ESE 546: Principles of Deep Learning

Instructor

Pratik Chaudhari pratikac @seas.upenn.edu

Teaching Assistants

Haiyue Chen
Parsa Idehpour
Rohit Jena
Akshat Kaushal
Kevin Liu
Qifei C.
Alok Shah
Ke Xu
Zhaoze Wang
Seong Woo Han
Khush Gupta
Ethan Yu
David Zhang

December 10, 2025

Contents

1 What is intelligence?
1.1 Key components of intelligence
1.2 Intelligence: The Beginning (1942-50)
1.2.1 Representation Learning
1.3 Intelligence: Reloaded (1960-2000)
1.4 Intelligence: Revolutions (2006-)
1.5 A summary of our goals in this course

2 Linear Regression, Perceptron, Stochastic Gradient Descent

2.1 Problem setup for machine learning
2.1.1 Generalization
2.2 Linear regression
2.2.1 Maximum Likelihood Estimation
2.3 Perceptron
2.3.1 Surrogate Losses
2.4 Stochastic Gradient Descent
2.4.1 The general form of SGD

3 Kernels, Beginning of neural networks
3.1 Digging deeper into the perceptron
3.1.1 Convergence rate
3.1.2 Dual representation
3.2 Creating nonlinear classifiers from linear ones
3.3 Kernels
3.3.1 Kernel perceptron
3.3.2 Mercer’s theorem
3.4 Learning the feature vector
3.4.1 Random features
3.4.2 Learning the feature matrix as well

4 Deep fully-connected networks, Backpropagation
4.1 Deep fully-connected networks
4.1.1 Some deep learning jargon
4.1.2 Weights
4.2 The backpropagation algorithm
4.2.1 One hidden layer with one neuron
4.2.2 Implementation of backpropagation
4.3 Weight initialization in fully-connected networks

o N

10
12
14
15

16
16
17
18
19
21
22
23
24

26
26
26
27
28
29
30
31
32
33
34

36
36
38
40
40
41
44
45

4.3.1 Typical weight initialization schemes in deep learning

5 Convolutional Architectures

5.1

52
53
54
5.5
5.6

Basics of the convolution operation

5.1.1 Convolutions of 2D images

5.1.2 Some examples

How are convolutions implemented?

Convolutions for multi-channel images in a deep network
Translational equivariance using convolutions

Pooling to build translational invariance

Weight initialization in convolutional networks

6 Data augmentation, Loss functions

6.1

6.2

Data augmentation

6.1.1 Some basic data augmentation techniques
6.1.2 How does augmentation help?

6.1.3 What kind of augmentation to use when?
Loss functions

6.2.1 Regression

6.2.2 Classification: Cross-Entropy loss

6.2.3 Softmax Layer

6.2.4 Label smoothing

6.2.5 Multiple ground-truth classes

7 Bias-Variance Trade-off, Dropout, Batch-Normalization

7.1

7.2

7.3

7.4

Bias-Variance Decomposition

7.1.1 Cross-Validation

Weight Decay

7.2.1 Do not do weight decay on biases

7.2.2 Maximum a posteriori (MAP) Estimation
Dropout

7.3.1 Bagging classifiers

7.3.2 Some insight into how dropout works
7.3.3 Implementation details of dropout

7.3.4 Using dropout as a heuristic estimate of uncertainty
Batch-Normalization

7.4.1 Covariate shift

7.4.2 Internal covariate shift

7.4.3 Problems with batch-normalization

7.4.4 Variants of Batch-Normalization

8 Recurrent Architectures and the Attention Mechanism

8.1
8.2

8.3

Recursive updates in a Kalman filter, sufficient statistics
Recurrent Neural Networks (RNNs)

8.2.1 Backpropagation in an RNN

8.2.2 Handling long-term temporal dependencies
Long Short-Term Memory (LSTM)

8.3.1 Gated Recurrent Units (GRUs)

8.3.2 LSTMs

46

48
49
51
52
54
55
56
57
59

60
60
61
61
62
63
63
65
67
67
68

69
69
73
75
76
77
79
80
81
83
83
84
85
86
&9
90

92
93
95
97
98
101
102
102

8.4 Bidirectional architectures
8.5 Attention mechanism
8.5.1 Weighted regression estimate
8.5.2 Attention layer in deep networks
8.5.3 Attention in recurrent networks
8.6 Some applications of attention-based networks (transformers)
8.6.1 Pretraining on natural language
8.6.2 Handling multi-modal inputs

