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Chapter 11

What is intelligence?2

Reading
1. Bishop 1.1-1.5

2. Bishop DL 1.1-1.3

3. Goodfellow Chapter 1

4. “A logical calculus of the ideas immanent in nervous activity”
by Warren McCulloch and Walter Pitts (McCulloch and Pitts,
1943).

5. “Computing machinery and intelligence” by Alan Turing in
1950 (Turing, 2009).

What is intelligence? It3

is hard to define, I don’t4

know a good definition.5

We certainly know it when6

we see it. All humans7

are intelligent. Dogs are8

plenty intelligent. Most of9

us would agree that a house10

fly or an ant is less intel-11

ligent than a dog. What12

are the common features13

of these species? They all14

can gather food, search for15

mates and reproduce, adapt to changing environments and, in general, the16

ability to survive.17

Are plants intelligent? Plants have sensors, they can measure light,18

temperature, pressure etc. They possess reflexes, e.g., sunflowers follow19

the sun. This is an indication of “reactive/automatic intelligence”. The20

5
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mere existence of a sensory and actuation mechanism is not an indicator of1

intelligence. Plants cannot perform planned movements, e.g., they cannot2

travel to new places.3

Figure 1.1: A Tunicate on the ocean floor

A Tunicate in Fig. 1.1 is an interesting plant however. Tunicates are4

invertebrates. When they are young they roam around the ocean floor in5

search of nutrients, and they also have a nervous system (ganglion cells)6

at this point of time that helps them do so. Once they find a nutritious7

rock, they attach themselves to it and then eat and digest their own brain.8

They do not need it anymore. They are called “tunicates” because they9

develop a thick covering (shown above) or a “tunic” to protect themselves.10

Is a program like AlphaGo intelligent? There is a very nice movie on11

Netflix on the development of AlphaGo and here’s an excerpt from the12

movie (https://youtu.be/YrTRKh4FPio). The commentator in this video13

is wondering how Lee Se-dol, who was one of the most accomplished14

Go players in the world then, might defeat this very powerful program;15

this was I believe after AlphaGo was up 3-0 in the match already. The16

commentator says so very nonchalantly: if you want to defeat AlphaGo17

all you have to do is pull the plug.18

A key indicator of intelligence (and this is just my opinion) is the19

ability to take actions upon the world. With this comes the ability to affect20

your environment, preempt antagonistic agents in the environment and21

take actions that achieve your desired outcomes. You should not think22

of intelligence (artificial or otherwise) as something that takes a dataset23

and learns how to make predictions using this dataset. For example, if24

I dropped my keys at the back of the class, I cannot possibly find them25

without moving around, using priors of where keys typically hide (which26

is akin to learning from a dataset) only helps us search more efficiently.27

1.1 Key components of intelligence28

With this definition, we can write down the three key parts that an29

intelligent, autonomous agent possesses as follows.30

Perception refers to the sensory mechanisms to gain information about31

the environment (eyes, ears, smell, tactile input etc.). Action refers to32

https://youtu.be/YrTRKh4FPio
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your hands, legs, or motors/engines in machines that help you move on1

the basis of this information. Cognition is kind of the glue in between.2

It is in charge of crunching the information of your sensors, creating3

a good “representation” of the world around you and then undertaking4

actions based on this representation. The three facets of intelligence are5

not sequential and intelligence is not merely a feed-forward process. Your6

sensory inputs depend on the previous action you took. While searching7

for something you take actions that are explicitly designed to give you8

different sensory inputs than what you are getting at the moment.9

This class will focus on learning. It is a component, not the entirety,10

of cognition.11

Learning is in charge of looking at past data and predicting what
future data may look like.

Cognition also involves handling situations when the current data does12

not match past data, etc. To give you an example, arithmetic problems13

you solved in elementary school are akin to learning whereas figuring out14

that taking a standard deduction when you file your income tax versus15

itemized deduction is like cognition...16

Some other classes at Penn that address these various aspects of17

intelligence are:18

• Perception: CIS 580, CIS 581, CIS 680, MEAM 620, ESE 65019

• Learning/Cognition: CIS 519, CIS 520, CIS 521, CIS 522, CIS20

620, ESE 542, ESE 545, CIS 70021

• Control: ESE 650, MEAM 520/620, ESE 500/505, ESE 615, ESE22

618, MEAM 51723

The objective of the learning process is really to crunch24

past data and learn a prior25

Imagine a supreme agent which is infinitely fast, clever, and can interpret26

its sensory data and compute the best actions for any task, say driving.27

Learning from past data is not essential for such an agent; effectively the28

supreme agent can simulate every physical process around it quickly and29

decide upon the best action it should take. Past data helps if you are not as30

fast as the supreme agent or if you want to save some compute time/energy31

during decision making.

? There are also situations when you do not
have enough information to make a decision,
e.g., you do not precisely know the future
location of the car in front of you while
driving. Will the supreme agent benefit from
seeing historical data in this case?

32

A deep network or a machine learning model is not a mechanism
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that directly undertakes the actions. It is rather a prior on the possible
actions to take. Other algorithms that rely on real-time sensory data
will be in charge of picking one action out of these predictions. This
is very easy to appreciate in robotics: how a car should move depends
more upon the real-time data than any amount of past data. This aspect
is less often appreciated in non-robotics applications but it holds
there as well. Even for something like a recommendation engine that
recommends movies in Netflix, the output of a prediction model will
typically be modified by a number of algorithms before it is actually
recommended to the user, e.g., filters for sensitive information, or
toxicity in a chatbot.

1.2 Intelligence: The Beginning (1942-50)1

Let us give a short account of how our ideas about intelligence have2

evolved.3

4

Cells in the body possess a membrane around some cytoplasm and5

nucleus...with DNA that synthesizes proteins that control the operation6

of the cell. There are channels across the membrane to transmit signals7

in and send waste out. Neurons are specialized cells. They are electrical8

devices. There are about 100B of such neurons. About 100 T synapses9

that connect them to each other. These are the wires. Just to put things into10

perspective, there is about 4 km of wiring in about one cubic mm in the11

brain. If you measure the voltage inside the body of a neuron, it is about12

-70 mV at rest. Neurons receive input, in the form of neurotransmitters13

from other neurons near the dendrites or light for the retinal neurons.14

At rest there is less concentration of sodium inside the cell than outside.15

As the input comes, the voltage of the neuron begins to increase, and if16
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it increases beyond a certain value there is a positive feedback loop that1

kicks in. This is because sodium ion channels open and sodium ions flow2

in. The flow can be larger than a million ions per second. This causes the3

voltage to explode rapidly...in about a millisecond. To 50 - 150 mV. And4

then there is a second negative feedback process that causes the voltage to5

flip back down and recover. This is caused by potassium channels. At rest6

there are more potassium ions inside than outside. And as the membrane7

potential increases, ion channels open up and potassium ions rush out.8

These are spikes. They are caused by electro-chemical reactions.9

The most important thing to appreciate here is as follows. After a10

spike, there is imbalance in the concentration of sodium and potassium11

ions inside and outside the cell. Someone has to bring it back to normal.12

There are pumps in the membrane for this purpose. Each operation of13

the pump sends some Na ions out and brings some K ions back in. Each14

operation costs one molecule of ATP. Adenosine tri phosphate. Which is15

the currency for energy inside the cell. As a result, neurons do not talk16

too frequently. They fire only at about 4 Hz.17

The story of deep learning begins roughly in 1942 in Chicago. These18

are Warren McCulloch who was a neuroscientist and Walter Pitts who19

studied mathematical logic. They built the first model of a mechanical20

neuron and propounded the idea that simple elemental computational21

blocks in your brain work together to perform complex functions. Their22

paper (McCulloch and Pitts, 1943) is an assigned reading for this lecture.23
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Around the same time in England, Alan Turing was forming his initial1

ideas on computation and neurons. He had already published his paper on2

computability by then. This paper (Turing, 2009) is the second assigned3

reading for this lecture. 1
4

5

McCulloch was inspired by Turing’s idea of building a machine that could6

compute any function in finitely-many steps. In his mind, the neuron in a7

human brain, which either fires or does not fire depending upon the stimuli8

of the other neurons connected to it, was a binary object; rules of logic9

where a natural way to link such neurons, just like the Pitt’s hero Bertrand10

Russell rebuilt modern mathematics using logic. Together, McCulloch11

& Pitts’ and Turing’s work already had all the germs of neural networks12

as we know them today: nonlinearities, networks of a large number of13

neurons, training the weights in situ etc.14

Let’s now move to Cambridge, Massachusetts. Norbert Wiener, who15

was a famous professor at MIT, had created a little club of enthusiasts16

around 1942. They would coin the term “Cybernetics” to study exactly17

the perception-cognition-action loop we talked about. You can read more18

in the original book titled “Cybernetics: or control and communication in19

the animal and the machine” (Wiener, 1965). You can also look at the20

book “The Cybernetic Brain” (Pickering, 2010) to read more.21

1.2.1 Representation Learning22

Perceptual agents, from plants to humans, perform measurements of23

physical processes (“signals”) at a level of granularity that is essentially24

continuous. They also perform actions in the physical space, which is25

again continuous. Cognitive science on the other hand thinks in terms of26

discrete entities like concepts, ideas, objects, or categories. These can be27

manipulated with tools of logic and inference. It is useful to ask what28

information is transferred from the perception system to the cognition29

system to create such symbols from signals, or from cognition to control30

which creates back signals from the symbols? We will often call these31

symbols the “internal representation” of an agent.32

Claude Shannon formulated information theory which is one way to33

study these kind of ideas. Shannon devised a representation learning34

scheme for compressing (e.g., taking the intensities at each pixel of the35

1If you need more inspiration to go and read it, the first section titled “The Imitation
Game” propounds the Turing Test.
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Figure 1.2: The famous four of the first era of intelligence. (From right to left)
Norbert Wiener, Grey Walter, Warren McCulloch and Walter Pitts

Figure 1.3: About 75 years later, this course’s content is (surprisingly) closely
related to the topics in Wiener’s book on Cybernetics.
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camera and encoding them into something less redundant like JPEG),1

coding (adding redundancy into the representation to gain resilience to2

noise before transmitting it across some physical medium such as a wireless3

channel), decoding (using the redundancy to guess the parts of the data4

packet that were corrupted during transmission) and finally decompressing5

the data (getting the original signal back, e.g., pixel intensities from JPEG).6

Information theory as described above is a tool to transmit data7

correctly between a sender and a receiver. We will use this theory for a8

different purpose. Compression, decompression etc. care about never9

losing information from the data; machine learning necessarily requires10

you forget some of the data. If the model focuses too much on the grass11

next to the dogs in the dataset, it will “over-fit” to the data and next12

time when you see grass, it will end up predicting a dog. It not easy to13

determine which parts of the data one should forget and which parts one14

should remembered.15

Figure 1.4: Claude Shannon studied information theory. This is
a picture of a maze solving mouse that he made around 1950,
among the world’s first examples of machine learning; read more at
https://www.technologyreview.com/2018/12/19/138508/mighty-mouse.

The study of artificial intelligence has always had this diverse flavor.16

Computer scientists trying to understand perception, electrical engineers17

trying to understand representations and mechanical and control engineers18

building actuation mechanisms.19

1.3 Intelligence: Reloaded (1960-2000)20

The early period created interest in intelligence and developed some21

basic ideas. The first major progress of what one would call the sec-22

ond era was made by Frank Rosenblatt in 1957 at Cornell University.23

Rosenblatt’s model called the perceptron is a model with a single bi-24

nary neuron. It was a machine designed to distinguish punch cards25

marked on the left from cards marked on the right, and it weighed26

5 tons (https://news.cornell.edu/stories/2019/09/professors-perceptron-27

paved-way-ai-60-years-too-soon). The input integration is implemented28

through the addition of the weighted inputs that have fixed weights ob-29

tained during the training stage. If the result of this operation is larger30

https://www.technologyreview.com/2018/12/19/138508/mighty-mouse
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
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than a given threshold, the neuron fires. When the neuron fires its output1

is set to 1, otherwise it is set to 0. It looks like the function2

f(x;w) = sign(w⊤x) = sign (w1x1 + . . . xdxd) .

Rosenblatt’s perceptron (Rosenblatt, 1958) had a single neuron so it3

could not handle complicated data. Marvin Minsky and Seymour Papert4

discussed this in a famous book titled Perceptrons (Minsky and Papert,5

2017). But unfortunately this book was widely perceived as two very6

well established researchers being skeptical of artificial intelligence itself.7

Interest in building neuron-based artificial intelligence (also called the8

connectionist approach) waned as a result. The rise of symbolic reasoning9

and the rise of computer science as a field coincided with these events in10

the early 1970s and caused what one would call the “first AI winter”.11

12

There was resurgence of ideas around neural networks, mostly fueled13

by the (re)-discovery of back-propagation by Rumelhart et al. (1985); Shun-14

ichi Amari developed methods to train multi-layer neural networks using15

gradient descent all the way back in 1967 and this was also written up in a16

book but it was in Japanese (Amari, 1967). Multi-layer networks came back17

in vogue because they could now be trained reasonably well. This era also18

brought along the rise of convolutional neural networks built upon a large19

body of work starting from two neuroscientists Hubel and Wiesel who did20

very interesting experiments in the 60s to discover visual cell types (Hubel21

and Wiesel, 1968) and Fukushima who implemented convolutional and22

downsampling layers in his famous Neocognitron (Fukushima, 1988).23

Yann LeCun demonstrated classification of handwritten digits using CNNs24

in the early 1990s and used it to sort zipcodes (LeCun et al., 1989, 1998).25

Neural networks in the late 80s and early 90s was arguably, as popular a26

field as it is today.

� https://embryo.asu.edu/pages/david-h-
hubel-and-torsten-n-wiesels-research-optical-
development-kittens

27

Support Vector Machines (SVMs) were invented in Cortes and Vapnik28

(1995). These were (are) brilliant machine learning models with extremely29

good performance. They were much easier to train than neural networks.30

They also had a nice theoretical foundation and, in general were a delight31

https://embryo.asu.edu/pages/david-h-hubel-and-torsten-n-wiesels-research-optical-development-kittens
https://embryo.asu.edu/pages/david-h-hubel-and-torsten-n-wiesels-research-optical-development-kittens
https://embryo.asu.edu/pages/david-h-hubel-and-torsten-n-wiesels-research-optical-development-kittens
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to use as compared to neural networks. It was famously said in the 90s that1

only the neural network researchers were able to get good performance with2

neural networks and no one else could train them well. This was largely3

true even until 2015 or so before the rise of libraries like PyTorch and4

TensorFlow. So we should give credit to these libraries for popularizing5

deep learning in addition to all the researchers in deep learning.6

Kernel methods, although known much before in the context of the7

perceptron (Aizerman, 1964; Scholkopf and Smola, 2018), made SVMs8

very powerful (we will see this in Chapter 2). The rise of Internet commerce9

in the late 90s meant that a number of these algorithms found widespread10

and impactful applications. Others such as random forests (Breiman,11

2001) further led the progress in machine learning. Neural networks,12

which worked well when they did but required a lot of tuning and expertise13

to get to work, lost out to this competition. However, there were other14

neural network-based models in the natural language processing (NLP)15

community such as LSTMs (Hochreiter and Schmidhuber, 1997) which16

were discovered in this period and have remained very popular and17

performant all through.18

1.4 Intelligence: Revolutions (2006-)19

The growing quantity of data and computation came together in late 2000s20

to create ideas like deep Belief Networks (Hinton et al., 2006), deep21

Boltzmann machines (Salakhutdinov and Larochelle, 2010), large-scale22

training using GPUs (Raina et al., 2009) etc. The watershed moment23

that got everyone’s attention was when Krizhevsky et al. (2012) trained24

a convolutional neural network to show dramatic improvement in the25

classification performance on a large dataset called ImageNet. This is a26

dataset with 1.4 million images collected across 1000 different categories.27

Performing well on this dataset was considered very difficult, the best28

approaches in 2011 (ImageNet challenge used to be an annual competition29

until 2016) achieved about 25% error. Krizhevsky et al. (2012) managed30

to obtain an error of 15.3%. Many significant results in the world of31

neural networks have been achieved since 2012. Today, deep networks32

in their various forms run a large number of applications in computer33

vision, natural language processing, speech processing, robotics, physical34

sciences such as physics, chemistry and biology, medical sciences, and35

many many others (LeCun et al., 2015).36

� You can explore the ImageNet dataset at
https://navigu.net/#imagenet.

This progress in deep learning has been driven by the availability37

of data and cheap computation. Most importantly, it is driven today38

by the intense curiosity of people from diverse fields of inquiry. Deep39

learning in its modern form is a very young field. As is typical in new40

fields, consolidation of ideas has not happened yet; so you will often see41

conflicting explanations for the same concept. The dramatic progress42

today is driven by ideas that are often quite unusual and a large number43

of open problems remain in how we may build a more sophisticated44

understanding of deep networks.45

https://navigu.net/#imagenet
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1.5 A summary of our goals in this course1

This course will take off from around late 1990s (kernel methods) and2

develop ideas in deep learning that bring us to today. Our goals are to3

1. become good at using modern deep networks, i.e., implementing4

them, training them, modeling specific problems using ideas in deep5

learning;6

2. understanding why the many quixotic ideas in deep learning work.7

After taking this course, we expect to be able to not only develop methods8

that use deep learning, but more importantly improve existing ideas using9

foundational understanding of the mathematics behind these ideas and10

develop new ways of improving deep learning theory and practice.11



Chapter 21

Linear Regression,2

Perceptron, Stochastic3

Gradient Descent4

Reading
1. Bishop 3.1, 4.1, 4.3

2. Bishop DL 2.1-2.3

3. Goodfellow Chapter 5.1-5.4

2.1 Problem setup for machine learning5

Nature gives us data X and targets Y for this data.6

X → Y.

Nature does not usually tell us what property of a datum x ∈ X results in7

a particular prediction y ∈ Y . We would like to learn to imitate Nature,8

namely predict y given x.9

What does such learning mean? It is simply a notion of being able10

to identify patterns in the input data without explicitly programming a11

computer for prediction. We are often happy with a learning process12

that identifies correlations: if we learn correlations on a few samples13

(x1, y1), . . . , (xn, yn), we may be able to predict the output for a new14

datum xn+1. We may not need to know why the label of xn+1 was15

predicted to be so and so.16

Let us say that Nature possesses a probability distribution P over17

(X,Y ). We will formalize the problem of machine learning as Nature18

16
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drawing n independent and identically distributed samples from this1

distribution. This is denoted by2

Dtrain =
{
(xi, yi) ∼ P

}n
i=1

is called the “training set”. We use this data to identify patterns that help3

make predictions on some future data.4

What is the task in machine learning?5

Suppose Dtrain consists of n = 50 RGB images of size 100×100 of6

two kinds, ones with an orange inside them and ones without. 104 is a7

large number of pixels, each pixel taking any of the possible 2553 values.8

Suppose we discover that one particular pixel, say at location (25, 45),9

takes distinct values in all images inside our training set. We can then10

construct a predictor based on this pixel. This predictor, it is a binary11

classifier, ? How many such binary classifiers are there
at most?

perfectly maps the training images to their labels (orange: +112

or no orange: -1). If xk
ij is the (ij)th pixel for image xk, then we use the13

function14

f(x) =

{
yk if xk

ij = xij for some k = 1, . . . , n

−1 otherwise.

This predictor certainly solves the task. It works correctly for all images15

in the training set. Does it also work for images outside the training set?16

Clearly no, because test images may not have this signature pixel.17

Our task in machine learning is to learn a predictor that works outside18

the training set. The training set is only a source of information that Nature19

gives us to find such a predictor.20

Designing a predictor that is accurate on Dtrain is trivial. A hash
function that memorizes the data is sufficient. This is NOT our task
in machine learning. We want predictors that generalize to new data
outside Dtrain.

2.1.1 Generalization21

If we never see data from outside Dtrain why should we hope to do well22

on it? The key is the distribution P . Machine learning is formalized as23

constructing a predictor that works well on new data that is also drawn24

independently from the distribution P . We will call this set of data the25

“test set”.26

Dtest.

This assumption is important. It provides coherence between past and27

future samples: past samples that were used to train and future samples28

that we will wish to predict upon.29

How to find such predictors that work well on new data? The central30

idea in machine learning is to restrict the set of possible binary functions31
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that we consider.1

We are searching for a predictor that generalizes well but only
have the training dataset to ascertain which predictor generalizes well.

The right class of functions f is such that is not too large. Otherwise2

we will find our binary classifier discussed above as the solution of the3

problem (after all, it does achieve zero training error). This is not very4

useful. The class of functions that we should search over cannot be too5

small either, otherwise we won’t be able to make accurate predictions for6

difficult images.7

Finding an appropriate class of functions that is neither too big
nor too small and finding one predictor from within this class that fits
the training dataset well is what machine learning is all about. ? Can you now think how machine learning

is different from other fields you might know
such as statistics or optimization?

2.2 Linear regression8

Let us focus on a simpler problem. We fix the class of functions, our9

predictors, to only have linear classifiers. We will consider that our data10

X ⊂ Rd and labels Y ⊂ R. If the labels/targets are real-valued, we call it11

a regression problem. Our predictor for any x ∈ X is12

f(x;w, b) = w⊤x+ b. (2.1)

This is a linear function in the data x with parameters w ∈ Rd and13

b ∈ R. Different settings of w and b give different functions f . Picking a14

particular function f is therefore equivalent to picking particular values15

of the parameters. Parameters are also called weights. We can visualize16

what this predictor does in two ways. Consider the case of d = 2.17

Figure 2.1: Linear least squares with X ⊂ R2.
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Fig. 2.1 shows the hyperplane corresponding to a particular (w, b) with1

the data xi, yi (in red). Each hyperplane is a particular predictor f(x;w, b).2

You can also think of the function f as a point in three dimensional space3

w ∈ R2 and b ∈ R.4

Predicting the target accurately using this linear model would require us5

to find values (w, b) that minimize the average distance to the hyperplane6

of each sample in the training dataset. We write this as an objective7

function.8

ℓ(w, b) :=
1

2n

n∑
i=1

(
yi − ŷi

)2
=

1

2n

n∑
i=1

(
yi − w⊤xi − b

)2 (2.2)

where we have written the prediction as9

ŷi = w⊤xi + b.

The quadratic term for each datum 1
2

(
yi − ŷi

)2 is known as the loss10

function, or loss for short. The objective above is thus an average of the11

loss for each datum. ? Why use the average, as opposed to say the
maximum value?

Finding the best weights w, b now boils down to12

solving the optimization problem13

w∗, b∗ = argmin
w∈Rd, b∈R

ℓ(w, b). (2.3)

How do we solve the optimization problem? We will learn many14

techniques to solve problems of the form Eq. (2.3). We have a simple case15

here and therefore can use what you did in HW0. The solution is given by16

w∗ = (X̃⊤X̃)−1X̃⊤Y (2.4)

where we have denoted by X̃ ∈ Rn×(d+1) the matrix whose ith row is17

the datum with a constant entry 1 appended at the end [xi, 1]. Similarly18

Y ∈ Rn is a vector whose ith entry is the target yi.

? When is our solution to least squares
regression in Eq. (2.4) not defined?

? What are we losing by fitting a linear
predictor? Will this work if the true model
from which Nature generates the data was
different, say a polynomial?

19

2.2.1 Maximum Likelihood Estimation20

There is another perspective to fitting a machine learning model. We will21

suppose that our training data was created using a statistical model. We22

can write this as23

y = w⊤x+ b+ ϵ (2.5)

Of course we do not know whether Nature used this particular model24

f(x;w, b) := w⊤x+ b to create the data. It might have created the data25

using some other model, e.g., f(x;A,w, b) := w⊤ sin(Ax) + b with the26

sin function applied element-wise. In a statistical model, we pretend as27

if the variables that we measure, e.g., xi, yi and the ones that we do not,28

e.g., ϵ, are random variables.29
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Figure 2.2: Least squares fitting using polynomials. As the degree of the
polynomial M increases the predictor f fits the training data (in blue) better and
better. But such a well-fitted predictor may be very different from the true model
from which Nature generated the data (in green). The red curve in the fourth panel
in these cases is said to have been over-fitted.

This discrepancy between the two, the model that we fit upon the
data and the true model that Nature could have used to create the
data, is modeled as noise ϵ. Noise in machine learning comes from
the fact that we—the designers—do not know Nature’s model.

? Can you think any other sources of noise?
For instance, if you scraped some images
from the Internet, how will you label them?

What model is appropriate for the noise ϵ? There can be many models1

depending upon your experiment (think of a model that predicts the arrival2

time of a bus at the bus stop, what noise would you use?). For our purpose3

we will use zero-mean Gaussian noise4

ϵ ∼ N(0, σ2
ϵ )

that does not depend on the input x. The probability that a sample (xi, yi)5

in our dataset Dtrain was created using our statistical model is then6

p(yi | xi; w, b) = N(w⊤xi + b, σ2
ϵ ).

We have assumed that the data was drawn iid by Nature so the likelihood7

of our entire dataset is8

p(Dtrain; w, b) =

n∏
i=1

p(yi | xi; w, b).

Finding good values of w, b can now be thought of as finding values that9



21

maximize the likelihood of our observed data1

w∗, b∗ = argmin
w,b

− log p(Dtrain; w, b). (2.6)

Observe that our objective is written as the minimization of the negative2

log-likelihood. This is equivalent to maximizing the likelihood because3

logarithm is a monotonic function. We can rewrite the objective as4

− log p(Dtrain; w, b) =
n

2
log
(
σ2
ϵ

)
+

n

2
log(2π) +

1

2σ2
ϵ

n∑
i=1

(
yi − w⊤xi − b

)2
.

Notice that only the third term depends on w, b. The first term is a function5

of our chosen value σ2
ϵ , the second term is a constant. In other words,6

finding maximizing the likelihood boils down to solving the optimization7

problem8

w∗, b∗ = argmin
w,b

1

2σ2
ϵ

n∑
i=1

(
yi − w⊤xi − b

)2
. (2.7)

This objective is nothing other than our least squares regression objective9

in Eq. (2.2) with σ2
ϵ set to 1 and a factor of n in the denominator. This10

objective is known as the maximum likelihood objective (MLE). ? How does using a different value of σϵ

in Eq. (2.7) change the least squares solution
in Eq. (2.4)?

11

? Think of what happens if we calculate the
maximum likelihood estimator with three
unknown parameters w, b and σϵ.

Using the MLE instead of the formula for linear regression has an12

interesting benefit. In the least squares case, given an input x, all that our13

fitted model can predict is14

ŷ = w∗⊤x+ b∗.

MLE fits a statistical model to the data. We can now predict the entire15

probability distribution16

p(y | x; w∗, b∗) = N(w∗⊤x+ b∗, σ2
ϵ ).

The solution of least squares is the mean of the Gaussian random variable17

y | x;w∗, b∗,

and the variance of this random variable is σ2
ϵ . So instead of just predicting18

ŷ, the machine learning model can now give the probability distribution19

p(y | x,w∗, b∗) as the output and the user is free to use it as they wish,20

e.g., compute the mean, the median, the 5% probability value of the right21

tail etc. ? Is a linear model appropriate if our data
consisted of natural images? What properties
have we lost by restricting the classifier to be
linear?

22

2.3 Perceptron23

Let us now solve a classification problem. We will again go around24

the model selection problem and consider the class of linear classifiers.25

Assume binary labels Y ∈ {−1, 1}. To keep the notation clear, we will26

use the trick of appending a 1 to the data x and hide the bias term b in the27
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linear classifier. The predictor is now given by1

f(x;w) = sign(w⊤x)

=

{
+1 if w⊤x ≥ 0

−1 else.
(2.8)

� The linear classifier remains unchanged if
we reorder the pixels of all images
consistently in our entire training set and the
weights w. The images will look nothing like
real images to us. The perceptron does not
care about which pixels in the input are close
to which others.

We have used the sign function denoted as “sign” to get binary {−1,+1}2

outputs from our real-valued prediction w⊤x. This is the famous percep-3

tron model of Frank Rosenblatt. We can visualize the perceptron the same4

way as we did for linear regression.5

Let us now formulate an objective to fit/train the perceptron. As usual,6

we want the predictions of the model to match those in the training data.7

ℓzero-one(w) :=
1

n

n∑
i=1

1{yi ̸=f(xi;w)}. (2.9)

The indicator function inside the summation measures the number of8

mistakes that the perceptron makes on the training dataset. The objective9

is thus designed to find w that minimizes the average number of mistakes,10

also known as the training error. Such a loss that incurs a penalty of 1 for11

a mistake and zero otherwise is called the “zero-one loss”.12
? Can you think of some quantity other than
the zero-one loss that we may wish to
optimize?

2.3.1 Surrogate Losses13

The zero-one loss is the clearest indication of whether the perceptron is14

working well. It is however non-differentiable, so we cannot use powerful15

ideas from optimization theory to minimize it and find w∗. This is why16

surrogate losses are constructed in machine learning. These are proxies17

for the actual loss function that we wish to minimize (the number of18

mistakes in classification problems). The key property that we desire from19

a surrogate loss is that a small surrogate loss should imply fewer mistakes20

for the classifier.21

The hinge loss is one such surrogate loss. It is given by22

ℓhinge(w) = max(0,−y w⊤x).

If the predicted label ŷ = sign(w⊤x) has the same sign as that of the true23

label y, then the hinge-loss is zero. If they have opposite signs, the hinge24

loss increases linearly. The exponential loss25

ℓexp(w) = e−y (w⊤x)

or the logistic loss26

ℓlogistic(w) = log
(
1 + e−yw⊤x

)
are some other popular surrogate losses for classification.27

? Draw the three losses and observe their
differences.

? There are also instances when we may
want to use surrogate losses for regression,
can you think of some?

? You may have seen the hinge loss written
as ℓhinge(w) = max(0, 1− y w⊤x). Why?
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2.4 Stochastic Gradient Descent1

We will now fit a perceptron using the hinge loss with a very simple2

optimization technique. At each iteration, this algorithm updates the3

weights w in the direction of the negative gradient. So first, let us compute4

the gradient of the hinge loss. It is easily seen to be5

dℓhinge(w)

dw
=

{
−y x for incorrect prediction on x,

0 else.
(2.10)

We will use a very naive algorithm, called the perceptron algorithm, to6

update the weights using this gradient.7

The Perceptron algorithm Perform the following steps for itera-
tions t = 1, 2, . . ..

1. At the tth iteration, sample a datum with index ωt ∈ {1, . . . , n}
from Dtrain uniformly randomly, call it (xωt , yωt).

2. Update the weights of the perceptron as

wt+1 =

{
wt + yωtxωt if sign(w(t)⊤xωt) ̸= yωt

wt else.
(2.11)

Observe that a mistake happens if w(t)⊤xωt and yωt are of different8

signs, i.e., their product yωtw⊤xωt is negative. The perceptron’s weights9

are changed only if it makes a mistake on the datum (xωt , yωt). The update10

to the weights is such that it improves the prediction of the perceptron11

on this sample. We can see this as follows. The updated weights of the12

perceptron for the latest sample satisfy the following identity.13

yωt(w(t) + yωtxωt)⊤xωt = yωt

〈
w(t), xωt

〉
+ (yωt)

2 ⟨xωt , xωt⟩

= yωt

〈
w(t), xωt

〉
+ ∥xωt∥22.

In simple words, the value of yωt ⟨w, xωt⟩ increases as a result of the14

update, it becomes more positive. If the perceptron makes mistakes on15

the same datum repeatedly, this value will eventually become positive. Of16

course, mistakes on other data in the training set may steer the perceptron17

towards other directions and it may continue to cycle ad infinitum. It is18

easy to show that the above algorithm ceases its updates when all data are19

correctly classified. More precisely, if the training data are such that they20

can be correctly classified using a linear predictor, then the perceptron21

will find this predictor after a finite number of iterations.22

It turns out that we have just seen one of the most powerful algorithms23

in machine learning. This algorithm is called stochastic gradient descent24
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(SGD) and it is very general: so long as you can take the gradient of an1

objective, you can execute SGD. The algorithm for fitting the perceptron2

above was given by Rosenblatt in 1957 and is popularly known as the3

“perceptron algorithm”. The way we developed it, the perceptron algorithm4

is simply SGD for the hinge loss. SGD-like algorithms were known in the5

optimization literature long before 1957 (Robbins and Monro, 1951).6

2.4.1 The general form of SGD7

SGD is a very general algorithm. We can use it so long as you have8

a dataset and an objective that is differentiable. The purpose of the9

following section is to introduce some basic notation regarding SGD and10

optimization that we will use in the following lectures.11

Consider an optimization problem12

w∗ = argmin
w

1

n

n∑
i=1

ℓi(w)

where the function ℓi denotes the loss on the sample (xi, yi) and w ∈ Rp
13

denotes the weights. Solving this problem using SGD corresponds to14

iteratively updating the weights using15

w(t+1) = w(t) − η
dℓωt(w)

dw

∣∣∣
w=w(t)

.

The index of the sample in the training set over which we compute the16

gradient is ωt. This is a random variable17

ωt ∈ {1, . . . , n} .

The gradient of the loss ℓωt(w) with respect to w is denoted by18

∇ℓωt(w(t)) :=
dℓωt(w)

dw

∣∣∣
w=w(t)

=


∇w1ℓ

ωt(w(t))

∇w2
ℓωt(w(t))

...
∇wpℓ

ωt(w(t))


∈ Rp.

The gradient ∇ℓωt(w(t)) is therefore a vector in Rp. We have written19

∇w1
ℓωt(w(t)) =

dℓωt(w)

dw1

∣∣∣
w=w(t)

for the scalar-valued derivative of the objective ℓωt(w(t)) with respect to20

the first weight w1 ∈ R. We can therefore write SGD as21

w(t+1) = w(t) − η∇ℓωt(w(t)). (2.12)
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The non-negative scalar η ∈ R+ is called the step-size or the learning rate.1

It governs the distance traveled along the negative gradient −∇ℓωt(w(t))2

at each iteration.3



Chapter 31

Kernels, Beginning of2

neural networks3

Reading
1. Bishop 6.1-6.3

2. Goodfellow 6.1-6.4

3. “Random features for large-scale kernel machines” by Rahimi
and Recht (2008).

3.1 Digging deeper into the perceptron4

3.1.1 Convergence rate5

How many iterations does a perceptron need to fit on a given dataset? We6

will assume that the training data are bounded, i.e.,
∥∥xi
∥∥ ≤ R for some7

R and for all i ∈ {1, . . . , n}. Let us also assume that the training dataset8

is indeed linearly separable, i.e., a solution w∗ exists for the perceptron9

weights with training error exactly zero. This means10

yiw∗⊤xi > 0 ∀i. ? Draw a picture to convince yourself that
the distance to the boundary is indeed ρ.

We will also assume that this classifier separates the data well. Note that11

the distance of each input xi from the decision boundary (i.e., all x such12

that w∗⊤x = 0) is given by the component of xi in the direction of w∗ if13

the label is y∗ = +1 and in the direction −w∗ if the label is negative. In14

other words,15

yiw∗⊤xi

∥w∗∥
= ρi

26
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gives the distance to the decision boundary. The quantity on the right hand1

side is called the margin, it is simply the distance of the sample i from the2

decision boundary. If w∗ is the classifier with the largest average margin,3

ρ = min
i∈{1,...,n}

ρi

is a good measure of how hard a particular machine learning problem is.4

You can now prove that after each update of the perceptron the inner5

product of the current weights with the true solution ⟨wt, w
∗⟩ increases at6

least linearly and that the squared norm ∥wt∥2 increases at most linearly7

in the number of updates t. Together, the two will give you a result that8

after t weight updates

� If the perceptron makes a mistake in the tth
update,

⟨wt, w
∗⟩ = ⟨wt−1 + yωtxωt , w∗⟩
≥ ⟨wt−1, w

∗⟩+ ρ∥w∗∥
=⇒ ⟨w∗, wt⟩ ≥ tρ∥w∗∥.

Now,

∥wt∥2

= ∥wt−1 + yωtxωt∥2

= ∥wt−1∥2 + 2 ⟨wt, y
ωtxωt⟩+ ∥xωt∥2

≤ ∥wt−1∥2 + ∥xωt∥2

≤ ∥wt−1∥2 +R2.

=⇒ ∥wt∥2 ≤ tR2.

The cosine distance between wt and w∗ is

1 ≥ cos(wt, w
∗) =

⟨wt, w
∗⟩

∥w∗∥∥wt∥

≥ tρ

R
√
t

=⇒ t ≤ R2

ρ2
.

9

t ≤ R2

ρ2
(3.1)

all training data are classified correctly. Notice a few things about this10

expression.11

1. The quantity R2

ρ2 is dimension independent; that the number of steps12

to reach a given accuracy is independent of the dimension of the13

data. This will be a property shared by optimization algorithms in14

general.15

2. There are no constant factors, this is also the worst case number of16

updates; this is quite rare and we cannot get similar results usually.17

3. We can think of the quantity R2/ρ2 as a measure of the difficult18

of the problem. The number of updates scales with the difficulty;19

if the margin ρ were small, we need lots of updates to drive the20

training error to zero.21

4. This formula also provides some insight into generalization. Let22

us make two assumptions (a) both train and test data have bounded23

inputs ∥x∥ ≤ R, (b) there exists some weightsw∗ and margin ρ such24

that yw∗⊤x ≥ ρ∥w∗∥ for all x, y. In short, we are assuming that the25

data can be classified perfectly by some perceptron. Now imagine a26

different training procedure that does not reuse any data, i.e., the27

perceptron looks at each sample only once, updates the weights and28

then throws away that sample after that iteration. The number of29

mistakes that the perceptron makes before it starts classifying every30

new datum correctly is also exact R2/ρ2. In other words, if the31

perceptron algorithm gets n ∼ R2/ρ2 samples for a problem where32

the two assumptions hold, then it achieves perfect generalization.33

3.1.2 Dual representation34

Let us see how the parameters of the perceptron look after training on the35

entire dataset. At each iteration, the weights are updated in the direction36

(xt, yt) or they are not updated at all. Therefore, if αi is the number of37

times the perceptron sampled the datum (xi, yi) during the course of its38
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training and got it wrong, we can write the weights of the perceptron as

� As you see in Eq. (3.3), computing the
prediction for a new input x involves, either
remembering all the weights w at the end of
training, or storing all the

{
αi
}
i=1,...,n

along
with the training dataset. The latter is called
the dual representation of a perceptron and the
scalars

{
αi
}

are called the dual parameters.

1

w∗ =

n∑
i=1

αiyixi + w(0). (3.2)

where αi ∈ {0, 1, . . . , } and w(0) is the initial weight configuration of the2

perceptron. Let us assume that w(0) = 0 for the following discussion.3

The perceptron therefore is using the classifier4

f(x,w) = sign(ŷ)

where ŷ =

(
n∑

i=1

αiyixi

)⊤

x

=

n∑
i=1

αiyixi⊤x.

(3.3)

Remember this special form: the inner product of the new input x5

with all the other inputs xi in the training dataset is combined linearly to6

get the prediction. The weights of this linear combination are the dual7

variables which measure of how many tries it took the perceptron to fit8

that sample during training.9

3.2 Creating nonlinear classifiers from linear10

ones11

Linear classifiers such as the perceptron, or the support vector machine12

(SVM) can be extended to nonlinear ones. The trick is essentially the13

same that we use when we fit polynomials (polynomials are nonlinear)14

using the formula for linear regression. We are interested in mapping15

input data x to some different space, this is (usually) a higher-dimensional16

space called the feature space.17

x 7→ ϕ(x).

The quantity ϕ(x) is called a feature vector.18

Figure 3.1
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For example, in the polynomial regression case for scalar input data1

x ∈ R we used2

ϕ(x) :=
[
1,
√
2x, x2

]⊤
to get a quadratic feature space. The role of

√
2 will become clear shortly.3

Certainly, this trick of creating polynomial features also works for higher4

dimensional input5

ϕ(x) :=
[
1, x1, x2,

√
2x1x2, x

2
1, x

2
2

]⊤
.

Having fixed a feature vector ϕ(x), we can now fit a linear perceptron on6

the input data
{
ϕ(xi), yi

}
. This involves updating the weights at each7

iteration as8

w(t+1) =

{
w(t) + ytϕ(xt) if sign(w(t)⊤ϕ(xt)) ̸= yt

w(t) else.
(3.4)

At the end of such training, the perceptron is9

w∗ =

n∑
i=1

αiyiϕ(xi)

and predictions are made by first mapping the new input to our feature10

space11

f(x;w) = sign

(
n∑

i=1

αiyiϕ(xi)⊤ϕ(x)

)
. (3.5)

Notice that we now have a linear combination of the features ϕ(xi), not12

the data xi, in our formula to compute the output.13

? The concept of a feature space seems like a
panacea. If we have complex data, we simply
map it to some high-dimensional feature and
fit a linear function to these features.
However, the “curse of dimensionality”
coined by Richard Bellman states that to fit a
function in Rd the number of samples needs
to be exponential in d. It therefore stands to
reason that we need a lot more data to fit a
classifier in feature space than in the original
input space. Why would we still be interested
in the feature space then?

3.3 Kernels14

Observe the expression of the classifier in Eq. (3.5). Each time we make15

predictions on the new input, we need to compute n inner products of the16

form17

ϕ(xi)⊤ϕ(x).

� Feature spaces can become large very
quickly. What is the dimensionality of ϕ(x)
for a tenth-order polynomial with a
three-dimensional input data? It is the number
of terms in the multinomial expansion
(1 + x1 + x2 + x3)

10 which is 286.

If the feature dimension is high, we need to enumerate the large number18

of feature dimensions if we are using the weights of the perceptron, or19

these inner products if we are using the dual variables. Observe however20

that even if the feature vector is large, we can compactly evaluate the inner21

product22

ϕ(x) =
[
1,
√
2x, x2

]
ϕ(x′) =

[
1,
√
2x′, x′2

]
ϕ(x)⊤ϕ(x′) = 1 + 2xx′ + (xx′)2 = (1 + xx′)

2
.
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for input x ∈ R. Kernels are a formalization of this idea. A kernel1

k : X ×X → R.

is any symmetric, positive semi-definite function with two arguments such2

that3

k(x, x′) = ϕ(x)⊤ϕ(x)

for some feature ϕ for all x, x′. Few examples of kernels are4

k(x, x′) =
(
x⊤x′ + c

)2
,

k(x, x′) = exp
(
−∥x− x′∥2/(2σ2)

)
.

3.3.1 Kernel perceptron5

We can now give the kernel version of the perceptron algorithm. The6

idea is to simply replace any inner product in the algorithm that looks like7

ϕ(x)⊤ϕ(x′) by the kernel k(x, x′).8

Kernel perceptron Initialize dual variables αi = 0 for all i ∈
{1, . . . , n}. Perform the following steps for iterations t = 1, 2, . . ..

1. At the tth iteration, sample a data point with index ωt from
Dtrain uniformly randomly, call it (xωt , yωt).

2. If there is a mistake, i.e., if

0 ≥ yωt

(
n∑

i=1

αiyiϕ(xi)⊤ϕ(xωt)

)

= yωt

(
n∑

i=1

αiyik(xi, xωt)

)
,

then update
αωt ← αωt + 1.

? Kernels look great, e.g., you can fit
perceptrons in powerful feature spaces using
essentially the same algorithm. How
expensive is each iteration of the perceptron?

Notice that we do not ever compute ϕ(x) so it does not matter what9

the dimensionality of the feature vector is. It can even be infinite, e.g., for10

the radial basis function kernel. Observe also that we do not maintain11

weights w. We instead maintain the dual variables
{
α1, . . . , αn

}
while12

running the algorithm.13

� When ML algorithms are implemented in
a system, there exist tradeoffs between the
feature-space version and the Gram matrix
version of linear classifiers. The former is
preferable if the number of samples in the
dataset is large, while the latter is used when
the dimensionality of features is large.

? Logistic regression with a loss function

ℓlogistic(w) = log
(
1 + e−yw⊤x

)
is also a linear classifier. Write down how you
will fit a logistic regression using stochastic
gradient descent; this is similar to the
perceptron algorithm. Write down the
feature-space version of the algorithm and a
kernelized logistic regression that uses the
Gram matrix.

Note that the kernel perceptron computes the kernel over all data14

samples in the training set at each iteration. It is expensive and seems15

wasteful. The Gram matrix denoted by G ∈ Rn×n
16

Gij = k(xi, xj) (3.6)

helps address this problem by computing the kernel on all pairs in the17
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training dataset. We can now write step 2 in the kernel perceptron1

yωt

(
n∑

i=1

αiyik(xi, xωt)

)
= yωt(α⊙ Y )⊤Geωt

.

where eωt
= [0, . . . , 0, 1, 0, . . .] with a 1 on the ωt

th element, α =2 [
α1, . . . , αn

]
denotes the vector of all the dual variables,Y =

[
y1, . . . , yn

]
3

is a vector of all the labels, and the notation α⊙ Y =
[
α1y1, . . . , αnyn

]
4

denotes the element-wise (Hadamard) product. This expression now only5

involves a matrix-vector multiplication, which is more convenient than6

computing the kernel at each iteration. Gram matrices can become very7

big. If the number of samples is n = 106, not an unusual number today,8

the Gram matrix has 1012 elements. The big failing of kernel methods9

is that they require a large amount of memory at training time. Nystrom10

methods compute low-rank approximations of the Gram matrix which11

makes operations with kernels easier.12

3.3.2 Mercer’s theorem13

This theorem shows that any kernel that satisfies some regularity properties14

can be rewritten as an inner product in some feature space.15

� A function f : X → R is square integrable
iff ∫

x∈X

|f(x)|2 dx <∞.

� We can think of a function f(x) as a long
vector with one entry for each x ∈ X . The
integral in Theorem 3.1 in Mercer’s condition
is analogous to a vector-matrix-vector
multiplication like u⊤Gu.

Theorem 3.1 (Mercer’s Theorem). For any symmetric function k :16

X ×X → R which is square integrable in X ×X and satisfies17 ∫
X×X

k(x, x′) f(x) f(x′) dx dx′ ≥ 0 (3.7)

for all square integrable functions f ∈ L2(X), there exist functions18

ϕi : X → R and numbers λi ≥ 0 where19

k(x, x′) =

∞∑
i=1

λiϕ
⊤
i (x) ϕi(x

′)

for all x, x′ ∈ X . The condition in Eq. (3.7) is called Mercer’s condition.20

You will also have seen Mercer’s condition written as follows: “for any21

finite set of inputs
{
x1, . . . , xn

}
and any choice of real-valued coefficients22

c1, . . . , cn a valid kernel should satisfy23 ∑
i,j

cicjk(x
i, xj) ≥ 0”.

There can be an infinite number of coefficients λi in the summation.24

Remark 3.2 (Checking if a function is a valid kernel). Note that25

Mercer’s condition states that the Gram matrix of any dataset is positive26

semi-definite:27

u⊤Gu ≥ 0 for all u ∈ Rn. (3.8)
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This is easy to show.1

u⊤Gu =

n∑
ij=1

uiujGij

=
∑
ij

uiuj

( ∞∑
k=1

λkϕk(x
i)⊤ϕk(x

j)

)

=

∞∑
k=1

λk

∑
ij

uiujϕk(x
i)⊤ϕk(x

j)


=

∞∑
k=1

λk

(∑
i

uiϕk(x
i)

)⊤
∑

j

ujϕk(x
j)


=

∞∑
k=1

λk

∥∥∥∥∥∑
i

uiϕk(x
i)

∥∥∥∥∥
2

≥ 0.

On the second line, we have expanded the term Gij = k(xi, xj) =2 ∑
k λkϕk(x

i)⊤ϕk(x
j) using Mercer’s condition. So if you have a function3

that you would like to use as a kernel, checking its validity is easy by4

showing that the Gram matrix is positive semi-definite.5

? Checking your Python function for whether
it is a good kernel is great using Eq. (3.8).
Can you think of a situation when you can get
a wrong answer using this approach, i.e., your
kernel is not a legitimate kernel but Eq. (3.8)
says that it is?

? These are two different images of related
concepts, what feature space can we use to
say that they are similar?

Kernels are powerful because they do not require you to think of the6

feature and parameter spaces. For instance, we may wish to design a7

machine learning algorithm for spam detection that takes in a variable8

length of feature vector depending on the particular input. If x[i] is the ith9

character of a string, a good way to build a feature vector is to consider10

the set of all length k sub-sequences. The number of components in this11

feature vector is exponential. However, as you can imagine, given two12

strings x, x′
13

this string is interesting14

txws sbhtqg is atso iyubqtnhpqg15

you can write a Python function to check their similarities with respect16

to some rules you define, e.g., a small edit distance between the strings.17

Mercer’s theorem is useful here because it says that so long as your18

function satisfies the properties of a kernel function, there exists some19

feature space which your Python function implicitly constructs.20

3.4 Learning the feature vector21

The central idea behind deep learning is to learn the feature vectors ϕ
instead of choosing them a priori.

How do we choose what set of feature vectors to learn from? For instance,22

we could pick all polynomials; we could pick all possible Gabor filters23
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that you saw in HW 1; we could also pick all possible string kernels.1

3.4.1 Random features2

Suppose that we have a finite-dimensional feature ϕ(x) ∈ Rp. We saw in3

the perceptron that4

f(x;w) = sign

(∑
i

wiϕi(x)

)

where ϕ(x) = [ϕ1(x), . . . , ϕp(x)] and w = [w1, . . . , wp] are the feature5

and weight vectors respectively. We will set6

ϕ(x) = σ
(
S⊤x

)
, (3.9)

where S ∈ Rd×p is a matrix. The function σ (·) is a nonlinear function of7

its argument and acts on all elements of the argument element-wise8

σ(z) = [σ(z1), . . . , σ(zp)]
⊤
.

We will abuse notation and denote both the vector version of σ and the9

element-wise version of σ using the same Greek letter.10

Notice that this is a special type of feature vector (or a special type of11

kernel), it is a linear combination of the input elements. What matrix S12

should we pick to combine these input elements? The paper by Rahimi13

and Recht (2008) proposed the idea that for shift-invariant kernels (which14

have the property that k(x, x′) ≡ k(x− x′)) one may use a matrix with15

random elements as our S16

S⊤ =

ω
⊤
1
...

ω⊤
p


where ωi ∈ Rd are random variables drawn from, say, a Gaussian17

distribution and18

σ(z) = cos(z).

Using a random matrix is a cheap trick, it lets us create a lot of features19

quickly without worrying about their quality. Our classifier is now20

f(x;w) = sign
(
w⊤σ

(
S⊤x

))
(3.10)

and we can again solve the optimization problem21

w∗ = argmin
w

1

n

n∑
i=1

ℓhinge(y
i, ŷi;w) (3.11)

with ŷi = w⊤σ
(
S⊤xi

)
and fit the weights w using SGD as before.22
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Figure 3.2

As an example consider the heatmap of Gabor-like kernel k(x, x′)1

in Fig. 3.2 on the left. Each row and column corresponds to one particular2

input, xi or xj , so regions in the heatmap which are warm are pairs (xi, xj)3

that are similar under the kernel. We can think of the decomposition4

pixel (i, j) of the left-most picture
= k(xi, xj)

= ϕ(xi)⊤ϕ(xj)

=

p∑
k=1

σ
(
ω⊤
k x

i
)
σ
(
ω⊤
k x

j
)

(say for p black-white matrices)

= pixel (i, j) in the right-most picture.

In other words, the p random elements of the matrix S, namely ωk come5

together to give us a useful kernel on the left. A large random matrix S6

has many such terms on the right hand-side.7

3.4.2 Learning the feature matrix as well8

Random features do not work well for all kinds of data. For instance, if9

you have an image of size 100×100, and you are trying to find a fruit10

11

we can design random features of the form12

ϕij,kl = 1{mostly red color in a box formed by pixels (ij) and(kl)}.

We will need lots and lots of such features before we can design an object13

detector that works well for this image. In other words, random features14

do not solve the problem that you need to be clever about picking your15

feature space/kernel.

? What kind of data do you think random
features will work well for?

