2

where ✓ 2 Rd⇥p and u 2 Rp; the variance � can be chosen by the user. We can easily compute the
log u✓(u | x) in (17.6). How should one compute q✓(x, u) in (17.7)? We can again estimate it using
sample trajectories from the system; each of these trajectories would have to start from a state x and
the control at the first step would be u, with the controller u✓ being used thereafter. Note that we
have one such trajectory, namely the remainder of the trajectory where we encountered (x, u) while
sampling trajectories for the policy gradient in (17.6). In practice, we do not sample trajectories a
second time, we simply take this trajectory, let us call it ⌧x,u and set

q✓(x, u) =
TX

k=0

�kr(xk, uk)

where (x0, u0) = (x, u) and the summation is evaluated for (xk, uk) that lie on the trajectory ⌧x,u.
Effectively, we are evaluating (17.7) using one sample trajectory, a highly erroneous estimate of q✓.

17.5.2 Actor-Critic methods

We can of course do better. We know the q-function satisfies the Bellman equation (dynamic
programming equation) from Module 2. This means

q✓(x, u) = r(x, u) + � E
x0⇠P (· | x,u)

⇥
q✓(x0, u✓(x

0))
⇤
. (17.8)

We do not know a model for the system so we cannot evaluate the expectation over x0 ⇠ P(· | x, u).
But we do have trajectories ⌧ i from the system that we drew to evaluate the policy gradient. Let’s

12 LECTURE 17. POLICY GRADIENT

say (xi
k, u

i
k) lie on ⌧ i at time-step k. We can then estimate the expectation over P(· | xi

k, u
i
k) using

simply xi
k+1. We can write

q✓(xi
k, u

i
k) ⇡ r(xi

k, u
i
k) + � q✓(xi

k+1, u
i
k+1) for all i n, k T.

This is a nice constraint on the values of the q-function. If this were a discrete-state, discrete-
control MDP, it is a set of linear equations for the q-values. If we are dealing with a continuous
state/control-space, we can think of parameterizing the q-function using parameters '

q✓'(x, u) : X ⇥ U ! R.

The parameterization is similar to the parameterization of the controller, e.g., just like

u✓(x) = ✓>x

we can think of a linear q-function of the form

q✓'(x, u) = '>

x
u

�
, ' 2 Rp+d

which is a linear q-function in the states and controls. You can also think of using something like

q✓'(x, u) =
⇥
1 x u

⇤
'

2

4
1
x
u

3

5 ' 2 R(p+d+1)⇥(p+d+1).

which is quadratic in the states and controls. You can now “fit” the parameters of the q-function by
solving the problem

b' = argmin
'

1

n(T + 1)

nX

i=1

TX

k=0

kq✓'(xi
k, u

i
k)� r(xi

k, u
i
k) + � q✓'(x

i
k+1, u

i
k+1)k2. (17.9)

If the q-function is linear in [x, u] this is a least squares problem, if it is quadratic the problem is a
quadratic optimization problem which can also be solved efficiently. Such a q-function is called the
“critic”, it evaluates the controller u✓ which is called the “actor”. This particular version of the policy
gradient where one fits the parameters of both the controller and the q-function are called Actor-Critic
methods.

Remark 13. We will be pedantic and always write the q-function as q✓'. The superscript ✓ denotes
that this is the q-function corresponding to the ✓-parameterized controller u✓. The subscript denotes
that the q-function is parameterized by parameters '.

Question 14. Remember that we draw n trajectories from the system before each update to ✓ and '
using the policy gradient. The mathematics suggests that we should fit the q-function afresh before
each update. Of the the q-function that evaluates u✓k given by q✓k is different from the one that
evaluates u✓k+1 given by q✓k+1 . If we are minimizing (17.9) using stochastic gradient descent, we
really have an approximate solution for b'k. We can solve for b'k+1 using b'k as an initialization
instead of solving from scratch.

17.5. AN ALTERNATIVE EXPRESSION FOR THE POLICY GRADIENT 13

17.5.3 Advantage function

The new expression for the policy gradient also has a large variance; this should be no surprise it is
equal to the old expression. We can perform variance reduction on this using the value function.

Question 15. Show that any function that only depends on the state x can be used as a baseline in
the policy gradient. This is known as reward shaping.

Question 16. The above question suggests a powerful baseline that we can use for the policy gradient
expression in (17.6). What is a function that we often saw in dynamic programming that we expect to
be correlated with the q-function and it is also only a function of the state x?

The answer is given by the value function

v✓(x) = E
⌧⇠p(⌧ | ✓)

[R(⌧) | x0 = x, uk ⇠ u✓(xk)] .

The value function again satisfies the dynamic programming principle/Bellman equation

v✓(x) = E
u⇠u✓(x)

r(x, u) + � E

x0⇠P(· | x,u)

⇥
v✓(x0)

⇤�
.

We again parameterize the value function using parameters

v✓ (x) : X ! R

and fit it using the data like (17.9) to get

b = argmin

1

n(T + 1)

nX

i=1

TX

k=0

kv✓ (xi
k)� r(xi

k, u
i
k) + � v✓ (x

i
k+1)k2. (17.10)

Using this baseline will modify the policy gradient to be

brJ(✓) = E
x⇠d✓

E
u⇠u✓(· | x)

2

664
⇣
q✓'(x, u)� v✓ (x)| {z }

a✓', (x,u)

⌘
r✓ log u✓(u | x)

3

775 . (17.11)

where each of the functions q✓' and v✓ are themselves fitted using (17.9) and (17.10) respectively.
The difference

a✓', (x, u) = q✓'(x, u)� v✓ (x)

= q✓'(x, u)� E
u⇠u✓(x)

⇥
q✓'(x, u)

⇤ (17.12)

is called the advantage function. It measures how much better the particular control u is for a state x as
compared to the average return of controls sampled from the controller at that state. The form (17.11)
is the most commonly implemented form in research papers.