Background on Optimization, Gradient Descent
9.1 Convexity
9.2 Introduction to Gradient Descent
9.2.1 Conditions for optimality
9.2.2 Different types of convergence
9.3 Convergence rate for gradient descent
9.3.1 Some assumptions
9.3.2 GD for convex functions
9.3.3 Gradient descent for strongly convex functions
9.4 Limits on convergence rate of first-order methods

10 Accelerated Gradient Descent

11

12

10.1 Polyak’s Heavy Ball method
10.1.1 Polyak’s method can fail to converge

10.2 Nesterov’s method
10.2.1 A model for understanding Nesterov’s updates
10.2.2 How to pick the momentum parameter?

Stochastic Gradient Descent
11.1 SGD for least-squares regression
11.2 Convergence of SGD
11.2.1 Typical assumptions in the analysis of SGD
11.2.2 Convergence rate of SGD for strongly-convex functions
11.2.3 When should one use SGD in place of GD?
11.3 Accelerating SGD using momentum
11.3.1 Momentum methods do not accelerate SGD
11.4 The Adam optimizer
11.5 Understanding SGD as a Markov Chain
11.5.1 Gradient flow
11.5.2 Markov chains
11.5.3 A Markov chain model of SGD
11.5.4 The Gibbs distribution
11.5.5 Convergence of a Markov chain to its invariant distribution

Shape of the energy landscape of neural networks
12.1 Introduction

12.2 Deep Linear Networks

12.3 Extending the picture to deep networks

103
104
105
107
110
112
113
116

118
119
122
123
123
125
125
125
129
132

133
133
136
136
137
139

141
143
144
145
147
149
150
151
153
156
157
157
160
162
164

167
168
169
173

13 Generalization performance of machine learning models 175
13.1 The PAC-Learning model 175
13.2 Concentration of Measure 178

13.2.1 Union Bound (or Boole’s Inequality) 179
13.2.2 Chernoff Bound 179
13.3 Uniform convergence 180
13.4 Vapnik-Chernovenkis (VC) dimension 183

14 Sloppy Models 187
14.1 Model manifold of nonlinear regression 187
14.2 Understanding optimization for sloppy models 191
14.3 Understanding generalization for sloppy models 194

15 Variational Inference 196
15.1 The model 197
15.2 Some technical basics 199

15.2.1 Variational calculus 199
15.2.2 Laplace approximation 200
15.2.3 Digging deeper into KL-divergence 201
15.3 Evidence Lower Bound (ELBO) 203
15.3.1 Parameterizing ELBO 205
15.4 Gradient of the ELBO 207
15.4.1 The Reparameterization Trick 208
15.4.2 Score-function estimator of the gradient 209
15.4.3 Gradient of the remaining terms in ELBO 211
15.5 Diffusion Models 212
15.5.1 Specific choices for the encoder and decoder in diffusion models 214
15.5.2 The training objective for diffusion models 216

16 Generative Adversarial Networks 218
16.1 Two-sample tests and Discriminators 219
16.2 Building the Discriminator in a GAN 220
16.3 Building the Generator of a GAN 222
16.4 Putting the discriminator and generator together 223
16.5 How to perform validation for a GAN? 225
16.6 The zoo of GANs 227

Bibliography 228

1

Chapter 1

. What is intelligence?

Reading
1. Bishop 1.1-1.5

2. Bishop DL 1.1-1.3
3. Goodfellow Chapter 1

4. “A logical calculus of the ideas immanent in nervous activity”
by Warren McCulloch and Walter Pitts (McCulloch and Pitts,
1943).

5. “Computing machinery and intelligence” by Alan Turing in
1950 (Turing, 2009).

What is intelligence? It
is hard to define, I don’t
know a good definition.
We certainly know it when
we see it. All humans
are intelligent. Dogs are
plenty intelligent. Most of
us would agree that a house
fly or an ant is less intel-
ligent than a dog. What
are the common features
of these species? They all
can gather food, search for
mates and reproduce, adapt to changing environments and, in general, the
ability to survive.