16

Simply speaking, deep learning is about learning the matrix S
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in Eq. (3.10) in addition to the coefficients w. The classifier now is

f(x;w, S) = sign
(
w⊤σ

(
S⊤x

))
(3.12)

but we now solve the optimization problem

w∗, S∗ = argmin
w,S

1

n

n∑
i=1

ℓhinge(y
i, ŷi) (3.13)

with ŷi = w⊤σ
(
S⊤xi

)
as before. This is our first deep net-

work, Eq. (3.12) is a two-layer neural network.

Moving from the problem in Eq. (3.11) to this new problem in Eq. (3.13)1

is a very big change.2

1. Nonlinearity. The classifier in Eq. (3.12) is not linear anymore. It3

is a nonlinear function of its parameters w, S (both of which we4

will call weights).5

2. High-dimensionality. We added a lot more weights to the classifier,6

the original classifier had w ∈ Rp parameters to learn while the new7

one also has S ∈ Rd×p more weights. The curse of dimensionality8

suggests that we will need a lot more data to fit the new classifier.9

3. Non-convex optimization. The optimization problem in Eq. (3.13)10

much harder than the one in Eq. (3.11). The latter is a convex11

function (we will discuss this soon) which are easy to minimize.12

The former is a non-convex function in its parameters w, S because13

they interact multiplicatively, such functions are harder to minimize.14

We could write down the solution of the perceptron using the final15

values of the dual variables. We cannot do this for a two-layer16

neural network.17



Chapter 41

Deep fully-connected2

networks, Backpropagation3

Reading
1. Bishop 5.1, 5.3

2. Bishop DL 6.1-6.3.3, Chapter 8

3. Goodfellow 6.3-6.5

4. Notes at http://cs231n.github.io/optimization-2/

4.1 Deep fully-connected networks4

A deep neural network takes the idea of a two-layer network to the next5

step. Instead of having one matrix S in the classifier6

f(x; v, S) = sign
(
v⊤σ

(
S⊤x

))
a deep network has many matrices S1, . . . , SL7

f(x; v, S1, . . . , SL) = sign
(
v⊤σ

(
S⊤
L . . . σ

(
S⊤
2 σ(S⊤

1 x)
)
. . .
))

. (4.1)

We will call each operation of the form σ
(
S⊤
k . . .

)
, a layer. Consider8

the second layer: it takes the features generated by the first layer, namely9

σ(S⊤
1 x), multiplies these features using its feature matrix S⊤

2 and applies10

a nonlinear function σ(·) to this result element-wise before passing it on11

to the third layer.12

36

http://cs231n.github.io/optimization-2/
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A deep network creates new features by composing older features.

This composition is very powerful. Not only do we not have to1

pick a particular feature vector, we can create very complex features by2

sequentially combining simpler ones. For example Fig. 4.1 shows the3

features (more precisely, the kernel) learnt by a deep neural network. The4

first layer of features are called Gabor-like, they are similar to ones you5

constructed in HW 1. These features are combined linearly along with6

a nonlinear operation to give richer features (spirals, right angles) in the7

middle panel. The third layer combines the lower features to get even8

more complex features, these look like patterns (notice a soccer ball in the9

bottom left), a box on the bottom right etc.10

� The mammalian retina Circuits in the
retina are hard-wired at birth because being
able to see is so important to survival; there is
no learning in the retina itself although there
is a clear hierarchy of neurons that
successively process information. Later parts
of the visual cortex get learned during your
lifetime.

The retina transcribes photons that are
incident upon the eye using rod cells (function
better in low light) and cone cells (function
better in bright conditions). This is further
processed by “bipolar” cells into action
potentials, or “spikes”. Amacrine cells make
lateral, inhibitory connections to remove
redundancy in the stimuli. Ganglion cells
create ∼20 visual features (edges/spots, local
motions at 90◦/120◦ angles, colors, etc.).
Altogether, ∼80 types of neurons transmit
∼10 Mbps of information to the brain. These
neurons are surprisingly similar to each other,
e.g., all cell types fire at 4-8 Hz and different
ganglion cells learn highly redundant features.
Read Balasubramanian (2015) for an exciting
description of why neural circuits are wired
the way they are.

A picture of the neurons in the retina drawn
by Santiago Ramón y Cajal using a
microscope in the 1900s.

Figure 4.1

The optimization problem for fitting a deep network is written as11

v∗, S∗
1 , . . . , S

∗
L = argmin

v,S1,...,SL

1

n

n∑
i=1

ℓhinge(y
i, ŷi) (4.2)

where the output prediction is12

ŷ = v⊤σ
(
S⊤
L . . . σ

(
S⊤
2 σ(S⊤

1 x)
)
. . .
)
.

Notice that if fitting a two-layer network was difficult, then fitting a13

multi-layer neural network like Eq. (4.1) is even harder. There are lots of14

parameters and consequently we need a lot more data to fit such a model.15

The optimization problem in Eq. (4.2) is also naturally much harder than16

its two-layer version. The benefit for going through this difficulty is many17

fold and quite astounding.18

1. Not having to pick features is very powerful. Notice that we do19

not need to worry about what kind of data x is at the input. So20

long as we can write it into a vector, the classifier as written in21

Eq. (4.1) works. In other words, the same type of classifier works22

for image-based data, data from natural language processing, speech23

processing, and many other types. This is the primary reason why a24

large number of scientific fields are adopting deep networks.25
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2. Before the resurgence of deep learning, each of these fields essen-1

tially had their own favorite kernels they preferred, these kernels2

were designed across decades of insights from that specific field3

(wavelets in signal processing, keypoint detectors and descriptors4

in computer vision, n-grams in NLP etc.). It was very difficult for a5

researcher to use ideas from a different field. With deep learning,6

this has become much easier. There is still a significant amount of7

domain insight that you need to make deep networks work well but8

the bar for entering a new field is much lower.9

3. Deep neural networks are universal approximators. In simple words,10

it means that provided the deep network has enough number of11

layers and enough number of features in each layer, it can fit any12

dataset. This is a theorem in approximation theory.13

4.1.1 Some deep learning jargon14

We have defined the essential parts of a deep network. Let us briefly take15

a look at some typical jargon you will encounter as you read more.16

Activation function. The nonlinear function σ(·) in Eq. (4.1) is called17

the activation function (motivated from the threshold-based activation18

of McCulloch-Pitts neuron). It is also called a nonlinearity because it is19

the only nonlinear operation in the classifier. There are many activation20

functions that have been used over the years.21

1. Threshold22

threshold(x) =

{
1 if x ≥ 0

0 else.

2. Sigmoid/Logistic23

sigmoid(x) =
1

1 + e−x
.

3. Hyperbolic tangent24

tanh(x) =
ex − e−x

ex + e−x

4. Rectified Linear Units (ReLU)25

relu(x) = |x|+
= max(0, x).

5. Leaky ReLUs26

σc(x) =

{
x if x > 0

c x else.

6. Swish27

σ(x) = x sigmoid(x).
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Different activation functions work differently. ReLU nonlinearities are1

the most popular and we will see the reasons why they work better than2

older ones such as sigmoid/tanh nonlinearities in the backpropagation3

section.4

Logits for multi-class classification. The output5

ŷ = v⊤σ
(
S⊤
L . . . σ

(
S⊤
2 σ(S⊤

1 x)
)
. . .
)

? How would you use a binary classifier to
classify 10 classes?

are called the logits corresponding to the different classes. This name6

comes from logistic regression where logits are the log-probabilities of7

belonging to one of the two classes. A deep network affords an easy way8

to solve a multi-class classification problem, we simply set9

v ∈ Rp×C

where C is the total number of classes in the data. Just like logistic10

regression predicts the logits of the two classes, we would like to interpret11

the vector ŷ as the log-probabilities of an input belonging to one of the12

classes. ? What would the shape of v be if you were
performing regression using a deep network?

13

Mid-level features. The features at any layer can be studied once you14

create a deep network. You pass an input image x and compute15

hl = S⊤
l . . . σ

(
S⊤
2 σ(S⊤

1 x)
)
. . . (4.3)

to get the pre-activation output of the lth layer. The post-activation output16

is given by applying the nonlinearity17

σ(hl).

Sometimes people will call the σ(hL) as the feature created by a deep18

network; the rationale here is that just like a kernel-based classifier uses19

features ϕ(x) and fits a linear classifier to these features we may think of20

the feature of a deep network to be σ(hL). These features are often very21

useful, e.g., you can use the lower layers of a deep network trained on a22

different dataset, say classifying cats vs. dogs, as the feature generator but23

retrain the classifier weights v on your specific problem, say classifying24

apples vs. oranges. Such pre-training is typically used to exploit the fact25

that someone else has trained a large deep network on a large dataset, and26

thereby learnt a rich feature generator. Training the large model yourself27

on a large dataset like ImageNet would be quite difficult.28

Hidden layers/neurons. The intermediate layers that create the features29

h1, . . . , hL are called the hidden layers. A feature is the same as a neuron;30

think of the McCulloch-Pitts picture, just like a neuron takes input from all31

the other neurons connected to it via some weights , a feature is computed32

using a weighted combination of the features at the lower layer. We will33

say that a neural network is wide if it has lots of features/neurons on each34
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hidden layer. We will say that it is thin if it has few features/neurons on1

each hidden layer.2

4.1.2 Weights3

It is customary to not differentiate between the parameters of different4

layers of a deep network and simply say weights when we want to refer to5

all parameters. The set6

w := {v, S1, S2, . . . , SL}

is the set of weights. This set is typically stored in PyTorch as a set of7

matrices, one for each layer.8

Important. Every time we want to write down mathematical equa-
tions, we will imagine w to be a large vector. This is less cumbersome
notation. We denote by p the dimensionality of w and imagine that

w ∈ Rp.

The dimensionality p keeps things consistent with linear classifiers
where the features were ϕ(x) ∈ Rp. When you use PyTorch to
implement an algorithm that requires you to iterate over the weights,
say you were implementing SGD from scratch, you will iterate over
elements of the set of weights. Using this new notation, we will write
down a deep network as simply

f(x,w) (4.4)

and fitting the deep network to a dataset involves the optimization
problem

w∗ = argmin
w

1

n

n∑
i=1

ℓ(yi, ŷi;w). (4.5)

We will often denote the loss of the ith sample as simply

ℓi(w) := ℓ(yi, ŷi;w).

4.2 The backpropagation algorithm9

We would like to using SGD to fit a deep network on a given dataset. As10

we saw in Chapter 2, if the loss function is denoted by ℓωt(w) where ωt11

was the index of the datum sampled at iteration t, we would like to update12

the weights using13

w(t+1) = w(t) − η
dℓωt(w)

dw

∣∣∣
w=w(t)

.
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We have used a scalar η > 0 as the step-size or the learning rate. It1

governs the distance traveled along the negative gradient at each iteration.2

Let us ignore the index of the datum ωt in this section, imagine ωt = 1.3

Implementing SGD therefore boils down to computing the gradient4

dℓ(w)
dw

.

Backpropagation is an algorithm for computing the gradient of
the loss function with respect to weights of a deep network.

4.2.1 One hidden layer with one neuron5

Consider the linear regression problem with one layer and one datum,6

w, x ∈ Rd and v, y ∈ R:7

ℓ(w, v) =
1

2
(y − vσ(w⊤x))2

where σ(·) is some activation function and our weights are {v, w}. Let us8

understand the computational graph of how the loss is computed:9

w, x 7−→︸︷︷︸
layer 1

z
σ7−→︸︷︷︸

layer 2

h
v7−→︸︷︷︸

layer 3

vh
y7−→︸︷︷︸

layer 4

ℓ. (4.6)

where h = σ(z) and z = w⊤x. Each node in this graph is either the10

input/output or an intermediate result of the computation. The gradient of11

the loss with respect to the weights using the chain rule is12

∂ℓ

∂v
= (y − vσ(w⊤x))

(
−σ(w⊤x)

)
(4.7)

and13
∂ℓ

∂w
= (y − vσ(w⊤x))

(
−vσ′(w⊤x)

)
(x) . (4.8)

1. Caching computations for computing the chain rule. The
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first idea behind backpropagation is to realize that quantities
like (y− vσ(w⊤x)) or z = w⊤x are computed multiple times
in the chain rule in Eqs. (4.7) and (4.8). If we can cache these
quantities we can compute the chain rule-based gradient for
the different parameters quickly.

2. Cache is the output of each layer. The second idea behind
backpropagation is to realize that quantities like (y − vh),
h = σ(z) and z = w⊤x are outputs of the third, second and
first layers respectively. In other words, the quantities we need
to cache in the chain rule computation are simply the outputs
of the individual layers.

3. Derivatives of the loss with respect to the input of a layer only
depends on what happens in that layer and the derivative
of the loss with respect to the output of that layer. The
third observation is to see that the quantity σ′(z) in Eq. (4.8) is
the derivative of the output of the activation function, namely
h = σ(z) with respect to z, its input argument

σ′(z) =
dh
dz

.

This derivative is combined with the forward computation
(y − vh) to get the gradient with respect to the weights w.

Backpropagation is simply a book-keeping exercise that caches the
forward computation of the graph in Eq. (4.6) and uses these cached
values to compute the derivative of the loss ℓ with respect to the
parameters of each layer sequentially.

We will use a clever notation to denote the backprop gradient which1

will make this process very easy. Denote by2

v =
dℓ
dv

(4.9)

the derivative of the loss ℓ with respect to a parameter v. For our simple3

two layer (one neuron) neural network, we are interested in computing the4

quantities5

w, v.

Let us also denote the output of the second linear layer (layer 3) as6

e = vh.
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Now observe the following “forward computation”1

z = w⊤x (4.10)
h = σ(z) (4.11)
e = vh (4.12)

ℓ =
1

2
(y − e)

2
. (4.13)

Let us imagine that we have cached all the quantities on the left hand side2

of the equalities above. We use these quantities to perform the “backward”3

computation as follows4

dℓ
dℓ

= ℓ = 1.

R ∋ e = ℓ
dℓ
de

= −1 (y − e) = ℓ (−(y − e)) . (from Eq. (4.13))

R ∋ v = e
de
dv

= − (y − e) h = e h. (from Eq. (4.12))

R ∋ h = e
de
dh

= e (v). (from Eq. (4.12))

R ∋ z = h
dh
dz

= h σ′(z). (from Eq. (4.11))

Rd ∋ w = z
dz
dw

= z x. (from Eq. (4.10))

Rd ∋ x = z
dz
dx

= z w. (from Eq. (4.10))

Remark 4.1. An interesting mnemonic to remember backprop is to see5

that if the forward graph is6

z = w1x1 + w2x2

the backprop gradient is w1 = z x1 and w2 = z x2. If x1 was large and7

dominated the computation of z during the forward propagation, then w18

which is the multiplier of x1 also gets a dominant share of the backprop9

gradient z. The backprop gradient is shared equitably among the different10

quantities that took part in the forward computation. This is useful to11

remember when you build neural networks with complex architectures12

on your own: if there is a part of the network whose activations are very13

small and it is being combined with another part of the network whose14

activations have a large magnitude, then the former is not going to going15

to get a large enough backprop gradient.16
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Remark 4.2 (Gradient with respect to the input x). Notice that we1

obtain the gradient of the loss with respect to the input x2

dℓ
dx

as a by-product of backpropagation. Backpropagation computes the3

gradient of the input activations to each layer v because this is precisely4

the gradient that is propagated downwards. So the gradient x should not5

be surprising, after all x is nothing but the input activation to the first layer.6

This gradient is useful, you can use to find what are called adversarial7

examples, i.e., input images which look like natural images to us humans8

but contain imperceptible noise that gives a large value of x.

� An example adversarial input to a deep
network

9

4.2.2 Implementation of backpropagation10

Consider our neural network classifier given by11

f(x; v, S1, . . . , SL) = sign
(
w⊤σ

(
S⊤
L . . . σ

(
S⊤
2 σ(S⊤

1 x)
)
. . .
))

.

Figure 4.2: Schematic of forward and backward computations in backpropagation.

When you build such a multi-layer network in PyTorch, the kth layer12

is automatically equipped with two member functions.13
14

def forward(self, h^{k-1}, S_k):15

# computes the output of the k^th layer16

# given output of previous layer h^k and17

# parameters of current layer S_k18

return h^k19

20

def backward(self, h^k, d loss/dh^{k}, S_k):21

# computes two quantities22

# 1. d loss/d{S_k}23

# 2. d loss/d{h^{k-1}}24

return d loss/d{S_k}, d loss/d{h^{k-1}}2526

Such forward and backward functions exist for every layer, including the27

nonlinearities. If you implement a new type of layer in a neural network,28

say a new nonlinearity, you only need to write the forward function.29

The autograd module inside PyTorch automatically writes the backward30

function by looking at the forward function. This is why PyTorch is so31

powerful, you can build complex functions inside your deep networks32

without having to compute the derivatives yourself.33
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4.3 Weight initialization in fully-connected net-1

works2

We often talked about initializing the weights w(0) of a perceptron to zero3

when we looked at the dual perceptron,4

w∗ =

n∑
i=1

αiyixi + w(0).

Setting w(0) = 0 also produces an output of exactly zero in a deep network.5

We will see in Chapter 6 that this can be normalized appropriately using6

softmax to lead to a legitimate output (for a classifier zero weights after7

softmax would produce a equi-probable distribution on all the classes).8

But there are more important considerations in a non-convex optimization9

problem. For example:10

1. Scale symmetries Suppose we have a network11

f(x,w) = v⊤σ(S⊤
2 σ(S⊤

1 x)).

with a ReLU nonlinearity σ(z) = max(0, z). If we multiply all12

weights of the first layer by any scalar α and divide all weights of13

the second layer by the same scalar α, notice that the output does14

not change15

∀x, v, S1, S2 : v⊤σ(S⊤
2 σ(S⊤

1 x)) = v⊤σ(
S⊤
2

α︸︷︷︸
S′
2
⊤

σ(αS1︸︷︷︸
S′
1

⊤x)).

The reason for this is that the ReLU non-linearity is, what is called,16

positively homogeneous. This is a scale symmetry in the weights17

of a neural network. It entails that for any weight configuration w,18

there exists a direction (it is a straight line in our case) such that the19

output of the network does not change.

� Two important observations. First, the
gradient of any surrogate objective on any
data, train or test, along this symmetry is zero.
Second, deep networks actually have fewer
parameters than the total number of weights,
due to these symmetries some weights are
completely equivalent to each other (on all
data, train or test).

Our weight initialization20

must be careful about these symmetries.21

2. Permutation symmetries Next, suppose that S1 ∈ Rd×p and22

S2 ∈ Rp×p. We can permute the columns ofS1 and correspondingly23

the rows of S2 to keep the output unchanged. Formally, if Tπ is a24

permutation matrix corresponding to a particular permutation π of25

the sequence (1, 2, . . . , p), then26

∀x, v, S1, S2 : v⊤σ(S⊤
2 σ(S⊤

1 x)) = v⊤σ((TπS2︸ ︷︷ ︸
S′
2

)⊤σ((S1Tπ︸ ︷︷ ︸
S′
1

)⊤x)),

again, for all data x (train or test) and weight configuration.27

The choice w(0) = 0 is bad in terms of both scale and permutation28

symmetries. It is the worst initialization for a deep network. For ex-29

ample, observe that if most weights are exactly zero, we need not even30
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permute all elements of the sequence (1, 2, . . . , p) to get a different weight1

configuration.2

Exploding and vanishing gradients Observe that the backprop equa-3

tions corresponding to Eq. (4.10)4

z = w⊤x

are5

w̄ = z̄x

x̄ = z̄w.

If w ≈ 0, the derivative x̄ = ∂ℓ
∂x ≈ 0. This can cause a numerical6

underflow. And if ∥w∥ >> 1, then we could also get a numerical overflow,7

especially because z̄ = h̄σ′(z) = vēs′(z) which implies8

x̄ = vēs′(z)w.

In other words, the backprop derivative of the activations of lower layers9

depends upon the product of the weights on the layers above. If these10

weights take a large value (even at initialization, but in general at any time11

during training), then we can get numerical overflows.12

The weights of a deep network need to be initialized very carefully
(not very small, not very large, and in general cognizant of the
symmetries in the architecture). A poor choice of weight initialization
can be detrimental to obtaining good generalization, even if it does not
cause numerical issues. Ideas such as transfer learning, foundation
models (self-supervised learning) are specific techniques to initialize
the weights of a deep network.

4.3.1 Typical weight initialization schemes in deep learn-13

ing14

Consider a single neuron z = w⊤x with x ∈ Rd and w ∈ Rd. Suppose15

each dimension xi ∼ N(0, γ2). We are interested in initializing the16

weights w by drawing them independently from a Gaussian distribution17

wi ∼ N(0, σ2).

Our goal is to compute σ. Observe that18

E[z] =
d∑

i=1

E [wixi]

=

d∑
i=1

E[wi]E[xi]

= 0.
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and1

Var[z] = E[z2]− (E[z])2

=

d∑
i=1

E
[
w2

i x
2
i

]
=

d∑
i=1

E[w2
i ]E[x2

i ]

= dσ2γ2.

In other words, while the mean of the pre-activation z is zero, its variance2

scales with the number of inputs to the neuron d. If we do not ensure that3

dσ2 = 1

then at higher layers, we will get even larger variances (because the4

variance of the input to the next layer now depends upon the number of5

inputs to the first layer, and the number of inputs to the second layer).6

Therefore, PyTorch sets the Gaussian to have7

σ =

√
1

# inputs to the layer
. (4.14)

� Actually, Pytorch initializes the weights
using a uniform distribution supported
between [−1/

√
d, 1/
√
d]. This distribution

has a slightly smaller variance than the
corresponding Gaussian. You can use
torch.nn.init to initialize weighs in different
ways.

8

Xavier initialization It is also important to think of a similar argument9

for the backward pass. Suppose we have a layer z = S⊤x. Since10

x̄i =

p∑
j=1

Sjiz̄j ,

we need to initialize each weight Sij ∼ N(0, 1/
√
p). While we cannot11

make the forward pass and the backward pass happy, we can strike a12

compromise by setting13

σ =

√
2

#inputs +#outputs
.

PyTorch actually draws weights from a uniform distribution supported on14 [
−
√

6
d+p ,

√
6

d+p

]
.15



Chapter 51

Convolutional2

Architectures3

Reading
1. Goodfellow 9

2. Bishop DL Chapter 10

3. “Striving for simplicity: The all convolutional net”, by (Sprin-
genberg et al., 2014)

So it turns out that we have been talking about what are called “fully-4

connected” neural networks in the past chapter. There are a few problems5

that are apparent even in our limited experience.6

Fully-connected layers have a lot of parameters. If an input image7

is of size 100×100 = 104 grayscale pixels and we would like to classify8

it as belonging to one out of 1000 classes, we need 10M parameters. It9

is difficult to perform so many add-multiply operations quickly even on10

sophisticated GPUs. Further, the curse of dimensionality never goes away;11

we need lots of data to fit these many parameters.

? Let us consider an example using local
connections instead of a fully-connected layer.
If each output neuron is connected to only 25
pixels of the 100×100 image and there are
1000 output neurons, how many weights will
this layer have?

12

Natural data is full of “nuisances” that are not useful for tasks such as13

classification. E.g., illumination, viewpoint, and occlusions14

48
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1

or even semantic ones shown below2

3

Do fully connected networks work for such different images?4

Nuisances can be defined as operations that act on the data before you5

get to see it (nature creates these nuisances). Some of them are special and6

they have a group structure, i.e., they satisfy certain algebraic conditions7

https://en.wikipedia.org/wiki/Group_(mathematics). For instance, images8

of the same chair taken from different vantage points are projections of9

different rigid body transformations of the camera. Some other nuisances10

such as occlusions do not have a group structure, e.g., there is no rigid11

body transformation that allows us to backcalculate the pixels belonging12

to a person standing behind a car. Convolutional layers are a simple way13

to tackle one particular kind of nuisance, that of translations.14

5.1 Basics of the convolution operation15

So far, we have seen that the basic unit of a neural network is16

σ(w⊤x).

The basic unit of a convolutional neural network is17

σ(x ∗ w)

https://en.wikipedia.org/wiki/Group_(mathematics)
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where the ∗ denotes a convolution operation. Consider two one-dimensional1

vectors x ∈ R3 and w ∈ R3; we will imagine these to be arrays of infinite2

length with all the entries at indices (−∞,−2] ∪ [2,∞) set to zero; this3

is known as zero-padding the input4

x = [. . . , 0, 0, 2,−1, 1, 0, 0, . . .]
w = [. . . , 0, 0, 1, 1, 2, 0, 0, . . .].

� In the signal processing literature, the
words filter and kernels are used equivalently,
so convolutional filters are also often called
convolutional kernels.

The convolution of x with w (which is called the filter) is denoted by5

(x ∗ w)k =

∞∑
τ=−∞

xτ wk−τ . (5.1)

The element (x ∗ w)k at the kth index is a composition of all the terms6

in the summation on the right hand side. The term wk−τ for negative7

arguments is interpreted as a mirror flip of the vector w. For continuous8

functions, you will have seen the expression9

(x ∗ w)(t) =
∫ ∞

−∞
x(τ)w(t− τ) dτ.

for the convolution operation.

? Discuss the convolution of a square wave x
with a saw-tooth wave w.

For our vectors x,w with three entries the10

convolution operation looks as follows.11

Figure 5.1: Flip and filter style computation of a convolution corresponding to the
summation in Eq. (5.1).

Remark 5.1 (Some identities regarding convolutions). Notice that we12
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can change the variable of integration and set s = t− τ to get1

(x ∗ w)(t) =
∫ ∞

−∞
x(τ)w(t− τ) dτ

= −
∫ −∞

∞
x(t− s) w(s) ds

=

∫ ∞

−∞
w(s) x(t− s) ds

= (w ∗ x)(t).

Convolutions are therefore commutative; you can show similarly that they2

are also distributive (f ∗ g) ∗ h = f ∗ (g ∗ h). Convolution is a linear3

operator, you can show that4

(f + g) ∗ h = (f ∗ h) + (g ∗ h)

for any integrable functions f, g, h.5

Remark 5.2 (Padding for implementing convolutions). In order to6

implement the summation in convolution, we need to pad the input vector7

x by zeros. How many zeros should we pad it by? You will notice that if8

the kernel w has 2k + 1 elements, the input vector x need not be padded9

all the way to infinity, we only need to pad it with 2k extra elements on10

each side.11

� Most deep learning libraries implement a
slightly different operation instead of
convolution, even though they call it a
convolution. They implement the
cross-correlation operation

(x ∗ w)k =

∞∑
τ=−∞

xτ wk+τ .

In simple words, the kernel w is not mirror
flipped about the Y axis before computing the
summation in Eq. (5.1). While such an
operation is not strictly a convolution (you
can see the difference if you consider an
asymmetric kernel w; cross-correlation and
convolution are the same for symmetric
kernels), the difference does not matter for
deep learning because the kernel w is learned
during training. You can mirror flip the kernel
after training and interpret the network as
indeed performing a convolution with the
flipped kernel.

5.1.1 Convolutions of 2D images12

Convolutions work in the same way for two-dimensional or three-dimensional13

input signals. The kernel w will be a matrix of size k × k in the former14

case and of size k × k × k in the latter.15

(x ∗ w)i,j =
∞∑

s=−∞

∞∑
t=−∞

xs,t wi−s,j−t. (5.2)
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Figure 5.2: Flip and filter style computation of a convolution for a 2D input image
corresponding to the summation in Eq. (5.2).

5.1.2 Some examples1

1. Since convolution is a linear operator we should be able to write2

it as a matrix-vector multiplication. We take the kernel, flip it and3

sweep it left to right to get the rows of the matrix.4

(2,−1, 1) ∗ (1, 1, 2) =


1

1 1

2 1 1

2 1

2


 2

−1
1

 .

Such a matrix is called a Toeplitz matrix https://en.wikipedia.org/wiki/Toeplitz_matrix.5

Two-dimensional convolutions can be written as a matrix-matrix6

multiplication using a similar construction; see https://stackoverflow.com/questions/16798888/2-7

d-convolution-as-a-matrix-matrix-multiplication.8

2. Lots of non-trivial transformations of the image are possible using9

slight changes in the weights. E.g., blurring10

11

or sharpening,12

https://en.wikipedia.org/wiki/Toeplitz_matrix
https://stackoverflow.com/questions/16798888/2-d-convolution-as-a-matrix-matrix-multiplication
https://stackoverflow.com/questions/16798888/2-d-convolution-as-a-matrix-matrix-multiplication
https://stackoverflow.com/questions/16798888/2-d-convolution-as-a-matrix-matrix-multiplication
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1

We can also detect edges2

3

This filter is called the Sobel filter and is an integral part of image4

pre-processing pipelines in computer vision.5

3. Just like fully-connected layers, we can also stack up convolutions.6

The effective receptive field, i.e., the pixels that are considered by7

the kernel in the convolutional operation increases as we go up the8

layers.9

4. The operation S⊤x has S ∈ Rd×p weights and returns a vector10

in Rp. A convolution operator returns a vector (x ∗ w) ∈ Rd
11

using K parameters in the kernel w. It is important to note12

that a lot of parameter sharing is happening while computing13

the values of the output neurons. You can find some animations14

at https://colah.github.io/posts/2014-07-Conv-Nets-Modular and15

https://colah.github.io/posts/2014-07-Understanding-Convolutions.16

5. Padding the input by zeros is common in signal processing because17

the signals are usually a function of time. We can do a bit better for18

images than zero padding (RGB = (0, 0, 0)) which is akin to creating19

an artifact of a dark black border around the image. Reflection20

padding is a technique (torch.nn.ReflectionPad2d in PyTorch) that21

mirrors the pixels at the boundary and does not create such artifacts.22

Remark 5.3 (Dilated convolutions). You don’t need to use a kernel that23

looks like a contiguous array. We can create holes in the kernel and expand24

the receptive field. Dilated convolutions do precisely this. ? What convolutional kernel does a dilated
convolution correspond to?

25

26

https://colah.github.io/posts/2014-07-Conv-Nets-Modular
https://colah.github.io/posts/2014-07-Understanding-Convolutions
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These operators are very useful for image segmentation because they1

capture correlations across large parts of the input image while still2

enabling the parameter sharing of a convolutional layer.3

Remark 5.4 (Separable convolutions). There are 9 weights in a 3×34

kernel. Even convolutional layers can get really big, e.g., a standard5

CNN used for ImageNet has about 25M weights and is almost entirely6

convolutional. Thus we might want to reduce the number of weights even7

further. Separable convolutions are a trick to doing so. Consider a 3×38

kernel and split it into two kernels of 3×1 and 1×39 3 6 9

4 8 12

5 10 15

 =

34
5

× [1 2 3
]
.

Using the original kernel requires 9 multiply operations to compute each10

pixel value. Using the split kernels requires only 6, it also has fewer11

weights. These are called separable convolutions. The Sobel filter which12

we saw before can be written as a separable convolution13 1 0 −1
2 0 −2
1 0 −1

 =

12
1

 [1 0 −1
]

because it measures the gradient of the image intensity independently in14

the two directions; an edge in an image is a region such that it is either15

an edge in the horizontal direction or an edge in the vertical direction.16

Separable convolutions are very useful when you use high-dimensional17

data in deep learning, e.g., medical images out of MRI are 4-dimensional18

images (width, height, depth, channel).19

? Can we write every 2D convolutional filter
as a separable convolution? The answer is no:
you will notice that a separable kernel is a
rank-1 matrix. The singular value
decomposition (SVD) of a separable kernel A
is therefore

A = σu v⊤

for two vectors u, v and singular value σ. Can
we however approximate any convolutional
kernel as a sum of separable convolutions?
The answer to this is yes: observe using the
SVD of the kernel A ∈ Rp×p that it can be
written as

A =

p∑
i=1

σiuiv
⊤
i .

where ui, vi are the singular vectors and σi

are singular values. You don’t have to pick all
the factors, if you pick a few terms in this
summation, you get a good spectral
approximation of the matrix A. You will see
in Section 5.3 how the convolutional layer in a
deep network is structured and may allow the
network to learn a complicated kernel A even
if the operations are only separable uiv

⊤
i .

5.2 How are convolutions implemented?20

Convolutions are the most heavily used operator in a deep network. We21

therefore need to implement them as efficiently as we can. There are a22

few different ways of implementing convolutions.23

1. Write a simple for loop. This works well if the kernel is small in24

size and this is indeed how PyTorch implements convolutions for25

kernels of size 3×3 (the operation is coded up in C, not Python of26

course).27

2. We can expand out the kernel as a matrix and in this way a convolu-28

tional layer is simply a matrix-vector multiplication. This method is29

most commonly implemented and works well for sizes up to 5×5.30

3. We can use the Fast Fourier Transform (FFT) to compute the31

convolution as32

x ∗ w = F−1 [F [x] F [w]] .
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This is efficient for large kernels, say greater than 7×7.1

Typically, deep learning libraries will choose an algorithm for convolution2

in run-time after looking at your neural architecture; you do not have3

to worry about the specific algorithm. A library called cuDNN from4

Nvidia implements a bunch of convolution algorithms on GPUs efficiently.5

PyTorch will pick one of these algorithms by checking how long it takes6

for the first forward-pass on your deep network. � You can set torch.cudnn.benchmark =
False to prevent Pytorch from searching for
the best algorithm to compute convolutions
for your architectures every time it launches.
While such automated search speeds up
training by a small fraction, it may not be
desirable in case when you want to debug
your code, or evaluate the run time of your
algorithm.

But the fact remains that7

large kernels which allow a larger receptive field (long-range correlations8

in the input image) are more expensive to compute than smaller kernels.9

Architectures such as Inception that we will see soon are an attempt to get10

a large receptive field while still keeping computations in the convolutional11

layer small.12

Remark 5.5 (Stride in convolutional layers). If you see the documenta-13

tion for the convolutional layer in PyTorch at14

(https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html) you will15

also see a parameter known as stride. Stride simply means that the output16

(x ∗ w)k =

∞∑
τ=−∞

xτwk−τ

is not computed at all values of k; if the stride is set to 2, the output is17

computed only at every alternate value of k. Note that the default stride18

as seen in the definition of convolution is 1. Since images change very19

little from pixel to pixel, this is a neat trick to reduce the redundancy20

of computing the convolution again and again over similar input. The21

important artifact of using a stride larger than 1 is that the output (x ∗ w)22

is no longer the same length (even after padding) as the input, is half the23

length if the stride is 2.24

5.3 Convolutions for multi-channel images in25

a deep network26

We will now study how the convolutional layer is implemented in a27

typical deep network. Let us denote the 2D convolution operation on a28

single-channel 2D image A ∈ Rw×h by a kernel w ∈ Rk×k by29

A ∗ w = B ∈ Rw×h.

Imagine that we have an RGB input image of sizew×h; the RGB indicates30

that there are three input channels, one for each color. The input to a31

convolutional layer in a deep network is therefore an array of size 3×w×h.32

Typical deep learning libraries, when they implement a convolutional33

layer with a kernel w of size k× k, will output an image of size c×w×h34

where c are the number of channels in the image at the output of the layer.35

Effectively, a convolutional layer maps36

R3×w×h ∋ A 7→ B ∈ Rc×w×h.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
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Figure 5.3: Convolutional layer in a typical deep network

The layer performs the operation1

vj +

3∑
i=1

Ai ∗ wij = Bj

where Ai for i ∈ {1, 2, 3} denotes the ith channel of the input image and2

Bj for j ∈ {1, . . . , c} denotes the jth channel of the output image, and3

the kernel wij ∈ Rk×k is the convolutional kernel. The scalar vj ∈ R4

denotes the bias. Effectively, there are 3c different kernels in one layer5

and the convolutional layer sums up the result of convolutions on all the6

input channels and adds a bias to create each output channel.7

? We said that convolutional filters are used
to learn the correlations across nearby pixels.
What would be the utility of 1×1
convolutions?

? If there are 10 input channels and 25 output
channels, how many parameters does a
convolutional layer with a 5×5 kernel have?
What is the size of the output feature map if
convolution is performed with a stride of 2?
Does stride change the number of parameters
in a convolutional layer?

5.4 Translational equivariance using convolu-8

tions9

We now discuss the most important reason for using convolutions in deep10

networks. Let us take our 1-dimensional signal x and translate it by ∆11

units to the right12

x′(t+∆) := x(t).
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You will see from the definition of convolution in Eq. (5.1) that the1

convolution also gets translated2

(x′ ∗ w)k =

∞∑
τ=−∞

x′
τwk−τ

=

∞∑
τ=−∞

xτ−∆wk−τ

=

∞∑
s=−∞

xswk−s−∆ (s = τ −∆)

= (x ∗ w)k−∆.

(5.3)

In other words, if you translate the signal by ∆ then the output of3

convolution is also translated by the same amount4

(x′ ∗ w)k+∆ = (x ∗ w)k.

This property is called equivariance. Equivariance also holds for 2D5

convolutions.

� Translational equivariance is much more
insightful for 2D images. Let us consider an
example.

Equivariance to translations allows us to build an important6

property in a deep network. If we have a convolutional kernel that has7

weights such that the output is high for a certain object (star in adjoining8

picture, vertical/slanted strips in your Gabor filter homework), the output9

of a convolutional layer is such that the features also “move” if the input10

moves in the receptive field.11

We can easily build a binary classifier using such equivariant features.12

If we want to build a star classifier, we simply check if some features in13

the output are large after convolution, e.g., we check if the largest feature14

in the 2D-feature map is greater than some pre-determined threshold15

f(x,w) := 1{maxij{(x∗w)ij}≥ϵ}. (5.4)

5.5 Pooling to build translational invariance16

We would like to build a classifier such that if the object moves to some17

other location in the input image, the output of the classifier remains18

unchanged, i.e., the deep network detects a test image as a cat even if it is19

in some other part of the image in the training data. Equivariance is only20

one part of the story to doing so. Remember that the last layer in a deep21

network looks like22

f(x,w) = sign
(
v⊤hL

)
= sign

(
p∑

i=1

vih
L
i

)
.

Even if the features hL are equivariant when the input x is translated in23

the 2D plane, the inner product v⊤hL cannot be equivariant. Essentially,24

if a few weights vi are trained to check for objects like cat/dog in one25

particular part of the image, even if the features hL move accordingly, the26

output v⊤hL need not be constant because the weights vi at those new27
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locations of features may be different.1

In other words, we want features of a deep network to be invariant to2

translations in the input.3

� Making the weights of the top layer v all
equal to 1 will solve this problem, but this is
of course a very poor classifier. It smears the
entire input signal hL together by just
averaging the features and therefore does not
have much discriminative power; it cannot
easily build a multi-class classifier for
instance.

Pooling is an operation that smears out the features locally in the
neighborhood of each pixel.

We can use our idea of setting all the weights to 1 to get what is called4

the average pooling operation. It is a linear operation and equivalent to5

convolving the input features using a kernel6

wavg-pool =
1

9

1 1 1

1 1 1

1 1 1

 . (5.5)

The average-pooling kernel is fixed during training and does not have any7

weights, otherwise it would be just another convolutional kernel.8

� Average pooling blurs the image. We saw
this in the example in Section 5.1.2. Such
blurring at intermediate layers gives some
translational invariance by smearing out the
features.Average pooling does not solve our problem of making the features9

invariant; the smeared out version simply moves less than ∆ when the10

input translates by ∆. If we add many average pooling layers at various11

stages in a deep network, we make the features move even less and this12

may be sufficient to allow for weights v to be discriminative.13

Max-pooling is another operation that builds invariance. It takes in an14

input x ∈ Rw×h and computes15

(max-pool(x))ij = max
−k≤s≤k

max
−k≤t≤k

xi−s,j−t. (5.6)

Figure 5.4: Max-pooling with a 2×2 kernel and a stride of 2 reduces the size of
the input image by half. A stride of 1 would preserve the image size but would
give less invariance.

This is a clever way of building invariance, you simply take the16

maximum value of the input in a window of size k × k, so even if17

the input translates by k pixels in either direction, the output of a max-18

pooling layer remains the same. If we add multiple max-pooling layers at19

intermediate depths in a deep network, we achieve translational invariance20

in a convolutional neural network.

? Does max-pooling make sense for a
fully-connected network? There is no
equivariance property in such a network, so
even if we do perform max-pooling, it is just
like another activation function operating on
the features.

21
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Remark 5.6 (Max-pooling destroys information). As we see in Fig. 5.4,1

max-pooling destroys a lot of information in the input image. The result2

of max-pooling is a much smaller feature map. This results in a large loss3

of information in the input data and often leads to a loss of discriminative4

power, i.e., accuracy, during training. This trade-off between building5

a classifier that is invariant to changes in the input and discriminative6

enough to distinguish between many different categories is fundamental.7

? We have talked about invariance to
translations in this lecture. Images taken from
a fish-eye camera are such that objects rotate
in the field of view.

Can you think of a trick to build invariance to
rotations?

Max-pooling has a side-benefit, it reduces the number of operations in8

a deep network and the number of parameters by sequentially reducing the9

size of the feature map with layers. This is useful because a typical image10

you get from an autonomous car is easily about 10MP (107 pixels) and we11

need to boil it down into, say 10 categories that are relevant to driving,12

i.e., hL ∈ R10. Max-pooling is a very useful for this, with the caveat that13

too much pooling will dramatically reduce the signal in the input image.14

5.6 Weight initialization in convolutional net-15

works16

Weight initialization in a CNN is done using the same considerations as17

that of fully connected networks, except that the the number of inputs to18

each neuron are now Cink
2 where Cin is the number of input channels and19

k is the kernel size. So the standard deviation of the Gaussian (or the20

support of the uniform distribution) to draw weights from is21

σ =

√
1

Cink2
.
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Data augmentation, Loss2

functions3

Reading
1. Bishop Chapter 5.5.3, 4.3

2. Bishop DL Chapter 6.4, 9.1

3. Goodfellow Chapter 7.4

6.1 Data augmentation4

In the previous chapter, we looked at convolutions as a way to reduce5

the parameters in a deep network, but more importantly as a way of6

building equivariance/invariance to translations. There are a lot of7

nuisances other than translation that do not have a group structure which8

precludes operations such as convolutions that we can perform to generate9

equivariance/invariance.10

In this section, we will discuss techniques to build invariance to11

nuisances that are more complex than just translations, these techniques12

will seem brute-force but they also allow us to handle more complex13

nuisances. The main trick is to augment the data, i.e., create variants of14

each input datum in some simple way such that we know that its label is15

unchanged. If our original dataset is D =
{
(xi, yi)

}
i=1,...,n

we create an16

augmented dataset17

T (D) :=
{
(T (xi), yi)

}
i=1,...,n

∪D. (6.1)

where T is some operation of our choice. We have therefore expanded18

the number of samples in the training dataset to 2n instead of the original19

60
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n. Effectively, data augmentation is a technique to create a dataset that is1

sampled from some other data distribution P than the original one.2

6.1.1 Some basic data augmentation techniques3

The most popular data augmentation techniques are setting T to be changes4

in brightness, contrast, cropping the image to simulate occlusions, flipping5

the image horizontally or vertically, jittering the pixels of the input image6

to simulate noise in the CCD of the camera/weather, padding the image7

which changes the borders of the input image, warping the image using a8

projection that simulates the same picture taken from a different viewpoint,9

thresholding the RGB color channels, zooming into an image to simulate10

changes in the scale etc.11

You can see these operations at https://fastai1.fast.ai/vision.transform.html#List-12

of-transforms.

� FastAI is a wrapper on top of PyTorch and
is an excellent library to learn for doing your
course projects.

13

6.1.2 How does augmentation help?14

A number of such augmentations are applied to the input data while15

training a deep network. This increases the number of samples n we have16

for training but note that different samples share a lot of information, so17

the effective novel samples has not increased by much. Let us get an idea18

of when augmentation is useful and when it is not. Consider a regression19

https://fastai1.fast.ai/vision.transform.html#List-of-transforms
https://fastai1.fast.ai/vision.transform.html#List-of-transforms
https://fastai1.fast.ai/vision.transform.html#List-of-transforms
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and classification problem as shown below.1

Figure 6.1: Cows live in many different parts of the world. A classifier that also
uses background information to predict the category is likely to make mistakes
when it is run in a different part of the world. Augmenting the input dataset on
the left by replacing the background to include a mountain or a city is therefore
a good idea if we want to run the classifier in a different part of the world. This
will also force the classifier to ignore the background pixels when it classifies the
cow, in other words the classifier is forced to become invariant to backgrounds by
brute-force showing it different backgrounds.

In essence, data augmentation forces the model to tackle a larger2

dataset than our original dataset. The model is forced to learn what3

nuisances the designer would like it to be invariant to. Compare this to the4

previous chapter: by replacing fully-connected layers with convolutions5

and pooling we made the model invariant to translations. In principle,6

we could have trained a fully-connected deep network on a very large7

augmented dataset with translated objects. In principle, this would make8

the fully-connected network invariant to translations as well.9

6.1.3 What kind of augmentation to use when?10

In the example with regression, we saw that the regressor on the augmented11

data was essentially linear and had much less discriminative power than a12

polynomial regressor. This was of course by design, we chose to augment13

the data. If the test data for the problem came from the polynomial instead14

of our augmented distribution, the new classifier will perform poorly.15
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Figure 6.2: The second panel shows the original scene with a mirror flip (i.e.,
across the horizontal axis) while the third panel shows the original scene after a
water reflection (i.e., flip across the vertical axis). The latter is an image that is
very unlikely to occur in the real world, so it is not a good idea to use it for training
the model.

By being invariant to a larger set of nuisances than necessary,
we are wasting the parameters of the model and risk getting a large
error if the test data was not from the augmented distribution. By
being invariant to a smaller set of nuisances than necessary, we are
risking the situation that the test data will have some new nuisances
which the classifier will perform poorly on. It is important to bear in
mind that we do not always know what nuisances the model should
be invariant to, the set of transformations in data augmentations
necessarily depends—often critically—upon the application.

? If you are building a classifier for detecting
cars, motorbikes, people etc. for autonomous
driving application, do you want to be the
invariant to rotations?

Data augmentation requires a lot of domain expertise and often plays1

a huge role in the performance of a deep network. You should think about2

what kind of augmentations you will apply to data for speech processing,3

or for data from written text.4

? Think of what kind of data augmentations
you would use for a language processing
model. What are the equivariances that we
might wish to capture?6.2 Loss functions5

We next discuss the various loss functions that are typically used for6

training neural networks. As usual, we are given a dataset7

D =
{
(xi, yi)

}
i=1,...,n

.

6.2.1 Regression8

MSE loss. If the labels are real-valued yi ∈ R, e.g., we are predicting9

the price of housing in Boston given features of the houses (like you did10

in HW 0), we are solving a regression problem and the loss function to11

use for a deep network is also simply the regression loss.12

ℓmse(w) :=
1

2
(f(x;w)− y)

2 (6.2)

If you think about it carefully, it seems silly to add different dimen-13

sions of the input x using the weights w. Consider the case of x =14

[miles/gallon, number of other people with the same car, price of the car].15

The three elements of x are in totally different units and totally different16

scales. A popular trick to make things a bit more uniform for regression17
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is take a logarithmic transformation of the input, i.e., fit a model to log x1

using the loss2

1

2
(f(log x;w)− y)

2
;

we can compute the logarithm element-wise for vector valued inputs.3

Huber loss. The square-residual loss in Eq. (6.2) works in most cases4

but it does not work well if there are outliers in the data. Outliers are data5

in the training set that are noisy or did not come from the true model. In6

such cases, we can use the Huber loss. If the residual is r = f(x;w)− y,7

the Huber loss is8

ℓhuber(w; δ) =

{
1
2 |r|

2 if |r| ≤ δ

δ
(
|r| − 1

2δ
)

else.
(6.3)

Observe that this does not penalize the model egregiously if the predictions9

are bad (|r| ≥ δ) for a particular datum. Doing so prevents the outliers10

from biasing the loss towards themselves and ruining the residuals for the11

other data.12

� We can perform regression in a clever way:
first set all weights wi = 0 and iteratively
allow a subset of the weights (say the ones
that improve the residuals the most) to
become non-zero; non-zero weights are fitted
using ℓmse. This is known as forward
selection. Backward selection starts with
weights w∗ which minimize ℓmse and
iteratively prune the weights. Both forward
and backward selection are techniques to fit a
model w∗ with sparse weights.

MAE loss. The absolute-error loss (or ℓ1)13

ℓmae(w) = |f(x;w)− y| (6.4)

has a similar motivation: it does not penalize the residual on the outliers.14

� Using a subset-selection technique or the
ℓmse loss with ℓ1 regularization on the weights

1

2n

n∑
i=1

(
f(log xi;w)− yi

)2
+ λ∥w∥1

leads to sparse weights w∗. This makes the
model more interpretable than a model fitted
using ℓmse loss. This is easy to understand for
linear models: input dimensions
corresponding to weights w∗

i that are zero do
not take part in making predictions. So one
may answer questions of the form “is variable
xi a relevant predictor of the target y”.

Variable importance. For linear models, another way to answer the15

same question is to fit two models, one with wi fixed to zero and all other16

weights fitted using the MSE loss Eq. (6.2) and another model without17

fixing wi; the difference between the average square residuals in the two18

cases is a measure of how important the feature xi is for the prediction.19

These techniques are called variable importance methods. We can also20

undertake the same program for nonlinear models on non-image based21

data.22

Quantile loss. The quantile loss is another simple trick to make the model23

more robust to outliers and get more information from the model than24

simply the prediction f(x;w). Observe that if we have targets Y that are25

random variables with cumulative distribution functionF (y) = P(Y ≤ y),26

the τ th quantile of Y is given by27

QY (τ) = F−1(τ) = inf {y : F (y) ≥ τ}
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for τ ∈ (0, 1). We now learn a predictor for QY (τ) = f(x;w). It turns1

out (you can try to prove this) that this corresponds to the loss function2

ℓquantile(w; τ) =

{
r(τ − 1) if r < 0

rτ else.

= r
(
τ − 1{r<0}

)
.

(6.5)

where r = y − f(x;w) is the residual.

� The quantile loss is also called the pinball
loss. Unlike the regression loss, it is highly
asymmetric around the origin. If r > 0, we
are penalizing the model by τ |r|, and if r < 0,
i.e., if we predict something that is larger than
the true y, then we are penalizing the model
by (1− τ)|r|.

A standard technique is to3

fit multiple models using the quantile loss for different quantiles, say4

τ = 0.25, 0.5, 0.75 and give multiple predictions of the target f(x;wτ ).5

A typical example of quantile linear regression looks as follows.6

7

6.2.2 Classification: Cross-Entropy loss8

We next discuss the case when the targets are categorical and we wish to9

train a discriminative model that classifies the input into one of these m10

categories11

y ∈ {1, . . . ,m} .

One hot encoding.12

An alternative representation of the targets in classification is so-called13

the one-hot encoding where y is transformed to14

one-hot(y) = ey ∈ Rm;

the vector ey has a 1 at the yth element and zeros everywhere else. The15

notation ey denotes the yth row of the identity matrix Im×m.16

Predicting class probabilities.17

Instead of using the regression loss by treating y as a real-valued quantity,18

it is more natural to predict the log-probability log p(k | x) for every19

category k using weights w and predict the category using20

f(x;w) = argmax
k

log pw(k | x). (6.6)
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Just like we denoted the raw predictions of the model by ŷ in linear/logistic1

regression, we will denote2

Rm ∋ ŷ = v⊤σ
(
S⊤
L . . . σ

(
S⊤
2 σ(S⊤

1 x)
)
. . .
)

(6.7)

where v ∈ Rp×m. As we saw in Chapter 4, ŷ are also called logits.3

Observe that the logits ŷ are simply vectors in Rm. How can we transform4

these logits to get log pw(k | x) for all k ∈ {1, . . . ,m} as the output of5

the model?6

Logistic loss.7

Linear logistic regression has a scalar output ŷ ∈ R which is interpreted8

as the log-odds of the class probabilities9

log
p(y = 1 | x)
p(y = 0 | x)

= w⊤x. (6.8)

This expression can be rewritten as p(1 | x) = sigmoid(ŷ). The likelihood10

of data x under this model for yi ∈ {0, 1} is11

pw(
{
(x1, y1), . . . , (xn, yn)

}
) =

n∏
i=1

pw(1 | xi)y
i

pw(0 | xi)1−yi

.