Question 17. The advantage function is very useful while doing theoretical work on RL algorithms.
But it is also extremely useful in practice. It imposes a constraint upon our estimate q✓' and the

14 LECTURE 17. POLICY GRADIENT

estimate v✓ . If we are not solving (17.9) and (17.10) to completion, we may benefit by imposing this
constraint of the advantage function. Can you think of a way?

17.6 Discussion

This brings to an end the discussion of policy gradients. They are a notoriously complicated suite of
algorithms to implement; you will see some of this complexity when you implement the controller for
something as simple as the simple pendulum. The key challenges with implementing policy gradients
come from the following.

1. Need lots of data, each parameter update requires fresh data from the systems. Typical problems
may need a million trajectories, most robots would break before one gets this much data from
them if one implements these algorithms naively.

2. The gradient is very inaccurate (example of grabbing a cup of coffee) so may need lots of samples
even in one iteration.

3. The log-likelihood ratio trick has a high variance due to u✓(· | x) being in the denominator of the
expression, so we need variance reduction techniques.

4. Fitting the q-function and the value function in the expression is not easy, each parameter update
of the policy ideally requires you to solve the entire problems (17.9) and (17.10). In practice, we
only perform a few steps of SGD to solve the two problems and reuse the solution of kth controller
update as an initialization of the k+ 1th update. This is known as “warm start” in the optimization
literature and reduces the complexity of fitting the q/value-functions from scratch each time.

5. The q/value-function fitted in iteration k may be poor estimates of the q/value at iteration k + 1
for the new policy u✓k+1 . If the controller parameters change quickly, ✓k+1 is very different
from ✓k and so are q✓k+1 and v✓k+1 . There is a very fine balance between training quickly
and retaining the efficiency of warm start; and tuning this in practice is quite difficult. A large
number of policy gradient algorithms like TRPO (https://arxiv.org/abs/1502.05477) and PPO (
https://arxiv.org/abs/1707.06347) try to alleviate this with varying degrees of success.

Lecture 18

Q-Learning

Reading

• Sutton & Barto, Chapter 6, 11

The previous chapter looked at on-policy methods, these are methods where the current controller
u✓k is used to draw fresh data from the system and used to complete the update to paramters ✓k. The
key inefficiency in on-policy methods is that this data is thrown away in the next iteration. We need
to draw a fresh set of trajectories from the system for u✓k+1 . This lecture will discuss off-policy
methods which are a way to reuse past data. These methods require much fewer data than on-policy
methods (10–100⇥ less).

18.1 Tabular Q-Learning

Recap of tabular version of Bellman iteration

18.1.1 How to explore?

Fact: Tabular Q-Learning converges to the optimal q-function even if the controller gathering data
is sub-optimal. This result relies on visiting all states in the MDP infinitely often and having a
learning rate that does not decay to zero too quickly, i.e., we are making non-vanishing updates to the
q-function always.

18.2 Function approximation

Tabular methods are really nice but they do not scale. The grid-world in the midterm exam had 64
states, a typical game of Tetris has about 1060 states (the number of atoms in the known universe is

1

2 LECTURE 18. Q-LEARNING

about 1080). The number of different states in a typical Atari game is more than 10300. We would
therefore like to learn a parametrized q-function q'. This q-function may not be exact for all states
and controls (x, u) by so long as the controller computing using this q-function is not too different
from the optimal controller, we can use it.

Remark 1. We can also use function approximation for a tabular MDP from the previous section.

18.2.1 Fitted Q-Iteration

18.3 Deep Q-Networks

18.4 Q-Learning for continuous control-spaces

Lecture 19

Q-Learning

Reading

• Sutton & Barto, Chapter 6, 11

• Human-level control through deep reinforcement learning, https://www.nature.com/articles/nature14236.

The previous chapter looked at on-policy methods, these are methods where the current controller
u✓k is used to draw fresh data from the system and used to complete the update to paramters ✓k. The
key inefficiency in on-policy methods is that this data is thrown away in the next iteration. We need
to draw a fresh set of trajectories from the system for u✓k+1 . This lecture will discuss off-policy
methods which are a way to reuse past data. These methods require much fewer data than on-policy
methods (10–100⇥ less).

19.1 Tabular Q-Learning

Recall the tabular version of Bellman iteration for discrete (and finite) state and control spaces. The
q-function estimate at the kth iteration is given by

qk+1(x, u) =
X

x02X

P(x0 | x, u)
⇣
r(x, u) + �max

u0
qk(x

0, u0)
⌘

= E
x0⇠P(· | x,u)

h
r(x, u) + �max

u0
qk(x

0, u0)
i
.

In the simplest possible instantiation of q-learning, the expectation above is replaced by samples draw
from the environment. Imagine a grid-world in which the robot roams around using some arbitary
controller ue(· | x). We will call this the “exploration controller”. We maintain the value qk(x, u) for
all states x 2 X and controls u 2 U and update these values to get qk+1 after each step of the robot.
We know that any q-function that satisfies the above equation is the optimal q-function; we would

1

2 LECTURE 19. Q-LEARNING

therefore like our q-function to satisfy

q(xk, uk) ⇡ r(xk, ue(xk)) + �max
u0

q(xk+1, u
0).