Are plants intelligent? Plants have sensors, they can measure light,
temperature, pressure etc. They possess reflexes, e.g., sunflowers follow
the sun. This is an indication of “reactive/automatic intelligence”. The

5

1

2

3

20

21

22

23

24

25

26

27

28

29

30

31

32

mere existence of a sensory and actuation mechanism is not an indicator of
intelligence. Plants cannot perform planned movements, e.g., they cannot
travel to new places.

Figure 1.1: A Tunicate on the ocean floor

A Tunicate in Fig. 1.1 is an interesting plant however. Tunicates are
invertebrates. When they are young they roam around the ocean floor in
search of nutrients, and they also have a nervous system (ganglion cells)
at this point of time that helps them do so. Once they find a nutritious
rock, they attach themselves to it and then eat and digest their own brain.
They do not need it anymore. They are called “tunicates” because they
develop a thick covering (shown above) or a “tunic” to protect themselves.

Is a program like AlphaGo intelligent? There is a very nice movie on
Netflix on the development of AlphaGo and here’s an excerpt from the
movie (https://youtu.be/YrTRKh4FPio). The commentator in this video
is wondering how Lee Se-dol, who was one of the most accomplished
Go players in the world then, might defeat this very powerful program;
this was I believe after AlphaGo was up 3-0 in the match already. The
commentator says so very nonchalantly: if you want to defeat AlphaGo
all you have to do is pull the plug.

A key indicator of intelligence (and this is just my opinion) is the
ability to take actions upon the world. With this comes the ability to affect
your environment, preempt antagonistic agents in the environment and
take actions that achieve your desired outcomes. You should not think
of intelligence (artificial or otherwise) as something that takes a dataset
and learns how to make predictions using this dataset. For example, if
I dropped my keys at the back of the class, I cannot possibly find them
without moving around, using priors of where keys typically hide (which
is akin to learning from a dataset) only helps us search more efficiently.

1.1 Key components of intelligence

With this definition, we can write down the three key parts that an
intelligent, autonomous agent possesses as follows.

Perception — Cognition —> Action

I

Perception refers to the sensory mechanisms to gain information about
the environment (eyes, ears, smell, tactile input etc.). Action refers to

https://youtu.be/YrTRKh4FPio

20

21

22

23

24

25

26

27

28

29

30

31

32

your hands, legs, or motors/engines in machines that help you move on
the basis of this information. Cognition is kind of the glue in between.
It is in charge of crunching the information of your sensors, creating
a good “representation” of the world around you and then undertaking
actions based on this representation. The three facets of intelligence are
not sequential and intelligence is not merely a feed-forward process. Your
sensory inputs depend on the previous action you took. While searching
for something you take actions that are explicitly designed to give you
different sensory inputs than what you are getting at the moment.

This class will focus on learning. It is a component, not the entirety,
of cognition.

Learning is in charge of looking at past data and predicting what
future data may look like.

Cognition also involves handling situations when the current data does
not match past data, etc. To give you an example, arithmetic problems
you solved in elementary school are akin to learning whereas figuring out
that taking a standard deduction when you file your income tax versus
itemized deduction is like cognition...

Some other classes at Penn that address these various aspects of
intelligence are:

* Perception: CIS 580, CIS 581, CIS 680, MEAM 620, ESE 650

* Learning/Cognition: CIS 519, CIS 520, CIS 521, CIS 522, CIS
620, ESE 542, ESE 545, CIS 700

* Control: ESE 650, MEAM 520/620, ESE 500/505, ESE 615, ESE
618, MEAM 517

The objective of the learning process is really to crunch
past data and learn a prior

Imagine a supreme agent which is infinitely fast, clever, and can interpret

its sensory data and compute the best actions for any task, say driving.

Learning from past data is not essential for such an agent; effectively the
supreme agent can simulate every physical process around it quickly and
decide upon the best action it should take. Past data helps if you are not as
fast as the supreme agent or if you want to save some compute time/energy
during decision making.

A deep network or a machine learning model is not a mechanism

@ There are also situations when you do not
have enough information to make a decision,
e.g., you do not precisely know the future
location of the car in front of you while
driving. Will the supreme agent benefit from
seeing historical data in this case?