? We saw a different expression for the
logistic loss in Chapter 3

ℓlogistic(w) = log
(
1 + e−y ŷ

)
.

What is the difference?

Maximizing this probability (MLE) is the same as minimizing the12

log-probability13

ℓlogistic(w) = − log pw(
{
(x1, y1), . . . , (xn, yn)

}
)

= −
n∑

i=1

yi log pw(1 | xi) + (1− yi) log pw(0 | xi)
(6.9)

In other words, the logistic loss is simply maximum-likelihood estimation14

for the model Eq. (6.8).15

Binary Cross-Entropy loss.16

Let us turn back to neural networks and multi-class classification. Imagine17

if each logit of a neural network in Eq. (6.7) acts independently, i.e., it18

predicts whether there is class k in this input or not without paying heed19

to what the other logits predict. This is not very prudent, for instance,20

if we know beforehand that there is only one object in the input image,21

then such a classifier is likely to have lots of false positives. Nevertheless,22

observe that this is exactly like running m independent binary logistic23

classifiers with the same feature hL ∈ Rp. We can write the loss for such24

a classifier succinctly as25

ℓbce(w) = −
m∑

k=1

one-hot(y)k log pw(k | x). (6.10)
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If the ground-truth labels yi are such that there is only one class in each1

input image, all entries of one-hot(yi) at other categories will be zero, so2

this loss penalizes only the output of one of the m independent logistic3

classifiers.4

6.2.3 Softmax Layer5

Observe that our classifier which employs m binary logistic classifiers6

for predicting all the categories independently does not predict a valid7

probability distribution because8

m∑
k=1

pw(k | x)

is not always equal to 1. We can however posit that the model predicts9

logits ŷ that are proportional to the log-probabilities10

log pw(k | x) ∝ ŷk

=⇒ pw(k | x) =
eŷk/T∑m

k′=1 e
ŷk′/T

.
(6.11)

The result pw(k | x) is a valid distribution on k because it sums up to 1.11

This operation, namely taking the logits ŷ and constructing a probabilities12

out of them is called as a softmax operator. The constant T in Eq. (6.11) is13

called the temperature. A large value of T results in a smoother probability14

distribution pw(k | x) because the individual values of the logits matter15

less. A small value of T results in a very large weight due to the exponent16

on the largest logit and the distribution pw(k | x) is therefore highly17

spiked. The temperature is set to 1 by default in PyTorch.18

� You will often see people calling

log

m∑
k′=1

eŷk′/T

as the “softmax” of vector ŷ. This is actually
a more appropriate usage of the word because

log

m∑
k=1

eŷk/T ≈ max
k

ŷ

if one of the entires of ŷ is much larger than
the others, or if T → 0. We will however use
the word “softmax” to refer to the operation
of transforming ŷ into pw(k | x) because we
do not have any need for this softened version
of the max operator.

The cross-entropy loss is now simply the maximum-likelihood loss19

after the softmax operation20

ℓce(w) = −
m∑

k=1

one-hot(y)k log pw(k | x)

= − ŷy
T

+ log

(
m∑

k′=1

eŷk′/T

)
.

(6.12)

Observe that the logit corresponding to the true class ŷy is being pushed21

higher; at the same time, if the logits of the incorrect classes are large they22

are being pulled down in the summation. This is an important point to23

keep in mind: the cross-entropy loss after softmax affects all logits, not24

just the logit of the correct class.25

6.2.4 Label smoothing26

The correct logit in Eq. (6.12) is encouraged to go to +∞ while the27

incorrect logits are encouraged to go to −∞. This can lead to dramatic28

over-fitting when the number of classes m is very large. Label smoothing29
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is a trick that alleviates the problem: instead of using a one-hot encoding1

of the true label y, it uses the encoding2

label-smoothing(y)k =

{
1− ϵ if k = y,

ϵ
m−1 else.

(6.13)

The cross-entropy loss with this new encoding is now3

ℓlabel-smoothing-ce(w) = −
m∑

k=1

label-smoothing(y)k log pw(k | x)

= −(1− ϵ) log pw(y | x)−
ϵ

m− 1

∑
k ̸=y

log pw(k | x)

(6.14)
If you take the derivative of this loss with respect to ŷ you will see that4

the value of ŷ that minimizes the loss is5

ŷ∗k =

{
log ((m− 1)(1− ϵ)/ϵ) + α if k = y

α else.
(6.15)

where α is an arbitrary real number. Notice that logits for both the correct6

and the incorrect classes are finite in this case, they no longer blow up to7

infinity.8

6.2.5 Multiple ground-truth classes9

If there are multiple classes that are all present in the input image, i.e., if10

the ground truth data has multiple labels, we can easily use the vector11

multi-hot(y) =
∑
k

ek

for all the present classes k and set12

ℓbce(w) = −
m∑

k=1

multi-hot(y)k log pw(k | x) (6.16)

in the BCE loss. We can also use this trick in the cross-entropy loss13

after the softmax operator but it will not work well because the softmax14

operator is designed to amplify only the largest logit in ŷ; if we tried the15

network would still be incentivized to predict only one class instead of all16

classes.17
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Bias-Variance Trade-off,2

Dropout,3

Batch-Normalization4

Reading
1. Bishop 1.3, 3.2, 14.2-14.3

2. Goodfellow 5.1-5.4, 7.1-7.3

3. Dropout Srivastava et al. (2014)

4. Batch-Normalization Ioffe and Szegedy (2015)

In this chapter, we will take our first look at how machine learning5

classifiers generalize to new data. We will first discuss the so-called6

Bias-Variance Tradeoff which indicates that the variance of the predictions7

of a model can be reduced by increasing its bias. Regularization is a8

technique to give us control over this tradeoff. We will then see a few9

popular regularization techniques, in particular two that are important in10

deep learning called Dropout and Batch-Normalization.11

7.1 Bias-Variance Decomposition12

Ideally, we want a classifier that accurately captures the regularity in the13

data, which is what will make it work well for unseen data. We will14

introduce this using regression.15

Given our dataset D =
{
(xi, yi)

}
i=1,...,n

we fit a model f(x;w) ∈ F16

where F is some class of models, say all neural networks with a given17

architecture; we will keep the dependence of f on w implicit in this section18

69
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because we don’t need it. We use a loss ℓ(f(x), y) = |f(x)− y|2 to fit1

this model by minimizing2

R̂(f) =
1

n

n∑
i=1

(f(xi)− yi)2 (7.1)

This is of course the training loss, also called the empirical risk. A3

classifier that minimizes R̂(f) works well on the training data. If we want4

to measure how well a model works on new data from the distribution P5

we are interested in the the population risk6

R(f) =

∫
(f(x)− y)2 P (x, y) dx dy

= E
x

[∫
(f(x)− y)2 P (y | x) dy

]
.

(7.2)

It turns out that because the loss is quadratic, we can write down the7

minimizer of the population risk, formally, as8

f∗(x) = E [y | x] . (7.3)

In other words, the optimal regression is the conditional expectation of the9

targets y given a datum x. Since we do not know the data distribution P ,10

we cannot compute the model f∗. We now compare some regression f11

that we may have obtained by minimizing Eq. (7.1) with the optimal f∗.12

Observe that13

(f(x)− y)
2
= (f(x)− f∗(x) + f∗(x)− y)

2

= (f(x)− f∗(x))
2
+ 2 (f(x)− f∗(x)) (f∗(x)− y) + (f∗(x)− y)

2
.

Substitute this expression in Eq. (7.2) to get14

R(f) = E
x

[
(f(x)− f∗(x))

2
]
+ E

(x,y)∼P

[
(f∗(x)− y)

2
]

(7.4)

Observe that the cross-term15

E
x

[∫
2(f(x)− f∗(x))(f∗(x)− y)P (y | x) dy

]
= 0

vanishes because f∗(x) = E [y | x] =
∫
yP (y | x) dy. The decomposi-16

tion in Eq. (7.4) is insightful. In the first term, there is no y because the17

distribution P (y | x) when integrated with respect to y is 1. The first term18

tells us how far our model f(x) is from the optimal f∗(x), at any input x.19

The second term tells us how much the optimal model itself is from the20

data (x, y). The second term is not under our control because it does not21

depend on f(x) at all. This term is called the22

Bayes error = E
(x,y)∼P

[
(f∗(x)− y)

2
]
. (7.5)

It is irreducible error of any classifier f that we can train. It is only zero23
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if the data (x, y) is coming from a deterministic source, i.e., there is no1

noise in the true targets y created by Nature and Nature’s model. It is2

important to realize that Nature’s model is not f∗.

� You can think of the Bayes error as being
non-zero if the sensor used to measure y is
noisy, there is no way we can get
deterministic data in that case. If on the other
hand the sensor is perfect, e.g., a large
number of humans are annotating data very
carefully like we often do in modern machine
learning, the Bayes error is essentially zero.

3

We will now investigate the first term better. Our model f is created4

using a finite training dataset D. Let us emphasize it as5

f(x;D)

and rewrite the first term in Eq. (7.4) as6

(f(x;D)− f∗(x))
2
=
(
f(x;D)− E

D
[f(x;D)] + E

D
[f(x;D)]− f∗(x)

)2
=
(
f(x;D)− E

D
[f(x;D)]

)2
+
(

E
D
[f(x;D)]− f∗(x)

)2
+ 2

(
f(x;D)− E

D
[f(x;D)]

) (
E
D
[f(x;D)]− f∗(x)

)
.

Recall that the dataset is a random variable as well: it is a bunch of samples7

from the Nature’s distribution over (x, y) denoted by P . Effectively,8

f(x;D), which is our fitted model is a random variable that depends on9

the randomness of D. We now take the expectation over the dataset D on10

both sides of this equation.11

E
D

[
(f(x;D)− f∗(x))

2
]
=
(

E
D
[f(x;D)]− f∗(x)

)2
︸ ︷︷ ︸

(bias)2

+ E
D

[(
f(x;D)− E

D
[f(x;D)]

)2]
︸ ︷︷ ︸

variance

.

(7.6)
The cross-term again vanishes when we take the expectation over the12

dataset (convince yourself of this by writing out the cross-term). The13

first term is called the squared bias: it is the gap between the predictions14

of our model compared to the optimal model f∗ created across many15

experiments, each with a different dataset D. The second term is the16

variance and it measures how sensitive our model f(x;D) is to a particular17

training dataset D. If our model fitted on D does not work well on most18

others datasets, then the variance is large. We will parse these quantities19

further soon.

� Here is a good mnemonic to remember.
Imagine the center of the bull’s eye as the
optimal classifier f∗ and our darts as the
model f(x;D). We have to collect n samples
for every dart we throw.20

We have therefore shown that21

R(f) = E
x

[
bias2 + variance

]
+ Bayes error (7.7)

Recall that we want to minimize the population risk R(f). We cannot do22

much about the Bayes error. If the model f(x;D) is large and is fitted23

very well on the dataset D, i.e., if its predictions match true y (notice that24

the optimal models predictions f∗ are also close to y), the gap between25

the predictions of the fitted model and the optimal model is small on the26

dataset D. In other words, if our model is large we will have a small bias.27

The bias of a model decreases as we consider larger models f(x;D). If28

our dataset is small, the model f(x;D) is likely to have a large variance29
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Figure 7.1: Population risk as a function of model capacity

because it has not seen a large amount of data. The effect increases1

for larger models because they may use a larger number of nuisances2

i.e., features that are not relevant to prediction of targets. We call this3

over-fitting.4

If we plot a picture of how the bias and variance change as model5

capacity (you can think of capacity simply as the number of parameters6

in a model for now) increases, we see a famous U-shaped curve for the7

sum of squared bias and variance shown in Fig. 7.1. Given a dataset8

D we should pick a model that lies at the bottom of this curve to get a9

good population risk; this model makes a good tradeoff between bias and10

variance.11

The caveat is that we do not have access to a lot of different datasets to12

measure the bias or the variance. This is why the bias-variance trade-off,13

although fundamental in machine learning/statistics and a great thinking14

tool, is of limited direct practical value.15

Bias-variance tradeoff for classification16

We have only talked about the bias-variance trade-off for regression. The17

development for classification is not very different and same principles18

hold. We first define an optimal classifier19

f∗(x) = argmin
f∈F

E
(x,y)∼P

[ℓ(y, f(x))]

for a loss function ℓ. The bias, variance of a given classifier f(x;D)20

relative to this optimal classifier and the Bayes error are given by � You should not try to draw analogies
between the bias-variance tradeoff for
regression and that for classification given
below. The former is classical but the latter
has many different formulations that are
designed more to follow the vague principles
of what bias and variance mean in the context
of classification.

21

bias = E
x
[ℓ(f∗(x), f(x;D))]

variance = E
D
[ℓ(f(x;D), f avg(x))]

Bayes error = E
(x,y)∼P

[ℓ(y, f∗(x))] .

(7.8)

where f avg(x) = argminf ED [ℓ(y, f(x))]; under the MSE loss this is the22

average of predictions of regressions on different datasets, for the MAE23



73

loss this is the median of the predictions of models trained on different1

datasets, for the zero-one loss it is the most frequent prediction of models2

trained on different datasets. We again have a trade-off that is obtained by3

decomposing the population risk4

E
(x,y)∼P

[
E
D
[ℓ(y, f(x;D))]

]
= bias + c2variance + c1Bayes error.

where c1, c2 are constants. You can read more about this in Pedro (2000).5

Double-descent6

The surprising thing is that for deep networks, we do not see this classical7

bias-variance trade-off. The population risk looks like8

Figure 7.2: Double-descent curve: the validation error of deep networks decreases
even if more and more complex models are fitted on the same data; there is no
apparent over-fitting and growth in the variance of the classifier.

in what is now called the “double-descent” curve. The population risk9

of deep networks keeps decreasing even if we fit very large models on10

relatively small datasets, e.g., CIFAR-10 has 50,000 images, the model11

you will fit in HW 2 has about 1.6M weights and is considered a very small12

model by today’s standards. We will see some heuristic derivation into why13

the population risk may look like this for deep networks but understanding14

this phenomenon which goes flat against established knowledge in machine15

learning is one of the big open problems in the study of deep networks16

today.17

7.1.1 Cross-Validation18

We have seen that the bias-variance trade-off requires us to consider19

multiple datasets. In practice, we only have one dataset that we collected20

by running an experiment. If this data is large, we can split it into two21

three parts22

data = training set ∪ validation set ∪ test set.

The validation set is used to compare multiple models that we fit on the23

training set and pick the best performing one. This model is then run on24

the test set to demonstrate how well we have learned the data. The test25

set is necessary because across your design efforts to fit different models,26
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you will evaluate on the validation set multiple times and this may lead to1

over-fitting on the validation set.2

� 4-fold cross-validation.If the available data is not a lot, we want to use as much of the data3

as possible for training. If however only use a small fixed validation set4

for comparing models, we risk making mistakes in our choices. Cross-5

validation is a solution to this problem: it trains k different models, each6

time a fraction (k − 1)/k of the data is used as the training set and the7

remainder is used as the validation set. The validation performance of k8

models obtained by this process is averaged and used as a score to evaluate9

a particular model design (architecture, hyper-parameters etc).10

Some practical tips11

It is useful to think of the bias-variance trade-off when you fit deep12

networks in practice. If the training or test error is high, there are a number13

of ways to improve performance using the bias-variance tradeoff as a14

thinking tool.15

16

In the first regime on the left, we have high validation error across cross-17

validation folds and low training error. This indicates that we have a18

high variance in the bias-variance trade-off. Typical techniques to counter19

this is to use a smaller model, get more data, or bagging a set of models20

together (will cover this in Section 7.3). In the second regime on the right,21

if the test error and the training error are close to each other but both are22

large, the model is likely to have high bias. In these cases, we should23

fit a more complex model (say increase the number of weights, or pick24

a different architecture), add more features to the training data (in the25

non-deep-learning setting) to give our model more discriminative features26

to use, or use boosting (we will cover this in Section 7.3).27

Cautionary Tale28

You will however notice that a lot of research papers in deep learning29

simply use validation data as test data. Their reasons for doing so are30

as follows. All researchers have the same large dataset from which they31

would create a potential test set, the researchers therefore also know the32

ground-truth labels of test images and it is difficult to trust them not to33

peek at the ground-truth labels to choose between models. If the test34

data is hidden from everyone, we need a centralized server for evaluating35

everyone’s results. This is difficult because research is fundamentally36
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about discovering new knowledge. Kaggle competitions or the ImageNet1

Challenge http://image-net.org/challenges/LSVRC are few instances where2

such a centralized server is available.3

It is therefore debatable whether the current practice of using validation4

set as the test set should be considered valid. On the positive side, it5

makes results across different publications comparable to each other; if6

everyone reports the error of their model on the same validation set, it7

is easy to compare Algorithm A versus Algorithm B. On the negative8

side, this incentivizes extensive hyper-parameter tuning and risks results9

that are over-fitted on the validation data, e.g., new fields such as neural10

architecture search are particularly problematic in this context. This is also11

the main reason for the current “style of research” where folks judges the12

merit of machine learning research simply by checking whether Algorithm13

A gets better validation error than Algorithm B on standard datasets. This14

is not the correct way to do scientific research. The more appropriate15

way to instantiate the scientific method is to first formulate a hypothesis,16

e.g., is gene X correlated with cancer Y, then collect data that allows17

us to evaluate such an hypothesis and undertake appropriate statistical18

precautions report whether the hypothesis stands/does not stand.19

That said, there are researchers who have evaluated others’ claims20

(obtained using validation data, namely A better than B) on independent test21

data and reached similar conclusions, see for example https://arxiv.org/abs/1902.10811,22

so the evaluation methodology is broken but the progress is real.23

7.2 Weight Decay24

The set of models with smaller complexity are a subset of the set of models25

with larger complexity, e.g., if you are fitting a polynomial regression, you26

can consider the subset of models with coefficients of the higher-order27

terms equal to zero and have thus created the set of linear regressions.28

Effectively, the space of models looks as follows.29

Figure 7.3: A cartoon of the space of models. The n in the picture refers to
number of parameters in the model, not the number of data.

Let’s say we are fitting a class of models with large complexity and are30

unsure whether the variance in the bias-variance trade-off will be large.31

We can either collect more data, or we can modify the loss function to32

encourage the training process to pick models of lower complexity.33

Restricting the space of models that the training process searchers

http://image-net.org/challenges/LSVRC
https://arxiv.org/abs/1902.10811
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over to fit the data is called regularization. We will denote regularizers
by

regularizer = Ω(w)

and modify our loss function for fitting data to be

ℓ′(w;x, y) := ℓ(w;x, y) + Ω(w).

Weight decay is one of the simplest regularization techniques and uses1

Ω(w) =
α

2
∥w∥22. (7.9)

This is more widely known as ℓ2 regularization because we use the ℓ2 norm2

of the weights as the regularizer. It is also called Tikonov regularization,3

a name that comes from the literature on partial differential equations.4

The name weight decay comes from the neural networks literature of the5

1980s. The gradient of the modified loss is6

∇ℓ′(w;x, y) = ∇ℓ(w;x, y) + α w,

which gives7

w(t+1) = (1− η α)w(t) − η∇ℓ(w(t);x, y);

where η is the learning rate. In other words the weights w are encouraged8

to become smaller in magnitude when SGD takes a step using the negative9

gradient.10

If we have a linear regression problem with f(x;w) = w⊤x and11

X,Y are the matrices for the data and targets respectively, the regularized12

objective is13

1

2
∥Y −Xw∥22 +

α

2
∥w∥2

and you can compute the minimizer by taking derivatives and setting them14

to zero to be15

w∗ =
(
X⊤X + αI

)−1
X⊤Y.

In other words, weight decay for linear regression adds elements to16

the diagonal of the data covariance matrix X⊤X . This results in a17

smaller inverse and thereby a smaller magnitude of w∗. Notice that if the18

covariance matrix is rank deficient, the regularized matrix is no longer19

rank deficient. If the covariance matrix has a large condition number (ratio20

of the largest and smaller eigenvalue), which makes taking the inverse21

numerically difficult, the regularized matrix has a better condition number.22

7.2.1 Do not do weight decay on biases23

If the input data and targets in linear regression are centered we do not24

need a bias parameter in our model. Notice however that if the dataset is25

not centered, the bias parameter is essential. Should we perform weight26
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decay on the bias parameter in this case? The weight decay penalty1

prevents the bias parameter to adapt to the non-zero mean of the data.2

This is also important to keep in mind while training neural networks. We3

should not impose weight decay regularization on the bias parameters of4

the convolutional and fully-connected layers.5

� Weight decay is closely related to other
norm-based penalties, e.g., ℓ1 regularization
sets

Ωℓ1(w) = α∥w∥1.

As we discussed briefly in Chapter 6, such a
regularizer encourages the weights to become
sparse. Sparsity penalties are very common in
the signal processing literature (e.g.,
compressed sensing, phase retrieval
problems) but they are less common in the
deep learning literature.

7.2.2 Maximum a posteriori (MAP) Estimation6

MAP estimation gives a Bayesian perspective to regularization in machine7

learning. In maximum likelihood (ML) estimation, we were interested in8

solving for weights that maximize the likelihood of the observed data:9

w∗
MLE = argmin

w
− 1

n

n∑
i=1

log pw(y
i | xi;w).

MAP estimation enforces some prior knowledge we may have about the10

weights w. In Bayesian statistics, such prior knowledge is represented as11

a probability distribution, known as the prior, on the parameters w before12

we see any data in the training process, i.e., a priori probability13

prior = p(w)

MAP estimation is regularized ML estimation. Given a prior distribution,14

we can use Bayes law to find the posterior distribution on the weights15

after observing the data16

p(w | D) =
p(D | w) p(w)

p(D)
(7.10)

Remember that the left hand side is a legitimate probability distribution17

with the denominator given by18

Z := p(D) =

∫
p(D | w) p(w) dw.

The denominator Z called the “evidence” or the partition function lies at19

the heart of all statistics, we will see why in Module 4.20

MAP estimation finds the weights that maximize this a posteriori21

probability22

w∗
MAP = argmax

w
log p(w | D)

= argmax
w

log p(D | w) + log p(w)− log p(D)

= argmax
w

n∑
i=1

log pw(y
i | xi;w) + Ω(w)− logZ.

(7.11)

In the second step, we have denoted the log-prior by Ω23

log prior(w) := Ω(w).
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Note that Z is not a function of the weights w and can therefore can be1

ignored in the optimization.2

Frequentist vs. Bayesian point of view3

This section was our first view into Bayesian probabilities, as opposed4

to frequentist methods where we estimate probabilities by counting how5

many times a certain event occurs across our experiments. Frequentist6

probabilities are not designed to handle all situations. For instance we may7

be interested in estimating the probability of a very unlikely event, say8

that of the sun going supernova. This event has of course not happened9

yet and a frequentist notion of probability where we repeat the experiment10

many times and estimate the probability as the fraction of times the event11

occurs is not appropriate. The Bayesian point of view provides a natural12

way to answer these questions and the key idea is to encode our belief that13

the sun cannot go supernova as a prior probability.14

An alternate way to think about this is that the weights w of a model15

are considered a fixed quantity that we are supposed to estimate in a16

frequentist setting. The likelihood p(D;w) is used to compare different17

models w and if one wanted an estimate of how much error we are making18

in our estimate, we would compute the variance in the Bias-variance19

tradeoff namely, the variance of our estimate across different draws of the20

dataset D. In the Bayesian point of view, there is a single dataset D and21

the uncertainty of our estimate of w∗ would be expressed as the variance22

of the posterior distribution p(w | D) in Bayes law.23

Weight decay regularization is MAP estimation with Gaussian prior24

Weight decay can be seen as using a Gaussian prior25

pweight-decay(w) ∝ e
− ∥w∥22

(2α−1) .

This is a multi-variate Gaussian distribution with mean zero and a diagonal26

covariance matrix withα−1 on the diagonal. The denominator is a function27

of α−1 and we do not need to worry about it while performing MAP28

estimation because it does not depend on w.29

In other words, we have seen that weight decay in the training objective30

can be thought of as a MAP estimation using a Gaussian prior instead of31

ML estimation.32

The Gaussian prior captures our a priori estimate of the true weights:33

the probability of the weights w being large is low (it is distributed as a34

Gaussian/Normal distribution). The likelihood term fits the weights to the35

data but instead of relying completely on the data which may result in a36

large variance (in cases when data is few), we also rely on the prior while37

fitting the model. This reasoning is captured in Bayes law.38

Similarly, a sparsity penalty is MAP estimation with a Laplace prior39

For scalar random variables, the Laplace distribution is given by40

p(w) =
1

2b
e−

|x−µ|
b .
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If we have1

Ω(w) = ∥w∥1
we can see that regularized ML, i.e., MAP estimation corresponds to using2

a Laplace prior on the weights w.3

7.3 Dropout4

We will next look at a very peculiar regularization technique that is unique5

to deep networks. Consider a two-layer network given by6

ŷ = v⊤dropout
(
σ
(
S⊤x

))
.

Dropout is an operation that is defined as7

dropout1−p(h) = h⊙ r (7.12)

where r ∈ {0, 1}p is a binary mask and the notation ⊙ denotes element8

multiplication. Each element of this mask rk is a Bernoulli random9

variable with probability 1− p10

rk =

{
0 with probability p

1 with probability 1− p.

� It is important to remember that a new
dropout mask r is chosen for every input in
the mini-batch.

In simple words, dropout takes the input activations h and zeros out a11

random subset of these; on an average p fraction of the activations are set12

to zero and the rest are kept to their original values. In pictures, it looks13

as follows.14

Figure 7.4: Dropout picks a random sparse subnetwork of a large deep network
using the mask.

? The dropout mask is chosen at random for
each image. Let us imagine that we have one
dropout layer after every fully-connected layer.
For the network shown in the figure with two
hidden layers and 5 neurons at each layer, how
many distinct sparse networks can we choose
using dropout? Does the answer depend upon
the probability p?

The default Dropout probability is p = 0.5 in PyTorch, i.e., about half15

of the activations are set to zero for each input. Although you will see a16

lot of online code and architectures with this default value, you should17

experiment with the value of p, different values often given drastically18

different training and validation errors.19



80

7.3.1 Bagging classifiers1

Bagging, which is short for bootstrap aggregation, can be explained using2

a simple experiment. Suppose we wanted to estimate the average height3

µ of people in the world. We can measure the height of N individuals4

and obtain one estimate of the mean µ. This is of course unsatisfying5

because we know that our answer is unlikely to be the mean of the entire6

population. Bootstrapping computes multiple estimates of the mean µk7

over many subsets of the data N and reports the answer as8

µ := mean(µk) + stddev(µk).

Each subset of the data is created by sampling the original data with N9

samples with replacement. This is among the most influential ideas in10

statistics (Efron, 1992) because it is a very simple and general procedure11

to obtain the uncertainty of the estimate.12

Effectively, the standard deviation of our new bootstrapped estimate13

of the mean is simply the standard deviation in the Bias-Variance trade-off14

with the big difference that we created multiple datasetsD by sub-sampling15

with replacement of the original dataset.16

Bagging is a classical technique in machine learning (Breiman, 1996)17

that trains multiple predictive models f(x;wk) for k ∈ {1, . . . ,M}, one18

each for bootstrapped versions of the training dataset
{
D1, . . . , DM

}
.19

We aggregate the outputs of all these models together to form a committee20

f(x;w1, . . . , wM ) =
1

M

M∑
k=1

f(x;wk).

You can see that this procedure reduces the variance of the model (the first21

term in Eq. (7.4)) in the bias-variance trade-off by a factor of M if the22

errors with respect to the optimal classifier f∗ of all the models
{
wk
}

are23

zero-mean and uncorrelated. In other words, the average error of a model24

can be reduced by a factor of M by simply averaging M versions of the25

model.26

Bagging is always a good idea to keep in your mind. The winners of27

most high-profile machine learning competitions, e.g., the Netflix Prize28

(https://en.wikipedia.org/wiki/Netflix_Prize) or the ImageNet challenge,29

have been bagged classifiers created by fitting multiple architectures on30

the same dataset. Even today, random forests are among the most popular31

algorithms in the industry; these are ensembles of hundreds of models32

called decision trees on bootstrapped versions of data. A lot of times, if33

we are combining diverse architectures in the committee, we do not even34

need to bootstrap the data. Bagging does not work when the errors of the35

different models are correlated; this is however easy to fix by censoring36

out features in addition to boostrapping like it is done while training a37

random forests.38

https://en.wikipedia.org/wiki/Netflix_Prize
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7.3.2 Some insight into how dropout works1

Consider the following, very heuristic but nevertheless beautiful, argument2

in the original paper on dropout (Srivastava et al., 2014).3

We will remove the nonlinearities and consider only a single layer4

linear model with dropout directly applied to the input layer f(x;w) =5

w⊤dropout(x). Linear regression minimizes the objective ∥y −Xw∥226

and similarly the dropout version of linear regression for our model would7

minimize8

min
w

E
R

[
∥y − (R⊙X)w∥22

]
(7.13)

where each row of the matrix R consist of the dropout mask for the ith9

row xi of the data matrix X . Think carefully about the expectation over10

R on the outside, since we choose a random dropout mask each time11

an input is presented to SGD, the correct way to write dropout is using12

this expectation over the masks. Each entry of R is a Bernoulli random13

variable with probability 1− p of being 1. Note that14

E
R
[R⊙X] = (1− p)X

and the (ij)th element is15

(
E
R

[
(R⊙X)⊤(R⊙X)

])
ij
=

{
(1− p)2

(
X⊤X

)
ij

if i ̸= j

(1− p)
(
X⊤X

)
ii

else.

We can use these two expressions to compute the objective in Eq. (7.13)16

to be17

E
R
[∥y − (R⊙X)w∥2] = ∥y − (1− p)Xw∥2 + p(1− p)w⊤diag(X⊤X)w︸ ︷︷ ︸

Ω(w)

.

In other words, for linear regression, dropout is equivalent to weight-decay18

where the coefficient α in Eq. (7.9) depends on the diagonal of the data19

covariance and is different for different weights. If a particular data20

dimension varies a lot, i.e., (X⊤X)ii is large, dropout tries to squeeze its21

weight to zero. We can also absorb the factor of 1− p into the weights w22

to get23

E
R
[∥y − (R⊙X)w∥2] = ∥y −Xw̃∥2 +

(
p

1− p

)
w̃⊤diag(X⊤X)w̃︸ ︷︷ ︸
Ω(w)

(7.14)
where w̃ = (1 − p)w. This makes the regularization more explicit, if24

p ≈ 0, most activations are retained by the mask and regularization is25

small.26

� Training with dropout is equivalent to
introducing weight decay on the weights.
Remember however that this argument is only
rigorous for linear regression models (the
derivation essentially remains the same for
matrix factorization). This connection of
dropout with weight decay will also be
apparent in Module 4 when we look at how to
train a Bayesian deep network.

Next, bagging provides a very intuitive understanding of how dropout27

works in a deep network at test time. We now write out the classifier28
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explicitly as1

f(x;w, rk) =

d∑
i=1

wi

(
xi ⊙ rki

)
;

note that the mask rk is not a parameter of the model, we have simply2

chosen to make it more explicit for the sequel. We now imagine each3

mask as creating a bootstrapped version of the model; different masks rk4

give different classifiers even if the weights v and the input x is the same5

for all.6

It is important to realize that there is no subsampling of training dataset7

happening here like classical boosting; we are instead forming multiple8

models by adding randomness to how the input is propagating through the9

deep network. For a linear classifier this is equivalent because10

d∑
i=1

wi

(
xi ⊙ rki

)
=

d∑
i=1

(
wi ⊙ rki

)
xk =: f(x;wk);

we can either mask out the input or mask the weights and think of the11

masked weights wk as a new model.12

Remark 7.1. You will often see folks in the literature say that dropout13

regularizes by preventing co-adaptation of the neurons at each hidden14

layer. The motivation for this statement is that the weights of the suc-15

ceeding layer cannot fixate too much upon a particular feature at the16

input because the feature can be zeroed out by the dropout mask. This17

prevents specialization of neurons in the hidden layer and ensures that18

the prediction is made using a large number of diverse features, not19

just a few specific ones. This is not a rigorous argument but it is a20

reasonable argument in view of the experiments of Hubel and Wiesel (see21

http://centennial.rucares.org/index.php?page=Neural_Basis_Visual_Perception).22

The human brain is quite robust to large parts of it going missing/being23

inhibited.24

Bagging is expensive at test time, it involves having to compute the25

predictions of all the models in the committee. In the case of dropout, in26

this linear regression setup, we can compute the committee’s prediction to27

be28

f(x;w) =
1

M

M∑
k=1

d∑
i=1

(
wi ⊙ rki

)
xk

=

d∑
i=1

(
wi ⊙

1

M

M∑
k=1

rki

)
xk

≈
d∑

i=1

(wi ⊙ (1− p))xk.

(7.15)

This is very fortunate, it indicates that given weights w of a model trained29

using dropout, we can compute the committee average over models created30

using dropout masks simply by scaling the weights by a factor 1 − p.31

This should not be surprising, after all the equivalent training objective32

http://centennial.rucares.org/index.php?page=Neural_Basis_Visual_Perception
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in Eq. (7.14) has w̃ = (1 − p)w as the effective weights of the weights.1

Another important point to note is that there is no masking of activations2

at test time when we scale the weights.3

Although the argument in this section works only for linear models,4

we will bravely extend the intuition to deep networks.5

7.3.3 Implementation details of dropout6

The recipe for using dropout is simple: (i) the activations at the input of7

each dropout layer are zeroed out using a Bernoulli random variable of8

probability 1 − p of being 1; the PyTorch layer takes the probability of9

zeroing out activations as argument which is p in our derivations; (ii) at10

test time, the weights of layers immediately following dropout are scaled11

by a factor of 1− p to compute the predictions of the “committee”.12

Inverted Dropout. It is cumbersome to remember the parameter p that13

was used for training at test time. Deep learning libraries use a clever trick:14

they simply scale the output activations of the dropout layer by 1/(1− p)15

during training. Training or testing the modified model using dropout16

gives an extra factor of (1− p) like Eqs. (7.14) and (7.15) respectively and17

therefore if activations are scaled by 1/(1− p) during training, then the18

final model can be used as is without any further scaling of the weights or19

activations at test time.20

The operation model.train() in PyTorch sets the model in the21

training mode. This is a null-operation and does not do anything for22

fully-connected, convolutional, softmax etc. layers. For the dropout later,23

it sets a boolean variable in the layer that samples the Bernoulli mask for24

all the input activations and scales the output activations by 1/(1−p). The25

complementary operation is model.eval() in PyTorch which you should26

use to set the model in evaluation mode. This is again a null-operation27

for other layers but for the dropout layer, it resets this boolean variable28

to indicate that no Bernoulli masks should be sampled and no masking29

should be performed.30

7.3.4 Using dropout as a heuristic estimate of uncertainty31

We can extend the motivation from bagging to use dropout as a cheap32

heuristic to get an estimate of the uncertainty of the prediction at test time.33

Suppose we use dropout at test time just like we do it at training time,34

i.e., each time one test input is presented to the deep network, we sample35

multiple Bernoulli masks r1, . . . , rM and compute multiple predictions36

for the same test input37 {
f(x;w, r1), . . . , f(x;w, rM )

}
.

The variance of these predictions can be used as heuristic of the uncertainty38

of the deep network while making predictions on the test input x. This39

is an estimate of the so-called aleatoric or statistical uncertainty. It40

captures our understanding that the weights w of a trained deep network41
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are inherently uncertain and different training experiments, in particular,1

different masks rk will give rise to different weights. The variance across2

a few sampled masks thus indicates how uncertain the model is about3

its predictions. Dropout is a neat and cheap trick for this purpose; it is4

quite commonly used in this fashion in medical applications where it5

is important to not only predict the outcome but also characterize the6

uncertainty of this prediction. We will see more powerful ways to compute7

aleatoric uncertainty in Module 4.8

Remark 7.2. Broadly speaking, the connection of dropout with weight9

decay is not precise. If it were rigorous, we should be able to get the10

same performance as dropout by using appropriate weight decay (this is a11

good idea for the course project!). In practice, the validation error using12

dropout is very good and cannot be achieved by tweaking weight decay.13

Another aspect is that since we would like to average over lots of dropout14

masks in the training process, networks with dropout should be trained15

for many more iterations of SGD than networks without dropout to get16

the same training error. The benefit is that the test error is much better17

for dropout. What exactly dropout does is a subject of some mystery and18

there are other alternative explanations (e.g., Bayesian dropout in Module19

4).20

Our understanding of dropout is no different than that of these blind21

scientists trying to identify an elephant.22

23

7.4 Batch-Normalization24

Batch-Normalization (BN) is another layer that is very commonly used25

in deep learning. BN is very popular with more than 20,000 citations in26

about 5 years.27

28
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7.4.1 Covariate shift1

Covariate shift is a common problem with real data. The experimental2

conditions under which training data was gathered are subtly different3

from the situation in which the final model is deployed. For instance, in4

cancer diagnosis the training set may have an over-abundance of diseased5

patients, often of a specific subtype endemic in the location where the6

data was gathered. The model may be deployed in another part of the7

world where this subtype of cancer is not that common.8

The mis-match between training and test input distribution is called9

covariate shift. Even if the labels depend on on the covariates in the same10

way, i.e., given the genetic features of a person x their likelihood of a11

cancer y is the same regardless of which part of the world the person is12

from, the fact that we do not have training data from the entire population13

of the world forces the classifier to be tested on a data distribution that is14

different from what it was trained for.15

Figure 7.5: Covariate shift correction for a regression problem

Covariate shift is outside our fundamental assumption in Chapter 116

that training and test data come from the same distribution. It is however17

a problem that is often (perhaps always) seen in practice and typical ways18

to counter it look as follows.19

1. Train a classifier ŵ on the available training data D.20

2. Update the trained classifier using data from the test distribution21

D′ =
{
(xi, yi)

}
i=n+1,...,n+m

in addition to the original training22

dataset23

w∗ = argmin
w

1

n+m

n+m∑
i=1

pi ℓi(w) + Ω(w − ŵ) (7.16)

where pi is some weighing factor that indicates how similar the24

datum (xi, yi) is to the test data distribution. The regularization25

Ω(w − w∗) forces the new weights w∗ to remain close to the old26

weights ŵ.27
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The above methods go under the umbrella of doubly robust estimation.1

We will not study it in this course. The results look similar to the ones2

shown in Fig. 7.5.3

7.4.2 Internal covariate shift4

If we are working under the standard machine learning assumption of test5

data being drawn from the same distribution as that of the training data,6

then there is no covariate shift.7

Recall that we whiten the inputs, i.e., transform the data so that its8

correlation matrix XX⊤ is identity, we linearly de-correlate the input9

dimensions. See Joe Marino’s webpage for a good explanation of different10

kinds of whitening.11

Deep networks are like any other model in this aspect and whitening12

of the inputs is also beneficial; the ZCA transform (or Mahalanobis13

whitening) is a close cousin of PCA and usually works better for image-14

based data. It is natural to expect that since each layer of a deep network15

takes the activations of the preceding layer as input, we should whiten the16

activations before the computation in the layer.17

The authors of the BN paper came upon an interesting thought, but18

something that is clearly a mistake.

� This is the mistake in the original BN
paper.

Their reasoning was as follows. Say19

we have a mini-batch of inputs
{
x1, . . . , xb

}
and our layer simply adds a20

learnable bias b to these inputs21

h = x+ b.

If this layer removes the mean from its output before passing it on to the22

next layer, we will have23

ĥ := h− 1

b

b∑
i=1

hi

for i ∈ {1, . . . , b} being the samples in the mini-batch. The output ĥi
24

does not depend on the bias b. They argued, incorrectly, that the back-25

propagation update of the bias b is equal to ĥ. This is not true because of26

course27

b = ĥ
dĥ
db

= 0

in our notation where h = dℓ/dh.28

Nevertheless, the motivation of the batch-normalization operation is29

sound: we would like to whiten the input activations to each layer of a30

deep network.31

Batch-Normalization is a technique for whitening the output
activations of each layer in a deep network.

https://joelouismarino.github.io/posts/2017/08/statistical_whitening/
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Naively, this would involve computing expressions of the form1

ĥ = (Cov(h))−1/2

(
h− 1

b

b∑
i=1

hi

)
.

This is not easy to do because the features are high-dimensional vectors, the2

covariance matrix Cov(h) is a very large matrix. This makes computing3

ĥ difficult for every mini-batch. Nevertheless, whitening helps and here is4

how it is done in the batch-normalization module:5

ĥ =
h− E(

{
h1, . . . , hb

}
)√

Var({h1, . . . , hb}) + ϵ
. (7.17)

The constant ϵ in the denominator prevents ĥ from becoming very large in6

magnitude if the variance is small for a particular mini-batch. It is important7

to note that both the expectation and the variance are computed for every8

feature. Let us make this clear: if h ∈ Rb×p, i.e., p features for this layer,9

the ith ∈ {1, . . . , b} input of the mini-batch and the jth ∈ {1, . . . , p} of10

the feature for ĥ is given by11

ĥij =
ĥij − 1

b

∑b

i=1 hij√
Var({h1j , h2j , . . . , hbj)}+ ϵ

.

Let us give names to these parameters12

Rp ∋ µ = E(
{
h1, . . . , hb

}
)

Rp ∋ σ2 = Var(
{
h1, . . . , hb

}
).

(7.18)

The authors of the original BN paper felt that mere normalization is not13

enough, e.g., if you normalize the activations after a sigmoid activation, the14

layer may essentially become linear because the activations are prevented15

from going too far to the right or too far too the left of the origin. This16

brings the second idea in BN, that of affine scaling of the output ĥ. The17

BN layer implements18

ĥ = a⊙

(
h− E(

{
h1, . . . , hb

}
)√

Var({h1, . . . , hb}) + ϵ

)
+⊙ b. (7.19)

where a, b ∈ Rp, i.e., each feature has its own multiplier a and bias b. The19

final BN operation in short is20

ĥ = a

(
h− µ√
σ2 + ϵ

)
+ b.

The affine scaling parameters a, b are the only trainable parameters
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in BN that are updated using back-propagation. The mean µ and
variance σ2 are unique to every mini-batch and therefore do not have
any back-propagation gradient.

Execute the following code and check how the BN layer is
implemented in PyTorch

import torch.nn as nn
m = nn.BatchNorm1d(15)
print(m.weight, m.bias)
print(m.running_mean , m.running_var)

The weight and bias here are the affine scaling parameters; and
running_mean, running_var are µ, σ2 respectively. You will see that
requires_grad is True only for the former.

BN for convolutional layers1

The activations of a convolutional layer are a 4-dimensional array2

h ∈ Rb×c×w×h.

The distinction between convolutional layers compared to fully-connected3

layers is that the convolutional filter weights are shared for the whole input4

channel w × h. We can therefore think of each channel as a feature and5

compute the BN mean and standard deviation over the batch dimension,6

as well as the width and height. In pseudo-code, this looks as follows.7

8
# t is still the incoming tensor of shape [bb, c, w, H]9

# but mean and stddev are computed along (0, 2, 3) axes and10

# have just [c] shape11

mean = mean(t, axis=(0, 2, 3))12

stddev = stddev(t, axis=(0, 2, 3))13

for i in 0..bb-1, x in 0..h-1, y in 0..w-1:14

out[i,:,x,y] = normalize(t[i,:,x,y], mean, stddev)1516

Running updates of the mean and variance in BN17

BN computes the statistics over mini-batches. Even if we trained a model18

using mini-batch updates we would still like to be able to use this model19

at test time with a single input; it may not always be possible to wait for20

a few test images to make predictions. The weights of the network are21

trained to work with whitened features so we definitely need some way to22

whiten the features of a test input, ignoring the whitening at test time will23

result in wrong predictions.24

The BN layer solves this issue by maintaining a running average of the25

mean and variance statistics of mini-batches during training. Effectively,26

the buffers running_mean, running_var (note that these are not parameter-27

s/weights, they are not updated using backprop) are updated after each28
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mini-batch during training as1

running_meant+1 = ρ running_meant + (1− ρ) µ

running_vart+1 = ρ running_vart + (1− ρ) σ2.

The parameter ρ is called a momentum parameter for the BN layer and2

makes sure that updates to running_mean/var are slow and one mini-batch3

cannot affect the stored value too much. Note that whitening is still4

performed at training time using µ, σ2; we simply record the running5

average in the buffers running_mean/var. If model.train() is called, then6

the mini-batch statistics are used to whiten the features. If model.eval() is7

called, then the stored buffers running_mean/var are used to whiten the8

outputs.9

How is all this related to internal covariate shift?10

You might be surprised that nothing in this section is related to covari-11

ate shift that we discussed at the beginning. Let us try to understand12

heuristically why BN is said to help with internal covariate shift.13

Each layer of a deep network treats its input activations as the data14

and predicts the output activations. As the weights of different layers15

are updated using backprop during training, the distribution of input16

activations keeps shifting. Effectively, each layer is constant suffering a17

covariate shift because the layers below it are updated and the weights of18

the top layers have to adapt to this shifting distribution. This is what is19

known as internal covariate shift. BN normalizes the output activations20

to approximately have zero mean and unit variance and therefore reduces21

the internal covariate shift.

� There are many caveats with this heuristic
argument. The main one is to observe that the
backpropagation gradient of all layers is
coupled, so it is not as if the layers are
updated independently of each other and
cause interval covariate shifts to the other
layers; the updates of all the weights in the
network are coupled and it is unclear why (or
even if) internal covariate shift occurs.

22

7.4.3 Problems with batch-normalization23

There are two big problems with BN.24

1. The affine parameters are updated using backpropagation and small25

changes to mini-batch statistics can result in large changes to the26

whitened output (h − µ)/
√
σ2 + ϵ. This will result in very large27

updates to a, b. This makes the affine parameters problematic28

when you train networks. In general, it is a good idea to first fit a29

model without the affine BN parameters, you can do so by using30

affine=False in nn.BatchNorm1d.31

2. The mean and variance buffers of the BN layer are updated using32

running statistics of the per-mini-batch statistics. This does not33

affect training because the statistics of each mini-batch are computed34

independently, but it does affect evaluation because the buffers are35

used to whiten the features of the test input. If the test input has36

slightly different pixel intensity statistics than the training image,37

then the BN buffers are not ideal for whitening and such images are38

classified incorrectly.39
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BN before ReLU or ReLU before BN1

Should we apply BN before or after the nonlinearity? The purpose of2

a BN layer is to keep the activations close to zero in their mean and a3

standard-deviation of one. Imagine if we are using a ReLU nonlinearity4

after BN, about half of our features h have negative values which the5

rectification will set to zero. In this case the distribution of features given6

to the next layer is not zero-mean, unit-variance so we are not achieving7

our goal of whitening correctly. Further, it is possible that the bias8

parameter b in BN is negative in which case the activations could mostly9

be negative and ReLU will set all of them to zero and result in a large loss10

in information. On the other hand, if we have BN after ReLU, the input to11

the BN layer has a lot of zeros and we are now computing mean/variance12

over a number of sparse features; the mini-batch mean/variance estimated13

here may not be accurate therefore BN may not perform its job of correctly14

whitening its outputs. You can read more about similar problems at15

http://torch.ch/blog/2016/02/04/resnets.html16

As you can see, BN is an incredibly intricate operation without17

necessarily sound theoretical foundation for all the moving parts. But it18

works, training a deep fully-connected network is very difficult without19

BN, and even for convolutional layers it often makes training insensitive to20

the choice of learning rate. You should think about BN very carefully in21

your implementations; a lot of problems of the kind, “I trained my model,22

it gives a good training error but very poor validation error”, or “I am fine-23

tuning from this task, but get very poor validation error on a new task”, or24

other problems in reinforcement learning, meta-learning, transfer learning25

etc. can be boiled down to an incorrect/inadequate understanding of batch-26

normalization. This is further complicated by the interaction with other27

operations such as Dropout, e.g., see https://arxiv.org/abs/1801.05134.28

Studying the effect of BN in meta-learning/transfer-learning is a good idea29

for a course project.30

How does Dropout affect BN?31

Since dropout is active during training, the buffered statistics are the32

running mean/variance of the dropped out activations. Dropout is not33

used at test time, so the test time statistics, even for the same image can be34

quite different. A simple way to solve this problem is to run the model in35

training model once on the validation set (without making weight updates36

using backpropagation) for the BN buffers to settle to their non-droppped37

out values and then compute the validation error; this usually results in a38

marignal improvement in the validation error.39

7.4.4 Variants of Batch-Normalization40

There are variants of batch-normalization that have cropped out to alleviate41

some of its difficulties. For instance, layer normalization42

(https://arxiv.org/abs/1607.06450) normalizes across the features instead43

of the mini-batch which makes it work better for small mini-batches. An-44

other variant known as group-normalization computes the mean/variance45

http://torch.ch/blog/2016/02/04/resnets.html
https://arxiv.org/abs/1801.05134
https://arxiv.org/abs/1607.06450
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estimate in BN across multiple partitions of the mini-batch which makes1

the result of group-normalization independent of the batch-size. These2

variants work in some cases and do not work in some cases and often3

the specific normalization is largely dependent on the problem domain,4

e.g., group normalization works better for image segmentation but layer5

normalization and batch-normalization do not so well there.6

7
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Recurrent Architectures2

and the Attention3

Mechanism4

Reading
1. Goodfellow 10.1-10.3, 10.5-10.7, 10.9-10.12

2. Bishop DL Chapter 12

3. D2L.ai book Chapters 8, 9, 10

4. Paper on long short-term memory (Hochreiter and Schmidhu-
ber, 1997)

5. Paper on the Transformer architecture (Vaswani et al., 2017)

6. Paper on CLIP (Radford et al., 2021)

In this chapter we will consider data that evolves with time. Typical5

examples of such data are videos and sentences in written/spoken language.6

Some typical problems that we are interested in solving given such data7

are classifying the activity going on in a video, classifying the object that8

is being described in a sentence, etc. We can also think of generative9

models for such temporal data, i.e., forecasting how the video/sentence10

will look like a few time-steps into the future using the approaches in this11

chapter.12

We will look at three kinds of neural architectures, namely Recurrent13

Neural Networks (RNNs), and the Long Short-Term Memory (LSTM)14

and Attention modules, that are typically used to model such data.15

92
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8.1 Recursive updates in a Kalman filter, suffi-1

cient statistics2

Consider a scalar signal in time ht ∈ R that evolves according to some3

dynamics4

ht+1 = aht + ξt;

with the scalar a ∈ R that we have modeled and the noise ξt ∈ R reflects5

our understanding that the scalar a in our model of evolution of the signal6

ht may not be the same as that of Nature. We model this discrepancy by7

setting ξt to be zero-mean Gaussian noise that is i.i.d across time8

ξt ∼ N(0, σ2
ξ ).

Let us say that our dataset consists of observing the signal for some time9

{x1, x2, . . . , xt}. Think of ht being the location of a car at time t and10

our dataset being the observation of the trajectory of vehicle up to time11

t. Assume that we do not observe the true trajectory of the vehicle, but12

observe some noisy estimate of the state at each time13

xt = ht + νt

where νt ∼ N(0, σ2
ν) is the noise in our observation.14

In this section, we will estimate the true signal at the next time instant15

ĥt+1. A good estimate is the one that minimizes the MSE loss with the16

true (unknown) signal17

argmin
ĥt+1

E
ξ1,ν1,...,ξt+1,νt+1

(ht+1 − ĥt+1

)2
| x1, . . . , xt, xt+1︸ ︷︷ ︸

“dataset”

 . (8.1)

The expectation is taken over the noise because there could be many18

trajectories that the system could have taken, each corresponding to a19

particular realization of the noise.20

Our estimate should only depend on the dataset21

ĥt+1 = function (x1, . . . , xt, xt+1) .

Since predictions are likely to be required across a long range of time, we22

want to construct a recursive update for ĥt+1 that takes in the estimate at23

the previous time-step ĥt and updates it using the most recent observation24

xt+1.