Let us imagine the robot travels for n trajectories each of length T time-steps. We can now solve for
q by minimizing the objective

min
q

1

n(T + 1)

nX

i=1

TX

k=0

kq(xi
k, ue(x

i
k))� r(xi

k, ue(x
i
k))� �max

u02U
q(xi

k+1, u
0)k22.

| {z }
:=`(q)

(19.1)

on the data collected by the robot. Notice a few important things about this expression.

1. It involves a maximization over u0 2 U , it is not simply ue(xi
k+1) which is the control the robot

took in the next step.

2. How would this equation change if state the robot reached xi
k+1 was a terminal state. What is the

value of the terminal state?

3. Every entry q(x, u) for all x 2 U and u 2 U is a variable of this objective. We can solve for it
iteratively as

q(x, u) q(x, u)� ⌘ rq(x,u) `(q). (19.2)

Note that only (x, u) in the data collected by the robot

D =
�
(xi

k, u
i
k)k=0,...,T

i=1,...,n

get a non-zero gradient; the q-function q(x, u) at all others remains unchanged.

4. We can also interleave the updates to the q-function with the states visited by the robot, i.e., if the
robot took a transition (x, u, x0) and obtained a reward r, we update

q(x, u) (1� ⌘) q(x, u) + ⌘
⇣
r(x, u, x0) + �(1� 1{x0 is terminal})max

u0
q(x0, u0)

⌘

You will notice that expression is simply the gradient of the objective in (19.2) at q(x, u).

Question 1. What should you initialize q(x, u) with for tabular q-learning?

Remark 2 (What is the controller). After we perform many updates to the q-function and are done
with the training, we can use the controller

u(x) = argmax
u0

q(x, u0)

at test time. This is the optimal controller if q(x, u) is the optimal q-function.

19.1. TABULAR Q-LEARNING 3

19.1.1 How to explore?

Fact: Tabular Q-Learning converges to the optimal q-function even if the controller gathering data
is sub-optimal. This result relies on visiting all states in the MDP infinitely often and having a
learning rate that does not decay to zero too quickly, i.e., we are making non-vanishing updates to the
q-function always. It is important to understand this fact because it is powerful. Effectively, you can
learn the optimal q-function in spite of having an arbitrary stochastic controller that gathers data.

Question 3. How should we design the exploratory controller ue(· | x)?

Remark 4 (✏-greedy exploration). We can have the robot use the q-function itself to gather data. A
nice deterministic policy to use is the greedy policy

ue(x) := argmax
u0

q(x, u0).

This controller has a problem: it repeatedly keeps taking the controls we have taken in the past (why?)
and we do not get any new information from the system. The ✏-greedy is a popular heuristic to
explore the control space, it sets the stochastic exploratory controller to be

ue(u | x) :=
(

argmaxu0 q(x, u0) with probability 1� ✏

uniform(U) with probability ✏.

This controller uses the greedy policy of the current q-function most of the time and takes a random
action with probability ✏.

Question 5. Why should we use ✏-greedy exploration? Why not simply set ✏ = 1? This leads to the
idea of a replay buffer.

Remark 6. You can also think of tabular q-learning as happening in two stages. In the first stage, the
robot gathers a large amount of data

D =
�
(xi

k, u
i
k)k=0,...,T

i=1,...,n

.

It then fits the model for the system, i.e., it learns the MDP, and uses value iteration to find the
q-function for this MDP. Given this data and a discrete state/control space, how can we learn the
MDP? Learning an MDP means that for all states x, controls u and next states x0 we would like to
estimate the probability

P(x0 | x, u).

This is easy to do using the empirical frequency counts. We estimate

P(x0 | x, u) ⇡ 1

N

NX

i=0

1{x0 was reached from x using u in the dataset}

where N is the total number of times in the dataset where the robot took control u at state x. Once
we have the transition probability, we can simply perform value/policy iteration on this MDP to get
the optimal value function

qk+1(x, u) = E
x0⇠P(· | x,u)

h
r(x, u) + �max

u0
qk(x

0, u0)
i

4 LECTURE 19. Q-LEARNING

The success of this two-stage approach depends upon how accurate the estimate of P(x0 | x, u) is.
This in turn depends on how much the robot explored the domain and the size of the dataset it
collected, both of these need to be large.

You can therefore think of q-learning as interleaving the two stages, it learns the dynamics/model and
the q-function for that dynamics/ simultaneously, but does not really contain a representation of the
dynamics/ in the algorithm.

19.2 Function approximation (Deep Q Networks)

Tabular methods are really nice but they do not scale. The grid-world in the midterm exam had 64
states, a typical game of Tetris has about 1060 states (the number of atoms in the known universe is
about 1080). The number of different states in a typical Atari game is more than 10300. We would
therefore like to learn a parametrized q-function q'. This q-function may not be exact for all states
and controls (x, u) but so long as the controller computed using this q-function is not too different
from the optimal controller, we can use it.

We use the same idea of parameterizing the q-function using parameters ' from the previous lecture

q'(x, u) : X ⇥ U ! R.

Let us for the moment consider a discrete state/control space. We again have an exploratory policy
ue(· | x) that gathers data from the environment. Fitting the q-function now involves enforcing the
Bellman equation on the collected data

q'(x, u) = r(x, u, x0) + �max
u0

q'(x
0, u0) for all (x, u, x0, r) 2 D.