1

2

3

that directly undertakes the actions. It is rather a prior on the possible
actions to take. Other algorithms that rely on real-time sensory data
will be in charge of picking one action out of these predictions. This
is very easy to appreciate in robotics: how a car should move depends
more upon the real-time data than any amount of past data. This aspect
is less often appreciated in non-robotics applications but it holds
there as well. Even for something like a recommendation engine that
recommends movies in Netflix, the output of a prediction model will
typically be modified by a number of algorithms before it is actually
recommended to the user, e.g., filters for sensitive information, or
toxicity in a chatbot.

1.2 Intelligence: The Beginning (1942-50)

Let us give a short account of how our ideas about intelligence have
evolved.

NEURONS ARE ELECTRICAL DEVICES

Action
direction of information potential

Cell body
Telodendria y -
Ve “

Nucous

Voltage (mV)

s
S,
&
EJ
g
&
g

T

Threshold
Resting state

initi
-Axon hillock Synaptic terminals 70 >
stimuius
- Refractory,
— B period
3 3 5

Golgi apparatus
Endoplasmic

< 0 1 2
i Time (ms)
Mitochondrion \\ ™ Dendrite -

reticulum
© Extracellular space

/ \kmndnlmhmnches L ®

The brain contains about 100 B neurons and 100 T
synapses with 4 km of "wire" in each cu. mm.

Many different types of neurons. But they fire only
at 4 Hz on average.

Source: Wikipedia

Cells in the body possess a membrane around some cytoplasm and
nucleus...with DNA that synthesizes proteins that control the operation
of the cell. There are channels across the membrane to transmit signals
in and send waste out. Neurons are specialized cells. They are electrical
devices. There are about 100B of such neurons. About 100 T synapses
that connect them to each other. These are the wires. Just to put things into
perspective, there is about 4 km of wiring in about one cubic mm in the
brain. If you measure the voltage inside the body of a neuron, it is about
-70 mV at rest. Neurons receive input, in the form of neurotransmitters
from other neurons near the dendrites or light for the retinal neurons.
Atrest there is less concentration of sodium inside the cell than outside.
As the input comes, the voltage of the neuron begins to increase, and if

20

21

22

23

it increases beyond a certain value there is a positive feedback loop that
kicks in. This is because sodium ion channels open and sodium ions flow
in. The flow can be larger than a million ions per second. This causes the
voltage to explode rapidly...in about a millisecond. To 50 - 150 mV. And
then there is a second negative feedback process that causes the voltage to
flip back down and recover. This is caused by potassium channels. At rest
there are more potassium ions inside than outside. And as the membrane
potential increases, ion channels open up and potassium ions rush out.
These are spikes. They are caused by electro-chemical reactions.

The most important thing to appreciate here is as follows. After a
spike, there is imbalance in the concentration of sodium and potassium
ions inside and outside the cell. Someone has to bring it back to normal.
There are pumps in the membrane for this purpose. Each operation of
the pump sends some Na ions out and brings some K ions back in. Each
operation costs one molecule of ATP. Adenosine tri phosphate. Which is
the currency for energy inside the cell. As a result, neurons do not talk
too frequently. They fire only at about 4 Hz.

The story of deep learning begins roughly in 1942 in Chicago. These
are Warren McCulloch who was a neuroscientist and Walter Pitts who
studied mathematical logic. They built the first model of a mechanical
neuron and propounded the idea that simple elemental computational
blocks in your brain work together to perform complex functions. Their
paper (McCulloch and Pitts, 1943) is an assigned reading for this lecture.

e {0,1}

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

B WARREN S. MCCULLOCH AND WALTER PITTS
University of Illinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.

2

22

23

24

25

26

27

28

29

30

31

32

33

34

35

10

Around the same time in England, Alan Turing was forming his initial
ideas on computation and neurons. He had already published his paper on
computability by then. This paper (Turing, 2009) is the second assigned
reading for this lecture. '

Vor. uix. No. 236.] [October, 1950

MIND

A QUARTERLY REVIEW
oF

PSYCHOLOGY AND PHILOSOPHY

IL—COMPUTING MACHINERY AND
INTELLIGENCE

By A.M.TuriNe

1. The Imitation Game.

McCulloch was inspired by Turing’s idea of building a machine that could
compute any function in finitely-many steps. In his mind, the neuron in a
human brain, which either fires or does not fire depending upon the stimuli
of the other neurons connected to it, was a binary object; rules of logic
where a natural way to link such neurons, just like the Pitt’s hero Bertrand
Russell rebuilt modern mathematics using logic. Together, McCulloch
& Pitts’ and Turing’s work already had all the germs of neural networks
as we know them today: nonlinearities, networks of a large number of
neurons, training the weights in situ etc.