� In machine learning parlance, this setup is
called online learning where data are
provided sequentially one after other and you
train/update the model to incorporate the
latest datum; future predictions of this model
are made using this updated model.

25

Kalman filter updates the sufficient statistic26

Like we computed the optimal predictor in the bias-variance tradeoff for27

regression as the conditional distribution of the labels given the data, it is28

possible to prove that the best estimate ĥt+1 is the conditional mean given29

past data30

ĥt+1 = E [ht+1 | x1, x2, . . . , xt+1] .
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Not surprisingly, to estimate the location of the car at time t+1, you need1

to watch the entire past trajectory of the car.2

A major result in control theory is that for our problem (where the model3

of the signal is linear with additive Gaussian noise and our observations4

xt are a linear function of ht corrupted with Gaussian noise) we only need5

to recursively update of the first two moments of our estimate. If we have6

ĥt+1 = N(µt+1, σ
2
t+1)

where7

µt+1 = E [ht+1 | x1, . . . , xt+1]

σ2
t+1 = var (ht+1 | x1, . . . , xt+1) .

(8.2)

and update the mean and variance recursively using their values at the8

previous time-step as9

µt+1 = aµt + kt (xt+1 − aµt)

σ2
t+1 = (a2σ2

t + σ2
ξ )(1− kt)

kt =
a2σ2

t + σ2
ξ

a2σ2
t + σ2

ξ + σ2
ν

.

(8.3)

You can derive this part very easily. Show that if the objective in Eq. (8.1)10

was optimal at time t for ht in Eq. (8.3), then the expressions in Eq. (8.3)11

also minimizes the objective at time t + 1 for ht+1. This algorithm is12

known as the Kalman filter is one of the most widely used algorithms13

for estimation of signals based on their observation. The key property to14

remember for us from the Kalman filter is the following.15

The two quantities µt, σt capture all the information from the past
trajectory x1, . . . , xt. Instead of creating our MSE estimate ĥt using
the entire data as shown in Eq. (8.1) each time instant, if we maintain
these two quantities and recursively update them using Eq. (8.3) we
obtain the best MSE estimate.

In other words, µt, σt are sufficient statistics of the data x1, . . . , xt

for the problem of estimating the next state ht+1. The notion of a
sufficient statistic means that you do not need anything beyond these
two functions of the data x1, . . . , xt+1 to estimate ht+1.

A statistic is simply any function of data. Therefore a sufficient
statistic is a quantity such that if you have it, you can throw away the
data without losing any information. Not all statistics are sufficient,
and not all sufficient statistics look like a few moments of data. For
more interesting signals the sufficient statistics are non-trivial and
difficult to find.

The structure of neural architectures for sequence modeling is
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intimately related to the above result. Just like a CNN learns features
that are “sufficient” to classify the input data, a recurrent model learns
the statistics of the past sequence that are sufficient to predict future
elements.

8.2 Recurrent Neural Networks (RNNs)1

The data to an RNN is a set of n sequences2

D =
{
(xi

1, y
i
1), (x

i
2, y

i
2), . . . , (x

i
T , y

i
T )
}
i=1,...,n

.

Each sequence has length T and each element of the sequence xi
t ∈ Rd.3

There can be labels at every time-step, e.g., these labels can be, say,4

ground-truth annotations of the activity “playing with a basketball” going5

on the video at that time, or also forecasting the inputs by one (or more)6

time-steps yit ≡ xi
t+1.7

Figure 8.1: A recurrent model predicting the next word in a sentence.

Let us focus on one particular sequence
{
(xi

1, y
i
1), . . . , (x

i
T , y

i
T )
}

8

from the dataset. To predict the labels yit, the RNN maintains a statistic,9

let us denote it by10

hi
t = φ

(
(xi

1, y
i
1), . . . , (x

i
t, )
)
.

Here φ is some function that we would like to build. Similar to a Kalman11

filter we hope to learn a sufficient statistic. In this case sufficiency means12

that the quantity ht can predict the target yt. � Note that just like we cannot claim that the
features learned by a CNN are sufficient
features, i.e., the only information from the
data necessary to predict the targets, we
cannot claim that ht is a sufficient statistic of
the past sequence. If the RNN/CNN are
making predictions accurately, then it is
reasonable to expect that we have learned
something close to a sufficient statistic.

Again, we would like to13

update the statistic recursively.14

ht+1 = φ (ht, xt+1) ; (8.4)

notice the similarity with the updates in Eq. (8.3) where updates to µt, σt15

also used the latest observation xt+1. We will also have the RNN use the16

latest input xt+1. You can think of ht as a summary of the past sequence17

or some memory that is updated recursively. This summary/statistic is18

also called the “hidden state” in the RNN literature.19

We do not know what function φ to pick (for the Kalman filter we20

knew that it is the conditional mean/variance of ht given past observations)21
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so we are going to learn it using parameters. We will set1

ht+1 = σ (wh ht + wx xt+1) ; (8.5)

where wh ∈ Rp×p, wx ∈ Rp×d are weights that multiply the previous2

statistic and the current input to calculate the current statistic. Again σ(·)3

is a nonlinearity that is applied element-wise.4

Weights of an RNN are not a function of time It is important to5

observe that the weights wh, wx do not change as the sequence moves6

forward. The same function is used to update the statistic at different7

points of time; notice that this does not mean that the statistic hi
t remains8

the same across t. In this sense, an RNN is effectively the same neural9

model unrolled into the future as it takes in inputs of a sequence.10

Training objective for an RNN Output predictions can now be made11

as usual by learning weights12

ŷit = v⊤hi
t. (8.6)

The loss function of an RNN is a sum of the error in the predictions for all13

time-steps for all samples14

1

nT

n∑
i=1

T∑
t=1

ℓ(yit, ŷ
i
t) (8.7)

and we can train the RNN by updating weights wh, wx using back-15

propagation. In some problems, you may only have targets for the final16

time-step yiT (say predicting whether it is going to rain right now or not17

based on the weather data of the past few hours). This does not change18

things much conceptually, we will simply have only one term in the19

summation above.20

� If each element of a sequence xt is
distributed uniformly over C possible values,
i.e., the sequence is perfectly random with no
predictable patterns within it, then the
cross-entropy loss for predicting the next
element of such a sequence will be equal to
the Bayes error, which is − logC. The
perplexity exp(− logC) = C is therefore the
number of distinct alternatives that the
learned model predicts over when it predicts
the next token.

The exponential of the cross-entropy loss (which is equal to 1 divided21

by the likelihood of the dataset) is called the “perplexity” in natural22

language processing problems23

perplexity = exp

(
− 1

nT

n∑
i=1

T∑
t=1

C∑
c=1

1{yi
t=c} log p(ŷ

i
t = c)

)
;

where the sum over c ranges over the unique elements of the sequence24

(e.g., words/tokens etc.). You will see the perplexity being calculated in25

base 2 many times. The reason for this is as follows. The cross-entropy26

loss in Eq. (8.7) can be interpreted as the number of bits (actually this is27

called “nats” since we wrote the loss using the natural logarithm) required28

to predict each element of the sequence. If the cross-entropy loss per29

time-step (which is what we have written in Eq. (8.7)) is 3.55, then the30

perplexity31

23.55 ≈ 11.7,
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and therefore the learned model is confused as if it had to choose uniformly1

among about 12 different possibilities. Smaller the perplexity, better the2

predictive model.3

? How should we initialize the first hidden
vector h0 in an RNN? We have not seen any
element of the sequence yet, so the value of
h0 has no meaning per se. Typically, h0 is
initialized either using Gaussian noise or
simply to zeros.

Multi-layer RNNs4

We have created a single-layer RNN in Eq. (8.5). We can use the same5

idea to create a multi-layer RNN the same way that we did for CNNs.6

We combine different parts of the hidden state/statistic and use these as7

features. In an RNN, it is traditional to combine the features both from8

the lower layer and features form the previous time-step of the same layer.9

As a picture it looks as follows

10

We can write an expression for this as11

hl+1
t = σ

(
wl

tt h
l+1
t−1 + wl

hh hl
t

)
.

Again we have used trainable weights wtt ∈ Rp×p and whh ∈ Rp×p
12

to compute the hidden state/statistic/activations of the top layer. For a13

multi-layer RNN with L layers, the predictions at each time step are given14

by15

ŷt = v⊤hL
t .

The utility of having multiple layers in an RNN is similar to that of a16

CNN, more layers let us create more complex predictors than the recurrent17

perceptron-style predictor in Eq. (8.6) by learning a richer set of features.18

8.2.1 Backpropagation in an RNN19

Let us see how to compute the gradient of the loss function with respect20

to the weights of an RNN in order to train the model using SGD. We will21
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consider a sequence of two time-steps for a single-layer RNN1

h1 = σ(ux1) where we set h0 = 0

ŷ1 = vh1

h2 = σ(ux2 + wh1)

ŷ2 = vh2

(8.8)

The weights we would like to update are u, v and w.

� Computational graph of a single-layer
RNN. Please ignore the notation in this figure
and see Eq. (8.8).

Let us say that2

the loss function is only computed at the final time-step t = 2 as ℓ :=3

ℓ(y2, ŷ2) = ∥y2 − ŷ2∥2. Using our notation for backpropagation we have4

dℓ
dℓ

= ℓ = 1

ŷ2 = ℓ
dℓ
dŷ2

= −(y2 − ŷ2).

v = ŷ2
dŷ2
dv

= −(y2 − ŷ2) h2

h2 = ŷ2 v

u = h2 σ
′(ux2 + wh1)

(
x2 + w

dh1

du

)
...

� Note that expression for u where we get a
term dh1

du . Such terms are coded up in Pytorch
using gradient accumulation, i.e., if the same
function is used twice in the forward
propagation, the gradient u of its parameters
will be accumulated for each of the
backpropagation calls.

You should write down the update steps completely for an RNN making5

predictions at each time-step, using the loss function6

ℓ = ∥y1 − ŷ1∥2 + ∥y2 − ŷ2∥2

and see how the gradient of the loss at each time-step with respect7

to weights “accumulates” in w, v and u. Backpropagation in RNNs8

is also called backpropagation-through-time (BPTT). There is nothing9

special going on inside BPTT, it is simply backpropagation applied to a10

computational graph that is unrolled in time.11

8.2.2 Handling long-term temporal dependencies12

Implementation of BPTT for RNNs has a number of numerical issues.13

Gradient vanishing14

Notice that the gradient15

u = h2 σ
′(ux2 + wh1)

(
x2 + w

dh1

du

)
= −(y2 − ŷ2)v σ′(ux2 + wh1)

(
x2 + w

dh1

du

)
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in our backprop equations depends on the gradient of non-linearity. If we1

have a sigmoid non-linearity and if the input activations to it ux2 + wh12

have large magnitude, the output h2 will be saturated. This results in3

u, h2 having small magnitudes. Further notice that u also depends upon4

products of the weights v and the inputs x2. If you unroll this further5

for a few more time-steps (like we did in HW2) you will see that future6

activations ht are recursive products of past activations with weights. It is7

easy to observe that if we have a matrix A and a vector x the product8

lim
k→∞

Akx (8.9)

goes to zero if the largest singular ofA is less than 1, i.e., λmax = ∥A∥2 < 1.9

The product goes to positive/negative infinity if the largest singular value10

is greater than 1 if x has a non-zero inner product with the corresponding11

singular vector. In other words, if the length of the sequence is long, it is12

due to the recursive computation in an RNN that the activations can blow13

up to infinity. This can also lead to gradient explosion. The activations14

can also become zero which can result in gradient vanishing.15

All this is also true for CNNs with many layers: the weights of the16

lower layers get their backprop gradient after it goes through multiple17

nonlinearities (ReLUs lead to saturation as well if the input is negative)18

and can therefore receive a small gradient. While typical CNNs have 1019

or so layers, typical RNNs handle sequences of length 50–100 (or more).20

The chance of having vanishing gradients to the weights is thus much21

higher in RNNs.22

Propagation of information in BPTT23

You would think that if the objective is a sum of the loss at each time; this24

alleviates the problem of gradient vanishing. But there is a deeper point25

we are trying to make here. The backprop gradient is an indication of26

how much we should change u, h2 to make more accurate predictions at27

some future time-step yt. If t≫ 2, the value of h2 does not play a strong28

role in making predictions too far into the future. In other words, the29

predictions of the RNN become myopic we do not learn statistics that are30

a function of the entire past trajectory, the statistics are highly dominated31

by the near past which makes it difficult to capture long-range correlations32

in the sequence and predict high-level concepts.33

Which nonlinearities are good for RNNs?34

Think about which nonlinearities are good for training RNNs. Gradient35

vanishing is a large problem with sigmoids whereas both gradient vanishing36

and gradient explosion can occur for ReLU nonlinearities. You might be37

tempted to design a nonlinearity that does not saturate on either side of38

the origin but such nonlinearities look closer to and closer to an identity39

mapping and, as we have a seen, a linear model is much less powerful40

than a nonlinear model. In other words, gradient explosion/vanishing is a41

problem in BPTT for RNNs but there is really no effective solution to it.42
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Gradient clipping1

We can avoid gradient explosion ruining the weights being updated by2

using gradient clipping. There are many ways of implementing this3

idea. The most prevalent one is to clip the ℓ2 norm of the gradient to a4

pre-specified value. The SGD update is modified to be5

w(t+1) = w(t) − η clipc(∇ℓωt(w(t)))

where ∇ℓωt(w(t)) is the gradient of the objective on the sample with6

index ωt ∈ {1, . . . , n} in the dataset computed at weights ωt and clipping7

performs the operation8

clipc(v) =
cv

∥v∥2 + ϵ

where c is a pre-specified value and it is the ℓ2 norm of the clipped9

gradient. The scalar ϵ in the denominator prevents numerical issues when10

the gradient magnitude is small.

� The function clip_grad_norm performs
gradient clipping. When you observe it
closely you will realize that it is really scaling
the gradient and should therefore be called
gradient scaling.11

Sometimes you instead clip the per-weight gradient at values [−c, c],12

i.e., if the gradient vector is v ∈ Rp and vk is the gradient at the kth
13

element14

clipc(v) = [min(max(−c, v1), c), . . . ,min(max(−c, vp), c)] .

Orthonormal initialization of weights15

If A is an orthonormal matrix, we have16

A⊤A = I.

All singular values of an orthonormal matrix have an absolute value17

of 1. This helps when we perform repeated multiplication with the18

weight matrices in forward-backward propagation because the norm of19

the intermediate products does not change20 ∥∥Akx
∥∥
2
= ∥x∥

if A is orthogonal. The weight matrices of an RNN are typically initialized21

as orthogonal matrices; this is easy to do by first initializing the matrix22

using random Gaussian entries as usual and then setting the actual weights23

to be the left singular vectors after computing an SVD of the matrix. ? If the weights of an RNN are initialized as
orthogonal matrices, do they remain so after
multiple steps of SGD?

24

Moving window over the data25

We wrote down SGD updates as sampling a random (input,target) pair26

from the dataset at each iteration. The data for an RNN consists of a27

number of trajectories/sequences. We can sample one (or a mini-batch) of28

such sequences and a contiguous chunk of each of those sequences as a29
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mini-batch in an RNN1

Dmini-batch =
{
(xi

1, y
i
1), . . . , (x

i
25, y

i
25)
}
∪{

(xj
5, y

j
5), . . . , (x

j
30, y

j
30)
}
∪{

(xk
13, y

k
13), . . . , (x

k
38, y

k
38)
}
∪

...

The hidden state h0 of the RNN can be initialized to zero/randomly at the2

beginning for all these trajectories.3

We can however also play a neat trick while sampling mini-batches in4

an RNN to give it the ability to handle more long-range correlations. The5

mini-batch is treated as a moving window over the data and it is rolled6

forward sequentially, i.e.,7

Dmini-batch 1 =
{
(xi

1, y
i
1), . . . , (x

i
25, y

i
25)
}
∪{

(xj
1, y

j
1), . . . , (x

j
25, y

j
25)
}
∪{

(xk
1 , y

k
1 ), . . . , (x

k
25, y

k
25)
}
∪ . . .

and the next mini-batch is chosen to be8

Dmini-batch 2 =
{
(xi

26, y
i
26), . . . , (x

i
50, y

i
50)
}
∪{

(xj
26, y

j
26), . . . , (x

j
50, y

j
50)
}
∪{

(xk
26, y

k
26), . . . , (x

k
50, y

k
50)
}
∪ . . .

In this case, we simply copy the hidden state/statistic h25 of the previous9

mini-batch as the initialization h0 for the next mini-batch. While this10

creates strong correlations in the consecutive mini-batches and data for11

SGD is not sampled iid, it is a useful trick to increase the effective rage of12

temporal correlations modeled in the RNN without essentially any special13

operations. You can see an implementation of this idea at14

https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L13115

16

Roughly speaking, data that consists of sequences of length up to
25 can be trained with RNNs.

8.3 Long Short-Term Memory (LSTM)17

Innovations on top of the basic RNN architecture try to improve their ability18

to handle long-range correlations in the data. We saw that the updates to19

the hidden state/statistic ht is the key to doing so. The architectures called20

LSTMs, and their simpler counterparts called GRUs, are mechanisms that21

give us more control to update the hidden state.22

https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L131
https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L131
https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L131


102

8.3.1 Gated Recurrent Units (GRUs)1

GRUs “gate” the hidden state, i.e., the architecture has a mechanism to2

control when the hidden state gets updated and when it does not. For3

instance, if the first symbol in our sequence is very predictive of the future4

of the sequence we want the RNN to learn to not update the hidden state,5

and similarly if there are irrelevant words in the middle of the sequence6

we want the hidden state to not be updated at those time-steps. A GRU7

also has a mechanism to “reset” the hidden state that reduces the influence8

of the previous hidden state on the next hidden state.

� The idea that the hidden state is the
memory in sequence models is more clear in
this context. In some cases we may want to
update our memory after observing a
particular part of the sequence, in some cases
we want to keep the memory unchanged,
while in some cases we may wish to
reinitialize the memory before observing the
future data.

9

Recall that the hidden state for an RNN with a single layer is updated10

as11

ht+1 = σ (whht + wxxt+1) .

A GRU has two more variables that are called the reset variable and12

the zero variable respectively, each created from previous xt, ht using13

learnable weights14

rt+1 = sigmoid(wxr xt + whr ht)

zt+1 = sigmoid(wxz xt + whz ht).
(8.10)

The entires of rt, zt are between (0, 1). The update to the hidden state in15

an RNN is modified to be16

ht+1 = (1−zt+1)ht+zt+1⊙tanh (wh (rt+1 ⊙ ht) + wxxt+1) . (8.11)

If entries of zt+1 are close to 0, the old state is propagated almost17

unchanged to result in ht+1; information from xt+1 is essentially ignored18

in this case. If entries of zt+1 are close to 1, the reset gate is used to19

decide what the next state ht+1 is: if rt+1 is close to one, then the update20

is the same as that of a conventional RNN; if rt+1 is close to zero, then the21

previous hidden state does not play any role in the update and the update22

is only dependent on the observation xt+1.

� There are many variants of a GRU which
will reduce the number of operations used in
the GRU. For example, Light GRU, does not
use a reset gate and uses ReLU instead of tanh
(denoted here as ()+), along with
batch-normalization.

zt+1 = (bn(wxz xt) + whz ht)+

ht+1 = (1− zt+1)ht + zt+1⊙
(whht + bn(wxxt+1))+ .

23

� GRUs are very useful recurrent models
because they are more general than RNNs but
at the same time much simpler than other
models such as LSTMs. In most cases, it is a
good idea to first try to fit the data using a
GRU before using more complex models.

8.3.2 LSTMs24

The design of an LSTM was inspired by logic gates in a computer and is a25

bit complicated. The original LSTM paper is an assigned reading for this26

lecture. LSTMs are powerful models in sequence modeling and in spite27

of being developed all the way back in 1997, they are among the few deep28

learning models that remained popular through the second AI winter and29

are still the workhorse of the NLP industry today.30

An LSTM has three new variables on top of an RNN, these are called31

the “input, forget, and output” gates respectively32

it+1 = σ(whi ht + wxi xt+1)

ft+1 = σ(whf ht + wxf xt+1)

ot+1 = σ(who ht + wxo xt+1)

(8.12)
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where all the above weight matrices are learnable parameters. In the GRU1

we had the convex combination using the zero gate in Eq. (8.11) to prevent2

forgetting. In an LSTM we use the two gates ft, it for this purpose. The3

hidden state of an LSTM is propagated as4

ht+1 = ot+1 ⊙ ct+1 (8.13)

where the variable5

ct+1 = ft+1 ⊙ ct + it+1 ⊙ tanh(whc ht + wxcxt+1) (8.14)

is thought of as a memory cell. Understanding crisply what an LSTM ought6

to learn is a bit difficult but we can think of an LSTM as parameterizing7

the operations of GRU; convex combination in Eq. (8.11) is replaced by a8

weighted combination using the input and forget gates in Eq. (8.14) while9

the output gate in Eq. (8.13) is identity in a GRU.10

Just like we can handle multiple layers in an RNN, we can also11

have multiple layers in an GRU. Each layer gets its own gates; temporal12

propagation is performed using the above equations and only the hidden13

state ht is propagated up to the deeper layers.14

You will notice that a lot of non-linearities in GRUs/LSTMs are sig-15

moids and hyperbolic tangents. This is because these gates are interpreted16

as Boolean variables that the model is supposed to learn. There are two17

lessons to draw from this. First, if you are modeling some computation18

and would like to learn a Boolean variable, it is a good idea to compute a19

learnable function of the inputs and use a sigmoid nonlinearity. Second,20

vanishing gradients are a problem with LSTMs/GRUs as well, the various21

mechanisms (reset/zero in GRUs and input/forget/output in LSTMs) alle-22

viate this to an extent but do not eliminate vanishing gradients. Roughly23

speaking, we can use LSTMs to model sequences of up to length 50.24

8.4 Bidirectional architectures25

Until now, we have imagined that we would like to predict the future words26

in a sequence or design a predictor that uses a statistic of the sequence27

to predict the output. Our recurrent models were causal in the temporal28

direction, i.e., future elements of the sequence did not play a role in the29

outputs and updates of the model at time t. This is indeed how a lot of30

computation is performed, e.g., if you want to predict the next location31

of a vehicle in a video, you should not build a predictor that uses future32

frames because this model cannot be run at test time without access to the33

future frames. However, there are also problems in which you have access34

to some future observation and estimate the present state. For instance,35

you may fill in the following blanks totally differently depending upon the36

context of the future words.37

38

I am very _______ .39

I am very _______ for school.40

I am very _______ , I need a big dinner.41
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1

Bidirectional models help us distinguish between the three situations2

and allow predicting context-specific output. Just like we motivated3

recurrent models using a Kalman filter and sufficient statistics of the past4

sequence, we can also derive an analogy with what is called Kalman5

smoothing (predicting the current state given the past observations and6

the future observations).7

Building bidirectional models using RNNs is easy. We have two RNNs8

running in opposite directions as shown in the following picture.9

10

We maintain two sets of weights, one for the forward RNN and the11

other for the backward RNN. This gives two hidden states, one in the12

forward direction and another in the backward direction13

hforward
t+1 = σ(wforward

h hforward
t + wforward

x xt+1)

hbackward
t = σ(wbackward

h hbackward
t+1 + wbackward

x xt).

The concatenation of these two hidden states is now the sufficient statistic14

of the entire sequence. So the output ŷt is now a function of both these15

hidden states16

ŷt = vforward⊤hforward
t + vbackward⊤hbackward

t . (8.15)

Let us emphasize that these two directions have nothing to do with17

backpropagation. There is a backpropagation for the backward directions as18

well, which updates hbackward
t+1 using hbackward

t . You should do the following19

exercise: imagining that the loss is only computed on the predictions at20

time t, i.e., ℓ = ℓ(yt, ŷt) and think of how the backpropagation gradient21

flows in a bidirectional RNN.22

Just like we have bidirectional RNNs, we can also build bidirectional23

GRUs and LSTMs.24

8.5 Attention mechanism25

The human perception system is quite limited by its sensors, we do not26

have eyes at the back of our heads. It is also limited by computation, the27

human brain consumes only about 12W of power when it works, about28

30% of this power is consumed by the visual system.29



105

Figure 8.2: This is a picture of the human brain by a neuroscientist named David
Van Essen. Around the early 90s it became clear that brains consist of different
parts, each specialized to processing different kinds of data. The visual system
takes up a bulk (30%) of the real estate.

Our perceptual system is very powerful considering the limits of this1

computation. We discussed reasons for this in Chapter 1, the ability to2

move gives us the ability to specialize the processing on different parts3

of the environment instead of passively processing all the incoming data4

from the sensors. For instance, when you are driving, you look over your5

shoulder only before you merge on the right, you do not really care to6

remember where every car in your vicinity is at any given point of time.7

Similarly, experiments on race car drivers reveal that even at high speeds8

they do not pay attention to all parts of the environment, a driver typically9

only cares about two variables, the heading of the car while going into a10

turn and the distance to the apex of the turn. When you watch TV, you are11

paying attention to only a small part of the TV screen. You can read more12

about these experiments at http://ilab.usc.edu/surprise and in the work of13

many other researchers who study such problems.14

The human perceptual system is tuned to pay attention to only parts15

of the input data that is relevant. Attention in machine learning is an16

attempt to model this phenomenon. It turns out that since understanding17

which part of a long sequence is relevant to making a prediction at a18

particular time instant, attention is well-suited to mitigating the problems19

with long-range correlations in sequence data.20

8.5.1 Weighted regression estimate21

Consider a regression problem where the true function is drawn in orange22

and the dataset is shown in blue.23

24

If we wanted to predict the targets, then the green line given by25

ŷ(x) =
1

n

n∑
i=1

yi.

http://ilab.usc.edu/surprise


106

is the world’s simplest estimator: it predicts the same output irrespective1

of the test input x. We can do better using the Watson-Nadaraya estimator.2

This computes the weighted combination3

ŷ(x) =

n∑
i=1

k(x, xi) yi (8.16)

where the kernel k(x, xi) computes some similarity between the input xi
4

in the dataset and the test input x; the kernel weighs the target yi higher if5

x is close to xi.

Figure 8.3: The left panel shows the Gaussian kernel k(·, xi) for different inputs
in the dataset. The kernel is not normalized so we cannot match the target values
yi easily using a weighted combination of the kernels. The second panel fixes this
by picking a normalized kernel k(x, xi) := k(x,xi)∑

j k(x,xj)
. The estimate of the target

ŷ(x) using a weighted combination of this normalized kernel is a non-parametric
estimator of the targets.

6

� We can come up with many different
kernels that will work for this problem, e.g.,

Gaussian = exp
(
∥x− x′∥2/(2σ2)

)
Box = 1{∥x−x′∥≤c}

Laplace = exp(−λ∥x− x′∥)

Any of these are reasonable kernels to use for
the Watson-Nadaraya estimator.

Figure 8.4: Top row: For the true function y = 2 sin(x) + x + ϵ where ϵ is
zero-mean Gaussian noise (dotted lines), we sample 40 data points from the domain
of x (orange points) and fit the targets using the Watson-Nadaraya estimator using a
Gaussian kernel for different values of σ. Bottom row: For each of these problems,
the heatmap denotes the term k(xi, xj)/(

∑
k k(x

i, xk) where i, j and k range
over the 40 data points (say arranged in ascending order from left to right on
the real line). As the bandwidth σ increases, the “attention map” denoted by the
kernel becomes more diffuse and takes into account farther and farther data points.

The Watson-Nadaraya estimator in Fig. 8.3 is a simple interpolation7

mechanism and it is also consistent, i.e., as the amount of data n→∞,8

the regression error goes to zero. There are no “weights” in this model; all9
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the intricacy lies in choosing the kernel to calculate the similarity between1

two samples.2

An attention layer can be thought of as learning a particular kind
of weighing function in our regression estimate.

8.5.2 Attention layer in deep networks3

Let us consider a typical kind of attention that is heavily employed in deep4

learning. It is called the dot-product attention mechanism. This takes in5

two matrices as input: k ∈ RT×p which is called the “key” and v ∈ RT×p
6

which are called “values”. Given a query vector q ∈ Rp the attention7

module outputs8
T∑

i=1

σ
(
k⊤i q

)
vi (8.17)

where ki denotes the ith row of the matrix and likewise for the values.9

Observe that the summation is a weighted combination of all the values10

vi with weights given by the similarity of the query with each of the keys11

ki. Just like the Watson-Nadaraya estimator, we would like these weights12

to be normalized, so we choose13

σ(k⊤i q) = softmaxi(k⊤i q) =
ek

⊤
i q∑

j e
k⊤
j q

;

the softmax normalization is performed over the time-axis i.

� It is traditional to replace the inner-product
by k⊤

i q√
p . Keys and queries will be

parameterized by the weights of a neural
network later. And they can become quite
correlated to each other and result in a very
large inner product. The denominator

√
d is

chosen with the rationale that if we have two
p-dimensional random vectors with standard
Gaussian entries, then their inner product has
zero mean and variance p; we can think of
this division as an attempt to preserve the
magnitude of the similarity kernel in
attention.In simple14

words, the expression is a weighted combination of the values where the15

kernel is computed using a simple dot product and normalization of the16

kernel is performed using softmax. If a particular query vector q is similar17

to one of the keys ki, that value vi gets up-weighted in the summation.18

� This is not the only kind of attention. The
additive attention operation uses

σ(ki, q)
.
= tanh

(
w⊤

k k + w⊤
q q
)
;

in general, as we said above we can use any
kernel for attention.

The expression for attention is equivalent to the Watson-Nadaraya19

estimator with20

train data xi ≡ ki keys
test data x ≡ q query
targets yi ≡ vi values

kernel k(xi, x) ≡ ek
⊤
i q exp-dot-product

normalized kernel σ(k⊤i q) ≡
ek

⊤
i q∑

j e
k⊤
j q

.

If the query is one of the keys ki, this is called the self-attention
operation.

How can we use this in a deep network? First let us consider a standard21

convolutional network with features hl ∈ Rm×c at the lth layer; we have22
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reshaped the width and height of the feature map into a single dimension1

of size m, the number of channels is c. And we have not shown the2

dimension corresponding to the batch-size. If we set the keys, values and3

queries to be learnable quantities4

Rm×c ∋ k = relu(w⊤
k hl)

Rm×c ∋ q = relu(w⊤
q hl)

Rm×c ∋ v = relu(w⊤
v hl)

(8.18)

then the output of the attention block would be given by a weighted5

summation over the features for each pixel6

hl+1
j =

m∑
i=1

softmaxi
(
k⊤i qj

)
vi. (8.19)

This is a just a more complex version of the correlation operator. It creates7

output features hl+1
j for j ∈ {1, . . . ,m} that capture the similarities8

between queries and the keys.9

� Draw a picture of the computation in an
attention module

Handling set-valued data with attention Note that the output of Eq. (8.19)10

is unchanged if keys ki were permuted and their values were permuted11

consistently. The attention operation, or a self-attention operation, is12

permutation invariant. This makes it very useful for modeling problems13

where we are interested in making predictions using a set of entities, and14

would like the output to not depend upon the order of the inputs, e.g., the15

path of an autonomous vehicle depends upon the set of other vehicles in16

its vicinity and their locations, not the order in which they are presented;17

the number of chairs in a room does not depend upon the order in which18

the camera them as it pans around the room. The attention-operation is19

ideally suited to model such problems.20

Zaheer et al. (2017) proved that a function f({x1, . . . , xn}) that21

operates upon a finite set (n <∞) of inputs {x1, . . . , xn} with xi ∈ R is22

permutation invariant if and only if it can be decomposed in the form23

f({x1, . . . , xn}) = ρ

(
n∑

i=1

φ(xi)

)

� If we want to build permutation invariance
through data augmentation, we will need to
augment the dataset to have each permutation.
For a sequence with n elements, there are n!
permutations. It is much better to build
permutation invariance via a clever choice to
the architecture.

for some transformations ρ and φ. The function φ can be thought of as24

a feature generator that runs on each input of the set xi; these features25

are aggregated (which makes the sum invariant to permutations of inputs)26

before the transformation ρ acts upon it. The basic Watson-Nadaraya27

kernel in Eq. (8.16) is permutation invariant. The attention operation28

in Eqs. (8.17) and (8.19) is also permutation invariant. This indicates that29

for any problem where we need a permutation-invariant representation,30

we can use the attention layer fruitfully.31
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Position Encoding For many problems we do need to consider the order1

of the elements in the set, e.g., for predicting the next word in a sentence,2

we should consider the order in which we saw the previous words. A3

permutation-invariant model would generate very poor English sentences4

(but it would do perfectly fine for languages which do not need a fixed5

word order such as Latin, Greek, Polish, or Sanskrit). Therefore, attention6

operation would lead to a poor model of sequences for which the order7

matters (most sequence are like this).8

Position encoding modifies the input to retain information about the9

position at which the particular input arrived in the sequence. There are10

many ways of doing so, for example we could think of simply concatenating11

time to the original input to get (t, xt). But this makes it difficult to handle12

very long sequences, e.g., as t increases, the domain of the inputs to the13

model also increases, and if the test data has longer sequences than those14

in the training data then we will surely see a distribution shift in the data.15

It is therefore popular in sequence modeling to use Fourier features, e.g.,16

sinusoids, and use the input17

x̃t =φ(t) + xt, where

Rd ∋ φ(t)
.
= [sin(ω1t), cos(ω1t), sin(ω2t), cos(ω2t), . . .

. . . , sin
(
ωd/2t

)
, cos

(
ωd/2t

)
, ]⊤,

(8.20)

and the frequencies are chosen by the user. For example, Vaswani et al.18

(2017) used19

ωi = 10−8(i−1)/d

where xt ∈ Rd. The number of frequencies should be chosen after20

considering the length of the largest sequence that we wish to model. Each21

128-dimensional row of the following figure shows the elements of the22

position encoding φ(t), each row represents a different value of position23

t; depending upon the dimensionality of the input xt, the width of this24

picture would be truncated to obtain the position encoding.25

26

It may seem peculiar that we are summing up the encoding of time27

φ(t) and the original input xt. The dimensions of the signal xt and the28

different dimensions of the position encoding φ(t) mean very different29

things. We could have also used30

(φ(t), xt).
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Figure 8.5: One block of the encoder of a Transformer architecture.

The difference between the two is a tricky implementation detail. If we sum1

the position encoding, then on one hand, an attention-layer in Eq. (8.18)2

that uses these inputs does not have to consider the time part and the input3

data distinctly but on the other hand, the magnitude of inputs xt needs4

to be chosen carefully to ensure that the temporal information (which5

is magnitude 1 for each dimension and depends upon the length of the6

sequence. . . which is perhaps why Vaswani et al. (2017) used frequencies7

ωi that also depend upon d). If we concatenate the position encoding, then8

on one hand the attention-layer in Eq. (8.18) needs to select its weight9

matrices to correctly account for the position encoding. On the other10

hand, we need not worry about the relative magnitude of φ(t) anymore.11

In practice, most people use summation.12

Multi-head attention Just like we have multiple channels in convolu-13

tional networks, we can have multiple channels in attention-based networks.14

What we have shown in Section 8.5.2 is a typical “encoder” block from15

the Transformer architecture. The multi-head attention layer implements16

multiple sets of keys, queries (in the more common self-attention layer,17

the queries are the same as the keys) and values and concatenates the18

output features in Eq. (8.19) for these different sets, followed by a fully-19

connected layer to bring back down the dimensionality of the output. A20

layer normalization layer is used to normalize these concatenated outputs;21

usually there is a residual connection where the input to the multi-head22

attention layer is added to its output. The position-wise FFN shown in23

this picture is simply a fully-connected layer that runs on the features of24

each time-step independently.25

8.5.3 Attention in recurrent networks26

The attention operation is very useful for sequence modeling because it27

completely eliminates the problem of vanishing/exploding gradients. For28

a sequence of length T , the attention layer computes the same operation29

as in Eq. (8.19). Observe that this expression, rewritten here with the30

number of features m .
= T corresponding to the time dimension and the31
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feature size c .
= p1

hl+1
j =

T∑
i=1

softmax
(
k⊤i qj

)
vi

has hidden state hl+1
j that depends on the hidden states of the lower layer2

hl
i, i ∈ {1, . . . , T}. Effectively, the attention layer acts as a temporal3

shortcut that makes the hidden states of an RNN dependent on both past4

and future hidden states for the sequence. In a picture, this looks as5

follows.6

7

The recurrent layers compute features in a causal fashion but the attention8

layer connects all the time-steps together. If you think of how backpropa-9

gation gradient flows down from the output layer via the attention, you10

will realize that the gradient of the loss computed at step t, say ℓ(yt, ŷt)11

flows back to the hidden states h2 using two paths; the first is the standard12

BPTT path of the recurrent layers while the second one is a more direct13

path of the cross-correlation operation in the attention layer. This is a huge14

benefit because it essentially eliminates problems with gradient vanishing15

and allows recurrent model very long sequences. Modifications of this16

attention module can easily handle sequences of a few hundred words.17

What is the sufficient statistic that is built by attention? We began our18

discussion on recurrent models by arguing that we need to build a statistic19

of the past sequence that can predict the next element of the sequence, i.e.,20

a sufficient statistic. To repeat Eq. (8.4)21

ht+1 = φ (ht, xt+1) ,

and recurrent models such as RNNs and GRUs/LSTMs implement such22

an update. But as we said the updates to the sufficient statistic were made23

recursive simply for computational purposes. Attention predicts the output24

directly using all the past inputs25

ŷt+1 = func(x1, . . . , xt+1)

in a non-recursive fashion. In other words, attention-based models are26

no different—conceptually—than the recurrent models that we have seen27
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before. Except that attention-based sequence models are quite peculiar,1

there is no hidden state in these models. Attention-based layers are also2

therefore fundamentally more expensive in terms of computation. � For many applications, the inputs to each
attention layer are masked to ensure that the
output, say ŷt is computed causally by the
layer at time t, i.e., it does not depend upon
future inputs such as xt+1. This masking can
be done by modifying the operation
in Eq. (8.19) as

ht =

T∑
s=1

softmaxs
(
k⊤s qt +mst

)
vs

where mst = −∞ if s ≥ t and zero
otherwise. This is called causal attention.
You can use masking to enforce many
different kinds of restrictions on how the
attention-based computations should be
performed. Variants of causal attention need
to be implemented very carefully on each
layer of an attention-based network to ensure
that we are not using information form the
future, see a good example at (Sukthanker
et al., 2022).

3

The upside of extra work is that in other recurrent models, the4

same statistic ht has to maintain information about all kinds of future5

words/tokens etc. For example, if we are building a language model that6

can create new text, then this same statistic ht has to learn both the local7

structure of nearby words and also global structure about the language,8

context consistency between successive sentences etc. We have seen the9

issues while doing so for RNNs or GRUs/LSTMs, e.g., vanishing gradients10

for long sequences. Attention-based networks circumvent this by simply11

not having the hidden state.12

This discussion also suggests that one can forego the recurrent
layers altogether in the above picture and simply use attention-based
layers for the entire network.

Attention operator can be computed completely in parallel Note that13

the number of features p can be quite large, say p ≈ 103 and similarly14

the length of the sequence that we would like to address with attention-15

based models can be quite large T ≈ 103. Calculating the self-attention16

operation in Eq. (8.17) requires O(pT 2) amount of work. There are a17

lot of important techniques that have been implemented over the years to18

hide the latency of this calculation and speed-up attention. It important to19

remember that although attention allows us to handle sequences of very20

large lengths, the amount of computation that needs to be performed scales21

quadratically with the sequence length. This is not as bad it seems, because22

unlike recurrent models where have to predict the outputs sequentially,23

the outputs of an attention-based network can be computed completely24

in parallel. In other words, while an RNN does O(Tp2) work, it needs25

O(T ) time to process things sequentially. An attention-based network has26

to do O(p2T 2) work in O(1) time. The factor of p2 comes from the size27

of the key, value and query matrices in an attention-based network, or the28

weight matrices for updating the hidden state in an RNN.29

8.6 Some applications of attention-based net-30

works (transformers)31

� Due to the popularity of the Transformer
architecture, first built by Vaswani et al.
(2017), self-attention-based networks have
become essentially synonymous in the
literature with “Transformers”.Attention-based models are ideally suited for problems where we need32

to work with a sequence of inputs. Certainly, they can also be used for33

problems where there is no temporal structure, e.g., for any problem where34

we used a multi-layer perception or a convolutional network, we can also35

use an attention-based layer. Roughly speaking,36

Multi-layer perceptron ⊃ Self-attention-based layer ⊃ Con-37

volutional layer,38
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i.e., any function that can be fitted using a CNN can also be fitted by1

an appropriate attention-based model (you can think of attention as a2

particular nonlinear convolutional kernel with width equal to the size of3

the input), and any function that can be fitted by a self-attention-based4

model can also be fitted by an appropriate fully-connected network (the5

computation performed by the attention layer of course can be fitted by6

the MLP). Self-attention-based networks strike a good balance between7

versatility (similar architecture can be used for text and language and8

many other modalities, CNNs and MLPs can also be used like this but9

it takes some creativity to do so) and ease of training (training large10

MLPs is very difficult due to numerical issues which we will see in11

the next Module). All this, coupled with the rise of efficient libraries12

that implement attention well, e.g., Hugging Face transformers library13

https://github.com/huggingface/transformers, there is a huge number of14

applications that have seen good results using attention-based architectures.15

We will next briefly survey some examples.16

8.6.1 Pretraining on natural language17

� For image classification, you can imagine
that in the pre-training stage we build a model
to predict the RGB pixel intensities of a patch
of the input image. The input and output of
this architecture will have the same size

.

The above picture is an example of a masked
autoencoder (ignore the details of the
architecture for now). After pretraining, we
can use the features of one of the layers of this
model as inputs to a classifier layer and
fine-tune an image classification model.

Very often, models are trained in two stages. First a model is trained on a18

large source of data for some simple task, e.g., predicting the next word.19

This first stage is called “pre-training”. Next, the final layer of this model20

is reset, or often modified, to allow it to make predictions on some new21

problem using a new dataset, e.g., answering questions about a piece of22

text, which requires the model to generate new words in response. This23

second stage is called “fine-tuning”.24

We might be able to understand using the bias-variance tradeoff why25

such a strategy is fruitful; the essential idea is similar to the procedure26

called doubly robust estimation that we saw in the section on correcting27

for covariate shift. The pretraining phase restricts the class of models to28

the ones that can effectively solve the pretraining task, namely predicting29

the next word. And the fine-tuning stage now needs to select a model30

from a much smaller set. The variance of the fine-tuning procedure can31

therefore be small even if we do not have too much data in the second32

stage. The success of this procedure hinges upon two things: (i) whether33

the pretraining task is broad enough that the solution of the fine-tuning34

stage lies within the reduced set of models, and (ii) whether the pretraining35

task is narrow enough that it meaningfully restricts the set of models to36

create the reduced set.37

We will next look at a few ways to pretrain representations on sequential38

data. Consider a dataset D =
{
(xi

t)
T
t=1

}n
i=1

with n sentences and T39

words in each sentence. Let us suppose that our goal is to calculate40

whether a new sentence (xt)
T
t=1 is like the ones in our dataset, i.e., we41

would like to learn a probability distribution42

p(x1, . . . , xT )

that gives high likelihood to sentences that look like they belong to43

our dataset and low likelihood to sentences that are outside. This is a44

https://github.com/huggingface/transformers
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complicated distribution, e.g., say a sentence has T = 15 words, and1

we have about 10,000 unique words, then this probability distribution is2

supported on a domain of size 1510
4 ≈ 1012,000 which is an absurdly3

large number. Of course, the set of legitimate or natural sentence is much4

smaller and that is why we can hope to learn something meaningful using5

this approach.6

Bidirectional Encoder Representations from Transformers (BERT)7

Instead of modeling the likelihood as a joint probability over all the T8

words, BERT models it as9

ℓi = −
T∑

t=1

log pw(x
i
t | xi

−t). (8.21)

where xi
−t ≡ (xi

1, . . . , x
i
t−1, x

i
t+1, . . . , x

i
T ) denotes the sequence of10

length T with xi
t replaced by a special masked token to indicate missing in-11

formation. Each term in the summation is the log-likelihood of predicting12

the word xi
t using all the words that came before it in the same sentence13

and all the words that came after it—hence the name bidirectional. We14

can also code up the term pw(x
i
t | xi

−t) using masking to ignore xi
t. The15

training objective of BERT is simply the maximum likelihood objective16

using this model17

ℓ =
1

n

n∑
i=1

ℓi.

The other details of the architecture, e.g., position encoding (BERT uses18

learned position encodings), multi-head attention, layer normalization etc.19

are the same as that of the Transformer architecture.

� The original BERT paper also used a loss
where the model takes as input two sentences
in different orders and fits a binary classifier
to detect which sentence came first in the text.
Let us ignore this for clarity’s sake.

� Once we become comfortable with writing
these kinds of likelihoods for pretraining
objectives, there are many alternatives to
think of, e.g.,

−
T∑

t=1

E
rt
[log pw(xt, . . . , xt+T | r ⊙ x)]

where the mask denoted by r ≡ (rt)
T
t=1 for

rt ∈ {0, 1} hides a random sub-sequence of
consecutive words in the sentence x using a
single special token. This loss, in addition to
the BERT objective, was used to train a
famous model named T5 by Google.

20

As we said above, BERT provides a good pretraining objective without21

any annotations. After this stage, we can use its outputs for a variety of22

fine-tuning tasks. For example, in the figure below, the sentence is going23

to be classified as grammatically correct or incorrect using annotated data.24

25

The outputs of the individual words are not being used here, only the26

output corresponding to the first token (which is a special “word” that27

signals the beginning of a sentence) is being used to classify. In other28

problems, e.g., prediction of the part of a sentence, we would use the other29

outputs.30
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word2vec with a contiguous bag of words We can also build a rather1

simplistic model of the data by writing2

ℓi = −
T∑

t=1

log pw(x
i
t | xi

t−m, . . . , xi
t−1, x

i
t+1, . . . , x

i
t+m︸ ︷︷ ︸

2m neighboring words

). (8.22)

where instead of using the entire sentence to predict xi
t, we only use the3

m words before and after. Such a network would not be able to model4

long-range dependencies between words but it would be good at using5

local context to fill in the blanks, i.e., predict xi
t. This model called6

word2vec was one of the first examples of highly versatile and effective7

word embeddings (there are many uses for this, e.g., in content retrieval8

and text search). A smaller window of 2m words also reduces the amount9

of computation that we need to do for predicting the embedding of each10

word in the sentence.11

Generative Pre-trained Transformer (GPT) The BERT objective is12

not causal, i.e., the prediction of a word depends upon both which words13

came before it and which ones came after. Such a pretraining objective14

cannot be used if our desired task is to generate new text. The GPT15

objective is16

ℓi = −
T∑

t=1

log pw(x
i
t | xi

<t). (8.23)

where xi
<t ≡ (xi

1, . . . , x
i
t−1) denotes the sequence of length t−1 that ends17

just before xi
t. Each of the terms in the summation is the log-likelihood of18

predicting the next word xi
t using all the words that came before it; as we19

saw before we can easily use a mask to force GPT to ignore xi
≥t. GPT20

uses sines and cosines as position encodings, multi-head attention, layer21

normalization etc.22

The interesting aspect of writing the probabilistic model like Eq. (8.23)23

is that at inference time, we can draw samples24

x̂t ∼ pw(· | x̂<t) ∀t = T0 + 1, . . . , T,

starting from T0 initial words of a sentence (x1, . . . , xT0
); this starting25

sequence is called a “prompt”. The predicted sequence at each time-step26

as the model runs forward is27

x̂<t = (x1, . . . , xT0 , x̂T0+1, x̂t−1).

Later variants of GPT are very similar to this objective, except that GPT-328

was trained on about 500 billion tokens (roughly the same thing as words).29

Reconstruction of the original input is a good pretraining task In30

general, the pretraining task can be any task that restricts the set of31

hypothesis sufficiently before the fine-tuning phase begins. It has been32

noticed that for many problems, completing masked versions of the input33
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(e.g., predicting missing words in the text, in-painting masked patches1

of an image) or building invariance to transformed versions of the input2

(e.g., ensuring that the features of the original input image are close to3

those of the same image rotated, translated, masked, blurred etc.) are very4

good pretraining tasks. Such tasks, specifically reconstruction of masked5

versions of the input, force the model to learn features that are a lossless6

encoding of the original inputs—in our words, the features are a statistic7

of the original input that are sufficient for reconstruction.

� These techniques, when combined with
the fine-tuning phase for a particular task, e.g.,
image classification, text translation,
generative modeling of images/text/sounds
are called self-supervised learning. Most
people also pretrain models on very large
amounts of data, e.g., millions of images, or
terabytes of text, to pretrain “foundation
models” from which we can fine-tune to a
very large set of tasks.

8

8.6.2 Handling multi-modal inputs9

Since the attention layer can be used for different input modalities, we have10

a neat way of combining them while building our model. For example,11

the CLIP model shown below (from (Radford et al., 2021)) computes a12

joint embedding from images and text.13

14

Given a dataset of images and their captions (e.g., those derived from15

Instagram, or created manually from visual recognition datasets such as16

Imagenet to have captions such as “a photo of a dog”), CLIP pretrains the17

model in a simplistic fashion. At each mini-batch, the text embedding18

of the caption is forced to be similar to the image embedding of the19

corresponding image, while being far away from the image embedding of20

all the other images in the mini-batch. Given n input pairs (xi, ci) where21

xi is an image and ci is a caption, we can use an objective22

ℓix = − log
e−λ/2∥φ(xi)−φ(ci)∥2∑
j e

−λ/2∥φ(xi)−φ(cj)∥2

ℓic = − log
e−λ/2∥φ(ci)−φ(xi)∥2∑
j e

−λ/2∥φ(ci)−φ(xj)∥2

ℓi =
ℓix + ℓic

2
.

(8.24)

Effectively, in ℓix we are setting up a Gaussian mixture model where the23

centers of the Gaussians are at φ(xi) and we are maximizing the likelihood24

of the correct caption embedding φ(ci) being closer to this Gaussian than25

the others; a similar loss is used to get ℓic where the Gaussians are now26

centered at φ(ci) and we are calculating the likelihood of the image27

embeddings being close to the correct Gaussian.28
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This is a very simple objective but CLIP is very effective at a wide1

variety of problems ranging from supervised learning (i.e., a CLIP model2

trained using this loss can be used for image classification as shown in3

the figure (b) and (c), you can also use a linear classifier using the CLIP4

features).5



Chapter 91

Background on2

Optimization, Gradient3

Descent4

Reading
1. Bishop DL Chapter 7

We have covered the cliff-notes of the practice of deep learning in5

the previous eight chapters. It is by no means a complete overview.6

The practice of deep learning is an enticing, mysterious, and sometimes7

frustrating enterprise. The more time you spend playing with code,8

the more you will learn about deep learning. New ideas are routinely9

discovered using very simple experiments that each of you is capable of10

running now.11

As we discussed, there are three main concepts in machine learning.12

First, the class of functions f(x;w) that you use to make predictions, this13

is called the hypothesis class or the architecture. Second, the algorithm14

you use to find the best model in this class of functions that fits your15

data; this uses tools from optimization theory. Third is the generalization16

performance of your classifier. Machine Learning is about picking a good17

hypothesis class, finding the best model within this class and making sure18

that the model generalizes.19

The above process is relatively well-understood for simpler models20

such as SVMs but the story is quite murky for deep networks. Often21

in practice, it is never clear which architecture you should pick for your22

problem (many of you have asked this question in the office hours for23

instance). Training a deep network involves a number of bells and whistles24

(some of which like Batch-Normalization and Dropout that we have seen)25

and if at the end of this exercise we get a high validation error, it is unclear26

118
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how one should change the parts of the process to improve performance.1

Disentangling this vicious cycle is what “understanding deep learning” is2

all about.3

Goal Module 2 will develop an understanding of optimization and4

generalization for more generic machine learning models first. It will5

end with an insight into understanding their interplay for deep networks.6

Module 2 has a different flavor, it is more theoretical. Our goal is to grasp7

the general concepts behind these theoretical results and understand the8

training process of deep networks better. This will also help us train deep9

networks much better in practice.10

9.1 Convexity11

Consider a function ℓ : Rp → R that is convex, i.e., for any w,w′ that12

lie in the domain (which is assumed to be a convex set) of f and any13

λ ∈ [0, 1] we have14

ℓ(λw + (1− λ)w′) ≤ λℓ(w) + (1− λ)ℓ(w′). (9.1)

A function ℓ(w) is concave if −ℓ(w) is convex. If the function f is15

continuous, it is enough to check this definition for a particular value of16

λ, say λ = 1/2 if you need to prove that a function is convex. Some17

examples of convex functions are18

• powers wα for w > 0 and α ≥ 1,19

• powers of absolute values |w|α for w ∈ R and α ≥ 1,20

• exponential exp(w), negative logarithm − log(w) for w ∈ R,21

• affine functions Aw + b,22

• quadratics w⊤Aw + b⊤w + c with A ⪰ 0,23

• norms ∥w∥p =
(∑d

i=1 |wi|p
)1/p

forp ≥ 1, or ∥w∥∞ = maxk |wk|,24

• log-sum-exp f(w1, . . . , wd) = log
∑

i exp(wi) for w ∈ Rp.25

� The Cauchy-Schwarz inequality states that(∑
i

a2i

)(∑
i

b2i

)
≥

(∑
i

aibi

)2

.