While there are many ways of doing so, one popular method is to solve

argmin
'

E
(x,u,x0,r)⇠D

2

664

0

BB@q'(x, u)� r(x, u, x0)� �(1� 1{x0 is terminal}) max
u0

q'(x
0, u0)

| {z }
target (x0; ')

1

CCA

23

775 .

(19.3)
We can again update the parameters ' using gradient descent or stochastic gradient descent as

'k+1 = 'k � ⌘ r'

⇣
q'k(x, u)� target(x0; 'k)

⌘2
(19.4)

A few important points:

1. Off-policy learning still interacts with the environment. The dataset D is known as the replay
buffer. Recall that the current q-function being trained is typically used to obtain an ✏-greedy
exploration policy ue(· | x). The transitions (x, u, x0, r) that are collected by the robot are stored
in the replay buffer whose size increases as the training progresses. Off-policy does not mean
offline, the robot still interacts with the environment. We will discuss this a bit deeper in the
lecture.

19.2. FUNCTION APPROXIMATION (DEEP Q NETWORKS) 5

2. Setting a good value for exploration is critical. Towards the beginning of training, we want a
large value for ✏ because the estimates of the q-function are erroneous. As training progresses, we
want to reduce ✏ because presumably we have a few good control trajectories to maximize the
reward and focus on improving those trajectories.

3. Prioritized experience replay Sample transitions that have high Bellman error instead of sam-
pling uinformly from the replay buffer in SGD.

4. The above version of q-learning has a very big problem. The Bellman equation guarantees
that if we find a q-function that satisfies the Bellman equation

q(x, u) = E
x0⇠P(· | x,u)

h
r(x, u) + �max

u0
q(x0, u0)

i

at all (x, u) this is the optimal q-function. This however says nothing about

(i) how to satisfy these constraints; we simply used quadratic loss between the left-hand and
right-hand sides; there may be better ways of finding this fixed point, e.g., the Huber loss

huber�(a) =

(
1
2a

2 for |a| �

�
�
|a|� 1

2�
�

otherwise.

is a good candidate to replace the quadratic loss.
(ii) what happens when we use a parametric q-function. The reason we use parameters is because

the state/control space is too large to visit/represent everything and we hope that the function
approximator gives reasonable values at those (x, u). The Bellman equation need not be
satisfied for those (x, u). Finding optimal q-function using function approximation is a very
(very) tricky business and you can easily construct simply tabular settings where q-learning
breaks down.

5. Delayed target. In practice, this problem shows up as q' fitting the data in (19.3) almost perfectly
but being completely wrong, i.e.,

q'(x, u) ⇡ target(x0; ') but

q'(x, u) 6= E
trajectories ⌧

R(⌧) | x0 = x, u0 = u, uk = argmax

u0
q(x, u0)

�

You will often see inordinately large values for all q'(x, u) when this hppens.
The above problem is mitigated (not really eliminated) by modifying the updates in (19.5) as

'k+1 = 'k � ⌘ r'

⇣
q'k(x, u)� target(x0; 'k0)

⌘2
(19.5)

where k0 is an iterate much older than k, say k0 = k � 100. This idea is known as delayed target.
The rationale of doing so is very interesting: even if the estimates of q'k may be wrong, the
delayed target forces q'k to underestimate the return at state (x, u) and prevents q'k from blowing
up.

6. There is no correction mechanism in Q-learning if the value estimate is wrong. Compare the
execution of the policy gradient with what is happening in Q-learning.

6 LECTURE 19. Q-LEARNING

7. Double Q learning. The max operator in standard Q-learning or the one with delayed target uses
the same q-function both to select and to evaluate a control, i.e., the target has a term

max
u0

q'k0 (x
0, u0).

This makes it more likely to select controls with overestimated q-values, resulting in overoptimistic
value estimates. To prevent this, we can decouple the selection from the evaluation. This is
achieved by doing

target(x0; 'k0) := r(x, u, x0) + �(1� 1{x0 is terminal}) q'k0 (x
0, argmax

u0
q'k(x

0, u0)).

Remark 7 (Fitted Q-Iteration).

19.3 Q-Learning for continuous control-spaces

Lecture 22

Continuous Q-Learning, Inverse
Reinforcement Learning

Reading

• Deterministic Policy Gradient Algorithms, http://proceedings.mlr.press/v32/silver14.html

• Addressing Function Approximation Error in Actor-Critic Methods https://arxiv.org/abs/1802.09477

• An Application of Reinforcement Learning to Aerobatic Helicopter Flight, https://papers.nips.cc/paper/3151-

an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight

• Algorithms for Inverse Reinforcement Learning https://ai.stanford.edu/ ang/papers/icml00-

irl.pdf

• Maximum Entropy Inverse Reinforcement Learning, https://www.aaai.org/Papers/AAAI/2008/AAAI08-

227.pdf

22.1 Q-Learning for continuous spaces

22.1.1 Deterministic policy gradient

22.1.2 Twin-Delayed DDPG

22.2 Inverse RL

22.2.1 LQR

22.2.2

1

Lecture 23

Inverse and Model-based

Reinforcement Learning

Reading

• An Application of Reinforcement Learning to Aerobatic Helicopter Flight, https://papers.nips.cc/paper/3151-
an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight

• Algorithms for Inverse Reinforcement Learning https://ai.stanford.edu/ãng/papers/icml00-
irl.pdf