Let’s now move to Cambridge, Massachusetts. Norbert Wiener, who
was a famous professor at MIT, had created a little club of enthusiasts
around 1942. They would coin the term “Cybernetics” to study exactly
the perception-cognition-action loop we talked about. You can read more
in the original book titled “Cybernetics: or control and communication in
the animal and the machine” (Wiener, 1965). You can also look at the
book “The Cybernetic Brain” (Pickering, 2010) to read more.

1.2.1 Representation Learning

Perceptual agents, from plants to humans, perform measurements of
physical processes (“signals”) at a level of granularity that is essentially
continuous. They also perform actions in the physical space, which is
again continuous. Cognitive science on the other hand thinks in terms of
discrete entities like concepts, ideas, objects, or categories. These can be
manipulated with tools of logic and inference. It is useful to ask what
information is transferred from the perception system to the cognition
system to create such symbols from signals, or from cognition to control
which creates back signals from the symbols? We will often call these
symbols the “internal representation” of an agent.

Claude Shannon formulated information theory which is one way to
study these kind of ideas. Shannon devised a representation learning
scheme for compressing (e.g., taking the intensities at each pixel of the

'If you need more inspiration to go and read it, the first section titled “The Imitation
Game” propounds the Turing Test.

11

Figure 1.2. The four pioneers of cybern:

fe to right): Ross Ashby, Warren

McCulloch, Grey Walter, and Norbert Wie e: de Latil 1956, facing p. 53

Figure 1.2: The famous four of the first era of intelligence. (From right to left)
Norbert Wiener, Grey Walter, Warren McCulloch and Walter Pitts

CONTENTS

Preface to the Second Edition vii

PART I
ORIGINAL EDITION
1948
Introduction 1
1 Newtonian and Bergsonian Time 30
IT Groups and Statistical Mechanics 45
IIT Time Series, Information, and Communication 60
IV Feedback and Oscillation 95
V Computing Machines and the Nervous System 116
VI Gestalt and Universals 133
VII Cybernetics and Psychopathology 144
VIII Information, Language, and Society 155

PART II
SUPPLEMENTARY CHAPTERS
1961
IX On Learning and Self-Reproducing Machines 169
X Brain Waves and Self-Organizing Systems 181
Index 205

Figure 1.3: About 75 years later, this course’s content is (surprisingly) closely
related to the topics in Wiener’s book on Cybernetics.

20

21

22

23

24

25

26

27

28

29

30

12

camera and encoding them into something less redundant like JPEG),
coding (adding redundancy into the representation to gain resilience to
noise before transmitting it across some physical medium such as a wireless
channel), decoding (using the redundancy to guess the parts of the data
packet that were corrupted during transmission) and finally decompressing
the data (getting the original signal back, e.g., pixel intensities from JPEG).

Information theory as described above is a tool to transmit data
correctly between a sender and a receiver. We will use this theory for a
different purpose. Compression, decompression etc. care about never
losing information from the data; machine learning necessarily requires
you forget some of the data. If the model focuses too much on the grass
next to the dogs in the dataset, it will “over-fit” to the data and next
time when you see grass, it will end up predicting a dog. It not easy to
determine which parts of the data one should forget and which parts one
should remembered.

!

P
Crl

Figure 1.4: Claude Shannon studied information theory. This is
a picture of a maze solving mouse that he made around 1950,
among the world’s first examples of machine learning; read more at
https://www.technologyreview.com/2018/12/19/138508/mighty-mouse.

The study of artificial intelligence has always had this diverse flavor.
Computer scientists trying to understand perception, electrical engineers
trying to understand representations and mechanical and control engineers
building actuation mechanisms.