A generalization of this is Holder’s inequality
which states that(∑

i

api

)1/p(∑
i

bqi

)1/q

≥

(∑
i

|aibi|

)

for any 1/p+ 1/q = 1.
A couple of standard tricks that help prove that a function is convex26

The first one is called “midpoint convexity”. If a function is continuous,27

then showing that the definition of convexity is satisfied for λ = 1/2 is28

sufficient to prove that the function is convex. The proof is as follows.29

Suppose we have30

ℓ

(
w + w′

2

)
≤ 1

2
ℓ(w) +

1

2
ℓ(w′).
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This can be used iteratively to show that1

ℓ

(
w1 + w2 + . . . w2n

2n

)
≤ 1

2n

2n∑
k=1

ℓ(wk)

for n arguments w1, . . . , w2n ∈ Rp. Now set w1 = · · · = wm = w and2

wm+1 = · · · = w2n = w′. This gives3

ℓ
(m
2n

w +
(
1− m

2n

)
w′
)
≤ m

2n
ℓ(w) +

(
1− m

2n

)
ℓ(w′).

This proves the definition of convexity for ℓ for all λ = m/(2n). Now,4

dyadic rationals, i.e., numbers of the form m/(2n) are dense in the unit5

interval, i.e., any real number λ is arbitrarily close to a rational of the6

form m/(2n) for some m and n. Therefore, we can take the limit as7

m/(2n)→ λ to see that the definition of convexity holds for any value of8

λ.9

The second important trick is to observe that if a function ℓ : Rp → R10

is convex, then it is convex “in any direction”. Consider a function11

g : R→ R12

g(λ) = ℓ(w + λ(w′ − w))

for any two points w,w′ ∈ Rp. Now see that, for all λ ∈ [0, 1]:13

ℓ((1− λ)w + λw′) ≤ (1− λ)ℓ(w) + λℓ(w′)

g(λ) ≤ (1− λ)g(0) + λg(1).

Strictly convex functions Strictly convex functions have the property14

that for all w ̸= w′ in the domain (which is assumed to be convex) and15

λ ∈ (0, 1)16

ℓ(λw + (1− λ)w′) < λℓ(w) + (1− λ)ℓ(w′).

First-order condition for convexity If ℓ is differentiable, the definition17

of convexity in Eq. (9.1) is equivalent to the following first-order condition.18

A differentiable function ℓ with convex domain is convex iff19

ℓ(w′) ≥ ℓ(w) + ⟨∇ℓ(w), w′ − w⟩ . (9.2)

for all w,w′ in the domain. Note that the first-order condition is equivalent20

to the definition of convexity in Eq. (9.1) for differentiable functions. The21

proof is long but easy; you can see https://www.princeton.edu/ aaa/Pub-22

lic/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf for the proof. For23

strictly convex functions the inequality is strict24

ℓ(w′) > ℓ(w) + ⟨∇ℓ(w), w′ − w⟩ .

Monotonicity of the gradient for convex functions The first-order25

condition for convexity gives a useful, and equivalent, characterization of26

https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
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the gradient. Write Eq. (9.2) for w,w′ in two opposite directions1

ℓ(w) ≥ ℓ(w′) + ⟨∇ℓ(w′), w − w′⟩
ℓ(w′) ≥ ℓ(w) + ⟨∇ℓ(w), w′ − w⟩

and add them to get2

⟨∇ℓ(w)−∇ℓ(w′), w − w′⟩ ≥ 0. (9.3)

This is called the “monotonicity of the gradient” condition for convexity.3

In words, it says that the change in the gradient ∇ℓ(w) − ∇ℓ(w′) and4

the change in the weights w − w′ are aligned, i.e., their inner product is5

non-negative.

� Try to prove that monotonicity of the
gradient is equivalent to convexity.

6

Second-order condition for convexity If ℓ is twice-differentiable and7

the domain is convex, then ℓ is convex iff8

∇2ℓ(w) ⪰ 0, (9.4)

for all w in the domain. The symbol ⪰ denotes positive semi-definiteness9

of the Hessian matrix ∇2ℓ(w) whose entries are given by10

(
∇2ℓ(w)

)
ij
=

∂2ℓ(w)

∂wi∂wj
.

For strictly convex functions, the inequality in Eq. (9.4) is strict, i.e., the11

Hessian is positive definite.12

As an example using the second-order condition of convexity to13

show that a function is convex, note that the least squares objective14

ℓ(w) = 1
2∥y −Xw∥22 is convex because15

∇2ℓ(w) = X⊤X ⪰ 0

which is positive semi-definite for any X .16

Strongly convex functions A function is strongly convex if there exists17

an m > 0 such that18

ℓ(w)− m

2
∥w∥22 is convex. (9.5)

It is easy to see that strong convexity implies strict convexity. Since19

the function ℓ(w)−m/2∥w∥2 is convex, it satisfies:20

ℓ(λw + (1− λ)w′)− m

2
∥λw + (1− λ)w′∥2

≤ λ
(
ℓ(w)− m

2
∥w∥2

)
+ (1− λ)

(
ℓ(w′)− m

2
∥w′∥2

)
.

(9.6)

But21

λm

2
∥w∥2 + (1− λ)m

2
∥w′∥2 − m

2
∥λw + (1− λ)w′∥2 > 0
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for λ ∈ (0, 1) for all w ̸= w′ because ∥w∥2 is strictly convex. This shows1

that if we have a strongly convex function ℓ it also satisfies2

ℓ(λw + (1− λ)w′) < λℓ(w) + (1− λ)ℓ(w′).

In other words, we have

strong convexity =⇒ strict convexity =⇒ convexity.

We will see that strongly convex functions are easier to optimize3

for our algorithms. It will also always be much easier to prove a result,4

e.g., the number of iterations that we should run gradient descent for, for5

strongly convex functions. In your homework, you will show that the6

second-order condition for strongly convex functions reads as7

∇2ℓ(w) ⪰ mIp×p.

We will use the following first-order condition for strongly convex8

functions often. A function is m-strongly convex if and only if9

ℓ(w′) ≥ ℓ(w) + ⟨∇ℓ(w), w′ − w⟩+ m

2
∥w′ − w∥2 (9.7)

for any w,w′ in the domain. This is easy to show by observing that the10

function of v = w′ − w11

g(v) ≡ ℓ(v + w)− ℓ(w)− ⟨∇ℓ(w), v⟩ ,

where w is fixed, is also m-strongly convex if ℓ is and therefore g(v)−12

m/2∥v∥2 is convex.

� For m-strongly convex functions the
monotonicity of the gradient gives:

⟨∇ℓ(w)−∇ℓ(w′), w − w′⟩ ≥ m∥w − w′∥2,

for all w,w′. Try to prove it. This condition
boils down to simple monotonicity of the
gradient for m = 0 (which is just a convex
function). This is why it is also called strong
monotonicity of ∇ℓ. This condition is also
called “coercivity”.

13

� Another implication of strong convexity.
The Polyak-Lojasiewicz (PL) inequality says
that

1

2m
∥∇ℓ(w)∥2 ≥ ℓ(w)− ℓ(w∗). (9.8)

Functions that satisfy the PL inequality need
not be convex (it simply says that the
magnitude of the gradient at a point w should
be large if w and w∗ are very different) but it
has been studied that such functions are also
easy to optimize using first-order
optimization methods. It has been empirically
found that the PL inequality holds for many
deep networks. Prove that a strongly convex
function satisfies PL inequality, you can first
prove Eq. (9.7) and minimize both sides of
this inequality over w′.

9.2 Introduction to Gradient Descent14

In this chapter, we will write ℓ(w) to denote the training objective, i.e.,15

if we have a classifier f(x;w) and a dataset D =
{
(xi, yi)

}
i=1,...,n

of n16

samples we will denote17

ℓ(w) :=
1

n

n∑
i=1

ℓ(w;xi, yi).

The objective ℓ will always be a function of the entire dataset but we18

will keep the dependence implicit. Note that the number of samples n is19

usually quite large in deep learning, so the summation above has a large20

number of terms on the right-hand side.21

Gradient descent is a simple algorithm to minimize ℓ(w). Before we22

study its properties, it will help to refresh the following few facts.23
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9.2.1 Conditions for optimality1

Local and global minima A point w is a local minimum of the function2

ℓ(w) for all all w′ in a neighborhood of w we have ℓ(w) ≤ ℓ(w′). The3

point is a global minimum of the function ℓ if this condition is true for all4

w′ in the domain, not just the ones in the neighborhood.5

Local minima are global minima for convex functions This is easy to6

see using an argument by contradiction. If w is a local minimum that is7

not the global minimum, there exists a point w′ in the domain such that8

ℓ(w′) < ℓ(w). The function is convex, so pick a point v = λw′+(1−λ)w9

and see that10

ℓ(v)− ℓ(w) ≤ λ (ℓ(w′)− ℓ(w)) ;

using the definition of convexity. Since w is only a local minimum, we11

can pick λ to be small enough that the left hand side is non-negative. This12

shows that ℓ(w′) ≥ ℓ(w) but this means that w is a global minimum and13

we have a contradiction.14

Global minimum is unique for strictly convex functions If a function15

is strictly convex on a convex domain the optimal solution (if it exists)16

must be unique. Indeed, if there were two solutions w,w′ that were both17

minimizers we would have18

ℓ(w) = ℓ(w′) ≤ ℓ(w′′) ∀w′′. (9.9)

We can now apply the definition of convexity to the point v = (w+w′)/219

to get20

ℓ(v) <
1

2
ℓ(w) +

1

2
ℓ(w′) = ℓ(w).

which contradicts Eq. (9.9). The least-squares objective is strictly convex,21

so the solution is unique global minimizer of the objective.22

First-order optimality condition If w is a local minimum of a continu-23

ously differentiable function ℓ, then it satisfies24

∇ℓ(w) = 0. (9.10)

If further ℓ is convex, then ∇ℓ(w) = 0 is a sufficient condition for global25

optimality from the above discussion.26

9.2.2 Different types of convergence27

Let us assume that we have a continuously differentiable convex function28

ℓ and let29

w∗ = argmin
w

ℓ(w)

be the global minimizer of this function.30
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We would like to develop an iterative scheme that takes in the initial-1

ization of the weights w0 and updates them to obtain a sequence2

w(0), w(1), . . . , w(t), . . .

Along this sequence we are interested in understanding the3

1. convergence of the function value ℓ(w(t)) to the minimal value4

ℓ(w∗), and5

2. convergence of the iterates
∥∥w(t) − w∗

∥∥.6

Descent direction We are going to perform a sequence of updates given7

by8

w(t+1) = w(t) + η d(t) (9.11)

where d(t) is called the descent direction and the scalar parameter η > 09

is called the step-size and determines how far we travel using this descent10

direction. Any direction such that11 〈
∇ℓ(w(t)), d(t)

〉
< 0

is a good descent direction because this leads to a reduction in the value of12

the function ℓ(w(t+1)) after the weight update locally. There are numerous13

ways to pick a good descent direction. Among the simplest ones is gradient14

descent which descends along the direction of the negative gradient and15

thereby performs the following set of updates16

w(t+1) = w(t) − η∇ℓ(w(t)) (9.12)

given an initial value w(0). The step-size (also called the learning rate) is17

chosen by the user. The step-size need not always be fixed, for instance18

you can chose it to be a function of the number of weight updates t in the19

homework. A good step-size is one that does not overshoot the minimum20

w∗.

� Draw a picture of overshooting using a
large step-size.

For instance, after having chosen a particular descent direction d(t)21

we can compute the best step-size to use at time t by solving22

η(t) = argmin
η≥0

ℓ(w(t) + η d(t)).

This is known as line-search in the optimization literature. You may have23

seen Newton’s method24

w(t+1) = w(t) −
(
∇2ℓ(w(t))

)−1

∇ℓ(w(t)). (9.13)

which does not have a user-tuned step-size and further modifies the descent25

direction to be the product of the inverse Hessian with the gradient.26

? Can you think of an algorithm for
minimizing a function that does not use the
gradient of the function to compute the
descent direction?
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9.3 Convergence rate for gradient descent1

We will next understand how quickly gradient descent converges to the2

global minimum. There are two concrete goals of this analysis3

1. to be able to pick the step-size to avoid overshooting without doing4

line-search, and5

2. characterize how many iterations of gradient descent to run until we6

are guaranteed to be within some distance of the global minimum.7

9.3.1 Some assumptions8

Before we begin, we will make a few simplifying assumptions on the9

function ℓ(w). These are quite typical in optimization and ensure that we10

are not dealing with functions that are arbitrarily difficult to optimize.11

1. Lipschitz continuity/bounded gradients We will assume that ℓ is12

uniformly Lipschitz continuous over the entire domain, i.e.,13

|ℓ(w)− ℓ(w′)| ≤ B∥w − w′∥2. (9.14)

for some B > 0. You might also see this condition written as14

∥∇ℓ(w)∥ ≤ B

for differentiable functions; show that the second one is an implica-15

tion of the first.16

2. Smoothness We will always consider “smooth” functions with17

gradients that are L-Lipschitz, i.e.,18

∥∇ℓ(w)−∇ℓ(w′)∥2 ≤ L∥w − w′∥2. (9.15)

If ℓ is twice-differentiable, this is equivalent to assuming19

∇2ℓ(w) ⪯ L Ip×p. (9.16)

From the Cauchy-Schwarz inequality which states that20

⟨u, v⟩ ≤ ∥u∥ ∥v∥

for two vectors u, v, we have the following implication of smooth-21

ness:22

⟨∇ℓ(w)−∇ℓ(w′), w − w′⟩ ≤ L∥w − w′∥2. (9.17)

This inequality is equivalent to Eq. (9.15) for convex functions. See23

https://arxiv.org/abs/1803.06573 for a proof.24

9.3.2 GD for convex functions25

We begin with the so-called Descent Lemma.26

https://arxiv.org/abs/1803.06573
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Lemma 9.1 (Descent Lemma). For an L-smooth function, we have1

ℓ(w′) ≤ ℓ(w) + ⟨∇ℓ(w), w′ − w⟩+ L

2
∥w′ − w∥2. (9.18)

for any two w,w′ in the domain.2

Proof. First, you should compare this with the first-order characterization3

of convexity4

ℓ(w′) ≥ ℓ(w) + ⟨∇ℓ(w), w′ − w⟩ .

The two conditions can be used to sandwich the value of ℓ(w(t+1)) given5

the value of ℓ(w(t)) in gradient descent with room for a quadratic term6
L
2 ∥w

′ − w∥2. This marshals the intuition as to what L-smooth really7

means; a large value of L means that the function ℓ has a large curvature.8

Let v = w + λ(w′ − w) and use Taylor’s theorem to see that9

ℓ(w′) = ℓ(w) +

∫ 1

0

⟨∇ℓ(v), w′ − w⟩ dλ (9.19)

Subtract ⟨∇ℓ(w), w′ − w⟩ from both sides to get10

ℓ(w′)− ℓ(w)− ⟨∇ℓ(w), w′ − w⟩ =
∫ 1

0

⟨∇ℓ(v)−∇ℓ(w), w′ − w⟩ dλ.

Observe that11

|ℓ(w′)− ℓ(w)− ⟨∇ℓ(w), w′ − w⟩| =
∣∣∣∣∫ 1

0

⟨∇ℓ(v)−∇ℓ(w), w′ − w⟩ dλ
∣∣∣∣

≤
∫ 1

0

|⟨∇ℓ(v)−∇ℓ(w), w′ − w⟩| dλ

≤
∫ 1

0

∥∇ℓ(v)−∇ℓ(w)∥ ∥w′ − w∥dλ

≤ L

∫ 1

0

λ ∥w′ − w∥2dλ

=
L

2
∥w′ − w∥2.

This completes the proof after removing the absolute value on the left-hand12

side.13

We can use the Descent Lemma twice on two points to w,w′ to14

get Eq. (9.17). Another direct consequence of the Descent Lemma is15

the following corollary that relates the value ℓ(w) at any point w in the16

domain to that of the global minimum.17

Corollary 9.2. For L-smooth convex function ℓ, if w∗ is the global18

minimizer, then19

1

2L
∥∇ℓ(w)∥2 ≤ ℓ(w)− ℓ(w∗) ≤ L

2
∥w − w∗∥2. (9.20)

Proof. Since ∇ℓ(w∗) = 0, the right-hand side follows directly from the20
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Descent Lemma. To get the left-hand size, let us optimize the upper bound1

in the Descent Lemma using w′ = w + λv with ∥v∥ = 1 as follows2

ℓ(w∗) = inf
w′

ℓ(w′)

≤ inf
w′

{
ℓ(w) + ⟨∇ℓ(w), w′ − w⟩+ L

2
∥w′ − w∥2

}
= inf

∥v∥=1
inf
λ

{
ℓ(w) + λ ⟨∇ℓ(w), v⟩+ L

2
λ2

}
= inf

∥v∥=1

{
ℓ(w)− 1

2L
(⟨∇ℓ(w), v⟩)2

}
= ℓ(w)− 1

2L
∥∇ℓ(w)∥2.

3

In other words, the gap between the function values ℓ(w)− ℓ(w∗) is upper-4

bounded by the gap to the minimizer L
2 ∥w − w∗∥2 and lower-bounded by5

the norm of the gradient 1
2L∥∇ℓ(w)∥

2.6

Co-coercivity of the gradient The gradient being L-Lipschitz is equiv-7

alent to co-coercivity of the gradient with parameter 1/L8

⟨∇ℓ(w)−∇ℓ(w′), w − w′⟩ ≥ 1

L
∥∇ℓ(w)−∇ℓ(w′)∥2. (9.21)

� The condition in Eq. (9.21) is called
co-coercivity because there is a related
condition called coercivity for m-strongly
convex functions

⟨∇ℓ(w)−∇ℓ(w′), w − w′⟩ ≥ m∥w − w′∥2,

for all w,w′. Try to prove it. Note that this
condition boils down to simple monotonicity
of the gradient for m = 0 (which is just a
convex function). This is why it is also called
strong monotonicity of ∇ℓ.

We can see that co-coercivity implies Lipschitz continuity of the9

gradients ∇ℓ(w) using Eqs. (9.17) and (9.21). The reverse is also true10

and you will show both of these sides in the homework. A sketch of the11

reverse goes as follows.12

Note that Lipschitz-continuity of the gradient implies the Descent13

Lemma (Lemma 9.1). Now define two functions14

g(u) = ℓ(u)− ⟨∇ℓ(w), u⟩
h(u) = ℓ(u)− ⟨∇ℓ(w′), u⟩ .

Both of these have L-Lipschitz gradients. Note that u = w minimizes15

g(u) (the minimum is zero). Observe that16

ℓ(w′)− ℓ(w)− ⟨∇ℓ(w), w′ − w⟩ = g(w′)− g(w)

≥ 1

2L
∥∇g(w′)∥2 from Eq. (9.20)

=
1

2L
∥∇ℓ(w′)−∇ℓ(w)∥2.

Apply the same again to h to get17

ℓ(w)− ℓ(w′)− ⟨∇ℓ(w′), w − w′⟩ ≥ 1

2L
∥∇ℓ(w′)−∇ℓ(w)∥2

and add the two inequalities.18
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We can now get our first result on how gradient descent makes1

monotonic progress towards the solution.2

Lemma 9.3 (Monotonic progress for gradient descent). For gradient3

descent w(t+1) = w(t) − η∇ℓ(w(t)), if we pick the step-size4

η ≤ 1

L
(9.22)

we have5

ℓ(w(t+1)) ≤ ℓ(w(t))− η

2

∥∥∥∇ℓ(w(t))
∥∥∥2 ∀t. (9.23)

Further,6

ℓ(w(t+1))− ℓ(w∗) ≤ 1

2η

(∥∥∥w(t) − w∗
∥∥∥2 − ∥∥∥w(t+1) − w∗

∥∥∥2) (9.24)

which implies7 ∥∥∥w(t+1) − w∗
∥∥∥2 ≤ ∥∥∥w(t) − w∗

∥∥∥2. (9.25)

Proof. Substitute η ≤ 1/L in the Descent Lemma and simplify to8

get Eq. (9.23). The second result is obtained by9

0 ≤ ℓ(w(t+1))− ℓ(w∗) ≤ ℓ(w(t))− ℓ(w∗)− η

2

∥∥∥∇ℓ(w(t))
∥∥∥2

≤
〈
∇ℓ(w(t)), w(t) − w∗

〉
− η

2

∥∥∥∇ℓ(w(t))
∥∥∥2

=
1

2η

(∥∥∥w(t) − w∗
∥∥∥2 − ∥∥∥w(t) − w∗ − η∇ℓ(w(t))

∥∥∥2)
=

1

2η

(∥∥∥w(t) − w∗
∥∥∥2 − ∥∥∥w(t+1) − w∗

∥∥∥2) .

Observe that since the left-hand side is positive, the claim in Eq. (9.25) is10

true.11

We have therefore shown that if the step-size is not too large (the12

smoothness parameter of the function determines how large the step-size13

can be) then gradient descent always improves the value of the function14

with each iteration Eq. (9.23). It also improves the distance of the weights15

to the global minimum at each iteration Eq. (9.25).16

Lemma 9.4 (Convergence rate for gradient descent, convex function).17

For gradient descent w(t+1) = w(t)− η∇ℓ(w(t)) with step-size η < 1/L,18

we have19

ℓ(w(t+1))− ℓ(w∗) ≤ 1

2 t η

∥∥∥w(0) − w∗
∥∥∥2. (9.26)
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Proof. We sum up the expression in Eq. (9.24) for all times t to get1

t∑
s=1

ℓ(w(s))− ℓ(w∗) ≤ 1

2η

t∑
s=1

(∥∥∥w(s−1) − w∗
∥∥∥2 − ∥∥∥w(s) − w∗

∥∥∥2)
=

1

2η

(∥∥∥w(0) − w∗
∥∥∥2 − ∥∥∥w(t) − w∗

∥∥∥2)
≤ 1

2η

∥∥∥w(0) − w∗
∥∥∥2.

We know from Eq. (9.23) that ℓ(w(t)) is non-increasing, so we can write2

ℓ(w(t))− ℓ(w∗) ≤ 1

t

t∑
s=1

(
ℓ(w(s))− ℓ(w∗)

)
≤ 1

2 t η

∥∥∥w(0) − w∗
∥∥∥2.

3

If we want to find weights with

ℓ(w(t))− ℓ(w∗) ≤ ϵ

for a convex function, we need to run gradient descent for at least

t = O(1/ϵ)

iterations. This is an important result to remember.

9.3.3 Gradient descent for strongly convex functions4

Things are much better if the function we are minimizing is strongly5

convex. First we have the following lemma for strongly-convex functions6

which involves a rewriting co-coercivity condition for strongly convex7

functions.8

Lemma 9.5 (Co-coercivity for strongly convex function). If ℓ(w) is9

m-strongly convex, and L-smooth, then10

⟨∇ℓ(w)−∇ℓ(w′), w − w′⟩ ≥ mL

m+ L
∥w − w′∥2 + 1

m+ L
∥∇ℓ(w)−∇ℓ(w′)∥2.

(9.27)

Proof. If the conditions of the lemma hold, then the function g(w) =11

ℓ(w)− m
2 ∥w∥

2 is convex and (L−m)-smooth. The convexity of g(w)12

is immediate to see from the definition of strong convexity of ℓ(w). Use13

the monotonicity of the gradient of g(w) to get14

0 ≤ ⟨∇g(w)−∇g(w′), w − w′⟩

= ⟨∇ℓ(w)−∇ℓ(w′), w − w′⟩ −m∥w − w′∥2

≤ (L−m)∥w − w′∥2.
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We can now rewrite the co-coercivity condition for ∇g and simplify to1

get Eq. (9.27).2

Lemma 9.6 (Convergence rate of gradient descent for strongly convex3

functions). For strongly convex functions we have pick a step-size4

0 < η <
2

m+ L

to get5 ∥∥∥w(t+1) − w∗
∥∥∥2 ≤ (1− η

2mL

m+ L

)∥∥∥w(t) − w∗
∥∥∥2. (9.28)

which gives6 ∥∥∥w(t) − w∗
∥∥∥2 ≤ ct

∥∥w0 − w∗∥∥2 (9.29)

where c =
(
1− η 2mL

m+L

)
.7

Proof. We expand the left hand-side in Eq. (9.28) to get8 ∥∥∥w(t+1) − w∗
∥∥∥2 =

∥∥∥w(t) − η∇ℓ(w(t))− w∗
∥∥∥2

=
∥∥∥w(t) − w∗

∥∥∥2 − 2η
〈
∇ℓ(w(t)), w(t) − w∗

〉
+ η2

∥∥∥∇ℓ(w(t))
∥∥∥2

≤
(
1− η

2mL

m+ L

)∥∥∥w(t) − w∗
∥∥∥2 + η

(
η − 2

m+ L

)∥∥∥∇ℓ(w(t))
∥∥∥2

≤
(
1− η

2mL

m+ L

)∥∥∥w(t) − w∗
∥∥∥2.

We have substituted the co-coercivity condition from Eq. (9.27) for the9

inner-product withw′ := w(t) and w := w∗ to get the first inequality. This10

implies that the distance to the global minimum
∥∥w(t) − w∗

∥∥ decreases11

multiplicatively; compare this with Eq. (9.25) where the progress is12

additive. The additional assumption of strong convexity therefore means13

that we are making very quick progress towards the global minimum. We14

can use this inequality repeatedly for all iterations t to get15 ∥∥∥w(t) − w∗
∥∥∥2 ≤ ct

∥∥w0 − w∗∥∥2
where c =

(
1− η 2mL

m+L

)
.16

Strong convexity enables much faster progress towards the global
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minimum. If we want
∥∥w(t) − w∗

∥∥ ≤ ϵ we need

O(log(1/ϵ))

iterations of gradient descent. This is much less than that for a convex
function. Quite non-intuitively, this is called linear convergence be-
cause we need a constant number of iterations to reduce the gap to the
optimal in half. The naming convention is a bit unusual here but you
will see that if we plot log

∥∥w(t) − w∗
∥∥ (or log

(
ℓ(w(t))− ℓ(w∗)

)
)

on the Y-axis and number of iterations t on the X-axis, we get a
straight line for gradient descent on strongly-convex functions; you
can see this from Eq. (9.29).

� Plot the convergence rate of gradient
descent for convex and strongly-convex
functions.

We say that the convergence rate of gradient descent for non-
strongly convex functions is sub-linear. The longer we run GD for
convex functions, the slower its progress. � The nomenclature is a bit non-intuitive in

the optimization literature. An algorithm with

lim
t→∞

ℓ(w(t+1))− ℓ(w∗)

ℓ(w(t))− ℓ(w∗)
= ρ

is said to be sub-linear if ρ ∈ (0, 1), linear if
ρ = 1 and super-linear if ρ = 0.

Further, if we pick the largest step-size η = 2/(m+ L) we get

c =

(
κ− 1

κ+ 1

)2

< 1. (9.30)

where κ = L/m is the condition number of the Hessian (it is the
ratio of the largest eigenvalue and the smallest eigenvalue). Larger
the condition number κ, closer to 1 the multiplicative constant c and
slower the convergence rate of gradient descent.

A few more points to note1

1. The step-size if limited by m+ L but the convergence rate depends2

on κ = L/m. Smaller the value of c, faster the convergence.3

2. Larger the L, smaller the ideal step-size η4

3. You can get the upper bound5

ℓ(w(t))− ℓ(w∗) ≤ L

2

∥∥∥w(t) − w∗
∥∥∥2 ≤ ctL

2

∥∥w0 − w∗∥∥2 (9.31)

using Eq. (9.20).6

You will also see the convergence rate written in many papers as7 ∥∥∥w(t) − w∗
∥∥∥ ≤ e−4t/κ

∥∥w0 − w∗∥∥. (9.32)

You can get this inequality by using the fact that 1 + x ≤ ex in Eq. (9.30).8

We can use this to pull out the dependence on κ in the convergence rate;9

for strongly convex functions, gradient descent requires10

O(κ log(1/ϵ))

iterations to reach within an ϵ-neighborhood of the global minimum ℓ(w∗).11

This suggests that smaller the condition number κ fewer the iterations12
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required.1

We can intuitively understand why convergence of gradient descent is2

slower for a large condition number. A large condition number means that3

some directions of the objective ℓ are highly curved while some others4

are very flat. It is difficult to pick one single scalar step-size in such5

situations that makes quick progress along the flat directions but also does6

not overshoot the highly curved directions. You might imagine that clever7

schemes to change the step-size depending upon the local geometry of the8

function ℓ(w(t)) could help solve this issue and indeed it does, but such9

adaptive schemes are expensive to implement computationally. We will10

see some algorithms that pick different step-sizes for different weights in11

Chapter 11.

� Draw a picture of this phenomenon for a
quadratic objective ℓ(w) = ⟨w,Aw⟩ for
matrices A ≻ 0 with different condition
numbers κ.

12

9.4 Limits on convergence rate of first-order13

methods14

It is a powerful and deep result that we cannot do better than a linear15

convergence rate for optimization methods that only use the gradient of16

the function ℓ(w). More precisely, for any first-order method, i.e., any17

method where the iterate at step t given by w(t) is chosen to be18

w(t) ∈ w0 + span
{
∇ℓ(w0), . . . ,∇ℓ(wt)

}
,

we have the following theorem by Yurii Nesterov.19

Theorem 9.7 (Nesterov’s lower bound). Ifw ∈ Rp, for any t ≤ (p−1)/220

and every initialization of weights w0 there exist functions ℓ(w) that are21

convex, differentiable, L-smooth with finite optimal value ℓ(w∗) such that22

any first-order method has23

ℓ(w(t))− ℓ(w∗) ≥ 3

32

L
∥∥w0 − w∗

∥∥2
(t+ 1)2

.

Let us read the statement of the theorem carefully. It states that24

fixed a time t and initial condition w0, we can find a convex function25

ℓ(w) such that it takes any first order method at least O(1/
√
ϵ) to reach26

an ϵ-neighborhood of the optimal value ℓ(w∗). The implication of this27

theorem is as follows. The convergence rate O(1/ϵ) we obtained for28

convex functions is not the best rate we can get. Nesterov’s lower bound29

suggests that there should be gradient-based algorithms that only require30

O(1/
√
ϵ) iterations. Such methods will be the topic of the next Chapter.31



Chapter 101

Accelerated Gradient2

Descent3

Reading
1. The blog-post titled “Why momentum really works?” at

https://distill.pub/2017/momentum

In the previous chapter we saw two results that characterize how many4

iterations gradient descent requires to reach within an ϵ-neighborhood of5

the global optimum for convex functions. If the function ℓ(w) is convex,6

GD with a step-size at most 1/L requiresO(1/ϵ) iterations. If the function7

ℓ(w) is strongly convex, then the step-size can be as large as 2/(m+ L)8

and GD requires O(κ log(1/ϵ)) iterations where9

κ =
L

m

is the condition number of the Hessian∇2ℓ(w). A large value of κ means10

that there are some directions where the function is highly curved and11

others where it is relatively flat. The main point to remember is that we12

often do not know a good value for m,L. Since the step-size of GD13

depends upon the curvature of the function; if the step-size is too large14

then GD overshoots on the highly curved directions and if the step-size is15

too small then GD makes slow progress along a direction.16

We will study two algorithms in this chapter which accelerate the17

progress of gradient descent.18

10.1 Polyak’s Heavy Ball method19

The most natural place to begin is to imagine gradient descent as a20

kinematic equation. Let w(t) be the iterate of GD at time t, let us associate21

133
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to it an auxiliary variable called the “velocity” v(t)1

v(t) := w(t+1) − w(t). (10.1)

Gradient descent can then be written as2

v(t) = −η∇ℓ(w(t)), (10.2)

which allows us to think of the term −∇ℓ(w(t)) as some kind of force3

that acts on a particle to update its position from w(t) to w(t+1). This4

particle has no inertia, so we will say that the applied force directly affects5

its position. If the magnitude of the gradient is small in a certain direction,6

the velocity is also small in that direction.7

We now give our particle some inertia. Instead of the force directly8

affecting the position we will write down Newton’s second law of motion9

(F = ma) for a particle with unit mass m = 1and time discretization η10

(or equivalently, with a time discretization of 1 and a mass of η−1) as11

−∇ℓ(w(t)) =:
v(t+1) − v(t)

η

=
1

η

(
w(t+1) − 2w(t) + w(t−1)

)
=⇒ w(t+1) = w(t) − η∇ℓ(w(t)) +

(
w(t) − w(t−1)

)
.

(10.3)

Notice the third term on the right-hand side above, it is the gap between12

the current weights w(t) and the previous weights w(t−1), if we have13 〈
w(t) − w(t−1),∇ℓ(w(t))

〉
< 0,

i.e., the change from the previous time-step is along the descent direction,14

then the weights w(t+1) get an extra boost. If instead, the change from15

the previous direction is not along the gradient descent direction, then16

the third term reduces the magnitude of the gradient. The third term is17

effectively the inertia of gradient updates. This method is therefore called18

Polyak’s Heavy Ball method.19

We give ourselves some more control over how inertia enters the
update equation using a hyper-parameter ρ (which is akin to mass)

w(t+1) = w(t) − η∇ℓ(w(t)) + ρ
(
w(t) − w(t−1)

)
. (10.4)

If ρ = 0, we do not use any inertia and Polyak’s method boils down
to gradient descent. Typically, we choose ρ ∈ (0, 1). This inertia is
called momentum in the optimization literature and ρ is called the
momentum coefficient.

Polyak’s method is simple yet very powerful. In the previous chapter,20

we showed a lower-bound of Nesterov which indicates that first-order21

optimization algorithm (that only depends on the gradient of the objective)22
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cannot be faster thanO(1/
√
ϵ). It turns out that Polyak’s method converges1

at this rate, i.e., if we want2 ∥∥∥w(t) − w∗
∥∥∥ ≤ ϵ

we need to run Polyak’s Heavy Ball method for O(1/
√
ϵ) iterations for3

convex functions. If the function is strongly convex, the number of4

iterations comes down to5

O(
√
κ log(1/ϵ)).

Both of these are improvements upon their convergence rates for gradient6

descent. These improvements are also quite a lot, we need quadratically7

fewer iterations than gradient descent in Polyak’s method and the only8

incremental cost of doing so is that we have to maintain a copy of the9

weights w(t+1) while implementing the updates in Eq. (10.4).10

An alternative way to write Polyak’s updates We can rewrite the11

updates in Eq. (10.4) using a dummy variable u(t) as12

u(t) = (1 + ρ)w(t) − ρ w(t−1)

w(t+1) = u(t) − η∇ℓ(w(t)).
(10.5)

This is how these updates are implemented in PyTorch. This is convenient:13

effectively, the code needs to maintain only the difference u(t) = (1 +14

ρ)w(t)− ρw(t−1) in a buffer u(t) and subtract the gradient∇ℓ(w(t)) from15

this buffer to result in the new updates. GD can be implemented with a16

simple change by setting u(t) := w(t) with corresponds to ρ = 0. The17

dummy variable is initialized to u0 = w0.18

A yet another way to write Polyak’s updates We can also rewrite
the updates in Eq. (10.5) as

u(t+1) = ρ u(t) −∇ℓ(w(t))

w(t+1) = w(t) + η u(t+1).
(10.6)

This set of updates brings out idea of momentum more clearly. The
variable u(t) in this case is exactly the velocity v(t) that we have seen
above except that it is updated slightly different than our expression
(F = ma) in the first equation. The first term

u(t+1) = ρ u(t) −∇ℓ(w(t))

reduces the velocity u(t) by a factor ρ before adding the gradient to it.

� Draw Polyak’s updates for a
two-dimensional function.
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10.1.1 Polyak’s method can fail to converge1

The caveat with relying on the inertia of the particle to make progress2

is that near the global minimum, when the iterates overshoot the global3

minimum, the inertia is often very different from the gradient. Polyak’s4

method can become unstable and can result in oscillations under such5

conditions, e.g.,6

7

However it is a very simple method to accelerate gradient descent and8

works great in practice.9

10.2 Nesterov’s method10

Nesterov’s method is an advanced version of Polyak’s method. Let us11

understand these oscillations better. We saw that incorporating a notion12

of inertia in Polyak’s method gave us accelerated convergence; this is13

intuitive, if the velocity is along the descent direction the particle descends14

faster. The same inertia hurts towards the end because the velocity can be15

very different than the gradient when the particle overshoots the minimum.16

A simple way to fix this is to incorporate damping (friction) into17

Newton’s law of motion; you can read about the simple harmonic oscillator18

at https://en.wikipedia.org/wiki/Harmonic_oscillator. We are going to19

write20

ma = F − cv.

wherem is the mass, c is the coefficient of damping, a and v are acceleration21

and velocity respectively and F is the force as usual. The effective force22

decreases with the velocity. Doing so does not slow down the weight23

updates much when the gradient magnitude is large at the beginning of24

training. But when the gradient magnitude is small (when the particle is in25

the neighborhood of the global minimum), this friction prevents excessive26

overshooting.27

With that background, let us see how Nesterov’s updates for gradient28

descent look.29

We will write a similar set up of updates as that of Eq. (10.6).

https://en.wikipedia.org/wiki/Harmonic_oscillator
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Nesterov’s updates correspond to

u(t+1) = ρ u(t) −∇ℓ(w(t) + η ρ u(t))

w(t+1) = w(t) + η u(t+1).
(10.7)

The only difference between Eq. (10.7) and Eq. (10.6) is the term
in blue; effectively the gradient is computed as if the weights w(t)

moved using the velocity u(t); and then this new velocity u(t+1) is
used to obtain the new updates w(t+1). Nesterov’s method solves the
problem of instability in Polyak’s method by essentially computing
the gradient (the blue term) as given by the current velocity. You can
see how this slows down the updates if the velocity is well-aligned
with the gradient; we are reducing the benefit of inertia/momentum.
However, doing so prevents overshooting as the iterates reach the
neighborhood of the global minimum.

An alternative way to write Nesterov’s updates We can rewrite the1

updates in Eq. (10.7) to look like those in Eq. (10.5), to get2

u(t) = (1 + ρ)w(t) − ρ w(t−1)

w(t+1) = u(t) − η∇ℓ(u(t)).
(10.8)

Again the blue term is the only difference between Polyak’s method and3

Nesterov’s method. The term u(t) is conceptually a forecasted version of4

the weights w(t) because notice that5

u(t) = w(t) + ρ(w(t) − w(t−1)).

The new weights w(t+1) are now obtained by thinking of u(t) as the actual6

weights. We initialize w(t+1) = w(t) to w0 for t = 0.7

10.2.1 A model for understanding Nesterov’s updates8

We will set the damping coefficient (ρ) in Eq. (10.8) to a special value9

ρ =
t− 1

t+ 2
;

effectively as t→∞ the friction becomes larger and larger. This simplifies10

our updates to11

u(t) = w(t) +
t− 1

t+ 2

(
w(t) − w(t−1)

)
w(t+1) = u(t) − η ∇ℓ(u(t)).

which upon collapsing together give12

w(t+1) − w(t) =
t− 1

t+ 2

(
w(t) − w(t−1)

)
− η∇ℓ(u(t)). (10.9)
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We now choose a different way of interpreting these updates. We will1

imagine that the sequence2 {
w0, w1, . . . , w(t), w(t+1), . . .

}
is the discretization of a smooth curve3

{W (τ) : τ ∈ [0,∞)} .

How is this curve W (τ) related to the original sequence? We are going to4

study the updates under the setting5

τ :=
√
η t. (10.10)

Essentially the time of the discrete-time updates Eq. (10.9) increments6

in intervals of 1, but the time of the curve W (τ) is real-number. Each7

increment in discrete-time corresponds to √η increment of the time τ for8

the curve W (τ). This gives9

W (τ) = w(t)

W (τ +
√
η) = w(t+1).

We now do a Taylor expansion for the continuous curve X(τ) to get10

w(t+1) − w(t) = W (τ +
√
η)−W (τ)

= Ẇ (τ)
√
η +

1

2
Ẅ (τ)η + O(η).

(10.11)

Here11

Ẇ (τ) =
d
dτ

W (τ), Ẅ (τ) =
d2

dτ2
W (τ)

are the first and second derivative of the curve with respect to time and12

O(
√
η) denotes higher-order terms. Similarly13

w(t) − w(t−1) = W (τ)−W (τ −√η)

= Ẇ (τ)
√
η − 1

2
Ẅ (τ)η + O(η).

Note that due to our special scaling of time we have14

t− 1

t+ 2
= 1− 3

t+ 2
≈ 1− 3

t
= 1−

3
√
η

τ
.

We now do a Taylor expansion of the loss term ∇ℓ(u(t)) to get15

∇ℓ(u(t)) = ∇ℓ
(
w(t) +

t− 1

t+ 2

(
w(t) − w(t−1)

))
= ∇ℓ(w(t)) + higher order terms
= ∇ℓ(W (τ)) + O(

√
η).

(10.12)
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Substitute Eqs. (10.11) and (10.12) in Eq. (10.9) and divide both side by1 √
η to get2

Ẇ (τ) +
1

2
Ẅ (τ)

√
η + O(

√
η) =

(
1−

3
√
η

τ

)(
Ẇ (τ)− 1

2
Ẅ (τ)

√
η + O(

√
η)

)
−√η ∇ℓ(W (τ)) + O(η).

This equation is true for all values of η, so we can compare the coefficients3

of √η on both sides to get4

Ẅ +
3

τ
Ẇ +∇ℓ(W ) = 0. (10.13)

This equation looks very similar to Newton’s law with friction ma+ cv =5

F . Again, the term ∇ℓ(W ) is acting as the force, the second derivative6

Ẅ is the acceleration and the friction term 3
t Ẇ increases with velocity.7

We have shown that for a particularly chosen value of the momentum8

coefficient, Nesterov’s updates result in an ordinary differential equation9

that looks much like that simple harmonic oscillator that most of you have10

seen before in high-school. This approach gives an alternative, and very11

simple, way of understanding Nesterov’s updates which is nice because12

the updates in Eqs. (10.7) and (10.8) were quite non-intuitive and created13

by Nesterov through a sheer tour de force.14

Remark 10.1. Derive a similar ordinary differential equation for Polyak’s15

updates using the same setting of friction (t−1)/(t+2) as that in Eq. (10.9).16

You will notice that if viewed in continuous-time Polyak’s updates are17

exactly the same as Nesterov’s updates. This is because the continuous-18

time model is a more abstract point-of-view and eliminates the subtle19

differences between the updates between the two algorithms.20

Such continuous-time models are very useful to understand what these21

updates actually do, e.g., we know that Nesterov’s updates correspond to22

having damping in Newton’s law which is not apparent by looking at the23

equations in Eq. (10.8). It is also very easy to obtain the convergence rate24

of the continuous-time version; it is an ordinary differential equation and25

we can use a lot of tools from dynamical systems, in particular Lyapunov26

functions. It will amuse you to know that obtaining the convergence rate27

for Nesterov’s updates using the continuous-time version Eq. (10.13) takes28

about half a page but doing the same proof in discrete-time (like Nesterov29

did it originally) takes a few dozen pages.30

10.2.2 How to pick the momentum parameter?31

Nesterov’s updates converge at a rate that is similar to that of Polyak’s32

updates. For convex functions, we need33

O(1/
√
ϵ)

iterations to get within the ϵ-neighborhood of the global minimum if we34

set35

ρ = (t− 1)/(t+ 2)
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in Eq. (10.6). If we are minimizing a strongly-convex function we can1

pick the momentum coefficient to depend on m,L: we can set2

ρ =

√
κ− 1√
κ+ 1

(10.14)

and η < 2/(m+ L). If we do so, we need3

O(
√
κ log(1/ϵ))

weight updates to reach within an ϵ-neighborhood of the global minimum.4

The expression in Eq. (10.14) gives some insight in how momentum5

accelerates things. If κ ≈ 1, i.e., the Hessian of the objective is well-6

conditioned without a big diversity in the curvature in different directions,7

we do not really need friction ρ ≈ 0 to avoid overshooting close to the8

minimum; progress in all directions is balanced. On the other hand, if9

κ ≫ 1, the objective is badly conditioned and the friction coefficient10

ρ ≈ 1 should be large to avoid overshooting near the global minimum.11

How to pick ρ in practice? If we know what m,L are for a given12

problem (you will see an example of this in HW 4), it is straightforward13

to pick the momentum coefficient and get accelerated convergence of14

gradient descent. If we do not know m,L, we pick some constant value of15

ρ. For instance, ρ = 0.9 is popularly used in most deep learning libraries.16

Typically, the momentum coefficient is not increased with the number17

of weight updates using (t − 1)/(t + 2). You will some heuristics for18

modifying the momentum coefficient in this week’s recitation.19



Chapter 111

Stochastic Gradient2

Descent3

Reading
1. “Stochastic gradient descent tricks” by Bottou (2012). Great

paper with lots of little tricks of how to use SGD in practice.

2. Up to Section 4.2 of “Optimization methods for large-scale
machine learning” by Bottou et al. (2018). This is advanced
material, you do not need to be able to follow it completely.

3. http://fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html

4. “Adam: A Method for Stochastic Optimization” by Kingma
and Ba (2014).

5. Stochastic Weight Averaging (SWA) by Izmailov et al. (2018).

Stochastic Gradient Descent (SGD) has its roots in stochastic opti-4

mization. A stochastic optimization problem looks like5

w∗ = argmin
w

E
ξ
[ℓ(w, ξ)] (11.1)

where ξ is a random variable. This is a very old and rich area, there was6

lots of action in it already in the 1950s, e.g., (Kushner and Yin, 2003;7

Robbins and Monro, 1951). It is also a highly relevant problem: for8

instance, when a plane goes from Los Angeles to Philadelphia, the route9

that the plane takes depends on the local weather conditions along its10

path and airlines will optimize this route using a stochastic optimization11

problem of the above form. The variable w will be the trajectory of the12

plane and ξ are the weather conditions which we do not know exactly but13

may perhaps have estimated a distribution for them. Such problems are14
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very common in other fields like operations research, e.g., optimizing the1

time at which an Amazon package arrives with various disturbances such2

as delays in shipping, missing inventory in the warehouse etc.3

In machine learning, we are interested in solving a slightly different4

problem called the finite-sum problem. Given a finite dataset D =5 {
(xi, yi)

}
i=1,...,n

we minimize6

ℓ(w) :=
1

n

n∑
i=1

ℓi(w) (11.2)

where we will use the shorthand7

ℓi(w) := ℓ(w;xi, yi)

to denote the loss on the datum (xi, yi) with weights w. Essentially, the8

random variable ξ in Eq. (11.1) represents the samples in the training9

dataset; with important differences being that neither do we know anything10

about the distribution of the input data, nor do we have an infinite number11

of samples.12

It is difficult to do gradient descent if the number of samples n is large13

because the gradient is a summation of a large number of terms14

∇ℓ(w) = 1

n

n∑
i=1

∇ℓi(w).

If the mini-batch size is 1, i.e., at each iteration we sample one of the15

training samples denoted by16

ωt ∈ {1, . . . , n}

we update the weights using17

w(t+1) = w(t) − η∇ℓωt(w(t)). (11.3)

For a larger mini-batch of size b let us denote the samples in the mini-batch18

by19 {
(xω1

t , yω
1
t ), . . . , (xωb

t , yω
b
t )
}

where each ωk
t ∈ {1, . . . , n} is the index chosen uniformly randomly20

from the training dataset. We will choose these indices with replacement21

(analyzing SGD for sampling without replacement is quite hard). The22

gradient on this sampled mini-batch is denoted by23

∇ℓb(w) :=
1

b

b∑
i=1

ℓω
i
t(w) (11.4)

and we update the weights as usual using24

w(t+1) = w(t) − η∇ℓb(w(t)).
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If b = 1, we will denote the gradient by ∇ℓω to keep the notation clear.1

What is an epoch in PyTorch? We will not think of epochs when2

we develop the theory for SGD. An epoch is a construct introduced in3

deep learning libraries for bookkeeping purposes. It also ensures that if4

Algorithm A obtains so and so training/validation error after 100 epochs,5

it can be compared directly with Algorithm B which obtains the same6

training/validation error after, say, 120 epochs, e.g., one can say Algorithm7

A is faster than Algorithm B at training a network. Instead of sampling a8

mini-batch of data uniformly randomly with replacement, PyTorch shuffles9

the entire training set at the beginning of each epoch and samples the10

mini-batch with replacement during each epoch. This is reasonable but11

there will be some discrepancies in the performance of SGD as predicted12

by theory and obtained by PyTorch on deep networks, especially if the13

mini-batch size is large.14

Although we will not discuss this, SGD using mini-batches sam-15

pled with replacement is faster than with mini-batches sampled without16

replacement (Recht and Ré, 2012).17

11.1 SGD for least-squares regression18

� Draw the objective here for different
values of wi and understand how SGD works
for this problem.

Let us understand SGD for one dimensional least-squares, our data and19

targets are xi, yi ∈ R and the objective is20

ℓ(w) =
1

2n

n∑
i=1

(xiw − yi)2 (11.5)

for the weights w ∈ R. Notice that the objective is a sum of n different21

quadratics, each quadratic is minimized by different weights22

w∗(i) :=
yi

xi
;

in other words, each sample in the training dataset would like the weight23

to be yi/xi to minimize its residual and the least-squares objective which24

sums up their individual residuals forces them to made trade-offs. Focus25

on two quantities26

wmin = min
i
{w∗(i)} , wmax = max

i
{w∗(i)} .

Notice that the interval (−∞, wmax) is the region where the descent27

direction on any sample in the dataset moves the weights w(t) to the right.28

The interval (wmax,∞) is the region where the descent direction on any29

sample moves the weights to the left. If weights are initialized in the30

latter region, w0 ≫ maxi w∗(i), successive iterations of SGD will quickly31

bring the weights to32

w(t) ∈ (wmin, wmax) (11.6)
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which we will call the “zone of confusion”. Similarly, if weights are1

initialized wo ≪ wmin, they will move right until iterates reach the zone2

of confusion.3

After w(t) ∈ (wmin, wmax), there is no real convergence of the
weights, if the learning rate η is fixed, since the samples ωt are
sampled uniformly randomly, depending upon which sample was
chosen to compute the gradient the weights move to the right or the
left and therefore keep shuttling back and forth in this region.

Notice that the objective in Eq. (11.5) is convex because it is the
sum of convex functions so there is a unique global minimum namely

w∗ =

∑n
i=1 x

iyi∑n
i=1(x

i)2
.

If one were to execute gradient descent on this same problemw(t+1) =

w(t) − η∇ℓ(w(t)), we will converge to this value. But since SGD
samples a different sample at each iteration, SGD never converges, it
remains in this large zone (wmin, wmax).