• Apprenticeship Learning via Inverse Reinforcement Learning, https://ai.stanford.edu/ ang/papers/icml04-
apprentice.pdf

• Maximum Entropy Inverse Reinforcement Learning, https://www.aaai.org/Papers/AAAI/2008/AAAI08-
227.pdf

• PILCO: A Model-Based and Data-Efficient Approach to Policy Search, http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf

• Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images
https://arxiv.org/abs/1506.07365

• Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
https://arxiv.org/abs/1805.12114

1

2 LECTURE 23. INVERSE AND MODEL-BASED REINFORCEMENT LEARNING

23.1 Fitting LQR dynamics and rewards

23.2 IRL with a known model

23.3 IRL from sampled trajectories

23.4 Maximum Entropy IRL

23.5 Model-based RL

23.5.1 Fitting neural networks for the dynamics

23.5.2 PILCO

See a preliminary but great tutorial on Gaussian Processes at https://distill.pub/2019/visual-exploration-
gaussian-processes

This is a complicated algorithm to implement but you can see the source code by the original authors
at https://mloss.org/software/view/508

23.5.3 Ensemble methods in practice

Lecture 25

Meta-Learning

Reading

• Learning To Learn: Introduction (1996),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.3140

• Learning Many Related Tasks at the Same Time with Backpropagation
https://papers.nips.cc/paper/959-learning-many-related-tasks-at-the-same-time-with-backpropagation

• Prototypical Networks for Few-shot Learning http://papers.nips.cc/paper/6996-prototypical-
networks-for-few-shot-learning

• Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks https://arxiv.org/abs/1703.03400

• A Baseline for Few-Shot Image Classification https://arxiv.org/abs/1909.02729

• Meta-Q-Learning https://arxiv.org/abs/1910.00125

The human visual system is proof that we do not need lots of images to learn to identify objects or
lots of experiences to learn about concepts. Consider the mushrooms shown in the image below.

The one on the left is called Muscaria and you’d be able to identify the bright spots on this mushroom
very easily after looking at one image. The differences between an edible one in the center (Russala)

1

2 LECTURE 25. META-LEARNING

and the one on the right (Phalloides) may sometimes be subtle but a few samples from each of them
are enough for humans to learn this important distinction.

The world of control comes with more dramatic examples of this phenomenon. You touched a hot
stove once as a child and have forever learnt not to do it. You learnt to ride a bike as a child and
only need a few minutes on a completely new bike to be able to ride it these days. At the same time,
you could start learning to juggle today and will be able to juggle 3 objects with a couple of days of
practice.

The hallmark of human perception and control is the ability to generalize. This generalization comes
in two forms. The first is the ability to do a task better if you see more samples from the same
task; this is what machine learning calls generalization. The second is the ability to mix-and-match
concepts from previously seen tasks to do well on new tasks; doing well means obtaining a lower
error/higher reward as well as learning the new task quickly with few days. This second kind is the
subject of what is called “learning to learn” or meta-learning.

Standard machine learning) generalization across samples

Meta-Learning) generalization across tasks

Remark 1 (What is a task?). If we are going to formalize meta-learning, we better define what a
task is. This is harder than it sounds. Say we are doing image classification, classifying cats vs. dogs
could be considered Task 1; Task 2 could be classifying apples vs. oranges. It is reasonable to expect
that learning low-level features such as texture, colors, shapes etc. while learning Task 1 could help
us to do well on Task 2.

This is not always the case, two tasks can also fight each other. Say, you design a system to classify
ethnicities of people using two kinds of features. Task 1 uses the shape of the nose to classify
Caucasians (long nose) vs. Africans (wide nose). Task 2 uses the kind of hair to classify Caucasians
(straight hair) vs. Africans (curly hair). An image of a Caucasian person with curly hair clearly
results in two tasks fighting each other.

The difficulty in meta-learning begins with defining what a task is.

Remark 2 (Tasks in robotic systems). While understanding what a task is may seem cumbersome
but doable for image classification, it is even harder for robotics systems.

25.1. PROBLEM FORMULATION FOR IMAGE CLASSIFICATION 3

We can think of two different kinds of tasks.

1. The first, on the left, is picking up different objects like a soccer ball, a cup of coffee, a bottle of
water etc. using a robot manipulator. We may wish to learn how to pick up a soccer ball quickly
given data about how to pick up the bottle.

2. The second kind of tasks is shown on the right. You can imagine that after building/training a
model for the robot in your lab you want to install it in a factory. The factory robot might have
6 degrees-of-freedom whereas the one in your lab had only 5; your policy better adapt to this
slightly different state-space. An autonomous car typically has about 10 cameras and 5 LIDARs,
any learning system on the car better adapt itself to handle the situation when one of these sensors
breaks down. The gears on a robot manipulator will degrade over the course of its life, our policies
should adapt to this degrading robot.

Almost all the current meta-learning/meta-reinforcement learning literature focuses on developing
methods to do the first set of tasks. The second suite of tasks are however more important in practice.
In the remainder of this chapter, we will discuss two canonical algorithms to tackle these two kinds
of tasks.

Question 3 (Meta-learning vs. multi-task learning). We have talked about adaptation as the way
to handle new tasks in the previous remark. Consider the following situation: in standard machine
learning, we know that larger the size of the training data we collect better the performance on the
test data; a large number of images help capture lots of variability in the data, e.g., dogs of different
shapes, sizes and colors. You can imagine then that in order to do well on lots of different tasks,
i.e., meta-learn, we should simply collect data from lots of different tasks. This is an idea known as
multi-task learning which is the second assigned reading today.

Can you think as to why mere multi-task learning may not work well for meta-learning?

25.1 Problem formulation for image classification

The image classification formulation thinks of each class/category as a “task”.

Consider a supervised learning problem with a dataset D =
�
(xi, yi)

i=1,...,Nb

. The labels yi 2
{1, . . . ,K} for some large K and there are Nb

K samples in the dataset for each class. Think of this as
a large dataset of cars, cats, dogs, airplanes etc. all objects that are very frequent in nature and for
which we can get lots of images. This training set is called the meta-training set with K “base tasks”.

Say, we were simply interested in obtaining a machine learning model to classify this data. Let
us denote the parameters of this model by ✓. If this model predicts the probability of the input x
belonging to each of these known classes we can think of maximizing the log-likelihood of the data
under the model

b✓ = argmax
✓

1

Nb

NbX

i=1

log p✓(y
i | xi). (25.1)

This is the standard multi-class image classification setup. Since we like to think of one task as one

4 LECTURE 25. META-LEARNING

category, this is also the multi-task learning setup. The model

pb✓(· | x)

after fitting on the training data will be good at classifying some new input image x as to whether
it belongs to one of the K training classes. Note that we have written the model as providing the
probability distribution pb✓(· | x) as the output, one real-valued scalar per candidate class {1, . . . ,K}.

Question 4. Say, we are interested in classifying images from classes that are different than those
in the training set. The model has only K outputs, effectively the universe is partitioned into K
categories as far as the model is concerned and it does not know about any other classes. How should
one formalize the problem of meta-learning then?

We will consider the following setup. We are given a “few-shot dataset” that has w new classes and s
labeled samples per class, a total of Nn = ws new samples

Dn =
�
(xi, yi)

i=Nb+1,...,Nb+Nn

; yi 2 {K + 1, . . . ,K + w} .

The words few-shot simply mean that s is small, in particular we are given much fewer images per
class than the meta-training dataset,

Nn

w
= s ⌧ Nb

K
.

This models the situation where the model is forced to classify images from rare classes, e.g., the three
kinds of strawberries grown on a farm in California after being trained on data of cars/cats/dogs/planes
etc.

25.1.1 Fine-tuning

We would like to adapt the parameters b✓ using this labeled few-shot data. Here is one solution, we
simply train the model again on the new data. This looks like solving another optimization problem
of the form

✓⇤ = argmax
✓

1

Nn

Nb+NnX

i=Nb+1

log p✓(y
i | xi)� 1

2�
k✓ � b✓k22. (25.2)

The new parameters ✓⇤ can potentially do well on the new classes even if s is low because the training
is initialized using the parameters b✓. We write down this initialization using the second term

1

2�
k✓ � b✓k22

which keeps the parameters being optimized ✓ closed to their initialization using a quadratic spring-
force controlled by the parameter �. We can expect the new model p✓⇤ to perform well on the new
classes if the initialization b✓ was good, i.e., if the new tasks and the base tasks were close to each
other. This method is called fine-tuning, it is the easiest trick to implement to handle new classes.

Question 5. Think of a multi-layer neural network b✓ that has K outputs. The new network should
now produce w outputs, how should we modify this network?

25.1. PROBLEM FORMULATION FOR IMAGE CLASSIFICATION 5

25.1.2 Prototypical networks

The cross-entropy objective used in (25.1) to train the model pb✓ simply maximizes the log-likelihood
of the labels given the data. It is reasonable to think that since the base classes are not going to show
up as the few-shot classes, we should not be fitting to this objective. The idea behind a propotypical
loss is to train the model to be a good discriminator among w classes.

Let us imagine the features of the model, e.g., the activations of the last layer in the neural network,

z = '✓(x)

for a particular image x. Note that the features z depend on the parameters ✓ as well. During standard
cross-entropy training, there is a linear layer on top of these features and one has

p✓(y | x) = ew
>
y z

P
y0 e

w>
y0z

where wy 2 Rdim(z). This is called the softmax operator and the vectors w are the weights of the last
layer of the network; when we wrote (25.1) we implicitly folded those parameters into the notation ✓.
Prototypical networks train the model to be a discriminator.

1. Each mini-batch during training time consists of a few-shot task created out of the meta-training
set by sub-sampling.

Depisode = Dsupport [Dquery

=
�
(xi, yi); yi 2 {1, . . . ,K}

i2{1,...,Nb}

;

[
�
(xi, yi); yi 2 {1, . . . ,K}

i2{1,...,Nb}

.

with |Dsupport| = ws and |Dquery| = wq. This is called an “episode” in this literature. Each episode
comes with some more data from the same classes called the “query-shot” in this literature. The
query-shot is akin to the data from the new classes that the model is forced to predict during
adaptation time. Let us have q query-shot per class in each episode.

2. We know the labels of the Nn = ws labeled data and can compute the prototypes

cy =
1

s

0

@
X

yi=y, (xi,yi)2Depisode

'✓(x
i)

1

A ;

these are simply the centroids of the features of class y.

3. You can now impose a clustering loss to force the query samples to be labeled correctly, i.e.,
maximize

p✓,w(y
i | xi) =

e�k'✓(x)�cy
i
k2

P
y0 e�k'✓(x)�cy0k2

for all (xi, yi) in the query-set of the episode/mini-batch.