11.2 Convergence of SGD4

If the learning rate is large, SGD makes quick progress outside the zone5

of confusion but bounces around a lot inside the zone of confusion. If the6

learning rate is too small, SGD is slow outside the zone of confusion but7

does not bounce around too much inside the zone. You can explore how8

the learning rate changes the dynamics of SGD at9

http://fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html.10

In this section, we will study under what conditions SGD converges to11

the global minimum and how the learning rate of SGD should be reduced12

to make it converge quickly. We will first analyze SGD with mini-batch13

size of 1.14

Strongly convex functions The proofs for convex functions are tedious,15

so we will only consider strongly convex functions in this section. As16

usual the strong convexity parameter is m and smoothness parameter is L.17

One key thing to notice that these constants L,m refer to the full objective,18

i.e.,19

∥∇ℓ(w)−∇ℓ(w′)∥ ≤ L∥w − w′∥

and20

ℓ(w)− m

2
∥w∥2 is convex.

Here ℓ(w) is the full objective21

ℓ(w) =
1

n

n∑
i=1

ℓi(w).

http://fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html
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What is the appropriate notion of convergence? The key difference1

between updates of SGD and those of GD is that SGD updates also depend2

on the random variable ωt. The iterate ωt is a random variable and3

therefore instead of simply bounding the gap ℓ(w(t)) − ℓ(w∗) we will4

have to obtain an upper bound for5

E
w(t)

[
ℓ(w(t))

]
− ℓ(w∗).

Similar to the case of SGD, let us construct a descent lemma for one6

iteration of SGD update.7

Lemma 11.1 (Descent Lemma for SGD).

E
ωt

[
ℓ(w(t+1))− ℓ(w(t)) | w(t)

]
≤ −η

〈
∇ℓ(w(t)), E

ωt

[
∇ℓωt(w(t))

]〉
+

Lη2

2
E
ωt

[∥∥∥∇ℓωt(w(t))
∥∥∥2] .

(11.7)

Proof. First, compare this with the descent lemma for gradient descent8

(if we substitute w(t+1) − w(t) = −η∇ℓ(w(t)) from Chapter 9)9

ℓ(w(t+1))− ℓ(w(t)) ≤ −η
〈
∇ℓ(w(t)),∇ℓ(w(t))

〉
+

Lη2

2

∥∥∥∇ℓ(w(t))
∥∥∥2

The only difference now is that in the case of SGD we have10

w(t+1) − w(t) = −η∇ℓωt(w(t)).

The most important different however is that the descent term, namely11

the left-hand side in Eq. (11.7) is conditioned on the random variable12

w(t). The proof of this lemma is easy, we simply substitute the expression13

for the weight updates of SGD and take an expectation over the index of14

datum sampled by SGD ωt on both sides of the inequality.15

The implication of the above lemma is that SGD updates need more refined16

conditions under which we can claim monotonic progress towards the17

global minimum. Effectively, we need to make sure that the right-hand18

side is negative, always irrespective of what the value of the random19

variable w(t) is. We would like to upper bound the right-hand side by a20

deterministic quantity ideally.21

11.2.1 Typical assumptions in the analysis of SGD22

1. Stochastic gradients are unbiased. Assume that the stochastic23

gradient is unbiased24

∇ℓ(w) = E
ω
[∇ℓω(w)] (11.8)

for all w in the domain. This is akin to assuming that the way we25

sample images in the mini-batch is such that the average is always26
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pointing towards the true gradient with a similar magnitude. This is1

a natural condition and will only change if the sampling distribution2

is not uniform. This assumption allows to control the first term in3

the descent lemma.4

2. Second moment of gradient norm does not grow too quickly.5

We will assume that there exist scalars σ0 and σ such that6

E
ωt

[
∥∇ℓω(w)∥2

]
≤ σ0 + σ∥∇ℓ(w)∥2. (11.9)

This assumption allows to control the second term in the descent7

lemma for SGD. It assumes that the stochastic estimate of the8

gradient in SGD ∇ℓωt(w) is not too different than the full gradient9

ℓ(w(t)). In the neighborhood of a critical point (locations where10

the full gradient ∇ℓ(w) = 0), the stochastic gradient is allowed to11

grow in a similar fashion as the true gradient except with a scaling12

factor σ > 0 and a constant σ0.13

Let us see how the descent lemma changes with these additional14

assumptions.15

Lemma 11.2 (Descent Lemma for SGD with additional assumptions).16

If SGD gradients are unbiased and the second moment of the stochastic17

gradients can be bounded, we have18

E
ωt

[
ℓ(w(t+1))− ℓ(w(t)) | w(t)

]
≤ −η

〈
∇ℓ(w(t)), E

ωt

[
∇ℓωt(w(t))

]〉
+

Lη2

2
E
ωt

[∥∥∥∇ℓωt(w(t))
∥∥∥2]

≤ −η
∥∥∥∇ℓ(w(t))

∥∥∥2 + Lη2

2
E
ωt

[∥∥∥∇ℓωt(w(t))
∥∥∥2]

= −η
(
1− ηLσ

2

)∥∥∥∇ℓ(w(t))
∥∥∥2 + η2Lσ0

2
.

(11.10)

The proof is given in Eq. (11.10) itself. Compare this to the corre-19

sponding result we have derived for gradient descent in Chapter 920

ℓ(w(t+1))− ℓ(w(t)) ≤ −η

2

∥∥∥∇ℓ(w(t))
∥∥∥2.

In addition to the negative term −η
2

∥∥∇ℓ(w(t))
∥∥2, we have two additional21

positive terms22

η2Lσ

2

∥∥∥∇ℓ(w(t))
∥∥∥2 + η2Lσ0

2
;

this indicates that depending upon the magnitude of these terms we may23

not get monotonic improvement of the objective for SGD. There is no24

such concern for gradient descent, we get monotonic progress at all parts25

of the domain.26
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We need to pick the learning rate η in such a way that balances
the the right-hand side of Eq. (11.10) and makes it negative.

11.2.2 Convergence rate of SGD for strongly-convex func-1

tions2

Theorem 11.3 (Optimality gap for SGD). If we pick a step-size3

η ≤ 1

Lσ

for m-strongly convex and L-smooth function ℓ(w) then the expected4

optimality gap satisfies5

E
ω1,ω2,...,ωt

[
ℓ(w(t+1))

]
− ℓ(w∗)

≤ ηLσ0

2m
+ (1− ηm)

t

(
ℓ(w0)− ℓ(w∗)− ηLσ0

2m

)
.

(11.11)

We will not cover the proof of this theorem, it is a direct application of6

the descent lemma. See Bottou et al. (2018, Theorem 4.6) for an elaborate7

proof.8

This theorem beautifully demonstrates the interplay between the step-9

size and and the variance of SGD gradients. If there is no stochasticity,10

i.e., σ0 = 0 and σ = 1, we get the same result as that of gradient descent,11

namely, the function value ℓ(w(t+1)) converges at a linear rate (1− ηm)t.12

Some points to notice13

1. The random variablew(t+1) depends upon all the indicesω1, ω2, . . . , wt14

that were sampled during updates of SGD and therefore the expec-15

tation in Eq. (11.11) should be over all these random variables.16

2. When the stochastic gradient is noisy, we have a non-zero σ0 we17

can no longer get to the global minimum, there is a first term which18

does not decay with time.19

3. If we pick a small η, we get closer to the global minimum but go20

there quite slowly. On the other hand, we can pick a large η and get21

to a neighborhood of the global minimum quickly but we will then22

have a large error leftover at the end.23

How can we make SGD converge and drive down the first term
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in Eq. (11.11) to zero? A simple trick is to reduce the learning
rate η with time. We do not want to decay the learning rate too
quickly however because the second term in Eq. (11.11) is small, i.e.,
optimality gap is reduced quickly by its multiplicative nature, for a
large value of the learning rate. A good schedule to pick is

∞∑
t=1

ηt =∞, and
∞∑
t=1

η2t <∞. (11.12)

Heuristic for training neural networks The two terms in the con-1

vergence rate of SGD explain the widely used heuristic of “divide the2

learning rate by some constant” if the training error seems plateaued. We3

are reducing the size of the ball in which SGD iterates bounce around by4

doing so.5

Theorem 11.4 (Convergence rate of SGD for decaying step-size). For6

a schedule7

ηt =
β

t+ t0
where β >

1

m
and t0 is such that η1 <

1

Lσ

then the expected optimality gap satisfies8

E
ω1,ω2,...,ωt

[
ℓ(w(t+1))

]
− ℓ(w∗) = O

(
1

t+ t0

)
. (11.13)

We will not do the proof. If you are interested, see Bottou et al. (2018,9

Theorem 4.7). Compare this to the convergence rate of O(κ log(1/ϵ) for10

gradient descent for strongly-convex functions. Notice that we converge11

only at a sub-linear rate for SGD even for strongly convex loss functions.12

SGD is a much slower algorithm than GD.13

Convergence rate for mini-batch SGD The mini-batch gradient∇ℓb(w)14

is still an unbiased estimate of the full-gradient15

E
b
[∇ℓb(w)] = ∇ℓ(w)

but the second assumption in SGD improves a bit. Since the mini-batch16

gradient is averaged over b samples we have17

E
b

[
∥∇ℓb(w)∥2

]
≤ σ0

b
+

σ

b
∥∇ℓ(w)∥2
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if σ0, σ were the constants in Eq. (11.9). This changes the convergence1

rate in Theorem 11.3 to2

E
ω1,ω2,...,ωt

[
ℓ(w(t+1))

]
− ℓ(w∗)

≤ ηLσ0

2mb
+ (1− ηm)

t

(
ℓ(w0)− ℓ(w∗)− ηLσ0

2mb

)
.

(11.14)

Note that the maximum learning rate in Theorem 11.3 is inversely pro-3

portional to σ so we can also pick a larger learning rate η < b
Lσ . If we4

do so, the first and last terms above are not affected by the batch-size but5

multiplicative term (1− ηm)t is. Since6

(1− ηm)t ≤ e−tmη

we see that increasing the learning rate by a factor of b will reduce the7

number of iterations required to reach the zone of confusion by a factor8

of b. Of course, this comes with the caveat that each iteration also9

requires O(b) more computation to compute the gradient compared to10

single-sample SGD.11

11.2.3 When should one use SGD in place of GD?12

Theorem 11.4 indicates that SGD is a very slow algorithm, GD is much13

faster than SGD to minimize strongly convex functions. This gap also14

exists if we do not have strong convexity: we did not prove this but SGD15

requires O(1/ϵ2) to reach an ϵ-neighborhood of the global optimum for16

convex functions whereas GD requires a much smaller O(1/ϵ). One17

might wonder why we should use SGD at all.18

It is critical to remember that the objective in machine learning is a19

sum of many terms20

ℓ(w) =
1

n

n∑
i=1

ℓi(w)

One iteration of SGD requires us to compute only ∇ℓωt(w) whereas one21

update of GD requires us to compute the full gradient∇ℓ(w). One weight22

update of GD isO(n) more expensive than one weight update using SGD.23

Let us do a back-of-the-envelope computation for convex functions. If24

we want to reach an ϵ-neighborhood of the global minimum of a convex25

function, we need O(1/ϵ) iterations of GD, which requires26

O
(n
ϵ

)
operations. SGD needs O(1/ϵ2) iterations and therefore requires27

O
(

1

ϵ2

)
operations to reach the ϵ-neighborhood. This indicates that if our chosen28
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ϵ-ball is1

ϵ ⪅
1

n

GD requires fewer overall operations. But if ϵ-ball is larger than this, we2

should use SGD because it is computationally cheaper.3

SGD is particularly suited to machine learning compared to GD for4

the following reason. Let ϵi = ℓi(w(t))− ℓi(w∗) be the residual on the5

ith datum in the training dataset. Observe that our ϵ-neighborhood is6

ϵ = ℓ(w(t))− ℓ(w∗) =
1

n

n∑
i=1

ϵi.

If ϵi is constant and does not depend on the number of training samples7

n (i.e., say we are happy with the average error over the training dataset8

being 2% even and do not seek a smaller one even if we collect more9

data) then we should use SGD to train our model because it is cheaper.10

This is not always the case for other problems, e.g., if you are doing11

computational tomography (capturing multiple images from a CT-scan12

machine and trying to reconstruct the heart/lung region in the thoraric13

cavity), we may seek a more and more accurate answer, i.e., small ϵ if we14

have more data.15

11.3 Accelerating SGD using momentum16

The convergence rate of SGD is quite bad, it is sub-linear. Roughly17

speaking, the successive iterates of SGD are computed using different mini-18

batches; the gradient on each such mini-batch is a noisy approximation19

of the full-gradient on the training dataset (that of GD). This makes the20

SGD iterates noisy and one may improve the convergence rate of SGD21

by simply averaging the weights. This leads to a simple technique to22

accelerate SGD which we discuss next.23

Polyak-Ruppert averaging Consider the updates24

w(t+1) = w(t) − ηt∇ℓb(w(t))

u(t) =
w0 + w1 + · · ·+ wt

t
.

(11.15)

In a series of papers, Polyak (1990); Polyak and Juditsky (1992); Ruppert25

(1988) showed that the quantity26

E
ω1,...,ωt−1

[
ℓ(u(t))

]
− ℓ(w∗)

converges faster than the quantity27

E
ω1,...,ωt−1

[
ℓ(w(t))

]
− ℓ(w∗);
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both of these still converge at rate O(1/ϵ2) but the former has a smaller1

constant. This is quite surprising and useful: essentially we are still2

performing mini-batch updates for the weights w(t) but instead of thinking3

ofw(t) as the answer, we think of u(t) as the output of SGD. This averaging4

of iterates does not change the SGD algorithm. Computing this output5

requires us to remember all the past iterations w0, . . . , wt but we can6

easily approximate that step by exponential averaging of the weights7

u(t) = ρ u(t−1) + (1− ρ) w(t);

exponential averaging is likely to achieve the same purpose with a much8

smaller memory requirement.9

Further, this idea of using averaged iterates to speed up stochastic10

optimization algorithms is quite general and also works for algorithms11

other than SGD. The papers on Entropy-SGD by Chaudhari et al. (2016)12

and Stochastic Weight Averaging by Izmailov et al. (2018) perform13

weight averaging (with quite different motivations) and works very well14

in practice.15

11.3.1 Momentum methods do not accelerate SGD16

We saw that momentum is very useful to accelerate the convergence of17

gradient descent. The power of momentum lies in making faster progress18

using the inertia of the particle: if the velocity and the current gradient are19

aligned with each other (as is the case at the beginning of training when20

the iterates are far from the global optimum) momentum speeds up things.21

Towards the end of training when gradients are typically mis-aligned with22

the velocity, we need friction (as in Nesterov’s updates) to reduce this23

effect.24

Observe that in SGD, the gradient is always incorrect; it is after all only25

a noisy stochastic approximation of the full gradient on the dataset. Since26

the velocity w(t) − w(t−1) was computed using the previous stochastic27

gradient, there is no reason to believe that this velocity is accurate and28

will speed up SGD. Here is a very important point (Kidambi et al., 2018;29

Liu and Belkin, 2018) that you should remember.30

Momentum methods (Polyak’s or Nesterov’s) do not significantly
accelerate SGD.

To be more precise, we saw that for Nesterov’s updates in GD for31

strongly-convex functions we have a result of the form32 ∥∥∥w(t) − w∗
∥∥∥ ≤ e−t/

√
κ
∥∥w0 − w∗∥∥

while the constant without momentum is larger, it is e−t/κ. This term is33

directly related to the second term in Theorem 11.4. The above authors34

come up with counterexamples to show that Nesterov’s updates with SGD35

only improve this multiplicative term to something like e−ct/κ for some c;36
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in other words using Nesterov’s updates with SGD only lead to a constant1

factor improvements in the convergence rate.2

Accelerating stochastic optimization algorithms is done via the use of3

control variates (Le Roux et al., 2012). Broadly speaking these methods4

work by using the previous gradients in SGD
{
∇ℓω1(w1), . . . ,∇ℓωt(w(t))

}
5

to compute some surrogate for the current full gradient ∇ℓ(w(t)) and6

compute the descent direction using both this surrogate full gradient and7

the standard SGD gradient.8

Why do we use Nesterov’s method to train deep networks? It is9

worthwhile to think why we use Nesterov’s momentum to train deep10

networks: (i) we know that momentum does not help speed up training,11

and (ii) momentum is simply a faster way to minimize the same objective12

ℓ so it does not have any regularization properties that help generalization13

either. We do not have a definitive answer to this question yet but here is14

what we know.15

Datasets that we use in deep learning represent quite narrow distribu-16

tions (natural images of animals, household objects etc.). For instance,17

the two images below are essentially the same in spite of belonging to18

different classes.19

.20

Most weights of a deep network will have a similar gradient for these21

images as input, the weights for which the gradient will differ are likely to22

be the weights at the top few layers of the network. This entails that even23

if the stochastic gradients are computed on different mini-batches, they24

are essentially quite similar to each other, and thereby to the full-gradient.25

More precisely, the covariance of mini-batch gradients26

cov (∇ℓb(w), ∇ℓb′(w)) = E
b,b′

[
(∇ℓb(w)−∇ℓ(w)) (∇ℓb′(w)−∇ℓ(w))⊤

]
is a matrix with very few non-zero eigenvalues; only about 0.5% of27

the eigenvalues are non-zero (Chaudhari and Soatto, 2017) even for28

large networks. This means that the SGD gradient while training deep29

networks is essentially the full gradient and we should expect momentum30

to accelerate convergence in practice.31

Line-search is not common in SGD Note that the function ℓ in machine32

learning is a summation over a large number of samples in the training33

dataset; in this case computing the gradient ℓ(w) involves a large sum as34

well35

∇ℓ(w) = 1

n

n∑
i=1

∇ℓ(w;xi, yi);
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stochastic gradient descent computes this sum only over a subset of the1

data. Solving the line-search problem involves computing more gradients2

with respect to η which adds to the computational cost. Further, the3

gradient ∇̂ℓ(w) is only a noisy estimate of ∇ℓ(w) so it wouldn’t improve4

progress much if we carefully picked the step-size.5

11.4 The Adam optimizer6

We will next look at a very popular optimizer for deep networks called7

Adam. This is extremely popular and is the default optimization algorithm8

that most people use when they build a network for a new problem. It9

combines two key ideas from optimization, namely control variates and10

second order updates. These ideas are very effective at accelerating11

stochastic gradient descent but implementing them for deep networks12

is very expensive. The key reason behind the success of Adam and its13

widespread adoption is that the authors used the right approximations and14

implemented them in incredibly clever ways.15

16

Control variates17

We will first discuss a technique called “control variate” from Monte Carlo18

methods that can be used to accelerate stochastic gradient descent. The19

key idea behind this technique is to observe that if we want to accelerate20

the convergence rate of SGD, our goal should be to compute a more21

accurate gradient (i.e., something close to the non-stochastic gradient)22

using work that is not too much more than that required to compute the23

stochastic gradient.24

Say we have a random variable X and we would like to guess its25

expected value µ = E[X]. Note that X is an unbiased estimator of µ but26

it might have a large variance. If we have another random variable Y with27

known expected value E[Y ], then28

X̂ = X + c (Y − E[Y ]) (11.16)

is also an unbiased estimator for µ for any value of c. The variance of X̂ is29

Var(X̂) = Var(X) + c2 Var(Y ) + 2cCov(X,Y ).

which is minimized for30

c∗ = −Cov(X,Y )

Var(Y )
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to1

Var(X̂) = Var(X)− c∗2 Var(Y )

=

[
1−

(
Cov(X,Y )2

Var(X)Var(Y )

)]
Var(X).

By subtracting Y − E[Y ] from our observed random variable X , we have2

reduced the variance of X if the correlation between X and Y is non-zero.3

Most importantly, note that no matter what Y we plug into the above4

expression, we can never increase the variance of X; the worst that can5

happen is that we pick a Y that is completely uncorrelated with X and6

end up achieving nothing.7

Suppose that the mini-batch size is 1. We can maintain a buffer8

{gω ≡ ∇ℓω}nω=1 that contains the stochastic gradient for each sample9

in the training dataset. As our optimization algorithm samples different10

mini-batches (i.e., different samples ω for a batch-size of 1), the values11

in this buffer are updated after each iteration. Given this buffer, if we12

sampled a datum ω for the current iteration, we can update the weights13

using the control variate-corrected gradient14

λ∇ℓω(w)−

(
λgω − 1

n

n∑
i=1

gi

)
. (11.17)

For λ = 1, this is an unbiased estimator of ∇ℓω(w). Effectively, we have15

used the quantity gω − 1
n

∑n
i=1 g

i from the buffer as a control variate to16

reduce the variance. This algorithm is called stochastic averaged gradients17

(SAGA). This algorithm converges linearly, i.e., at a rate O(log(1/ϵ)) for18

strongly convex functions. This is remarkable because it is the same as19

the convergence rate of gradient descent for strongly convex functions.20

� There is also a non-buffer version of the
SAGA algorithm called SVRG (stochastic
variance reduced gradient). At some
infrequent instants during training, we
calculate the full gradient ∇ℓ(w(s)) and use
this to reduce the variance of the stochastic
gradient at later times. Again suppose that the
mini-batch size is 1. At iteration t if we
sampled ω, the weights are updated using the
quantity

∇ℓω(w(t))−
(
∇ℓω(w(s))−∇ℓ(w(s))

)
;

(11.18)
note that the round bracket has zero expected
value. In other words, we store some
checkpoint w(s) and calculate the stochastic
gradient using the latest datum ω using the
checkpoint as well as the current weights w(t).
SVRG therefore requires calculating two
stochastic gradients at each iteration. But it
avoids maintaining a large buffer like that of
SAGA and also converges linearly.

We can also consider biased control variates, after all since we do21

not calculate the optimal value c∗ in Eq. (11.16), we do not know which22

way the bias-variance tradeoff for our modified stochastic gradient (with23

respect to its mean the true gradient) is. One particular biased control24

variate is popular, and incidentally that is how the idea of accelerating25

SGD was essentially discovered,26

∇ℓω(w)
n

−

(
gω

n
− 1

n

n∑
i=1

gi

)
(11.19)

which we obtained by setting λ = 1/n in Eq. (11.17). You see that the27

expected value of the term in the round brackets is no longer zero and28

therefore this is a biased control variate. But this algorithm, named as29

stochastic averaged gradients (SAG) was also shown to give a convergence30

rate of O(log(1/ϵ)) for strongly convex functions, so it works pretty well.31

Now notice that if we replace the value gω by the latest calculated
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gradient∇ℓω(w) in our buffer to obtain a new buffer {g′ω}nω=1, then

∇ℓω(w)
n

−

(
gω

n
− 1

n

n∑
i=1

gi

)
=

1

n

n∑
i=1

g′
i
. (11.20)

In other words, the SAG gradient is the average of the updated buffer.
Note that the different gradients in the buffer were calculated using
different weights over the course of past iterations, so their average is
not equal to the full gradient.

This is the first big idea implemented in Adam: to average the
past stochastic gradients. Instead of the Euclidean average as done
in Eq. (11.20), Adam computes an exponential average. We can
implement better control variates and use the SAGA gradient but
Adam does not need to maintain a buffer. Adam has been shown to
obtain a convergence rate of only 1/ϵ2 for convex functions.

Pre-conditioning the gradient1

Newton’s method for solving a minimizing problem argmin ℓ(w) corre-2

sponds to weight updates3

w(t+1) = w(t) −
(
∇2ℓ(w(t))

)−1

∇ℓ(w(t)). (11.21)

Newton’s method converges quadratically, i.e., ℓ(w(t+1)) − ℓ(w∗) ≤4

c
(
ℓ(w(t))− ℓ(w∗)

)2, the sub-optimality shrinks very quickly. It is how-5

ever very difficult to implement Newton’s method for large optimization6

problems, such as deep networks, because the Hessian∇2ℓ(w) ∈ Rp×p is7

a very large matrix. Inverting such large matrices at each step of descent8

is very expensive and furthermore, for many real problems the Hessian9

is extremely ill-conditioned λmax/λmin ≈ 108; in fact for deep networks10

which have two times as many weights as the number of weights the11

Hessian always has zero eigenvalues.

� One can implement Newton’s method for
some small-scale neural networks using
Hessian-vector products.

In general, we can use any other12

pre-conditioning matrix in place of the inverse Hessian so long as it is13

positive semi-definite14

w(t+1) = w(t) − ηG−1/2∇ℓ(w(t)); (11.22)

the square root is taken to emphasize the positive definiteness. We can15

approximate the Hessian using the so-called Gauss-Newton matrix:16

∇2ℓ(w) ≈ 1

n

n∑
i=1

∇ℓi(w)∇ℓi(w)⊤ (11.23)

if the gradients∇ℓi(w) ≈ 0. We will derive this in Chapter 14 in Eq. (14.4).17

In other words, the Hessian, up to an approximation that holds towards18

the end of training, is equal to the average of the outer products of the19

individual sample gradients. This is still a very large matrix, so let’s use20
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only the diagonal and set the off-diagonal elements to zero:1

Gii ≡
(
∇2ℓ(w)

)
ii
=

1

n

n∑
i=1

(
dℓi(w)

dwi

)2

,

i.e., the diagonal elements of the Hessian under this approximation are the2

averages of the squares of the gradients of the individual samples. We can3

now write the pre-conditioned descent direction as4

(
G−1/2∇ℓ(w(t))

)
i
≈

dℓ(w(t))
dwi√

1
n

∑n
i=1

(
dℓi(w)
dwi

)2 . (11.24)

When implementing this descent direction using stochastic gradients, we5

can calculate the denominator using a run-time average of the square of6

the gradients7

1

t

t∑
s=1

∇iℓ
ωs(w(s))

Adam implements a pre-conditioned version of the gradient
descent equation using a (square root of the) diagonal approximation
of the Hessian as the pre-conditioning matrix. The new descent
direction is Eq. (11.24) where again the denominator is calculated
using exponential averaging instead of the Euclidean average.

The updates of Adam combine control variates and pre-
conditioning and are given by

m(t+1) = (1− βt
1)

−1
(
β1m

(t) + (1− β1)∇ℓωt(w(t))
)

v(t+1) = (1− βt
2)

−1
(
β2v

(t) + (1− β2) diag
(
∇ℓωt(w(t))∇⊤ℓωt(w(t))

))
w(t+1) = w(t) − η

m(t+1)

√
v(t+1) + ϵ

.

(11.25)

The factors of (1−βt
1)

−1 come from debiasing the exponential average,8

and all three equations are computed element-wise. The default values of9

parameters are β1 = 0.99 and β2 = 0.999; tweaking β2 is usually quite10

useful in practice. It is useful to remember that running Adam requires11

three times the amount of memory to store the weights as that of SGD.12

11.5 Understanding SGD as a Markov Chain13

The preceding development tells us how SGD works and how many14

iterations of SGD we need to get within an ϵ-neighborhood of the global15
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minimum for convex functions. Things are not this easy to understand for1

non-convex functions; essentially if we have two minima u∗, v∗2

∇ℓ(u∗) = ∇ℓ(v∗) = 0

depending upon where GD/SGD are initialized they can converge to3

different places.

� A non-convex function with two local
minima. The one on the left is the global
minimum but gradient descent may not
always reach here.

In this section, we will look at an alternative way of un-4

derstanding how SGD works for non-convex functions. The development5

here will be much more abstract that the preceding section because we6

want to capture the overall properties of SGD.7

11.5.1 Gradient flow8

Let us first talk about gradient descent. Just like we constructed a model9

for Nesterov’s updates using a differential equation, we will first construct10

a model for gradient descent using a differential equation. The updates11

are given by12

w(t+1) − w(t) = −η∇ℓ(w(t)).

If we again imagine a continuously differentiable curve W (τ) as a model13

for these discrete-time updates and time14

dτ := η

we can write a differential equation of the form15

dW
dτ

= Ẇ (τ) = −∇ℓ(W (τ)); W (0) = w0. (11.26)

This is called gradient flow. If we wanted to execute gradient flow on a16

computer, we can do so using Euler discretization17

Ẇ (τ) ≈ W (τ +∆τ)−W (τ)

∆τ
= −∇ℓ(W (τ)).

for any value of the time-step ∆τ . If the time-step ∆τ = η we get exactly18

gradient descent. More precisely, gradient flow is the limit of gradient19

descent as the learning rate η → 0. It is important to always remember20

that gradient flow is a model for GD, not GD itself. Our goal in the21

remainder of the section is to develop a similar model for SGD.22

11.5.2 Markov chains23

Consider the Whack-The-Mole game: a mole has burrowed a network of24

three holes w1, w2, w3 into the ground. It keeps going in and out of the25

holes and we are interested in finding which hole it will show up next so26

that we can give it a nice whack.27
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1

This is an example of a Markov chain. There is a transition matrix P2

which determines the probability Pij of the mole resurfacing on a given3

hole wj given that it resurfaced at hole wi the last time. The matrix P t is4

the t-step transition matrix5

P t
ij = P(w(t) = wj | w(0) = wi).

If there exist times t, t′ such the both the probabilities6

P(w(t) = wj | w(0) = wi) P(w(t′) = wi | w(0) = wj)

are non-zero the two states wi and wj are said to “communicate”7

wi ←→ wj

The set of states in the Markov chain that all communicate with each8

other are an equivalence class. This means that the Markov chain can9

visit any state from any other state in this equivalence class with non-zero10

probability, we just might have to wait for a really long time if P t
ij ≈ 011

for two states wi, wj . If all the states in the Markov chain belong to12

the same equivalence class, it is called irreducible. A related concept13

is that of “positive recurrence”, i.e., if the Markov chain was at a state14

w at some time, it comes back to the same state after some finite time.15

Since the process is Markov it forgets that is just came back to the same16

state and therefore positive recurrence also means that if we consider an17

infinitely long trajectory of a Markov chain, the chain visits the same state18

infinitely many times along this trajectory. You can see the animations at19

https://setosa.io/ev/markov-chains to build more intuition.20

Invariant distribution of a Markov chain The probability of being in21

a state wi at time t+ 1 can be written as22

P(w(t+1) = wi) =

N∑
j=1

P(w(t+1) = wi | w(t) = wj) P(w(t) = wj).

This equation governs how the probabilities P(w(t) = wi) change with23

time t. Let’s do the calculations for the Whack-The-Mole example. Say24

the mole was at hole w1 at the beginning. So the probability distribution25

https://setosa.io/ev/markov-chains
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of its presence1

π(t) =

P(w(t) = w1)

P(w(t) = w2)

P(w(t) = w3)


is such that2

π1 = [1, 0, 0]⊤.

We can now write the above formula as3

π(t+1) = P⊤π(t)

and compute the distribution π(t) for all times4

π2 = P⊤π1 = [0.1, 0.4, 0.5]⊤;

π3 = P⊤π2 = [0.17, 0.34, 0.49]⊤;

π4 = P⊤π3 = [0.153, 0.362, 0.485]⊤;

...
π∞ = lim

t→∞
P t π1

= [0.158, 0.355, 0.487]⊤.

If such a distribution π∞ exists, the Markov chain is said to have “equilib-5

riated” or reached an invariant distribution. The numbers P(w(t+1) = wi)6

stop changing with time. We can compute this invariant distribution by7

writing8

π∞ = P⊤π∞.

Does such a limiting invariant distribution π∞ always exist? It turns out9

that if a Markov chain has a finite number of states then the invariant10

distribution π∞ always exists; this is easy to show yourself. If the11

Markov chain is irreducible and aperiodic, then the invariant distribution12

is also unique. We can also compute the π∞ given a transition matrix13

P : the invariant distribution is the (right-)eigenvector of the matrix P⊤
14

corresponding to the eigenvalue 1.15

Periodicity of a Markov chain A state of a Markov chain is periodic16

with period k if the probability of coming back to the same state is zero17

for times that are not integral multiples of k and the probability of coming18

back to the same state is non-zero for all times that are integral multiplies19

of k. To take a simple example, every number of a clock is a periodic20

state; the Markov chain comes back to that state at regular intervals. If we21

cannot find such a time k for a given state, then the state is aperiodic. It is22

easy to see that if there exists an aperiodic state in one communicating23

class, then all the other states in that class also have to be aperiodic. It is24

useful to remember that if a particular state has a non-zero probability of25

self-transition, then the state is aperiodic.26

Example 11.5. Consider a Markov chain on two states where the transition27



160

matrix is given by1

P =

[
0.5 0.5

0.4 0.6

]
.

This is an irreducible Markov chain because you can hop between any two2

states with non-zero probability within one step. It is also recurrent: this3

is intuitive because say the Markov chain was in state 1, it is easy for it4

to come back to this state after a few hops. After the chain comes back5

to state 1, the Markov property means the chain forgets all the past steps6

and will again come back to state 1. The expected number of times the7

Markov chain comes back to state 1 is infinite. Each of the two states has8

a non-zero probability of self-transition, so both of them are aperiodic.9

We are therefore guaranteed that a unique invariant distribution exists10

for this Markov chain. In this case it is11

π1 = 0.5π1 + 0.4π2

π2 = 0.5π1 + 0.6π2.

Note that the constraint forπ being a probability distribution, i.e., π1+π2 =12

1 is automatically satisfied by the two equations. We can solve for π1, π2
13

to get14

π1 = 4/9 π2 = 5/9.

Time spent at a particular state by the Markov chain We can observe15

a long trajectory of a Markov chain and compute the number of times the16

chain is in a particular state wi. This is directly proportional to π∞(wi).17

In other words, if the invariant distribution gives small probability to a18

particular state, if we stop the Markov chain at an arbitrary time during its19

trajectory, we are very unlikely to find the Markov chain at this state.20

11.5.3 A Markov chain model of SGD21

The updates of SGD with mini-batch size b are given by22

w(t+1) − w(t) = −η∇ℓb(w(t)).

Notice that conditional on the iterate w(t), the next iterate w(t+1) is23

independent of w(t−1), all these three quantities are random variables24

because they depend on the input data ω0, . . . , ωt sampled by SGD in the25

previous time-steps. You should never make the mistake of saying that26

gradient descent is a Markov chain; there is no randomness in the iterates27

of GD.28

Transition probability of SGD What is the transition probability29

P(w(t+1) | w(t))

for SGD? If we take the conditional expectation on both sides30

E
b

[
w(t+1) − w(t) | w(t)

]
= −η E

b

[
∇ℓ(w(t))

]
= −η∇ℓ(w(t));
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in other words, on-average the change in weights at w(t) is proportional1

to the full gradient ∇ℓ(w(t)). Notice that the change in weights exactly2

the same for GD; this should not be surprising after all, if the gradient of3

SGD is unbiased then SGD is GD “on-average”.4

Variance of SGD weight updates The variance is computed as follows5

Varb
(
w(t+1) − w(t) | w(t)

)
= η2 Varb

(
∇ℓb(w(t)) | w(t)

)
= η2 E

b

[(
∇ℓb(w(t))−∇ℓ(w(t))

)(
∇ℓb(w(t))−∇ℓ(w(t))

)⊤]
Notice that the variance of the weight updates in SGD is proportional6

to the square of the learning rate. We have seen this before, larger the7

learning rate more noisy the weight update as compared to the update8

using the full-gradient η∇ℓ(w(t)). The variance is a large matrix ∈ Rp×p;9

this matrix depends on the current weight w(t).10

If we are sampling the data inside a mini-batch with replacement the11

stochastic gradients are independent for different samples ω1 and ω2 in12

the mini-batch13

∇ℓω
1

(w) ⊥⊥ ∇ℓω
2

(w).

In other words14

E
ω1,ω2

[(
∇ℓω1(w(t))−∇ℓ(w(t))

)(
∇ℓω2(w(t))−∇ℓ(w(t))

)⊤]
= 0.

You can use this to show that15

Varb
(
w(t+1) − w(t) | w(t)

)
= η2 Varω1,...,ωb

(
1

b

b∑
i=1

∇ℓω
i

(w(t))

)

=
η2

b2

b∑
i=1

Varωi

(
∇ℓω

i

(w(t))
)

=
η2

b
Varω

(
∇ℓω(w(t))

)
.

(11.27)
The last step follows because we are sampling inputsωi uniformly randomly16

and therefore gradients ∇ℓωi

(w(t)) are not just independent but also17

identically distributed. In other words, a mini-batch size of b reduces the18

variance by a factor of b.19

SGD is like GD with Gaussian noise We now model the transition20

probability P(w(t+1) | w(t)) as a Gaussian distribution. Let us denote by21

W t,W t+1 etc. the updates of this model. We now have22

W (t+1) = W (t) + ξt
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where ξt is Gaussian noise1

ξt ∼ N

(
−η∇ℓ(w(t)),

η2

b
Varω

(
∇ℓω(w(t))

))
.

In other words, on-average SGD updates weights like gradient descent, by2

a term −η∇ℓ(w(t)) but SGD’s updates also have a variance.3

Such equations are called stochastic difference equations and they4

are quite difficult to understand compared to non-stochastic difference5

equations (what we see in gradient descent). So we will make a drastic6

simplification in our model. We will say that the variance of the mini-batch7

gradients is identity. Our model for SGD is8

W (t+1) = W (t) − η∇ℓ(W (t)) +
η√
b
ξt (11.28)

where we have zero-mean unit-variance Gaussian noise ξt ∼ N(0, Ip×p).9

Remark 11.6. The above model for SGD is a Markov chain except that10

the states in the Markov chain is infinite; the number of states in the11

Whack-The-Mole example were finite. It is easy to see that the above12

model is not exactly SGD: (i) we assumed the the transition probability13

was a Gaussian which need not be the case while training a deep network,14

(ii) we further assumed that the Gaussian noise does not depend on w(t)
15

and has identity covariance. You can implement the above model on a16

computer, first you compute the full gradient ∇ℓ(w(t)) and then sample17

Gaussian noise ξt to update the weights to W (t+1). This is obviously not18

equivalent to SGD which updates weights using the stochastic gradient19

∇ℓb(w(t)).20

11.5.4 The Gibbs distribution21

In a Markov chain we were interested in the invariant distribution because22

that gives us a way to understand where the chain spends most of its time.23

We can compute the invariant distribution for our model of SGD. It is24

a very powerful result (which we will not do) and leads to the so-called25

Gibbs distribution. The probability density of the invariant distribution is26

given by27

ρ∞(w) =
1

Z(β)
e−βℓ(w). (11.29)

The quantity28

β =
2b

η
(11.30)

and Z(β) is a normalizing constant for probability density29

Z(β) =

∫
Rp

e−βℓ(w) dw.

Let us list a few properties of the Gibbs distribution that are apparent30

simply by looking at the above expression.31
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1. The invariant distribution is reached asymptotically and is the1

limiting distribution of the weights. For instance the sum of the2

weights along an infinitely long trajectory converges to the mean of3

the Gibbs distribution4

lim
T→∞

1

T

T∑
t=1

W t =

∫
w

w ρ∞(w) dw. (11.31)

Similarly, the second moment of the weights along a long trajectory5

of SGD converges to the second moment of the Gibbs distribution;6

and same for the variance.7

lim
T→∞

1

T

T∑
t′=1

T∑
t=1

(
W t′

) (
W t
)⊤

=

∫
w,w′

ww′⊤ ρ∞(w)ρ∞(w′) dwdw′.

(11.32)

2. The probability that the iterates of SGD are found at a location w8

is proportional to e−βℓ(w). If the training loss ℓ(w) is high, this9

probability is low and if the training loss is low, the probability is10

high. The Gibbs distribution therefore shows that if we let SGD run11

until it equilibriates we have a high chance of finding the iterates12

that have a small training loss. This observation is powerful because13

it does not require us to assume that ℓ(w) is convex. However this14

statement does require the assumption that the steps-size η of SGD15

does not go to zero; after all SGD iterates stop if η = 0.16

3. The quantity 1/β is quite common in physics where it is called the17

“temperature”. This temperature β−1 = η
2b fundamentally governs18

how the Gibbs distribution looks. Higher the temperature, more19

the noise in the iterates and vice-versa. If the learning rate η is20

large or the batch-size b is small, it is easy for our model of SGD to21

jump over hills. This is the reason why the Gibbs distribution will22

be spread around the entire domain at high temperature. On the23

other hand, if temperature is very small, the Gibbs distribution puts24

a large probability mass in places where the training loss is small25

and the probability of finding iterates at other places in the domain26

diminishes. In particular, if β → ∞, the Gibbs distribution only27

puts non-zero probability on the global minima of the loss function28

ℓ(w).29

4. Written in another way, if we want the Gibbs distribution to remain30

the same we should ensure that31

β−1 =
η

2b
is a constant.

If you increased the batch-size by two times, you should also32

double the learning rate if you desire that the solutions of SGD are33

qualitatively similar.34

5. We have achieved something remarkable by looking at the Gibbs35

distribution. We have discovered an algorithm to find the global36
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minimum of a non-convex loss function.1

• Start from some initial condition w0;2

• Take lots of steps of SGD with learning rate η until SGD3

reaches its invariant distribution, i.e., until it equilibriates;4

• Reduce the step-size η and repeat the previous step5

This is only a formal algorithm but in theory it will converge to the6

global minimum of a non-convex function ℓ(w) if the number of7

steps is very large. The catch of course is that at each step we have8

to wait until SGD equilibriates. For many problems, it may take an9

inordinately long amount of time for SGD to equilibriate.10

? How much time does it take SGD to
equilibriate for a convex loss function?

It is very important to remember that when we train a deep
network we are executing one run of SGD. The invariant distribution
is an abstract concept that does not really exist on your computer. We
have constructed this model to help us understand how updates of
SGD behave.

11.5.5 Convergence of a Markov chain to its invariant11

distribution12

For gradient descent and SGD, we had quantities like
∥∥w(t) − w∗

∥∥ or13

ℓ(w(t)) − ℓ(w∗) that let us measure the progress towards the global14

minimum. For a non-convex problem, there may not exist a unique global15

minimum, or there may be multiple local minima in the domain where the16

gradient vanishes. We discussed in the preceding section how the invariant17

distribution of SGD is achieved even if the loss ℓ(w) is non-convex. In18

this section, we will see a simple tool to measure progress towards this19

distribution.20

Let us define a quantity called the Kullback-Leibler (KL) divergence21

between two probability distributions. For two probability distributions22

p(w) and q(w) supported on a discrete set w ∈W , the KL-divergence is23

given by24

KL(p || q) =
∑
w∈W

p(w) log
p(w)

q(w)
. (11.33)

This formula is well-defined only if for all w where q(w) = 0, we also25

have p(w) = 0. The KL-divergence is a measure of the distance between26

two distances, it is zero if and only if p(w) = q(w) for all w ∈ W . It27

is always positive (you can show this easily using Jensen’s inequality).28

However, the KL-divergence is not a metric because it is not symmetric29

KL(p || q) ̸= KL(q || p) =
∑
w∈W

q(w) log
q(w)

p(w)
.
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For probability densities, the KL-divergence1

KL(p || q) =
∫
w

p(w) log
p(w)

q(w)
dw (11.34)

is defined analogously and has the same properties.2

We will now show a very powerful result: the KL-divergence of3

the state distribution of a Markov chain decreases monotonically as the4

Markov chain converges to its invariant distribution. Although, this result5

is true for SGD as well, we will only prove it for a Markov chain with finite6

states. Let the initial distribution of the Markov chain be π0, its transition7

matrix be P and its invariant distribution be π∞. We will assume that the8

Markov chain is such that the invariant distribution exists (it is irreducible9

and recurrent).10

Let us also assume that a reverse transition matrix11

P rev
ij = P(w(t) = wi|w(t+1) = wj).

exists; such Markov chains are called reversible. For any states w,w′ this12

transition matrix satisfies the definition of conditional probability13

P(w(t+1) = w′|w(t) = w)P(w(t) = w) = P(w(t) = w|w(t+1) = w′)P(w(t+1) = w′).

In our notation, this becomes14

P rev
ww′ =

Pw′wπ(w
′)

π(w)
=

Pw′wπ(w
′)∑

w′ Pw′wπ(w′)
.

Lemma 11.7. For a reversible Markov chain with an invariant distribution15

π∞, the quantity KL(π∞ || πt) decreases monotonically:16

KL(π∞ || πt+1) ≤ KL(π∞ || πt). (11.35)



166

Proof. The proof is a simple calculation.1

KL(π∞ || πt+1) =
∑
w

π∞(w) log
π∞(w)

πt+1(w)

=
∑
w

π∞(w) log
π∞(w)∑

w′ Pw′w πt(w′)

= −
∑
w

π∞(w) log

∑
w′ Pw′w πt(w′)

π∞(x)

= −
∑
w

π∞(w) log

(∑
w′

P rev
ww′

πt(w′)

π∞(w′)

)
(substitute definition of P rev for distribution π∞)

≤ −
∑
w

π∞(w)
∑
w′

P rev
ww′ log

πt(w′)

π∞(w′)
(Jensen’s inequality)

=
∑
w′

∑
x

P rev
ww′ π∞(w) log

π∞(w′)

πt(w′)
(flip the negative sign, exchange sum)

=
∑
w′

π∞(w′) log
π∞(w′)

πt(w′)

= KL(π∞ || πt).

The distance to the invariant distribution π∞ decreases at each step of the2

Markov chain. A similar statement is true for the reverse KL divergence:3

KL(πt+1 || π∞) ≤ KL(πt || π∞).

4

The above result is also true for SGD which, as we discussed, can5

be modeled as a Markov chain with infinite states. It gives us some6

very important intuition. Just like gradient descent makes monotonic7

progress towards the global minimumw∗, a Markov chain (or SGD) makes8

monotonic progress towards its invariant distribution. The big difference9

between them is that while we required that the loss function ℓ(w) is10

convex for gradient descent to guarantee this monotonic progress, the loss11

need not be convex for the case of the Markov chain model of SGD.12

This result does not mean that SGD makes monotonic progress towards13

the global minimum w∗ = argminw ℓ(w). We choose to look at SGD not14

as one particle undergoing (stochastic) gradient descent updates but rather15

as a Markov chain. The probability distribution of states of this Markov16

chain is then a legitimate object (the distribution πt is the distribution of17

weights W t obtained after many independent run of SGD from different18

initializations). Although πt is not meaningful across one run of SGD,19

we can use it to get an abstract understanding of how SGD also makes20

monotonic progress as it converges if we imagine many independent runs21

of SGD occurring simultaneously.22



Chapter 121

Shape of the energy2

landscape of neural3

networks4

Reading
1. Goodfellow Chapter 13

2. “Neural Networks and Principal Component Analysis: Learn-
ing from Examples Without Local Minima” by Baldi and
Hornik (1989)

3. “Entropy-SGD: Biasing gradient descent into wide valleys”
by Chaudhari et al. (2016)

In this chapter, we will try to understand the shape of the objective for5

training neural networks. We would like to characterize the difficulty of6

training neural networks. We know that the objective is not convex and7

training a network is difficult because of it. But how non-convex is the8

objective? The questions we want to answer here are of the following form.9

1. How many global minima exist? 2. How many local minima and saddle10

points exist? 3. What is the loss at the local minima or saddle points? If11

we train with gradient descent or stochastic gradient descent, what loss can12

we expect to obtain even if we don’t reach the global minimum? 4. What13

is the local geometry of the loss function? 5. What is the global topology14

of the loss function?15

This will help understand how SGD seems to train deep networks16

so efficiently and why we often get very good generalization error after17

training. As a pre-cursor to how the picture of the energy landscape of a18

neural network looks like, here’s one picture from Li et al. (2018):19

167
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Figure 12.1: A picture of the training loss. The picture on the left was created by
sampling two directions randomly out of the millions of weights for a residual
network without skip-connections and computing the training loss by discretization
of this two-dimensional space. The picture on the right is a similar picture for the
resnet with skip-connections intact. In this picture, we see that while the training
loss is very complex on the left-hand side with lots of local minima and saddle
points, the loss is much more benign on the right-hand side.

12.1 Introduction1

Let us introduce a few quantities that will help characterize the energy2

landscape. We will consider the case when the function ℓ(w) is twice-3

differentiable.4

Global minima are all points in the set5

{w : ℓ(w) ≤ ℓ(w′) for all w′} .

Note that there may exist many different locations all with the same loss6

ℓ(w), they would all be global minima in this case.

? Draw the Gibbs distribution of SGD if
ℓ(w) has multiple global minima.

Local minima are all7

points in the set8 {
w : ∇ℓ(w) = 0,∇2ℓ(w) ⪰ 0

}
.

i.e., all points w where the Hessian ∇2ℓ(w) is positive semi-definite.9

Note that the two conditions (i) first-order stationarity ∇ℓ(w) = 0 and10

(ii) positive semi-definiteness of the Hessian ∇2ℓ(w) ⪰ 0 also have to11

be satisfied for all global minima.

? Draw the Gibbs distribution of SGD if
ℓ(w) has multiple global minima and multiple
local minima.

Critical points are all locations which12

satisfy only first order stationarity13

{w : ∇ℓ(w) = 0} .

Saddle points are critical points but which are neither local minima14

not local maxima15 {
w : ∇ℓ(w) = 0,∇2ℓ(w) is neither positive nor negative semi-definite

}
.

Non-convex functions, in general, can have all these different kinds of16

locations in the energy landscape and this makes minimizing the objective17
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difficult. Our goal in this chapter is to learn theoretical and empirical1

results that help paint a mental picture of what the energy landscape looks2

like.3

12.2 Deep Linear Networks4

Let us consider the simplest case of linear neural networks first. We will5

have a two-layer neural network which takes in inputs xi and aims to6

predict targets yi. For simplicity, we will consider the case when both7

xi, yi ∈ Rd.

and use the regression loss8

ℓ(A,B) =
1

2n

n∑
i=1

∥∥yi −AB xi
∥∥2
2

(12.1)

We use the standard trick of appending a 1 to the input xi so that we don’t9

have to carry around biases in our equations.10

The matrices A,B are the weights of the neural network with11

A ∈ Rd×p, B ∈ Rp×d.

We will consider the case when p ≤ d. We are interested in finding A and12

B and will develop some results from Baldi & Hornik’s paper.13

Least squares solution A simple calculation reveals that for a single-14

layer network the solution of the problem15

L∗ = argmin
L

1

2n

n∑
i=1

∥∥yi − Lxi
∥∥2
2

is16

L∗ = Σyx Σ−1
xx (12.2)

where17

Σyx =
∑
i

yixi⊤

Σxx =
∑
i

xixi⊤.

The matrices Σyx and Σxx are the data covariance matrices.18

Projection of a vector onto a matrix It will be useful to define a19

projection matrix. Say we have a vector v that we want to project on the20

span of the columns of a full-rank matrix21

M =
[
m1 m2 . . . mn

]
.
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If this projection is v̂ ∈ span {m1, . . . ,mn}, we know that it has to satisfy1

(v − v̂) ⊥ mk for all k ≤ n =⇒ m⊤
k (v − v̂) = 0 for all k ≤ n.

The vector v̂ is also obtained by a combination of the columns of M , so2

there exists a vector c which allows us to write3

v̂ = Mc.

These together imply4

c = (M⊤M)−1M⊤v̂

and finally5

v̂ = M(M⊤M)−1M⊤︸ ︷︷ ︸
projection matrix

v

=: PM v.

where the matrix PM is called the projection matrix corresponding to the6

matrix M . � Note that P 2
M = PM , i.e., if we project the

vector twice onto the column space of M , the
second projection does nothing. Also, any
projection matrix P is symmetric. To see this,
consider two vectors v, w and the dot products

⟨Pv,w⟩ , and ⟨v, Pw⟩ .

In both cases, one of the vectors lies
completely in the column space of M and
therefore the dot product ignores any
component that is orthogonal to the column
space of M . This means

⟨Pv,w⟩ = ⟨v, Pw⟩ = ⟨Pv, Pw⟩ .

We can now rewrite the first equality to obtain

(Pv)
⊤
w = v⊤ (Pw)

=⇒ v⊤P⊤w = v⊤Pw

and since this is true for any two vectors v, w,
we have that P = P⊤.