6 LECTURE 25. META-LEARNING

4. The objective maximized at each mini-batch is

1

qs

0

@
X

(xi,yi)2query(Depisode)

log p✓,w(y
i | xi)

1

A .

Note that the gradient of the above expression is both on the weights w of the top layer and the
weights ✓ of the lower layers.

5. We can now use the trained model for classifying new classes by simply feeding the new images
through the network, computing the prototypes using the few labeled data and computing the
clustering loss on the unlabeled query data at test time to see which prototype the feature of a
particular query datum is closest to.

Remark 6 (Discussion). Prototypical loss falls into the general category of metric-based approaches
to few-shot learning. We make a few remarks next.

1. It is a very natural setting for learning representations of the data for classification that can be
transferred easily. If the model is going to be used for new classes, it seems reasonable that the
prototypes of the new classes should be far away from each other and the zs of the query samples
should be clustered around their correct prototypes.

2. Prototypical networks perform well if you can estimate the prototypes accurately, this requires
that you have about 10 labeled data per new class.

3. We used the `2 metric k·k2 in the z-space to compute the affinities of the query samples. This
may not be a reasonable metric to use for some problems, so a large number of approaches try to
devise/learn new metrics.

4. A key point of prototypical networks is that there is no gradient-based learning going on upon the
new categories; we simply compute the prototypes and the affinities and use those to classify the
new samples.

25.1. PROBLEM FORMULATION FOR IMAGE CLASSIFICATION 7

25.1.3 Model-agnostic meta-learning (MAML)

We will next look at a simple algorithm for gradient-based adaptation of the model on the new
categories. The key idea is to update the model using the same objective in (25.1) but avoid overfitting
the model on the meta-training data so that the model can be quickly adapted using the few-shot data
via gradient-updates.

Here we consider an episode Depisode = Dsupport, i.e., there are no query shots in the episode. Let us
define

`(✓;Dsupport) =
1

Nn

X

(xi,yi)2Dsupport

log p✓(y
i | xi);

this is the same objective as that in (25.1) so if we maximized the objective

`(✓; D)

we will perform standard cross-entropy training. At each mini-batch/episode, the MAML algorithm
instead maximizes the objective

`MAML(✓; Dsupport) = `
⇣
✓ + ↵r`(✓;Dsupport); Dsupport

⌘
. (25.3)

In other words, MAML uses a “look ahead” gradient: the gradient of `(✓; Dsupport) is not in the
steepest ascent direction of `(✓;Dsupport) but in the steepest ascent direction after one update of the
parameters ✓ + ↵r`(✓; Dsupport).

Adaptation on the few-shot data: One we have a model training using MAML

b✓ = argmax
✓

`MAML(✓; D)

we can update it on new data simply by maximizing the standard cross-entropy objective again, i.e.,

✓⇤ = argmax
✓

1

Nn

Nb+NnX

i=Nb+1

log p✓(y
i | xi)� 1

2�
k✓ � b✓k22. (25.4)

The adaptation phase is exactly the same as standard cross-entropy training.

Remark 7. (draw a picture of a situation where the lookahead helps)

MAML is not specific to few-shot learning. We can use the MAML objective for any other standard
supervised learning problem, is this going to help? Indeed it will, gradient descent/stochastic gradient
descent are myopic algorithms because they update the parameters only in the direction of the steepest
gradient, you can potentially do better by computing the lookahead gradient. The caveat is that is
computationally difficult to compute the lookahead gradient. Observe that

`MAML(✓) = `(✓ + ↵r`(✓))

⇡ `(✓) + ↵ (r`(✓))> r`(✓)

) r`MAML(✓) = r`(✓) + 2↵r2`(✓) r`(✓).

So MAML is secretly a second-order optimization method, computing the gradient of the MAML

8 LECTURE 25. META-LEARNING

objective requires having access to the Hessian of the objective r2`(✓). For large models such as
neural networks this is very expensive to compute.

Remark 8. Let us consider a meta-training set with two mini-batches/episodes/tasks, D = D1 [D2.
The MAML algorithm uses the gradient

r`MAML(✓;D) = r 1

2

2X

i=1

`MAML(✓;Di)

=
1

2

2X

i=1

r`(✓;Di) + 2↵r2`(✓;Di) r`(✓;Di)

Observe now that if there exist parameters ✓ that have r`(✓;Di) for all the episodes Di then the
MAML gradient is also zero. In other words, if there exist parameters ✓ that work well for all tasks
then MAML may find such parameters. However, in this case, the simple objective

`multi-task(✓;D) =
1

2

2X

i=1

`(✓;Di) (25.5)

that sums up the losses of all the mini-batches/episodes/tasks will also find these parameters. This
objective known as the multi-task learning objective is much simpler than MAML’s because it requires
only the first-order gradient.

What happens if the two tasks are different (as is likely to be the case) in which case there don’t exist
parameters that work well for all the tasks?

(draw a picture)

25.2 Problem formulation for RL

One mathematical formulation of meta-RL is as follows. Let k denote a task and there is an underlying
(unknown) dynamics for this task given by

xk
t+1 = fk(xk

t , u
k
t , ⇠t)

We will assume that all the tasks have a shared state-space xk
t 2 X and a shared control-space

uk
t 2 U . The reward function of each task is different rk(x, u) but we are maximizing the same

infinite-horizon discounted objective for each task. The q-function is then defined to be

qk,✓
k

(x, u) = E
⇠(·)

h 1X

t=0

�trk(xt, ut) | x0 = x, u0 = u, ut = u✓k(xt)
i
.

where u✓k(xt) is a deterministic controller for task k. Given all these meta-training tasks, our
objective is to learn a controller that can solve a new task k /2 {1, . . . ,K} upon being presented a
few trajectories from the new task. Think of you learning to pick up different objects during training
time and then adapting to picking up a new object not in the training set.

25.2. PROBLEM FORMULATION FOR RL 9

Let us consider the off-policy Q-learning setting and learn separate controllers for all the tasks for
now. As usual, we want the q-function to satisfy the Bellman equation, i.e., if we are using parameters
'k to approximate the q-function, we want to find parameters 'k such that

argmin
'k

E
(x,u,x0)2Dk

h ⇣
qk,✓

k

'k (x, u)� rk(x, u)� � qk,✓
k

'k (x0, u✓k(x0))
⌘2 i

(25.6)

where the dataset Dk is created using some exploratory policy for the task k. The controllers u✓k are
trained to behave like the greedy policy for the particular q-function qk,✓

k

'k

argmax
✓k

E
(x,u)2Dk

h
qk,✓

k

'k (x, u✓k(x))
i
. (25.7)

The above development is standard off-policy Q-learning and we have seen it in earlier lectures. The
different controllers u✓k do not learn anything from each other, they are trained independently on
their own datasets. We can now construct a multi-task learning objective for meta-RL, in this we will
learn a single q-function and a single controller for all tasks. We modify (25.6) and (25.7) to simply
work on all the datasets together

argmin
'

E
(x,u,x0)2D1[D2...

h �
q✓'(x, u)� rk(x, u)� � q✓'(x

0, u✓(x
0))
�2 i

argmax
✓

E
(x,u)2D1[D2...

h
q✓'(x, u✓(x))

i (25.8)

This is the multi-task learning objective for RL. This is unlikely to work well because depending
upon the task, the controllers for the different tasks will conflict with each other, it is unlikely that
there is a single set of parameters for the controller and the q-function that works well for all tasks.

(draw a picture of a planning task with multiple goals)

Remark 9. How to fix this? You can use MAML certainly to under-fit the controller and the
q-function to all the tasks and then adapt them using some data from the new task using gradient
updates.

25.2.1 A context variable

Reinforcement Learning offers a very interesting way to solve the few-shot/meta-learning problem.
We can append the state-space to include a context variable that is a representation of the particular
task. Think of the way we constructed features for a trajectory in inverse reinforcement learning, we
considered a set of basis functions

{�1(x, u, r),�2(x, u, r), . . . ,�m(x, u, r)}

10 LECTURE 25. META-LEARNING

and created a feature by mixing them linearly. We will do the same in this case, we construct a
variable µk(⌧) for a trajectory ⌧0:t = x0, u0, . . . , xt, ut from task k as

µ(⌧0:t) =
tX

s=0

mX

i=1

�t ↵i �i(x
k
s , u

k
s , r

k(xk
s , u

k
s)).

Note that the mixing coefficients ↵i are shared across all the tasks. We would like to think of
this feature vector µ(⌧) as a kind of indicator of whether a trajectory ⌧ belongs to the task k or not.
We now learn a q-function and controller that also depend on µ(⌧)

q✓'(xt, ut, µ(⌧0:t))

u✓(xt, µ(⌧0:t)).
(25.9)

Including a context variable like µ(⌧) allows the q-function to detect the particular task that it is being
executed for using the past t time-steps of the trajectory ⌧0:t. This is similar to learning independent
q-functions qk,✓

k

'k
and controllers u✓k but there is parameter sharing going on in (25.9). We will still

solve the multi-task learning problem like (25.8) but also optimize the parameters ↵is.

argmin
',↵i

KX

i=1

E
(x,u,x0)2Dk

h �
q✓'(x, u, µ(⌧))� rk(x, u)� � q✓'(x

0, u✓(x
0, µ(⌧)))

�2 i

argmax
✓,↵i

KX

i=1

E
(x,u)2Dk

h
q✓'(x, u✓(x, µ(⌧)), µ(⌧))

i
.

(25.10)

The parameters ↵i of the context join the q-functions and the controllers of the different tasks together
but also allow the controller the freedom to take different controls depending on which task it is being
trained for.

Adapting the meta-learnt controller to a new task: Suppose we trained on K RL tasks using the
above setup and have the parameters b✓, b', { b↵i}i=1,...,m in our hands. How should we adapt to a
new task? This is easy, we can run an exploration policy on the new task to collect some data and
update our off-policy Q-learning parameters b✓, b' on this data using (25.6) and (25.7) while keeping
the results close to our meta-trained parameters using penalties like

1

2�
k✓ � b✓k22 and

1

2�
k'� b'k22.

We don’t update the context parameters ↵is during such adaptation.

Question 10. Does adaptation always improve performance on the new task?

25.2.2 Discussion

This brings an end to the chapter on meta-learning and Module 4. We focused on adapting learning-
based models for robotics to new tasks. This adaptation can take the form of learning a reward (inverse
RL), learning the dynamics (model-based RL) or learning to adapt (meta-learning). Adaptation to
new data/tasks with few samples is a very pertinent problem because we want learning-based methods

25.2. PROBLEM FORMULATION FOR RL 11

to generalize a variety of different tasks than the ones they have been trained for. Such adaptation
also comes with certain caveats, adaptation may not always improve the performance on new tasks;
understanding when one can/cannot adapt forms the bulk of the research on meta-learning.