7

Back to deep linear networks We know from the homework problem8

that there is no unique solution to the problem9

A∗, B∗ = argmin
A,B

1

2n

n∑
i=1

∥∥yi −AB xi
∥∥2
2
.

If A∗, B∗ are solutions, so are A∗P, P−1B∗ for any invertible matrix P .10

We also showed in the homework that the objective is not convex. But if11

we fix either A or B and only optimize over the other, the loss is convex.12

Notice that the rank of AB is at most p.13

Fact 12.1 (Critical points of B if A is fixed). For any A, the function14

ℓ(A,B) is convex in B and has a minimum at15 (
A⊤A

)
B̂(A)Σxx = A⊤Σyx.

If Σxx is invertible and A is full-rank, then we can write16

B̂(A) = (A⊤A)−1A⊤ΣyxΣ
−1
xx . (12.3)

Note that these are all locations when the gradient17

∂ℓ

∂B
= 0.

Fact 12.2 (Critical points of A if B is fixed). We have an analogous18

version of the previous fact for A: if B is fixed, the loss is convex in A,19

for full-rank Σxx and B, then for ∂ℓ
∂A = 0, we should have20

ABΣxxB
⊤ = Σyx B⊤. (12.4)
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Or in other words,1

Â(B) = Σyx B⊤ (BΣxxB
⊤)−1

. (12.5)

� Proving Eq. (12.4) is slightly involved and
you can read the Appendix of the original
paper for the proof. It relies upon a clever
rewriting of the regression objective using the
identity

vec(PQR⊤) = (R⊗P ) vec(Q)

where the Kronecker product of two matrices
R⊗P is obtained by replacing each entry
Rij of the matrix R by the matrix RijP .
Using this, we can write our original
objective in Eq. (12.1) as

1

2n

∑
i

∥∥yi −ABxi
∥∥2

=
1

2n

∥∥vec Y − (X⊤B⊤⊗ I) vecA
∥∥2

where X is a matrix with xi as the ith column.
Now we can use our standard formula for the
solution of linear regression to solve for the
vector vecA in terms of the other known
quantities.

Fact 12.3 (Critical points of (A,B)). We now solve the equations Eqs. (12.3)2

and (12.5) to get a critical point, i.e., the gradient of the objective in both3

A and B is zero. First4

W = AB = PA ΣyxΣ
−1
xx . (12.6)

from Eq. (12.3). Next, multiply Eq. (12.4) on the right by A⊤ to get5

WΣxxW
⊤ = ABΣxxB

⊤A⊤ = ΣyxB
⊤A⊤ = ΣyxW

⊤.

Now we substitute the value of W from Eq. (12.6) to get the condition6

that A should satisfy7

PAΣ = ΣPA = PAΣPA.

where8

Σ = ΣyxΣ
−1
xxΣxy.

Fact 12.4 (If W is a critical point, then it can be written as a projection9

of the least squares solution ΣyxΣ
−1
xx on the subspace spanned by10

some p eigenvectors of Σ). This is an important fact. Let us say we have11

a full-rank Σ with distinct eigenvalues λ1 > . . . > λd. Let uik be the12

eigenvector associated with the ithk eigenvalue of Σ, i.e.,13

Rd×d ∋ Σ = UΛU⊤.

Given any index set of p eigenvalues14

I = {i1, . . . , ip} with 1 ≤ ik ≤ d for all k.

we can define a matrix of rank p15

UI =
[
ui1 ui2 . . . uip

]
formed by the orthonormal eigenvectors of Σ associated with the eigen-16

values λi1 , . . . , λip of the index set.17

One can then show that the matrices A and B are critical points if and18

only if there is a set I and an invertible matrix C ∈ Rp×p such that19

A = UI C

B = C−1U⊤
I ΣyxΣ

−1
xx .

(12.7)

You can find the proof in the Appendix of Baldi & Hornik’s paper. Because20

UI is a matrix of orthonormal vectors we also have21

PUI = UI U⊤
I
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and therefore1

W = PUI ΣyxΣ
−1
xx

which is the same form for W as Eq. (12.6) in Fact 3 and L∗ in Eq. (12.2).2

In other words, the solution W = AB in a two-layer linear network3

is given by our original least squares regression matrix followed by an4

orthogonal projection onto the subspace spanned by p eigenvectors of Σ.5

Fact 12.5 (If W is the global minimum for a two-layer network, then6

it is a projection of the solution for a single-layer network onto the7

subspace spanned by the top p eigenvectors of Σ). You can further8

show that the objective9

ℓ(A,B) = trace(Σyy)−
∑
ik∈I

λik . (12.8)

at a critical point (A,B). The first term is a constant with respect to10

the parameters of the network A,B. The second term is a sum of the11

eigenvalues of the matrixΣ at indices that we picked in our setUI . What is12

the index set that minimizes this loss? It is simply the largest p eigenvalues13

of Σ. This is also a unique value for the loss because we have assumed14

that all the eigenvalues are distinct. This also solidifies the connection15

of this model with Principal Component Analysis (PCA), the matrix W16

is projecting on the sub-space spanned by the top p eigenvectors in the17

auto-associative case.

? Based on the previous two facts, what can
you say about the solution W if p ≥ d and Σ

is invertible? Since the two-layer network
simply projects on the p eigenvalues of Σ, if
p ≥ d and Σ is invertible, the solution already
lies in the column-space of Σ and therefore
W = L∗.

18

Fact 12.6 (There are exponentially many saddle points for a two-layer19

network). There are a total of
(
d
p

)
possible index sets I. One of them as20

we saw above corresponds to a global minimum. It can be shown that all21

the others are saddle points. Note that there are exponentially many saddle22

points. This is an important fact to remember: there are exponentially23

many saddle points in a hierarchical architecture.24

Smaller the number of neurons in the hidden layer p (also the upper25

bound for the rank of the weight matrices), fewer are the number of saddle26

points but this also creates a dimensionality bottleneck in the feature space.27

If p is too small as compared to d we lose large amounts of information28

necessary to classify the image and the network need not work well.29

Fact 12.7 (There are no local minima in a deep linear network; all30

minima are global minima). The proof of Fact 12.6 also shows that any31

index set I ≠ {1, . . . , p} cannot be a local minimum (see the Appendix32

of the paper). There are no local minima for a deep linear network, only33

global minima and saddle points. This is often summarized as “linear34

networks have no bad local minima”.35

Fact 12.8 (The global minimum is not unique). This is perhaps the most36

important point of this chapter. The loss at the global minimum is unique,37

not the global minimum itself. Any full-rank square matrix C ∈ Rp×p of38

our choice gives a pair of solutions (A,B). How many such solutions are39

there? There are lots and lots of such solutions, in fact, given any solution40

with a particular C if we can perturb the C without losing rank (quite easy41
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to do by, say, changing the eigenvalues slightly) we get another solution of1

a linear network.2

Fact 12.9 (All the previous results are true for multi-layer linear3

networks). The same results are true for deep linear networks (Kawaguchi,4

2016). These results also hold if dim(yi) = 1, i.e., for the regression case.5

We used a simple two-layer linear network to obtain an essentially
complete understanding of how the loss function looks like. A
schematic looks as follows.

There are lots of locations where the global minimum of the function
is achieved. There are lots of saddle points in the energy landscape.
The Gibbs distribution for this energy landscape has a lot of modes,
one each at the global minima.

How does weight-decay6

Ω(A,B) = λ
(
∥A∥2F + ∥B∥2F

)
change the energy landscape of deep linear networks? It changes the7

number of global minima, only the ones that have the smallest ℓ2 norm8

remain in the energy landscape. It also reduces the number of saddle9

points because the Hessian at saddle points has an extra additive term that10

involves λ.11

12.3 Extending the picture to deep networks12

Let us think carefully about the non-uniqueness of the solution for a13

two-layer network. We know that all critical points are of the form14

A = UIC,

B = C−1U⊤
I ΣyxΣ

−1
xx .

The gradient at these critical points is zero. Given a particular C, we can15

perturb it slightly and obtain a new critical point (a new saddle point, or a16

new global minimum) and this keeps the objective unchanged. Effectively,17

we have a connected set of global minima and saddle points for a deep18

linear networks.19

If one were to try to visualize this energy landscape and extend the20

picture heuristically to deep networks with nonlinearities, we can think of21

the global minimum as looking like the basin of the Colorado river.22
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1

The important point to remember from this picture is that all the points2

at the basin of the river are solutions that obtain a good training loss.3

Although gradient-based algorithms (GD/SGD etc.) do not allow us to4

travel along the river (the gradient is zero along it), if the river basin snakes5

around in the entire domain, no matter where the network is initialized,6

we always have a global minimum close to the initialization. Essentially,7

the objective of deep networks is not convex, but current results indicate8

that it is quite benign. And this is perhaps the reason why it is so easy to9

train them.10
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Generalization2

performance of machine3

learning models4

This chapter gives a preview of generalization performance of deep5

networks. We will take a more abstract view of learning algorithms here6

and focus only on binary classification. We will first introduce a “learning7

model”, i.e., a formal description of what learning means. The topics8

we will discuss stem from the work of two people: Leslie Valiant who9

developed the most popular learning model called Probably Approximately10

Correct Learning (PAC-learning) and Vladimir Vapnik who is a Russian11

statistician who developed a theory (called the VC-theory) that provided a12

definitive answer on the class of hypotheses that were learnable under the13

PAC model.14

13.1 The PAC-Learning model15

Our goal in machine learning is to use the training data in order to16

construct a model that generalizes well, i.e., has good performance outside17

of the training data. Formally, we search over a hypothesis space F ,18

e.g., a specific neural net architecture, using the available data to find a19

good hypothesis f ∈ F . As we motivated in Chapter 2, without further20

assumptions, we cannot guarantee that this hypothesis works well on test21

data. We therefore assume two things in this chapter:22

1. Nature provides independent and identically distributed samples23

x ∈ X from some (unknown to the learner) distribution P .24

2. Nature labels these samples with c(x) which is again unknown to25

the learner.26

Both training and test data are samples from Nature’s distribution P .27

We will also assume that even if the true labeler c(x) is unknown to us,28

we know that it belongs to a chosen hypothesis class c(x) ∈ C and is29
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deterministic, i.e., Bayes error is zero. Changing this assumption does not1

change the crux of this theory.2

Consider a learning algorithm, denoted by L. Given a dataset3

D =
{
(xi, c(xi)

}n
i=1

and a hypothesis class C, the population risk4

(for classification) of the hypothesis output by this learning algorithm is5

R(f) = E
x∼P

[
1{f(x)̸=c(x)}

]
Let us assume that the learning algorithm is deterministic for now, i.e.,6

given a training dataset D it returns a unique answer f . Let us assume7

that the hypothesis class that the learner searches over, named F is the8

same as the hypothesis class C. What do we want from this algorithm?9

We expect that it works well for all hypotheses Nature could use to10

label data c ∈ C and all datasets D drawn from P . The PAC-Learning11

model postulates the following desiderata upon the learning algorithm.12

1. We are okay with an answer f with error13

R(f) ∈ [0, 1/2)

because we only have access to finitely many training data. This is14

the “approximately correct” part of the PAC-Learning. The error15

should decrease as n increases.16

2. The dataset D is a random variable. This implies that the hypothesis17

output by the learning algorithm f(D) is also a random variable. The18

above statement therefore should hold with some large probability19

over draws of the dataset D. In other words, there can be a small20

probability that a non-representative dataset D is drawn and we do21

not expect the learner to output a good hypothesis with R(f) < 1/2.22

However the probability of such failure, let us call it δ ∈ [0, 1/2),23

should also become smaller if more data is provided. This is the24

“probably” part of PAC-Learning.25

We can now use these two postulates to give a definition of what it26

means to be a good learning algorithm.27

Definition 13.1 (PAC-learnable hypothesis class). A hypothesis class C28

is PAC-learnable if there exists an algorithm L such that for every true29

labeling function c ∈ C, for every ϵ, δ ∈ [0, 1/2), if L is given access to30

n(ϵ, δ) i.i.d. training data from P and their corresponding labels c then it31

outputs a hypothesis hD ∈ C such that32

PD (R(f) < ϵ) ≥ 1− δ.

We want the learner to be statistically efficient, i.e., as our desiderata33

ϵ, δ get smaller, we should expect n(ϵ, δ) to not grow too quickly. One34

classical setting under which we analyze learning is the case when n(ϵ, δ)35

is a polynomial function of 1/ϵ and 1/δ.36

Sample complexity and computational complexity The minimum37

number of samples n(ϵ, δ) required to learn a hypothesis class C is38
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called the sample complexity of C. One is also typically interested in1

the computational complexity of finding f , e.g., to avoid a brute-force2

algorithm L that searches over the entire hypothesis class F = C; we will3

not worry about it here.4

It is important to notice that PAC-learning assumes nothing about
how the learner L is going to use the data D to create a hypothesis
f(D), e.g., whether it runs SGD or some variant, or what surrogate
loss it uses, or even whether it performs Empirical Risk Minimization.
In this sense, the above learning model is very abstract and we should
expect only qualitative answers from this theory.

Example 13.2 (Learning Monotone Boolean Formulae). Let x =5

[x1, . . . , xd] ∈ {0, 1}d be a datum and let the true label c(x) be the6

conjunction of the entries of x, e.g.,7

c(x) = x1 ∧ x3 ∧ x4.

To take a few examples, c(10011) = 0 and c(11110) = 1. Such formulae8

are called monotone because no literals show up as negated in the formula.9

We can have the hypothesis class F to be the set of all possible10

conjunctions of d variables x1, . . . , xd. Each literal xi can be in the11

conjunction or not, so the total number of hypotheses in F is 2d. 1
12

Observe that since this is exponential in d, an algorithm L that brute-force13

searches over F will have a large computational complexity. Also observe14

that since the true hypothesis c ∈ F , there exists an answer f that the15

algorithm L can output that achieves zero training error, i.e.,16

min
f∈F

1

n

n∑
i=1

1{f(xi )̸=c(xi)} = 0.

But for a fixed amount of data n, there is some probability that the17

minimizing hypothesis f has zero training error but large population risk.18

As the number of data n is large, we expect this event to be less and less19

probable.20

Consider an algorithm L that does the following. It starts with the21

hypothesis22

f0(x) = x1 ∧ x2 ∧ · · · ∧ xd

with all literals and for every datum with a label 1, it deletes all literals xi23

from the hypothesis f0 that were not a part of that datum; this makes sense24

because if the deleted literals were zero in some input, f and c would25

predict different outputs. Remember that since c(x) ∈ F , we cannot have26

a datum with input 1111. . . 1 and output 0.27

1Actually the total number of conjunctions is 2d + 1 because for the null-conjuction
(without any literals) we can have the constant c(x) = 0 or c(x) = 1 for all x. We should
therefore explicitly make sure c(111 . . . 11) = 0 is not in the true labeling function. But we
ignore this corner case, and silently assume that only the hypothesis c(x) = 1∀x is in our
class C.
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What kind of errors does this algorithm make? If some literal xi was1

deleted, it is because it had the value xi = 0 on a positively labeled sample.2

So we only output a wrong hypothesis if more literals are present in our3

hypothesis than those in c(x). If we think about this carefully, the output4

f(x) can only make an error on data that are labeled 1 by c(x), never on5

the ones labeled zero. Our algorithm therefore only has false negatives.6

We now see why having more samples diminishes the probability of7

this event happening. Let pi = Px∼P [c(x) = 1, xi = 0 in x]. Therefore8

R(h) ≤
∑
xi∈f

pi

If some pi is small, then it does not contribute much to the error. If9

some pi is large then we make sure to see enough samples so that we10

remove that xi from f . After all, it only takes one appearance of this11

event to delete this xi, and the event has probability pi which is large.12

Rigorously, if all xi in f have pi < ϵ/d then R(h) < ϵ. On the other13

hand, if some xi has pi > ϵ/d then the probability of having this xi14

in f is the probability that the event of pi never happens in the draw15

of n samples. But this new probability is smaller than 1 − ϵ/d. And16

the event will never happen in n i.i.d. draws with probability at most17

(1− ϵ/d)n ≤ e−nϵ/d. Using the union bound, since there are at most d18

literals in f , the probability that there is at least one such “bad event” is at19

most de−nϵ/d.20

If this bad event never happens the population risk is less than ϵ. Of21

course, such a bad event happening would be devastating. For some22

distributions it could lead the error up to 1. However, in our PAC-learning23

setting we can accept this as long as it happens rarely with probability at24

most δ. And therefore we can say that if25

de−nϵ/d < δ =⇒ n ≥ dϵ−1 log(d/δ)

then we are guaranteed to meet the PAC criteria: of error less than ϵ with26

probability at least 1− δ.27

Note that both the sample complexity and computational complexity28

are polynomial in this example. We have thus shown that the class29

of Monotone Boolean Formulae is (ϵ, δ)-PAC learnable. The sample30

complexity n is linear in the number of dimensions d of the data.31

13.2 Concentration of Measure32

Two very important results from probability theory that we will use are33

the Union Bound and the Chernoff Bound.34
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13.2.1 Union Bound (or Boole’s Inequality)1

For any countable set of events, {A1, · · · , An, · · · },2

P

(⋃
i

Ai

)
≤
∑
i

P [Ai] .

This is a rather loose, but useful, upper bound and is (mostly) embedded3

in the assumptions of what we call a “probability measure” in probability4

theory (σ-subadditivity). This essentially means that it can be used without5

any extra assumptions in practice.

� If we want a better approximation of the
probability of the union of multiple events
and we know more about the problem at hand
we can use what are called Bonferroni
inequalities.6

By the inclusion-exclusion principle for finite set of events {A1, · · · , An},7

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai)−
∑

1≤i<j≤n

P (Ai, Aj)+...+(−1)n−1 P (A1, A2, · · · , An)

We can get better approximations of the union, if we use the first k ≤ n8

terms above. If we stop at odd k, we get an upper bound. If we stop at9

even k we get a lower bound. The error of the approximation is decreasing10

with k.11

12

? Where did we use the union bound in the
proof for the PAC-learnability of the class of
monotone Boolean functions?

? Try to prove that

P
(

n⋂
i=1

Ai

)
≥ 1−

∑n
i=1 P (Ac

i )13.2.2 Chernoff Bound13

Let A1, · · · , An be a sequence of i.i.d. random variables. We focus on14

the case of Bernoulli random variables where P (Ai = 1) = p. We would15

like to estimate p from samples. One way to do this is to compute the16

empirical average17

p̂(n) =
1

n

n∑
i=1

Ai

and estimate how close it is to the true p. We know that as n→∞18

Weak Law For all ϵ > 0 we have19

lim
n→∞

P (|p̂(n)− p| ≤ ϵ) = 1.

This is also known as convergence in probability.20

Strong Law In this case, we also have almost sure convergence, i.e.,21

P
(
lim

n→∞
p̂(n) = p

)
= 1.
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Central Limit Theorem As n → ∞, the quantity
√
n(p̂ − p) is1

distributed as a Normal distribution with mean zero and variance p(1− p).2

Notice that as opposed to the law of large numbers, the central limit3

theorem also gives us a rate of convergence, i.e., how many samples n are4

necessary if want the difference to be close to a Normal distribution. If5

we set σ2 = p(1− p) we can rewrite the Central Limit Theorem as6

P (|p̂(n)− p| > ϵ) ≤ 2e−nϵ2/(2σ2).

� This picture makes it easy to remember
concentration inequalities for an
n-dimensional Gaussian random variable Y .

7

Chernoff Bound Since σ2 = p(1− p) < 1/4 we have from CLT that8

P

(∣∣∣∣∣ 1n∑
i

Ai − p

∣∣∣∣∣ > ϵ

)
≤ 2e−2nϵ2 .

An easy way to remember the Chernoff bound is that if we want the9

average of n random variables to be ϵ-close to their expected value with10

probability at least 1− δ, then we need11

n = Ω
(
ϵ−2 log(1/δ)

)
samples.

? Do you see any patterns in the Chernoff
bound with sample complexity in
PAC-learning?

12

Concentration of measure is a beautiful area of probability theory and13

similar results can be obtained for other distributions, other functions than14

averaging of random variables A1, . . . , An etc. Popular inequalities are15

Markov’s Inequality, Chebyshev’s Inequality and Chernoff Bounds (and16

Hoeffding’s Inequality as an important special case). They are written in17

terms of increasing tightness, but also of increasing assumptions of what we18

need to know in order compute them. You can read a very good introduction19

to this topic at https://terrytao.wordpress.com/2010/01/03/254a-notes-1-20

concentration-of-measure/.21

13.3 Uniform convergence22

We now lift the assumption that Nature’s labeling function c ∈ C. After23

all, even if there exists such a true deterministic c we can never be sure that24

it is inside F , say the class of neural networks of a specific architecture25

that we are using. This model is called the Agnostic PAC-Learning model.26

We will stay within the confinements of Empirical Risk Minimization27

where we are provided with some samples where we output the hypothesis28

with the smallest training error29

R̂(f) =
1

n

n∑
i=1

1{f(xi )̸=yi} minimizing this gives fERM ∈ F .

https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
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The population risk is1

R(f) = E
(x,y)∼P

[
1{fERM(x) ̸=y}

]
minimizing this gives f∗ ∈ F .

Observe that f∗ is not the Bayes optimal predictor that we saw in the2

bias-variance tradeoff. This is because we are now restricted to the3

hypothesis class F while there was no such restriction before.4

Our goal while computing a generalization bound is to ask the
following question: if we obtain an ERM hypothesis fERM with a
good training error, then does this also mean that the population risk
of the best hypothesis within the class, i.e., f∗, is small?

The above question is central, answering it in the affirmative ensures5

that we are using a correct hypothesis class (say neural architecture) and6

that the error on the training dataset is a good indicator of the performance7

on the entire distribution. This involves the following two steps.8

1. First, we need to make sure that the difference9 ∣∣∣R̂(fERM)−R(fERM)
∣∣∣→ 0, n→∞.

This is easy, it is akin to the concentration of measure we saw in the10

previous section.11

2. Second, we need to ensure that12

R̂(fERM) ≈ R(f∗)

with high probability for every training dataset of n samples using13

which fERM is computed. If this is true, it tells us something about14

the ERM procedure itself, i.e., it tells us whether minimizing the15

empirical risk R̂(f) is a good thing if we want to build a classifier16

that works well on the population.17

This is difficult to do, after all fERM and f∗ are totally different18

hypothesis. Vladimir Vapnik set up a powerful approach to do this.19

He showed that a sufficient condition to achieve the above is that the20

empirical risk and population risk are similar for all hypotheses inF .21

This framework/assumption is known as uniform convergence.22

Let us now develop the two points above. Since data are drawn iid, we23

can use the Chernoff bound to get that24

∀f ∈ F ,P
(∣∣∣R̂(f)−R(f)

∣∣∣ > ϵ
)
≤ 2e−2nϵ2 .

If the hypothesis class is finite F , we can use the union bound to show25
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that for any hypothesis, the training error and population risk are close.1

P
(
∃f ∈ F :

∣∣∣R̂(f)−R(f)
∣∣∣ > ϵ

)
≤
∑
f∈F

P
(∣∣∣R̂(f)−R(f)

∣∣∣ > ϵ
)

≤ |F| 2e−2nϵ2 .

If we want this above probability of a bad event to be less than δ we2

therefore need3

n ≥ 1

2ϵ2
log

2 |F|
δ

(13.1)

training samples.4

Suppose we had a classifier f with 2% gap (ϵ = 0.02) between5

the training error R̂(f) and the validation error (which is a proxy for6

the population risk R(f)), if we want to reduce this gap by half to 1%7

(ϵ = 0.01) , we need 4 times as many training data. We could also reduce8

this gap by fitting a classifier with small |F| but in this case, both the9

training and validation error might increase even if their gap decreases.10

Next, we need a relation between the population risk of fERM and the11

best possible predictor f∗ in our hypothesis class F . Observe that12

R(fERM) ≤ R̂(fERM) + ϵ (Chernoff bound on fERM)

≤ R̂(f∗) + ϵ (fERM has the smallest training error)
≤ R(f∗) + 2ϵ (Chernoff bound on f∗).

The two Chernoff bound inequalities hold with probability at least 1− δ13

so the final inequality14

R(fERM) ≤ R(f∗) + 2ϵ

holds with probability at least 1− 2δ. Substitute this in Eq. (13.1) to get15

R(fERM) ≤ R(f∗) + 2

√
1

2n
log

4 |F|
δ

(13.2)

with probability 1−δ. A result of this kind is called a Vapnik-Chernovenkis16

(VC) bound or a PAC bound. Notice how this bound changed from the17

Monotone Boolean function example: we need O(1/ϵ) times more18

samples in Eq. (13.1).19

Let us consider our monotone Boolean formulae example again. Since20

|F| = 2d, if the input dimension is d = 1000 and we set δ = 10−3, the21

VC-bound predicts the following (we should imagine running ERM to22

pick the best hypothesis fERM, not the elimination algorithm we discussed23

in the section on monotone Boolean formulae):24

1. With n = 1000 data, we have R(fERM) ≤ R(f∗) + 1.42. This is25

vacuous/non-informative since the population risk is an expectation26

of indicator variables and should therefore be less than 1.27

2. With n = 105, we have R(fERM) ≤ R(f∗) + 0.45. This is28
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informative: it means that the population risk of the classifier1

obtained by ERM is within 44% of the population risk of the best2

classifier f∗ in that class. Of course it is only meaningful if f∗
3

generalizes well, i.e., if R(f∗) is small. This will happen if the4

hypothesis class F is large enough.5

3. With n = 106, we have R(fERM) ≤ R(f∗) + 0.04.6

13.4 Vapnik-Chernovenkis (VC) dimension7

In the above section, the concept/hypothesis class was assumed to be finite8

|C| <∞. The union bound of course breaks if this is not the case. Notice9

that once we pick a neural architecture (hypothesis class), the number10

of possible models (hypotheses), each with different weight vectors, is11

infinite. Observe that in the monotone Boolean formulae example, the12

algorithm L was using the training data to eliminate hypothesis from13

C, this is not going to work if C is not finite. It is therefore a natural14

question whether we can still learn a hypothesis class with infinitely-many15

candidate hypotheses with a finite number of training data.16

Vladimir Vapnik and Alexey Chernovenkis (Vapnik, 2013) developed17

the so-called VC-theory to answer the above question. Technically, VC-18

theory transcends PAC-Learning but we will discuss only one aspect of19

it within the confinements of the PAC framework. VC-theory assigns a20

“complexity” to each hypothesis f ∈ C.21

Shattering a set of inputs We say that the set of inputsD = {x1, · · · , xn}22

is shattered by the concept class C, if we can achieve every possible label-23

ing out of the 2n labellings using some concept c ∈ C. The size of the24

largest set D that can be shattered by C is called the VC-dimension of the25

class C. It is a measure of the complexity/expressiveness of the class; it26

counts how many different classifiers the class can express.27

If we find a configuration of n inputs such that when we assign any28

labels to these data, we can still find a hypothesis in C that can realize this29

labeling, then30

VC(C) ≥ n.

On the other hand, if for every possible configuration of n+ 1 inputs, we31

can always find a labeling such that no hypothesis in C can realize this32

labeling, then33

n ≤ VC(C).

If we find some n for which both of the above statements are true, then34

VC(C) = n.

Some examples.35

• d-dim Linear Threshold Functions: VC-dim = d+ 1.36
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Figure 13.1: d=2: See that for the lower bound, we found some configuration
of the 3 points, such that a linear threshold function always separates the points
consistently with the labels; for any possible labeling. 3 such labellings are shown,
convince yourselves that it can be done for all 8 cases. Observe that we cannot do
the same for 4 points. In the figure above one such unrealizable configuration is
given (With the “XOR” labeling). To prove the upper bound we need to talk about
ANY configuration though. See that the only other case for 4 points, is that one
point is inside the convex hull generated from the other 3. Find the labeling that
cannot be obtained with linear classifiers in this case.

• 2 dimensional axis aligned rectangles: VC-dim = 4 (exercise)1

• Monotone Boolean Formulae: VC-dim = d (exercise).2

• If the hypothesis class is finite, then3

VC(F) ≤ log |F| .

• If x ∈ R and our concept class includes classifiers of the form4

sign(sin(wx))

where w is a learned parameter, then5

VC =∞.

• For a neural network with p weights and sign activation function6

VC = O(p log p).

It is a deep result that if the VC-dimension of concept class is
finite V = VC(F) <∞, then this class has the uniform convergence
property (for any f ∈ F , the empirical and population error are
close). Therefore, we can learn this concept class agnostically
(without worrying about whether Nature’s labeling function c is in
our hypothesis class F or not) in the PAC framework with

n = Ω

(
V

ϵ2
log

V

ϵ
+

1

ϵ2
log

1

δ

)
training data. If a hypothesis class has infinite VC-dimension, then it
is not PAC-learnable and it also does not have the uniform convergence
property.
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The above result written in another form looks as follows. For a (finite1

or infinite) hypothesis class F with finite VC-dimension V = VC(F)2

R(fERM) ≤ R(f∗) + 2

√
1

n
(2V − log δ) (13.3)

with probability at least 1−δ. This is an important expression to remember:3

the number of samples n required to learn a concept class scales linearly4

with the VC-dimension V . A more refined version of this same bound5

looks like6

R(fERM) ≤ R(f∗) + 2

√
1

n

(
V

(
log

2n

V
+ 1

)
+ log

4

δ

)
; (13.4)

but such expressions should essentially be understood to be saying the7

same thing, namely that the number of samples required to learn scales8

linearly with the VC-dimension.9

Bounds on the VC-dimension of deep neural networks For general10

classifiers, it is typically difficult to compute the VC dimension. One11

instead finds upper and lower bounds for the VC dimension to be used in12

inequalities of the form Eq. (13.4). Bounds on the VC-dimension of deep13

network architectures are available (Bartlett et al., 2019). With p weights14

and L layers, an essentially tight VC-dimension looks like15

Ω
(
p L log

p

L

)
= VC(F) = O(p L log p)

for deep networks with ReLU nonlinearities.16

This bound is not entirely useful in the VC-theory however. For17

instance, the ALL-CNN network you used in your homework with p ≈ 10618

and L = 10 has VC ≈ 108. If we use the coarse VC-bound in Eq. (13.3)19

with n = 50, 000 samples, we have20

R(fERM) ≤ R(f∗) + 40

which is a vacuous generalization bound. However, remember that this is21

simply an upper bound on the generalization error of ERM. It is clear from22

empirical results in the literature (including your homework problems)23

that deep networks indeed generalize well to new data outside the training24

set and that means R(fERM) is small.

� You have noticed this in one of your
homework problems. When data is sampled
from a small part of the domain, even if the
true labeling function is very complicated, we
can build a hypothesis that generalizes well.
But this hypothesis may not generalize if data
is sampled from outside this domain.

25

The gap in applying VC-theory to deep networks therefore likely26

stems from the need for uniform convergence: we may not need that the27

empirical and population risk are close for all hypotheses in the class. If28

we only have uniform convergence within a small subset F ⊂ F and if29

VC(F ) ≪ VC(F) and if the training algorithms like SGD always find30

ERM minimizers fERM ∈ F , then VC-theory/PAC-Learning do predict31

that deep networks will generalize well. Of equivalently, instead of32

considering concept classes C that are learnable with polynomially-many33

samples n, we should consider simpler concept classes that require fewer34
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samples to learn. Understanding this is the subject of a large body of1

ongoing research.2



Chapter 141

Sloppy Models2

Reading
1. Sections 1 and 2 of “Geometry of nonlinear least squares with

applications to sloppy models and optimization” (Transtrum
et al., 2011)

In the previous chapter we have seen some classical ideas on how3

to capture the size of the hypothesis space, e.g., using a quantity called4

the VC-dimension. This lets us estimate the number of samples required5

to learn data from a given concept class. In this chapter, our goal will6

be to obtain an understanding of the shape of the hypothesis class, e.g.,7

its geometry (which models are close by to which models and which8

ones are far away), its topology (are there some models that are identical9

to others), etc. The ideas that we are going to discuss form a part of10

a field called “Information Geometry” (developed by Shun’ichi Amari11

https://en.wikipedia.org/wiki/Shun%27ichi_Amari). It is a very rich field12

that combines ideas from geometry and information theory to understand13

learning. We will not go into a lot of mathematical details in this chapter.14

But you will see that these ideas give a very visual understanding of both15

optimization and generalization of deep networks (and also other machine16

learning models).17

14.1 Model manifold of nonlinear regression18

Consider a dataset
{
(xi, y∗i)

}n
i=1

where true outputs y∗i ∈ R and inputs19

xi ∈ Rd. We will fit this dataset using a nonlinear function and assume20

that the underlying probabilistic model is21

y∗ = f(x;w) + ξ

187
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where ξ = N(0, σ2) is Gaussian noise for some scalar σ > 0. This1

setup is identical to the one we did in Lecture 2 for maximum likelihood2

regression. The weights of this model are w ∈ Rp. The residual of the fit,3

i.e., the error incurred at each datapoint is given by4

ri(w) =
y∗i − f(xi;w)

σ
. (14.1)

Since all our samples are independent and identically distributed, the5

residuals ri are normally distributed with zero mean and unit variance6

(this is because we divided by σ). In other words, the likelihood of our7

dataset under the model with weights w is8

P(r1, . . . , rn;w) =
1

(2π)n/2
exp

(
−1

2

n∑
i=1

ri(w)
2

)
.

It should not be surprising at this point that it is this likelihood that we9

maximize when we fit a model using maximum likelihood estimation or10

perform nonlinear least squares regression.11

Data space Let us create a shorthand for the vector of residuals of each12

input datum13

r⃗ = [r1, r2, . . . , rn].

We can similarly create a short-hand for the vector of the true outputs and14

the predicted outputs15

Rn ∋ y⃗∗ = [y∗1, y∗2, . . . , y∗n]

Rn ∋ y⃗(w) = [ŷ1, ŷ2, . . . , ŷn].

Notice that y⃗(w) is a function of the weights of the model. The key idea16

of this chapter (and information geometry) is to realize that the above17

quantities are simply vectors in Rn. We can therefore plot them in this18

space and understand distances between them. For example, the “truth”19

y⃗∗ can be written as20

y⃗∗ = y⃗(w) + σ r⃗.

We will give this space a name: it is called the “data space”.21

Model manifold A manifold is a mathematical object which locally22

looks like Euclidean space. A good example to keep in mind is the surface23

of the Earth: at each point to us walking on it the Earth is locally flat, but24

the Earth can have a more complex shape than what is evident to us on it25

surface (a sphere). It will also be useful to keep in mind that the Earth is an26

object in 3-dimensional Euclidean space but it is a 2-dimensional manifold.27

Because of the constraint that points on the surface are equidistant from28

the center, every point on the surface can be described by two variables:29

the latitudes and longitudes.30
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Let M be the manifold swept by y⃗(w) for different values of w1

M = {y⃗(w) : w ∈ Rp} .

We will give this a name: it is the “model manifold” of our model f(·;w).2

The model manifold is embedded in the data space so its dimensionality3

is at most n. Notice that the truth y⃗∗ need not lie on the manifold M .

� Picture of the model manifold and data
space

4

Fisher Information Metric It is useful to define a metric that helps us5

understand how far away two points on the manifold are. Any point that6

lies on the manifold also lies in the data space. And therefore we can use7

some reasonable way to measure distances in the data space in order to8

talk about the distances on the manifold. Since we are performing least9

squares regression, let us define squared distances between two points in10

the n-dimensional data space as the sum of the squares of the coordinates11

(ℓ2 norm). Distance from the truth y⃗∗ is12

C(w) =
1

2n

∑
i

(
ŷi(w)− y∗i

)2
=

1

2

∑
i

ri(w)
2;

this is the standard least squares regression objective.13

Armed with this new language, we can now say: fitting a model
is equivalent to finding the closest point to y⃗∗ on the model manifold
M .

For two nearby points on the manifold y⃗(w) and y⃗(w′) with w′ =14

w + dw, this corresponds to15

d(w,w′) =
1

2n

∑
i

(
ŷi(w)− ŷi(w′)

)2
≈ 1

2n

∑
i

∂w′
(
ŷi(w)− ŷi(w′)

)2 ∣∣
w′=w

dw +
1

2
dw⊤ g(w) dw .

(14.2)
where we took the Taylor series approximation of (·)2 and defined16

Rp×p ∋ g(w) =
1

2n

∑
i

∂2
w′

(
ŷi(w)− ŷi(w′)

)2 ∣∣
w′=w

. (14.3)

Now notice that since ŷi(w) − ŷi(w′) = 0 when w = w′, the first17

derivative term in the Taylor series is zero. We therefore have, up to18

second order,19

dist(w,w + dw) =
1

2
dw⊤ g(w) dw

=
1

2
dw⊤ J⊤J dw .

(14.4)
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� Deriving Eq. (14.4) is not hard. But to
make it easier, you can also imagine that y⃗∗
lies on the manifold and we are working in a
neighborhood of some weight w∗ that gives
y⃗∗. In this case,

(g(w))kl = ∂wk
∂wl

1

2n

∑
i

r2i

=
1

n

∑
i

(∂wk
ri) ∂wl

ri

+
∑
i

ri∂wk
∂wl

ri

≈ 1

n

∑
i

(∂wk
ri) ∂wl

ri

=
(
J⊤J

)
kl
.

The approximation follows from noticing that
if we have a model that fits the data well, the
residuals ri ≈ 0 for all samples i and
therefore the second term is small.

where the Jacobian1

Rn×p ∋ Jik =
dri
dwk

is the derivative of the ith sample’s residual with respect to the kth weight2

wk in the model. The matrix g(w) is called the Fisher Information3

Metric (FIM) because it gives us a way to measure the distance between4

two infinitesimally nearby points on the model manifold. It is important to5

realize that the FIM g(w) is a function of the weights that it is calculated6

at. At the global minimum when ri ≈ 0 for all i, the FIM is equal to the7

Hessian (observe this in the adjoining derivation).8

Remark 14.1. The distance in the data space C(w) is like our standard9

Euclidean distance in 3-dimensional space. But we know that the shortest10

path between two points on the surface of the Earth is not the straight line11

that joins them (which does not lie on the surface but cuts through it) but12

instead along the great circle that joins the two points (this is the path that13

airplanes usually fly along, and longitudes are defined using). The great14

circle path is “shortest” because among all continuous paths that join two15

points w,w′ on the surface of the Earth (not necessarily nearby), the great16

circle path has the shortest value of17 ∫ 1

0

√
dw⊤ g(w) dw.

Such paths are called “geodesics”. They are the analogue of straight lines18

in Euclidean space for manifolds.19

Optimization involves initializing the weights w at some point
w(0) which corresponds to some point y⃗(w(0)) on the model manifold
M and finding the point on the manifold w∗ that is closest to y⃗∗ as
measured by the cost C(w∗) = 1

2n

∑
i ri(w

∗)2. The trajectory of
the weights during optimization corresponds to a trajectory on the
model manifold. Among all trajectories, it would potentially help to
take the shortest trajectory, shortest as measured by the FIM.

Generalization corresponds to making statements about the
width of the manifold in the (n+ 1)th dimension given a particular
point y⃗(w) in the n-dimensional manifold. If the width is small,
then the model has a small variance (i.e., its predictions do not vary
much on the new datum). If the true y⃗∗ ∈ Rn+1 is also close to
y⃗(w) ∈ Rn+1 then the model also has a small bias and only then it
generalizes well. Instead of thinking of adding an extra dimension,
we can also think of taking slices of our n-dimensional data space
(i.e., projecting it into lower dimensions) and build a similar mental
picture: if projecting into different (cardinal) subspaces usually ends
up eliminate axes along which the manifold was thin, then the model
generalizes well.
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14.2 Understanding optimization for sloppy1

models2

The FIM is a fundamental object in the study of probability distributions.3

We will list some of its properties below that will shed light upon how4

the geometric structure of the model manifold and the FIM allows us to5

understand some key phenomena in optimization and generalization.6

FIM does not depend upon the ground-truth labels The FIM depends7

upon the inputs
{
xi
}

and the model that fits the data f(x;w). It does8

not depend upon the ground-truth targets. Notice that it depends upon9

the derivatives of the residuals in Eq. (14.3) (not the residuals...which are10

functions of the ground-truth labels).11

FIM for classification problems Although we have defined all quantities12

in the case of nonlinear regression, we can define the FIM, the model13

manifold and all relevant quantities for any probabilistic model. For14

classification, if our network predicts pw(y | x) where y takes C distinct15

values, the FIM is defined as16

(g(w))kl =
1

n

n∑
i=1

C∑
c=1

∂wk
pw(y | xi) ∂wl

pw(y | xi)

pw(y | xi)
.

Notice again that it does not depend upon the ground-truth labels. In this17

sense, it is very different from the Hessian of the cross-entropy loss18

(
∇2ℓ(w)

)
kl

= − 1

n

∑
i

∂wk
∂wk

log pw(y
∗i | xi).

The FIM ∈ Rp×pg(w) = J⊤J is a positive semi-definite matrix. The19

Hessian has both positive and negative eigenvalues in general. The two20

are equal at the global minimum of the cross-entropy loss.21

FIM characterizes how the weight space maps into the data space22

Since d(w,w+dw) = 1
2 dw

⊤ g(w) dw, the matrix g(w) defines how the23

weight space gets mapped to the data space. More precisely, a unit ball in24

the data space centered around y⃗(w), i.e., the set25

A =

{
y⃗(w′) :

1

2n
∥y⃗(w)− y⃗(w′)∥2 ≤ 1

}
corresponds to an ellipse26

B =

{
w′ :

1

2
(w′ − w)⊤g(w)(w − w′) ≤ 1

}
in the weight space. The matrix g(w) therefore controls how changes27

in the weights w − w′ reflect in the changes in the outputs of the model28

on all the samples y⃗(w) − y⃗(w′). Suppose we write the singular value29
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decomposition of the FIM as1

g(w) = UΣ2U⊤.

where the singular values are sorted in decreasing order of their magnitude2

along the diagonal of a diagonal matrix Σ2 and columns of U are the3

singular vectors. Changes in weights w − w′ along singular vectors that4

have small singular values will have a small value of (w−w′)⊤g(w)(w−5

w′) and therefore will not result in very different predictions y⃗(w) and6

y⃗(w′).7

The volume of the ellipse B in the weight space is proportional to8 √
det g(w).

For many problems, the determinant of the FIM is very very small.9

Such phenomena have been studied under the name “sloppy models”.10

We have seen one example of this phenomenon. For the 1-dimensional11

polynomial regression problem in the midterm exam, we were doing linear12

least squares regression with y = Aw where13

A =


1 a1 a21 · · · ad−1

1

1 a2 a22 · · · ad−1
2

...
1 an a2n · · · ad−1

n


was the Vandermonde matrix. It is easy to check that the FIM for linear14

least squares problem is g(w) = A⊤A. The determinant of such FIMs is15

very small16

det g(w) ≈ ϵn(n−1) ≈ 0 for large n.

Here ϵ is the maximum distance between two data points in the dataset.17

Enormous volumes in the weight space correspond to tiny volumes in the18

data space for such problems.19

Deep networks are sloppy20

21

0 500 1000 1500 2000 2500 3000
Index of sorted eigenvalues

10
7

10
5

10
3

10
1

10
1

10
3

E
ig

en
va

lu
e

Data
Fisher Information Matrix
Hessian
Activations

22



193

This pattern persists even for deep networks. For a wide residual1

network trained on CIFAR-10, Yang et al. (2022) computed the first2

3000 eigenvalues of the FIM (orange) and compared them to the top3

2000 eigenvalues of the Hessian (green) and the eigenvalues of the input4

correlation matrix 1
n

∑
i x

ixi⊤. Notice that eigenvalues of the FIM drop5

by about 8 orders of magnitude within the first 3000 entries; the network6

has many more weights p ∼ 3 × 106 and it is expected that the orange7

curve keeps decreasing all the way to zero; we know that some eigenvalues8

have to be zero because the network has many more parameters than9

the number of data points. The FIM of this network will therefore be10

extremely small. All neural networks trained on typical datasets seem to11

have sloppy FIMs.12

Optimization for sloppy models is slow because the condition number13

is large Notice that in the above plot, the eigenvalues of the Hessian14

also drop quickly (by about 4 orders of magnitude). If we take a quadratic15

approximation of the loss near the final point in the above figure, the16

objective can be written as17

ℓ′(w) =
1

2
(w − w∗)⊤∇2

wℓ(w)
∣∣
w=w∗(w − w∗).

If the Hessian is sloppy, the contours of this objective (even if it convex18

and quadratic) are very elongated ellipses. Roughly, the largest axis of19

the ellipse is about 100 times longer than the 2000th largest axis. � If you think about it, you can convince
yourself that lengths of the axes of the ellipse
are proportional to the square root of the
eigenvalues of the Hessian.

This20

entails that the best learning rate along the direction of the largest axis is21

100 times smaller. As we have discussed in the chapters on optimization,22

this makes it difficult to pick a good value for the learning rate. We know23

that the number of steps required even if we use the best learning rate is24

proportional to
√
κ, this is very large for sloppy models. � A good visual description of the

optimization landscape can be obtained by
noticing that the ratio of the length of a
human hair to its width is also about 100. So
the ellipses that correspond to the quadratic
objective roughly force us to travel down the
length of the hair without falling off (although
there are hills on the sides for our
optimization problem...).

25

But why is optimization for deep networks so effective then? The26

above point is less of a problem that it may seem because the eigenvectors of27

g(w) corresponding to the smallest eigenvalues (which are the “sloppiest”28

subspaces) are exactly the directions along which we need not change29

the weights much.

� You will notice that we have not
characterized how the FIM/Hessian changes
with weights w—which would be necessary to
say things like “optimization does not change
the sloppiest subspace much”. It is often the
case for neural networks that the FIM/Hessian
do not change much with the weights w.

These changes will not result in large changes to the30

predictions and therefore the loss. In the picture of the eigenvalues above,31

there is a very large number of such sloppy directions and a very small32

number of “stiff” non-sloppy directions. If the model can make accurate33

predictions after making progress along the stiff directions (we do see this34

in practice, e.g., the loss decreases very quickly in the beginning and very35

slowly towards the end), then we can stop at some reasonable point after36

training for a short duration and expect accurate predictions. This is the37

reason we train deep networks for so few epochs—this is not sufficient to38

fit the data perfectly (you will notice that the loss is never zero) but it is39

presumably good enough to fit most of non-sloppy dimensions well.40
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14.3 Understanding generalization for sloppy1

models2

Cramer-Rao bound Such a pathologically ill-conditioned FIM is not3

necessarily an issue. Whether a model fits the data depends upon whether4

the manifold M has a point that is close to y⃗∗ or not; it does not depend5

upon the FIM. If the FIM has a very small determinant, it simply means that6

there are many weights in the weight space that lead to similar predictions7

on the samples. This is noticed all the time for large models such as8

deep networks, e.g., if you train the same network twice you will get a9

similar training and generalization error but the weights of the network10

will be totally different. We have seen this as there being many equivalent11

solutions A∗ = UIC and B∗ = C−1U⊤
I L∗ for any non-singular matrix12

C for a two-layer linear neural network.13

But there are many problems where one is interested in estimating14

parameters as opposed to simply making predictions using the fitted model,15

e.g., finding the foci of the ellipses of the orbits of the planets in the solar16

system using observations in the sky. If such models are sloppy, � Can you guess when the problem of
finding the foci of the ellipses using
observations of them in the sky will have a
sloppy FIM?

then17

we would not be able to estimate the parameters of the model precisely18

because many parameters would map to the same point in the data space.19

Sloppy models were discovered by the authors of the paper listed as20

reading material when they noticed this while fitting some models to data21

from biology.22

A key result in statistics called the Cramer-Rao bound states that the23

variance of any unbiased estimator ŵ using n samples is at least as large24

as the inverse of the determinant of FIM25

n Cov(ŵ) ⪰ g−1(w). (14.5)

For sloppy models det g−1(w) = 1/det g(w) is very very large. This26

entails that any procedure to estimate the parameters of the model (which27

would be weights of the network in our case) in an unbiased way will have28

a huge covariance. In simple words, if the model is sloppy then accurate29

prediction is not necessarily hard, but parameter estimation is very hard.30

PAC-bounds for sloppy models We could obtain very good general-31

ization if the right hand-side of the Cramer-Rao bound were small—for32

sloppy models it is not. But we also know that we need not fit exactly the33

same model as the one that generated the data (Nature’s model) in order34

to generalize well (we would know how to check this anyway).35

In Yang et al. (2022), it was shown that for sloppy models we can obtain36

generalization bounds that are not vacuous. The reason for this is as follows.37

Recall that when we complained about the vacuousness of generalization38

bounds in the previous chapter, we argued that the VC-dimension of deep39

networks is so large because they have a large number of parameters. For40

sloppy models (see the eigenspectrum in the picture above), very few41

combinations of the weights play a role in making predictions (these would42

be the number of large singular in the FIM/Hessian and the singular vectors43
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would give the specific combinations of the weights). Therefore, even if1

the model has a large number of weights, if the model is sloppy, its weights2

are under-determined by the training data—the precise value of most of3

the weights is immaterial to the model making accurate predictions. We4

can therefore, roughly speaking, calculate the PAC generalization bounds5

only in the non-sloppy subspace and obtain a much more accurate picture6

of the generalization error.7
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Variational Inference2

Reading
1. Sections 1-2 of “Variational Inference: A Review for Statisti-

cians” by Blei et al. (2017).

2. Sections 1-5 of “Auto-Encoding Variational Bayes” by Kingma
and Welling (2013)

3. Chapter 2 of Durk Kingma’s thesis:
https://pure.uva.nl/ws/files/17891313/Thesis.pdf.

4. Bishop Chapter 11.5-11.6

5. Bishop Chapter 10-10.3

6. Lots of great intuition at http://ruishu.io/2018/03/14/vae/

7. Variational Diffusion Models https://arxiv.org/abs/2107.00630

We have been primarily concerned with models for classification and3

regression as yet in this course. The task there is to match the target (a4

class identity or a real-valued outcome). We now change tracks to consider5

generative modeling, these are models that are trained to synthesize new6

data. Effectively, the task here is not match a target datum, but given7

a training dataset of images/text, create a model that outputs similar8

images/text at test time. We will first take a look at variational methods9

and generative modeling using these methods in this chapter and do10

implicit generative models such as Generative Adversarial Networks in11

the next chapter.12
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https://arxiv.org/abs/2107.00630
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15.1 The model1

Imagine how you would draw the image of a dog x on paper. First, you2

would decide in your mind, its breed, its age, the color of its fur etc. Let3

us call these quantities “latent factors”. Latent factors can also include4

things that are not specific to the dog, e.g., the background of your painting5

(grass, house, beach etc.), the weather on that day (cloudy, sunny etc.), the6

viewpoint (zoomed in/far away). We will denote all such quantities by7

z := latent factors.

Having decided upon all these factors, you realize your painting x. The8

painting x is not unique given latent factors z, e.g., two people can start9

off with the same latent factors and draw two totally different pictures.10

11

We therefore model the generative process as a obtaining samples12

from a probability distribution13

p(x | z).

Given a latent factor z and an image x, the quantity p(x | z) denotes the14

likelihood of the sample. Given the painting image x, we do not know15

what the latent factors are. For instance, it is not easy to say whether the16

following image is that of a cat or a dog.17

18

In other words, the latent factors of data x are not known to us if
we do not take part in the generative process. Nature is in charge of
generating the data and our goal here is to guess the parameters of
this generative model to be able to synthesize new samples that look
as if Nature generated them.

There can be lots of latent factors z. So let us control this complexity19

and assume that we know a prior over the latent factors20

prior p(z)
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that models our belief of how likely a factor “dog with color blue” is in1

Nature.2

Let us imagine Nature’s generative model as running in two steps

1. First, sample a latent factor z from some distribution, and then

2. sample a datum x ∼ p(x | z).

The central point to appreciate is that we know neither Nature’s
distribution for sampling latents z nor its generative model p(x | z).
We will need to fit both these quantities using a training dataset of
images/text.

The purpose of doing so can be many-fold, e.g., we may want to3

generate new data to amplify the size of our training set, given a part of4

the input image (say due to occlusions, or image corruption) we may want5

to complete the rest of it.6

7

8

Most such applications require the knowledge of the latent factors that9

generated the data. Therefore, formally, we are interested in computing10

the posterior distribution of the latents and Nature’s distribution of the11

latents12

posterior p(z | x)
prior p(z)

using samples in a training dataset D =
{
xi
}n
i=1

. Notice that we do not13

need labels for this problem, effectively labels yi = xi itself because our14

generative model should of course be very good at generating samples15

from the training data.16
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15.2 Some technical basics1

15.2.1 Variational calculus2

We will first take a brief look at what is called variational calculus.3

A function is something takes in a variable as input and returns the4

value of the function as the output, e.g., R ∋ f(x) = 5 x2 for x ∈ R.5

Similarly, a functional is an object that takes in a function as an input and6

returns a real number as the output. An example of this is entropy7

R ∋ H[p] = −
∫

p(x) log p(x) dx

which takes in a probability density p as the input and returns a real number.8

Entropy is therefore a functional. Just like standard calculus where we9

take derivatives/minimize over functions, we can also take derivatives of10

the functional.11

The functional derivative δH[p]
δp (x) is defined in a funny way as12 ∫

δH[p]

δp
(x) φ(x) dx = lim

ϵ→0

H[p+ ϵφ]−H[p]

ϵ

for any arbitrary function φ. Essentially, you perturb the argument to the13

functional p by some epsilon and see how much the functional changes.14

The change in the functional is measured using the test function φ by15

integrating its changes δH(p)
δp (x) at each point x in the domain. There may16

be certain conditions that the perturbation φ needs to satisfy depending17

upon the problem, e.g., since p+ ϵφ should also be legitimate probability18

density, the functional derivative above should only consider test functions19

φ such that20

∀ϵ
∫

(p(x) + ϵφ(x)) dx = 1 =⇒
∫

φ(x) dx = 0.

The KL-divergence between two probability densities,21

KL(p || q) =
∫

p(x) log
p(x)

q(x)
dx ,

is another such functional; it has two arguments p and q.22

� Two important properties. The
KL-divergence is always non-negative, and
zero if and only if its two arguments are equal.
This is easy to see using Jensen’s inequality:

−KL(p || q) =
∫

p(x) log
q(x)

p(x)
dx

≤ log

∫
p(x)

q(x)

p(x)
dx

= 0.

KL-divergence is also a convex functional of
its two arguments, i.e., for any densities p1, p2
and q1, q2, we have

KL(λp1 + (1− λ)p2 || λq1 + (1− λ)q2)

≤ λKL(p1 || q1) + (1− λ)KL(p2 || q2).

Variational optimization is concerned with minimizing functionals.

For instance, while a problem looks like23

w∗ = argmin
w∈Rp

ℓ(w)

in standard optimization, a variational optimization problem with KL-24
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divergence as the loss given a fixed density p looks like1

q∗ = argmin
q∈Q

KL(q || p). (15.1)

The variable of optimization is the probability density q and we will denote2

the domain of the variable by Q. Since we want q to be a legitimate3

probability density, we should choose4

Q ⊆ P(X )

where P(X ) denotes the set of all probability densities on some domain5

X .6

Picking the domain and objective in variational optimization Picking7

a good domainQ to minimize over is important. It is similar to the notion8

of the a hypothesis class in machine learning. If Q is too big, it is9

difficult to solve the optimization problem but we obtain a better value to10

KL(q||p). If Q is too small, the optimization problem may be easy but11

we may not match the desired distribution p very well. Imagine if p is12

a mixture of two Gaussians and we pick Q to be a family of uni-modal13

Gaussian distributions. Since the KL-divergence is zero if and only if the14

two distributions are equal, we are never going to be able to minimize15

it completely. On the other hand, if we pick Q to be the family of16

distributions with 2 or more Gaussian modes, then we can perfectly match17

p. Essentially, the crux of variational inference boils down to picking a18

good family of distributions Q that makes solving Eq. (15.1) easy.19

What functional should we use to measure the distance between q and20

p? The KL-divergence is popular and easy to use in practice but there21

are many others. For example, when we studied the Gibbs distribution22

we briefly talked about something called “Wassserstein metric”: if one23

imagines a mountain of dirt given by distribution q and another mountain24

of dirt p, the Wassserstein distance W2(q, p) is the amount of work done25

in transporting the dirt from q to p; it is also called the “earth mover’s26

distance”. The Wassserstein metric is as legitimate a distance between27

two distributions, just like the Kullback-Leibler divergence.28

15.2.2 Laplace approximation29

Laplace approximation is a very useful trick to solve variational optimiza-30

tion problems approximately. Here is how it works. Suppose we have to31

estimate an expectation of our random variable φ(w)32

E
w∼e−nℓ(w)

[φ(w)] =

∫
e−nf(w) φ(w) dw

over draws w ∼ from some probability distribution e−nℓ(w) for some large33

value of n. The above integral takes many values, some have small ℓ(w)34

and some have large ℓ(w). The values of w where ℓ(w) is small are the35

https://jeremykun.com/2018/03/05/earthmover-distance
https://jeremykun.com/2018/03/05/earthmover-distance
https://jeremykun.com/2018/03/05/earthmover-distance
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ones that have the highest e−nℓ(w), especially as n→∞, and therefore1

the ones that count for most in the integral. The Laplace approximation2

is a trick to estimate the integral for large n. It replaces the integral by3

taking a Taylor series expansion of the exponent as follows.4 ∫
e−nℓ(w) φ(w) dw ≈

∫
φ(w) e−n(ℓ(w∗)+ 1

2 (w−w∗)⊤∇2ℓ(w∗)(w−w∗)) dw

= e−nℓ(w∗)

∫
φ(w) e−

n
2 (w−w∗)⊤∇2ℓ(w∗)(w−w∗) dw

(15.2)
where w∗ = argmin ℓ(w) is the global minimum of ℓ(w). The integral is5

now with respect to a Gaussian distribution and can be done more easily.6

How does a Laplace approximation look? Let us look at an example.7

8

9

Although the Laplace approximation trick is reasonable only for very10

large values of n, it is a quick way to estimate what the correct domain11

of the a variational optimization problem should be. For example, if we12

are approximating a probability distribution with a Gaussian family, the13

Laplace approximation tells us what the mean of the family should be14

and we can only consider the variance as the variable in a variational15

optimization problem.16

15.2.3 Digging deeper into KL-divergence17

Let us take an example to understand KL-divergence better.18

Fig. 15.1 compares two forms of KL-divergence. The green contours19

represent equi-probability lines (1,2,3 standard deviations) for a two-20

dimensional correlated Gaussian p(z1, z2). Red contours represent similar21

equi-probability lines for the variational approximation of this distribution22

using an uncorrelated Gaussian distribution23

q(z) = q1(z1)q2(z2)

where both q1, q2 are one-dimensional Gaussians. The variational family24

q ∈ Q thus consists of factored uncorrelated Gaussians and we are trying25

to find the best member of this family that approximates the correlated26

true distribution p(z).27
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Figure 15.1: Comparison between the variational approximation of a correlated
Gaussian using forward and reverse KL divergence and a factored Gaussian family.

Figure 15.2: Approximating a multi-modal distribution using a uni-modal varia-
tional family.

Left panel (a) in Fig. 15.1 shows the result using the forward KL-1

divergence minimization2

q∗ = argmin
q∈Q

KL(q || p).

while the right panel (b) shows the result for the reverse KL-divergence3

minimization4

q∗ = argmin
q∈Q

KL(p || q).

We see that both these forms capture the mean of the true distribution5

p(z) correctly. The variance of the two approximations is quite different6

depending upon which form we employ.

? Use the expression of the KL-divergence to
convince yourself why the forward KL
under-estimates the variance while the reverse
KL over-estimates the variance in Fig. 15.1.

7

We next consider the case when a multi-modal probability distribution8

p(z) is approximated using a unimodal Gaussian distribution. Both these9

examples are very often seen in practice, the distribution of true data/latent10

factors is often correlated and multi-modal. We have seen one instance of11

this: the distribution of weights of a deep network in the Gibbs distribution12

is multi-modal because of multiple global minima.13

The distribution p is bi-modal and a finite-dimensional parameter-14

ization of the variational problem can find different solutions in such15

cases—this is in spite of the fact that the underlying problem is convex.16

Depending upon the initial condition using q, one may get different so-17
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lutions shown in panels (a), (b) or (c). You should also think about the1

fact that the solution in panel (a) could be the solution of optimizing the2

reverse KL divergence; in contrast, the solutions in panels (b) and (c) have3

to be the ones obtained from optimizing the forward KL divergence.4

KL-divergence is not the only distance used in variational inference5

and there are many many other ones. You should think of these different6

ways to measure distances between probability distributions in variational7

inference as different surrogate losses; which one we use is highly problem8

dependent although the forward KL-divergence KL(q || p) is the most9

common.10

15.3 Evidence Lower Bound (ELBO)11

We now go back to the generative model.12

We will formalize our goal in generative modeling as computing
Nature’s posterior distribution of latent factors

p(z | x).

We have access to a training datasetD =
{
(xi)

}n
i=1

. We do not know
(i) what form Nature’s posterior distribution takes, e.g., Gaussian,
multi-modal distribution etc. and (ii) we do not know the true latent
factors z that Nature uses. So we are going to approximate the true
posterior using some variational family of our choice

Q ∋ q∗(z | x) ≈ p(z | x).

This is the basic idea of variational inference: to approximate a
complex distribution p(z | x) using a member of from a simpler
family of our choosing Q. In practice, this variational family Q will
be parameterized by a deep network.

With this background, the mathematical process of executing the above13

program is quite simple. We will simply minimize the KL-divergence14

q∗(z | x) = argmin
q∈Q

1

n

n∑
i=1

KL
(
q(z | xi) || p(z | xi)

)
. (15.3)
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We next rewrite this KL-divergence above in a special form.1

0 ≤ KL
(
q(z | xi) || p(z | xi)

)
= E

z∼q(z|xi)

[
log

q(z | xi)

p(z | xi)

]
= − E

z∼q(z|xi)

[
log p(z | xi)

]
+ E

z∼q(z|xi)

[
log q(z | xi)

]
= − E

z∼q(z|xi)

[
log p(z, xi)− log p(xi)

]
+ E

z∼q(z|xi)

[
log q(z | xi)

]
= log p(xi)− E

z∼q(z|xi)

[
log p(z, xi)

]
+ E

z∼q(z|xi)

[
log q(z | xi)

]
.

=⇒ log p(xi) ≥ E
z∼q(z|xi)

[
log p(z, xi)

]
− E

z∼q(z|xi)

[
log q(z | xi)

]
This is quite interesting. The left-hand side of this inequality is the2

log-likelihood of the data under Nature’s distribution, i.e., it is fixed and3

independent of what we do. The left-hand side is also called the “evidence”4

in statistics (which is a bit ironic because we can never know the evidence).5

The right-hand side6

ELBO(q, xi) := E
z∼q(z|xi)

[
log p(z, xi)

]
− E

z∼q(z|xi)

[
log q(z | xi)

]
.

(15.4)
is a lower bound on the evidence and therefore called the Evidence Lower7

Bound (ELBO).8

Next comes a key step: a good generative model should be such
that the evidence of the training data, i.e., the log-likelihood of this
data under Nature’s distribution, should be large under the model.
We therefore want to maximize the ELBO on our training data

q∗(z | x) = argmax
q∈Q

1

n

n∑
i=1

ELBO(q, xi). (15.5)

to find the posterior distribution of the latent factors q∗(z). Maximiz-
ing ELBO is equivalent to minimizing the average KL-divergence
KL(q(z | xi) || p(z | xi) over all training samples.

We will again solve the optimization problem in Eq. (15.5) using9

stochastic gradient descent. Before we study how to do that, let us consider10

what model we have developed so far. The solution to this problem11

q∗(z | x) ≈ p(z | x)

approximates Nature’s posterior distribution. If we maximize ELBO well,12

given an input x, samples z ∼ q∗(z | x) are likely to be the latent factors13

that Nature could have chosen while rendering this image. But we still do14

not know how to synthesize an image x for these latent factors. We now15
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rewrite ELBO in a different form to understand this.1

ELBO(q, xi) = E
z∼q(z|xi)

[
log p(z, xi)

]
− E

z∼q(z|xi)

[
log q(z | xi)

]
= E

z∼q(z|xi)

[
log p(xi | z) + log p(z)

]
− E

z∼q(z|xi)

[
log q(z | xi)

]
= E

z∼q(z|xi)

[
log p(xi | z)

]
− KL(q(z | xi) || p(z)).

This form of ELBO2

ELBO(q, xi) = E
z∼q(z|xi)

[
log p(xi | z)

]
−KL(q(z | xi) || p(z)) (15.6)

is very interesting. The first term is Nature’s log-likelihood of datum xi
3

given the latent factor z sampled from our candidate posterior q. The4

second term is the discrepancy between our variational approximation5

of the posterior q∗(z | xi) ≈ p(z | xi) and Nature’s true marginal6

distribution over latent factors p(z). This alternative form of ELBO is7

conceptually very similar to what we do in standard classification, e.g.,8

argmin
w

{
ℓ(w) +

α

2
∥w∥2

}
.

We would like our q(z | xi) to be close to Nature’s prior distribution p(z)9

but at the same time be such that samples from q(z | xi) have a high10

log-likelihood p(xi | z) of synthesizing images in the training set. The11

KL-term is therefore a regularizer for the first data-fitting term.12

15.3.1 Parameterizing ELBO13

What variational family Q should we choose? Say we parametrized each14

distribution q(z | xi) by its mean and diagonal of the covariance.15

Rm ∋ z ∼ q(z | xi) = N(µ(xi), σ2(xi)I) ∈ Q(xi)

whereµ(xi), σ2(xi) ∈ Rm. The ELBO in Eq. (15.6) is totally independent16

for each xi in the training dataset, so all i ∈ {1, . . . , n} we can solve for17

µ∗(xi), σ2(xi) = argmax
µ,σ2

ELBO
(
N(µ(xi), σ2(xi)I), xi

)
.

But this is not a good idea: the parameters µ, σ2 are distinct for each18

input xi and effectively they are being trained using a dataset of only input19

image xi.20

Amortized variational inference is a clever trick that ties to-
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gether the variational families Q(xi). We will be using a deep
network with parameters u ∈ Rp that takes xi as the input and gives
µ(xi;u), σ2(xi;u) as the outputs

Encoder : xi 7→︸︷︷︸
parameters u

µ(xi;u), σ2(xi;u).

The variational family Q(xi) that we are considering is therefore the
set of distributions expressed by this deep network with p parameters.
The family Q(xi) is still distinct for each datum xi but they are are
all tied together by the same weights u.

Encoder. We will call this deep network the encoder because it
takes in an input xi and encodes it into µ(xi;u), σ2(xi;u) which
parameterize the distribution of the latent factors.

Decoder. Observe that although we have now parameterized the distri-1

bution q(z | xi) using a deep network with weights u, we still do not know2

how to model the term p(xi | z). After all, this is Nature’s log-likelihood.3

We have a dataset
{
(xi, zi)

}n
i=1

that consists of the images xi and4

their corresponding latents zi sampled from our encoder. We are going to5

model Nature’s rendering process p(x | z) using a deep network. This is6

a program that we have done many times in the past, e.g., we model the7

targets in classification yi as samples from the softmax distribution with8

images xi as the input and train the weights using maximum-likelihood9

(as you may recall, this is equivalent to the cross-entropy loss).10

We can repeat that program here: we are going to learn a deep network11

Decoder : pv(xi | z) ≈ p(xi | z).

with parameters v ∈ Rp that models Nature’s likelihood p(xi | z).12

Different possible decoders for MNIST Depending upon the type of13

data xi, we will code up the deep network in different ways. For instance,14

if each pixel of xi ∈ R28×28 is grayscale [0, 255] like it is in MNIST, the15

output of the decoder is a multinomial with size 28× 28× 256. � The distribution of labels yi in
classification was one-hot vectors, so the
softmax layer created a multinomial
distribution on the classes.

16

If we take the training dataset as binarized MNIST (if pixel jk is less17

than 128 set it to 0, else set it to 1), then the output of the decoder has size18

28× 28× 2 and we can fit this using a logistic distribution at each pixel19

pv(x
i | z) =

28∏
j,k=1

pv(x
i
jk | z)︸ ︷︷ ︸

logistic distribution for pixel xi
jk∈{0,1}

The log-likelihood term in Eq. (15.6) will then correspond to the logistic20

loss as discussed in the Homework.21
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Using a mean-field prior p(z). We do not know what the prior distri-1

bution p(z) in Eq. (15.6) is. We will choose a simple prior2

p(z) =

m∏
j=1

pj(zj) (15.7)

where pi(zi) is the distribution of the ith latent factor zi. Such distributions3

are called mean-field priors (where the distribution of a vector z ∈ Rm is4

modeled as independent distributions on its components). We will further5

choose each distribution6

pj(zj) = N(0, 1)

to be a zero-mean standard Gaussian distribution. This is a Gaussian7

mean-field prior. Just like the choice of a regularizer is critical in machine8

learning for obtaining good generalization, the chose of a prior is critical9

in variational inference for synthesizing good images from the generative10

model.11

15.4 Gradient of the ELBO12

We now have all the ingredients in place for training a variational generative13

model. Let us summarize our setup.14

1. Encoder parameters u are weights of a deep network that takes15

in xi as input and outputs parameters µ(xi), σ2(xi) of the latent16

distribution. We have tacitly assumed the latent posterior p(z | xi)17

to be a Gaussian here; if you have a problem where you wish to have18

a different latent, e.g., all the latent genes that could have caused19

a particular cancer, then you want to output the parameters of that20

distribution from the encoder.21

2. The decoder models the likelihood pv(x
i | z) using parameters v.22

3. The prior p(z) will be a mean-field Gaussian distribution. The prior23

has no parameters in our case, although you may see research papers24

where the prior also has its own parameters. A popular choice is to25

use26

ELBOβ(q, x
i) = E

z∼q(z|xi)

[
log p(xi | z)

]
−β−1 KL(q(z | xi) ||p(z))

in place of the standard ELBO. The hyper-parameter β > 0 gives27

more control over the strength of the prior; this is of course akin to28

picking the weight-decay coefficient.29

� The concept of variational inference and
ELBO are much more general than generative
models or the encoder-decoder structure that
we have developed. Go through the assigned
reading material to learn more.

The ELBO when rewritten in terms of the encoder and decoder
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parameters looks as follows.

ELBO(u, v;xi) = E
z∼qu(z|xi)

[
log pv(x

i | z)
]
−KL(qu(z | xi) ||p(z)).

(15.8)
Our goal is to fit the weights u, v using

u∗, v∗ = argmax
u,v∈Rp

1

n

n∑
i=1

ELBO(u, v;xi). (15.9)

The number of parameters of the encoder and decoder can be different
but for clarity we imagine them to be the same.

Eq. (15.9) is an optimization problem and in this section, we will see1

how to compute the gradient of the objective so that we can solve the2

problem using SGD.3

15.4.1 The Reparameterization Trick4

Focus on the gradient with respect to u of the first term of ELBO5

∇u E
z∼q(z|xi)

[φ(z)] .

We have written log pv(x
i | z) = φ(z) to keep the notation clear; we do6

not care about the exact form of the integrand in this section.7

If we draw a computational graph for the forward propagation of this8

term, it looks as follows9

u, xi → sample z from qu(z | xi)→ φ(z).

The intermediate sampling step is troublesome, we do not really know10

how to use the chain rule of calculus across sampling, i.e., given11

φ(z) :=
d
du

φ(z)

we need to compute u = dℓ/du u. We only know how to apply the chain12

rule for deterministic operations of the form13

u, xi → z = some deterministic function g(u, xi)→ φ(z),

in which case we use the standard backprop across the function g.14

The Reparameterization Trick enables us to obtain backpropaga-
tion gradients across sampling operations via a creative use of the
Laplace approximation of the distribution qu(z | xi).

We known from the Laplace approximation that we can compute an15

expectation over z using a Gaussian centered at the global maximum of16
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the distribution qu(z | xi) with variance equal to the inverse Hessian at1

that maximum. Motivated by this, the Reparameterization Trick rewrites2

the random variable z as3

z = µ(xi;u) + σ(xi;u)⊙ ϵ

where4

ϵ ∼ N(0, Im×m)

is a sample from a standard multi-variate Gaussian distribution and the5

notation ⊙ denotes element-wise product. Effectively, we imagine that6

the encoder outputs7

µ(xi;u) = argmax
z

qu(z | xi)

σ2(xi;u) = diag
([
∇2

zqu(z | xi)
]−1
)
.

Just like the integral in Eq. (15.2) was performed over the Gaussian, the8

integral over z can be rewritten as an integral over ϵ9

∇u E
z∼qu(z|xi)

[φ(z)] = ∇u E
ϵ∼N(0,I)

[
φ
(
µ(xi;u) + σ(xi;u)⊙ ϵ

)]
= E

ϵ∼N(0,I)

[
∇uφ

(
µ(xi;u) + σ(xi;u)⊙ ϵ

)]
≈ 1

N

N∑
j=1

∇uφ
(
µ(xi;u) + σ(xi;u)⊙ ϵj

)
, where ϵj ∼ N(0, I).

We can take the gradient operator inside the expectation in this case because10

ϵ no longer depends on the weightsu. The term∇uφ
(
µ(xi;u) + σ(xi;u)⊙ ϵj

)
11

is a deterministic operation given a sample zj and can be computed using12

standard backpropagation.13

15.4.2 Score-function estimator of the gradient14

Let us look at an alternative way to compute the same gradient.15

∇u E
z∼qu(z|xi)

[φ(z)] = ∇u

∫
φ(z) qu(z | xi) dz

=

∫
φ(z)∇uqu(z | xi) dz

=

∫
φ(z)

∇uqu(z | xi)

qu(z | xi)
qu(z | xi) dz

=

∫
φ(z)∇u log qu(z | xi) qu(z | xi) dz

= E
z∼qu(z|xi)

[
φ(z)∇u log qu(z | xi)

]
≈ 1

N

N∑
j=1

φ(zj)∇u log qu(z
j |xi) ,with zj ∼ qu(z | xi).

(15.10)
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The term1

∇uqu(z | xi)

qu(z | xi)
= ∇u log qu(z | xi) (15.11)

is called the score function of a probability distribution qu. The above2

calculation is quite beautiful: calculating the gradient of the expectation3

of any quantity φ(z) is equal to the expectation of the same quantity4

weighted by the score function5

∇u E
z∼qu

[φ(z)] = E
z∼qu

[φ(z)∇u log qu] .

Due to this trick, we can compute the gradient using N samples6

zj ∼ pu(z | xi) (15.12)

from the encoder; this is easy if, say, the encoder outputs the mean and7

standard-deviation of the distribution of the latents. Given zj , the gradient8

∇u log qu(z
j | xi)

is just the standard back-propagation gradient of the quantity log qu(zj | xi)9

with respect to weights u of the deep network and can be computed using10

autograd.11

The key difference between the Reparameterization Trick and
the score-function estimator is that in the latter, we do not need to
make sure that the gradient dℓ/dzj can be back-propagated across the
sampling operation. The score-function estimator directly computes
the gradient of the entire expectation by a weighted average across
the samples.

Having two different ways of computing the same gradient may
seem redundant but they both are suited to very different applications.
The Reparameterization Trick is not accurate in cases when the
distribution qu(z | xi) is multi-modal because we have only one
mean µ(xi) around which the samples are drawn. The score-function
trick does not have this problem because so long as iid samples are
drawn in Eq. (15.12) (using any method, e.g., importance sampling)
we obtain true estimate of the gradient. The problem in score-function
estimator lies in that the denominator qu(z | xi) in Eq. (15.11) can
take very small values if the particular sample z is unlikely. The
summation Eq. (15.10) is a combination of many N , some very large
in magnitude and some very small; the variance of score-function
estimate of the gradient in Eq. (15.10) can therefore be quite large in
most problems.

Typically, the Reparameterization Trick is commonly used in
generative models while both the Reparameterization Trick and the
score-function estimator are used widely in Reinforcement Learning.
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15.4.3 Gradient of the remaining terms in ELBO1

The gradient with respect to weights v of the decoder of the first term in2

ELBO3

∇v E
z∼qu(z|xi)

[
log pv(x

i | z)
]

is simply the standard backpropagation gradient (the sampling distribution4

of the encoder does not depend on the weights of the decoder).5

Let us focus on the second term6

KL

qu(z | xi) ||
m∏
j=1

pj(zj)

 . (15.13)

where pj(zj) = N(0, 1) are terms of the mean-field prior. The gradient7

of this term with respect to weights of the decoder is zero8

∇vKL

qu(z | xi) ||
m∏
j=1

pj(zj)

 = 0.

Following the reasoning in the Reparameterization Trick, we are positing9

that qu(z | xi) is a Gaussian distribution:10

qu(z | xi) = N
(
µ(xi;u), σ2(xi;u)I

)
.

Notice that σ2(xi;u) ∈ Rm is the diagonal of the covariance and therefore11

the individual marginals qu(zj | xi) and qu(zj′ | xi) for two indices j, j′12

are independent. We can therefore write13

qu(z | xi) =

m∏
j=1

N(µj(x
i;u), σ2

j (x
i;u)). (15.14)

The KL-divergence of a univariate Gaussian N(µ1, σ
2
1) with respect14

to the standard Gaussian is15

KL
(
N(µ, σ2) || N(0, 1)

)
= log

1

σ
+

σ2 + µ2

2
− 1

2
. (15.15)

The general formula is16

KL
(
N(µ1, σ

2
1) || N(µ2, σ

2
2)
)
= log

σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
.

(15.16)
Due to Eq. (15.14), the KL-divergence in Eq. (15.13) is a sum of the17

KL-divergences of the individual univariate Gaussians

? Prove that

KL

 m∏
j=1

qj(zj) ||
m∏
j=1

pj(zj)


=

m∑
j=1

KL(qj(zj) ||pj(zj)).

18

KL(qu(z | xi) ||p(z)) = −1

2

m∑
j=1

(
log σ2

j (x
i;u)− σ2

j (x
i;u)− µ2

j (x
i;u) + 1

)
.

(15.17)
The right-hand side of this equation is only a function of u and its gradient19

can be calculated using standard back-propagation.20
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This completes our development of ELBO. Using the gradient calcu-1

lated in this section, we can use SGD to maximize the objective in Eq. (15.5)2

and train a generative model.3

Some comments on VAEs4

Although the mathematics of ELBO seems complicated, it is quite easy to5

implement generative models using variational inference in practice. You6

did for a simple MNIST problem in the homework/recitation but if the7

encoder and decoder are convolutional and deconvolutional architectures8

respectively, we can get very sophisticated generative models.9

Figure 15.3: Samples from a state-of-the-art VAE trained on ImageNet (Razavi
et al., 2019)

Variational inference and information-theoretic methods are a rich10

(and old) area of research and there are many modifications/innovations11

to ELBO, e.g., read Alemi et al. (2018) for some simple yet deep modifi-12

cations.13

15.5 Diffusion Models14

Our discussion of variational autoencoders provides us with a particular15

approach to building generative models16

encoder: x 7→ z

decoder: z 7→ x.

� The maps q(z | x) and p(x | z) are
stochastic in a VAE, and that is why we used
variational optimization to fit them. If they
were deterministic, i.e.,
q(z | x) = δ {x = q(x)}, then we would
have what is called a standard autoencoder

x 7→ z 7→ x.

If the map q(x) is built using a neural
network, then this is a generalization of
principal components analysis (PCA) which
uses a linear map to project data into a
different vector space (Hinton and
Salakhutdinov, 2006).

Imagine if we had two latent variables17

encoder: x 7→ z1, z2

decoder: z1, z2 7→ x.
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where both z1, z2 ∈ Rm. We can write ELBO for this again to get, for1

any datum x,2

log p(x) = log

∫
dz1 dz2 p(x, z1, z2)

= log

∫
dz1 dz2 q(z1, z2 | x)

p(x, z1, z2)

q(z1, z2 | x)

= log E
z1,z2∼q(z1,z2|x)

[
p(x, z1, z2)

q(z1, z2 | x)

]
≥ E

z1,z2∼q(z1,z2|x)

[
log

p(x, z1, z2)

q(z1, z2 | x)

]
.

(15.18)

Just like we did in the chapter above, we are free to factor the joint3

likelihood p(x, z1, z2) to obtain a decoder. Let us factorize it as4

p(x, z1, z2) = p(x | z1)p(z1 | z2)p(z2).

We can build the encoder to have a similar structure5

q(z1, z2 | x) = q(z1 | x)q(z2 | z1).

Effectively, we now have a “two layer” VAE where the latent factors z1, z26

can be interpreted as hierarchical latent factors. To continue the analogy7

from k-means and clustering. Imagine a problem where there8

z2 ≡ topic, e.g., soccer
z1 | z2 ≡ all entities that typically associate with the topic, e.g., a specific soccer player
x | z1 ≡ all words associated with this soccer player, e.g., Messi is from Argentina.

This particular example are actually quite famous, they are called topic9

models, and the method latent Dirichlet allocation. In general, having two10

layers of latent factors allows us to encode hierarchical structures in the11

generative process of data. Learned features in a CNN at higher layers12

are more and more abstract combinations of low-level features. Similarly13

higher-level latent factors are more coarse clusters of the data.14

The ELBO in Eq. (15.18) can be simplified for this two-stage VAE to15

be16

log p(x) ≥ E
z1∼q(z1|x)

[log p(x | z1)]

− E
z1∼q(z1|x)

[KL (q(z2 | z1) || p(z2))]

− E
z1∼q(z1|x)

[
E

z2∼q(z2|z1)
KL(q(z1 | x) || p(z1 | z2))

]
.

(15.19)
The first term is the reconstruction likelihood of the data. The second and17

third terms are complexity terms that control how different the posteriors18

of each stage q(z2 | z1) and q(z1 | x) are allowed to be compared to their19

priors p(z2) and p(z1 | z2) respectively.20
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Diffusion models are variational auto-encoders with a hierarchy
of latent factors

z0 ≡ x 7→ z1 7→ z2 7→ · · · 7→ zT .

They are trained by maximizing ELBO

log p(x) ≥ E
q(z1,...,zL|x)

[
log p(x | z1)−

T∑
t=1

log
q(zt | zt−1)

p(zt | zt+1)

]
,

(15.20)
with the understanding that p(zT | zT+1) = p(zT ). That the levels of
the hierarchy are denoted by some kind of “time” t = 1, . . . , T is just
tradition. Diffusion models were discovered using tools in stochastic
processes, and they have some nice connections to the score function
we saw in Eq. (15.11).

15.5.1 Specific choices for the encoder and decoder in1

diffusion models2

It is a bit cumbersome to implement every term in Eq. (15.20) using a3

neural network. For example we will need to implement different encoders4

for each q(zt | zt−1) and different decoders for p(zt−1 | zt) and p(x | z1).5

Diffusion models use some very clever choices.6

Encoders do not have any parameters

q(zt | zt−1) = N(
√
1− βtzt−1, βtI),

i.e., zt =
√

1− βtzt−1 +
√
βt ⊙ ϵ for ϵ ∼ N(0, I).

(15.21)

where β1, . . . , bT are fixed scalars. � Notice that with this choice the
dimensionality of the latent factor zt is the
same as that of the original input x. This is
why diffusion models are computationally
expensive.

In words, the encoder at each level7

of the hierarchy does not have any trainable parameters. It simply scales8

down the input by
√
1− βt and adds Gaussian noise of standard deviation9 √

βt. Due to this simplistic encoder, we can calculate the latent factor at10

any level directly from the input x ≡ z011

zt | x =

√
β̄t x+

√
1− β̄t ⊙ ϵ; ϵ ∼ N(0, I) (15.22)

where12

β̄t =

t∏
s=1

(1− βs).

The latent factor zt is a Gaussian random variable. To enable us to assume13

a mean field prior on the final latent p(zT ) = N(0, I), these numbers of14

chosen to be such that zT | x ∼ N(0, I).15

Decoder for different levels of the hierarchy share the same weights16

Quite like the case for standard VAEs, the likelihood of the decoder depends17
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upon the kind of data that we are generating. Suppose x ∈ Rd (or real-1

valued images), then we know that in a diffusion model the latent factors2

z1, . . . , zt ∈ Rd. Therefore the decoder at each level of the hierarchy must3

take d-dimensional vectors as inputs and return d-dimensional vectors as4

outputs. Diffusion models choose5

pv(zt−1 | zt) = N(µv(zt, t), σ
2
t I). (15.23)

where v in µv refers to the weights of the decoder. There are two important6

things to notice.7

1. The mean8

µv(zt, t)

takes as input both the latent zt and the step t. The step t is given as9

input to the decoder using position encoding. Similar to attention-10

based networks, we project the step t upon the Fourier basis and11

add this encoding to every dimension of x.12

2. The standard deviation σ2
t does not depend upon the parameters v.13

This is a simplifying assumption, and it also enables us to exploit14

the fact that we know the exact posterior distribution of the latent15

q(zt | zt−1) in Eq. (15.22). Due to this, it can be shown that for the16

encoder17

q(zt−1 | zt, x) = N(µ̂(zt, x), σ
2
t I)

µ̂(zt, x) =
β̄t−1βt

1− β̄t
x+

√
1− βt(1− β̄t)

1− β̄t
zt

σ2
t =

1− β̄t−1

1− β̄t
βt I.

(15.24)

We can therefore simply fix the variance of the decoder to be the18

same as that of the encoder19

σ2
t =

1− β̄t−1

1− β̄t
βt. (15.25)

This choice ensures that the terms corresponding to variance cancel20

out in the expression for the KL-divergence in Eq. (15.16).21

22
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15.5.2 The training objective for diffusion models1

The simplifying assumptions above are very useful. The distribution2

of the encoders posterior and the decoders outputs is Gaussian at each3

level of the hierarchy. Therefore, we can calculate all terms of the ELBO4

in Eq. (15.20) in closed form. The only trainable parameters in a diffusion5

model is the decoder pv of each level. Each of the term in ELBO is6

the KL-divergence of two Gaussians with the same isotropic diagonal7

variance, and therefore the only term in Eq. (15.16) that is non-trivial is the8

one corresponding to (µ1 − µ2)
2/(2σ2

2). The objective that is minimized9

while training a diffusion model is therefore10

1

n

n∑
i=1

{
E
z1

[∥∥xi − µv(z1, 1)
∥∥2

2σ2
1

]
+

T∑
t=2

E
zt

[∥∥µ̂(zt, xi)− µv(zt, t)
∥∥2

2σ2
t

]}
(15.26)

where µ(zt, x) and σ2
t are from Eq. (15.24) and µv(zt, t) is the mean of11

the output distribution of the decoder at stage t. The first term is the12

reconstruction term, while the second term controls the complexity of the13

distribution of the latent factors at each level of the hierarchy. The terms14

corresponding to p(zT ) do not have any parameters and they therefore15

dropout.

� A large number of levels in the hierarchy
can lead to wild overfitting, akin to having a
large number of clusters in k-means. But the
various simplifying choices in diffusion
models are chosen very carefully and allow us
to fit these models extremely well. This is the
key reason for the popularity of diffusion
models as compared to VAEs. The former
can certainly model more complicated data
distributions, but they can also be fitted
relatively easily.

16

A simplified objective for diffusion models Notice that the different17

terms in Eq. (15.26) are simply squared residuals of each stage. We know18

that the encoder adds noise to the scaled version of its input at each stage,19

in Eq. (15.21). We can use this to simplify Eq. (15.26) into a very simple20

expression.21

From Eq. (15.22) we know that22

x =
zt −

√
1− β̄t ⊙ ϵ√
β̄t

.

Substitute this value of x in Eq. (15.24) to calculate µ̂(zt, x). The second23

term in the ELBO Eq. (15.26) therefore encourages the decoder µv(zt, t)24

to predict a scaled version of its input zt a deviation coming from the25

noise ϵ that was added to create zt from z0 ≡ x in Eq. (15.22). Instead of26

thinking the decoder as something that gives the distribution of the latents27

as the output, since the objective only depends upon the mean, we can28

equivalently think of the decoder as predicting the amount of noise ϵ. In29

other words, the training objective of a diffusion model is simply30

1

n

n∑
i=1

E
z1

[∥∥xi − µv(z1, 1)
∥∥2

2σ2
1

]

+
1

n

n∑
i=1

T∑
t=2

(
β2
t

2σ2
t (1− βt)(1− β̄t)

)
E

ϵ∼N(0,I)

[∥∥∥ϵ− µv(
√

βtx
i +
√
1− βtϵ, t)

∥∥∥2]
(15.27)

Each of the terms in the second part corresponds to the residual of a31

network that takes in as input xi corrupted by noise ϵ and tries to predict32
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the noise ϵ. Larger the level t, larger is the magnitude of noise ϵ that is1

added to the original image xi. Each level in the decoder is therefore2

doing denoising of harder and harder problems.3



Chapter 161

Generative Adversarial2

Networks3

Reading
1. Andrew Ng’s notes on generative models

http://cs229.stanford.edu/notes/cs229-notes2.pdf

2. The original GAN paper by Goodfellow et al. (2014)

3. “The Numerics of GANs” by Mescheder et al. (2017)

In the previous chapter, we used variational methods to build a4

generative model for the data. In this case, we are given samples D =5 {
xi
}n
i=1

and would like to build a model that can synthesize new data. For6

every data x that a decoder synthesizes at test time using latent variables7

z, we can calculate the likelihood8

x ∼ pv(x|z), for any z ∼ N(0, I).

This likelihood is an indicator of how unlikely the data x is under z.9

Models for which we can calculate such likelihood are called explicit10

generative models, i.e., they give a sample x and also report its likelihood.11

In this chapter, we will look an alternative class of generative models that12

are implicit, i.e., they only give a sample x but do not report its likelihood.13

A Generative Adversarial Network (GAN) consists of two neural14

networks: a Generator and a Discriminator. The Generator works in the15

same way as the decoder in a variational auto-encoder. Given a sample16

z from some distribution, most commonly a standard normal, we train a17

neural network to generate a sample18

x = gv(z).

218
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GANs differ from explicit models in how they train the generator, the1

discriminator is used for this purpose. We will look at this next.2

16.1 Two-sample tests and Discriminators3

We will first take a short trip into an area of statistics known as decision4

theory. Consider two datasets coming from two distributions p(x) and5

q(x)6

D1 =
{
x1, . . . , xn, : xk ∼ p(x)

}
D2 =

{
x1, . . . , xn, : xk ∼ q(x)

}
.

We would like to check if these two distributions are the same given7

access to only their respective datasets D1 and D2. Let us define the null8

hypothesis which claims that the two distributions are the same. � The concept of a hypothesis here is
different from what we saw in
generalization/VC-theory. Hypothesis in
decision theory simply means our hunch
about a particular situation, e.g., p = q.

9

H0 : p = q

The alternate hypothesis is10

H1 : p ̸= q.

The goal of the so-called “two-sample test” is to decide whether H0 is11

true or not. A typical two-sample test will construct a statistic (recall from12

Chapter 7 that a statistic is any function of the data)13

t̂

out of the two datasets, e.g., their individual means, their variances, and14

will use this statistic to accept or reject the null hypothesis, i.e., decide15

whether H0 is true or false.16

Let’s say that we pick a threshold tα, and the test statistic t̂ is the17

difference of the means18

t̂ =

∣∣∣∣∣ 1n ∑
x∈D1

x− 1

n

∑
x∈D2

x

∣∣∣∣∣ .
Level of a test A statistician will then say that the null hypothesis is19

valid with level α if20

PD1∼p, D2∼p

(
t̂ > tα

)
≤ α. (16.1)

In other words, if the null hypothesis were true (both D1 and D2 are21

drawn from the same distribution p) and if the probability of our empirical22

statistic t̂ being larger than some chosen threshold tα is smaller than some23

chosen probability α, then we know that the two distributions are the same24

despite only having finite data to check. The threshold α is called the25

p-value in the statistics literature and you will have seen statements like26

“gene marker XX is correlated with disease YY with p-value of 10−3” or27

“smokers and non-smokers have different distributions of cancers with28
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p-value of 10−3”.1

Power of a test The power of a two-sample test is the probability of2

rejecting the null hypothesis when it is actually false. We want tests with3

a large power, i.e., we like4

PD1∼p,D2∼q

(
t̂ > tα

)
(16.2)

being large if the two datasets D1 and D2 are drawn from two different5

distributions p and q respectively.6

The key point to remember about two-sample tests is that they let
us check if two distributions are the same without knowing anything
about the distributions. We only need access to the samples and can
run this test. This is fundamentally different than say

KL(q || p) =
∫

q(x) log
q(x)

p(x)
dx

where we need to know the probabilities q(x), p(x) to compute the
distance between distributions.

Example 16.1. A two-sample test requires three things, a statistic t̂, a7

level α and a threshold for the statistic tα. The latter two are numbers that8

a statistician can pick, e.g., picking α = 0.05 is an accepted standard in9

most biological studies.10

11

16.2 Building the Discriminator in a GAN12

Finding two-sample test statistics for arbitrary distributions is
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difficult, especially for high-dimensional problems where the samples
are natural images. The key idea behind a Generator Adversarial
Network (GAN) is to learn the statistic t̂.

A good statistic is the one that lets us distinguish between data
that comes from Nature’s distribution and data that is synthesized by
our generative model. This statistic, which is called the discriminator
in GAN, is a critic of the generative model’s results. It has a high
power in Eq. (16.2) if the generated samples are different from those
of Nature. Why? Because in this case for most thresholds tα that we
can pick, the power of the two-sample test in Eq. (16.2) will be large.

The discriminator should also be sound, i.e., if the two distribu-
tions are indeed the same (e.g., if our generator is as good as good
as Nature’s renderer), the discriminator should have a low level α
in Eq. (16.1).

We are going to train a binary classifier1

du : X 7→ [0, 1]

that will act as the discriminator in a GAN. You should think of the2

decision boundary of this binary classifier as the difference of the test3

statistic and our threshold t̂− tα.4

� Notice how rigorous theory is used as an
inspiration for developing GANs. This is a
common theme that you will see in the deep
learning literature; the models may seem ad
hoc and sprung out of sheer intuition, but the
reason they work well is often because there
are sound theoretical principles behind them.
Building this skill requires studying the
classical curriculum (ML, statistics,
optimization) but being creative in applying
this curriculum with deep networks.

We next create a dataset to train this classifier. Given n images from5

Nature’s distribution p(x) and the distribution of our generator’s images6

q(x), we will label the former with y = 1 and the latter with y = 0 to7

create a joint dataset:8

D1 =
{
(xi, 1)i=1,...,n : xi ∼ p(x)

}
D2 =

{
(xi, 0)i=1,...,n : xi ∼ q(x)

}
D = D1 ∪D2.

Fitting du on this problem can be done simply using the logistic loss9

wherein du is modeling10

P (y = 1|x) = du(x).

The logistic loss is therefore11

u∗ = argmin
u
− 1

n

∑
x∼D1

log du(x)−
1

n

∑
x∼D2

log(1− du(x)). (16.3)

Observe that this is the same logistic loss that we are used to; the only12

difference being that the entire dataset has 2n samples with all the ones in13

D1 having labels y = 1 and all the ones in D2 having labels y = 0.14
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What is the ideal discriminator? The population risk corresponding1

to the discriminator’s objective in Eq. (16.3) is2

d∗ = argmax
d

E
x∼p

[log d(x)] + E
x∼q

[log(1− d(x))] . (16.4)

We can take the variational derivative of this objective (just like you did3

in HW 3 to compute the optimal classifier in the bias-variance tradeoff) to4

get5

d∗(x) =
p(x)

p(x) + q(x)
. (16.5)

� For a functional

L[d] =

∫
log d(x)p(x) dx

the variational derivative is

δL

δd
(x) =

p(x)

d(x)
.

Similarly, the variational derivative for

L[d] =

∫
log(1− d(x))q(x) dx

is
δL

δd
(x) = − q(x)

1− d(x)
.

Observe that the ideal discriminator is 1/2 if the two distributions p and6

q are the same. The intuitive reason for this is that if the data D were7

really coming from the same distribution, we would never be able to fit a8

logistic classifier to get better than 50% error because D1 and D2 have9

different labels in spite of having similar input data.10

Think of you would use our discriminator to build a two-sample test11

for a given dataset. If given two datasets D1 and D2 labeled as above12

t̂ :=
1

n

∑
x∈D1

1{du(x)>0} +
1

n

∑
x∈D2

1{du(x)<0}

and an appropriate threshold tα. This construction is an example of what13

is called a “classifier-based two-sample test”; you can read more about it14

at Lopez-Paz and Oquab (2016).15

It can be shown that if the two distributions are not the same, the
power of the two-sample test is an increasing function of the statistic
t̂. Therefore if we wanted to maximize the power, maximizing the
test statistic t̂ of the discriminator is a good idea. This makes the
discriminator more and more sensitive to the differences between
samples from p and q.

16.3 Building the Generator of a GAN16

The second key idea in a GAN is that the generator
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Figure 16.1: Schematic of the architecture in a GAN

gv : Z → X

that maps the latent space Z ⊂ Rm to data space X is trained to
minimize the power of the two-sample test.

The generator gv wants to synthesize data that look like they came
from Nature’s distribution p(x). As the generator’s distribution q

comes closer to p, the accuracy of the discriminator du will degrade (it
cannot distinguish between them as easily) and thereby discriminator
will be forced to make its test statistic more sensitive to subtle
differences between the two distributions.

16.4 Putting the discriminator and generator1

together2

The GAN objective combines two objectives: the discriminator updates3

its weights u to maximize the power and the generator updates its weights4

v to minimize the power. We will write the population version of the5

optimization problem as follows.6

min
v

max
u

Ex∼p(x) [log du(x)] + Ex∼q(x) [log (1− du(x))] (16.6)

Let us fill in a few more details. The dataset of real images consists of7

samples from Nature’s distribution p(x), so we will write it as a finite sum8

over our dataset D =
{
xi ∼ p

}n
i=1

. The generator uses samples z from9

some generic distribution, e.g., a standard Gaussian distribution.10

min
v

max
u

1

n

∑
x∈D

[log du(x)] +Ez∼N(0,I) [log (1− du(gv(z)))] . (16.7)

Training a GAN The objective in Eq. (16.7) is an example of a min-max11

optimization problem. Such problems are quite difficult to solve and this12

is why training GANs is quite difficult. In practice, we typically resort to13

a few crude tricks. We sample a mini-batch of real images
{
x1, . . . , xb

}
14

and another mini-batch of noise vectors
{
z1, . . . , zb

}
. Using these two15

mini-batches16

1. we update the generator gv using the gradient of the objective with17

respect to v.18
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2. update the discriminator du using the gradient of the loss with1

respect to u.2

There is no need for the Reparametrization Trick here because there is3

no expectation being taken over parametrized distributions. This is a big4

benefit of the GAN formulation as compared to variational inference; the5

former does not have to be careful while picking a variational family and6

complex deep networks can be used as the generator or the discriminator7

easily. Let us next make a few comments about the objective in Eq. (16.7).8

Solving min-max problems is difficult This is a min-max problem: the9

generator is minimizing the objective and the discriminator is maximizing10

the objective. Such problems are hard to solve in optimization especially11

with gradient descent techniques. Consider an example of a saddle point12

13

where the loss function increases in one direction and decreases in the14

other direction. Finding the solution of the min-max objective involves15

finding the saddle point. It is easy to appreciate that depending on how16

many steps of gradient descent we take for either of the min/max players17

we risk falling down or climbing up the hill. There are many many other18

other factors that make solving such problems hard, e.g., learning rate,19

momentum, stochastic gradients if we are using mini-batches. Hyper-20

parameters are very tricky to pick while training GANs and this is often21

called “instability of training”.22

A harsh discriminator inhibits the training of the generator The23

generator has a much more difficult task than the discriminator. During24

early stages of training, the generator needs to learn how to synthesize25

images whereas the discriminator can easily distinguish between bad26

images generated by the generator and good ones from our original dataset27

using very similar test statistics, e.g., an average of the RGB values all the28

pixels.29

The gradient of the second term in the objective is30

∇v log(1− du(gv(z))) = −
∇vdu(gv(z))

1− du(gv(z))
.

As a function of du(gv(z)) the second term in the objective thus looks like31



225

1

In other words, the gradient with respect to the generator’s weights v2

is essentially zero if the generator is not working well (this is the case3

when du(gv(z)) predicts a large negative value). This does not allow the4

generator to learn well; it is essentially like your advisor shooting down5

all your ideas.6

Most GAN implementations therefore modify the second term in the7

objective to be8

− E
z∼N(0,I)

[log du(gv(z))]

which does not suffer from the small gradient problem.9

10

Synthesizing new images from a GAN The generator samples la-11

tent factors z ∼ N(0, I) at test time to synthesize new images. The12

discriminator is not used at test time.13

16.5 How to perform validation for a GAN?14

For variational generative models, we can use the log-likelihood of15

synthesized images to obtain some understanding of whether the model16

is working well. If the log-likelihood of new images is similar to the17

log-likelihood of images in the training data then the new images are good18

at least as far as the model is concerned even if they may have perceptual19

artifacts.20

Doing so is not so easy for implicit models because they do not output21

the likelihood of the generated samples. Run the generator a few times to22

eyeball the quality of images it generates.23
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1

But this is a very heuristic and qualitative metric.2

Frechet Inception Distance (FID) A number of other metrics exist3

for evaluating generative models. One popular one is the so-called4

Frechet Inception Distance (FID) where we take any pre-trained model for5

classification, in this case people typically use the Inception architecture,6

and evaluate7

FID(p, q) = ∥µp − µq∥22 + trace
(
Σp +Σq − 2 (ΣpΣq)

1/2
)
.

where µp,Σp are the mean and covariace of the features of an Inception8

network when real images are fed to it and similarly µq,Σq are the9

mean/covariance of the features when GAN-generated images are fed to10

the same network.11

The above formula is the Wasserstein distance between the two densities12

p, q, There are many similar techniques such as the Maximum Mean13

Discrepency (MMD) that can be used to understand the discrepancy14

between the two distributions once the features are computed using some15

pre-trained model on their respective images.16

Roughly speaking, the evaluation methodology in generative models,17

especially for images, is quite flawed. This is not a new phenomenon in18

machine learning/statistics because it is a intrinsically difficult problem to19

measure when two distributions are the same given only finite data from20

them. The problem is exacerbated in deep generative models because21

deep networks are very good at over-fitting, e.g., GANs can often end up22

memorizing the training data, they can generate very realistic images that23

are essentially the same as those in the training data. Nevertheless, a lot24

of techniques exist to make GANs synthesize high-quality images. See25

some examples at Brock et al. (2018); Karras et al. (2017).26

The key behind the empirical success of GANs is to convert
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a problem about estimating distributions, sampling from them etc.
into a classification problem. Deep networks are extremely good
at classification as compared to other problems like regression,
reconstruction etc. and GANs leverage this remarkably. This is a
trick that you will do well to remember when you use deep networks
in the future: typically you will always get better results if you manage
to rewrite your problem as a classification problem. I suspect the real
reason for this is that we do not have good regularization techniques
for deep networks for non-classification problems.

16.6 The zoo of GANs1

Due to the numerous issues with GANs, there have been a large number2

of variants and attempts to improve their empirical performance. They3

fall mainly into the following categories.4

1. Optimization tricks to train the generator-discriminator pair in a5

more stable fashion.6

2. New loss functions that change the binary cross-entropy loss of the7

discriminator to something else. A majority of papers, including8

the example we saw above, fall into this category.9

3. Characterizing the kind of critical points, equilibria of the training10

process; this is a similar line of analysis as the study of the energy11

landscape of deep networks for standard supervised learning.12

4. Connections with variational inference suggest that GANs and13

their training techniques are essentially variational inference in14

disguise (Nowozin et al., 2016).15

5. Coming up with new ways of evaluating generative models.16

In addition to the above lines, there are many other novel and interesting17

applications such as Cycle-GANs and conditional-GANs.18
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