1.3 Intelligence: Reloaded (1960-2000)

The early period created interest in intelligence and developed some
basic ideas. The first major progress of what one would call the sec-
ond era was made by Frank Rosenblatt in 1957 at Cornell University.
Rosenblatt’s model called the perceptron is a model with a single bi-
nary neuron. It was a machine designed to distinguish punch cards
marked on the left from cards marked on the right, and it weighed
5 tons (https://news.cornell.edu/stories/2019/09/professors-perceptron-
paved-way-ai-60-years-too-soon). The input integration is implemented
through the addition of the weighted inputs that have fixed weights ob-
tained during the training stage. If the result of this operation is larger

https://www.technologyreview.com/2018/12/19/138508/mighty-mouse
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

20

21

22

23

24

25

26

27

28

29

30

31

13

than a given threshold, the neuron fires. When the neuron fires its output
is set to 1, otherwise it is set to 0. It looks like the function

f(z;w) = sign(w " z) = sign (wiz1 + ... 424) -

Rosenblatt’s perceptron (Rosenblatt, 1958) had a single neuron so it
could not handle complicated data. Marvin Minsky and Seymour Papert
discussed this in a famous book titled Perceptrons (Minsky and Papert,
2017). But unfortunately this book was widely perceived as two very
well established researchers being skeptical of artificial intelligence itself.
Interest in building neuron-based artificial intelligence (also called the
connectionist approach) waned as a result. The rise of symbolic reasoning
and the rise of computer science as a field coincided with these events in
the early 1970s and caused what one would call the “first Al winter”.

1st 2nd
Beginnings Neural Neural
Winter Winter

Perceptron Adaline Multilayer

Backprop

1957 1960 1982 | 1986 1989 1995

1950 1960 1970 1980 1990 2000
Yy W 3 \ \
Bl o HEDER 8
V. 7L
R Rosenblatt ° ,\‘;V'E":,‘;’ - M. Minsky - S. Papert |P. Werbos DGRI;‘r‘r:ilor:‘attr Y. Lecun <§/ (\D/Z:ﬁ‘sk
R. Williams

D=

oo @]l O ww

e e Ole]

There was resurgence of ideas around neural networks, mostly fueled
by the (re)-discovery of back-propagation by Rumelhart et al. (1985); Shun-
ichi Amari developed methods to train multi-layer neural networks using
gradient descent all the way back in 1967 and this was also written up in a
book but it was in Japanese (Amari, 1967). Multi-layer networks came back
in vogue because they could now be trained reasonably well. This era also
brought along the rise of convolutional neural networks built upon a large
body of work starting from two neuroscientists Hubel and Wiesel who did
very interesting experiments in the 60s to discover visual cell types (Hubel
and Wiesel, 1968) and Fukushima who implemented convolutional and
downsampling layers in his famous Neocognitron (Fukushima, 1988).
Yann LeCun demonstrated classification of handwritten digits using CNNs
in the early 1990s and used it to sort zipcodes (LeCun et al., 1989, 1998).
Neural networks in the late 80s and early 90s was arguably, as popular a
field as it is today.

Support Vector Machines (SVMs) were invented in Cortes and Vapnik
(1995). These were (are) brilliant machine learning models with extremely
good performance. They were much easier to train than neural networks.
They also had a nice theoretical foundation and, in general were a delight

A https://embryo.asu.edu/pages/david-h-
hubel-and-torsten-n-wiesels-research-optical-
development-kittens

https://embryo.asu.edu/pages/david-h-hubel-and-torsten-n-wiesels-research-optical-development-kittens
https://embryo.asu.edu/pages/david-h-hubel-and-torsten-n-wiesels-research-optical-development-kittens
https://embryo.asu.edu/pages/david-h-hubel-and-torsten-n-wiesels-research-optical-development-kittens

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

14

to use as compared to neural networks. It was famously said in the 90s that
only the neural network researchers were able to get good performance with
neural networks and no one else could train them well. This was largely
true even until 2015 or so before the rise of libraries like PyTorch and
TensorFlow. So we should give credit to these libraries for popularizing
deep learning in addition to all the researchers in deep learning.

Kernel methods, although known much before in the context of the
perceptron (Aizerman, 1964; Scholkopf and Smola, 2018), made SVMs
very powerful (we will see this in Chapter 2). The rise of Internet commerce
in the late 90s meant that a number of these algorithms found widespread
and impactful applications. Others such as random forests (Breiman,
2001) further led the progress in machine learning. Neural networks,
which worked well when they did but required a lot of tuning and expertise
to get to work, lost out to this competition. However, there were other
neural network-based models in the natural language processing (NLP)
community such as LSTMs (Hochreiter and Schmidhuber, 1997) which
were discovered in this period and have remained very popular and
performant all through.

1.4 Intelligence: Revolutions (2006-)

The growing quantity of data and computation came together in late 2000s
to create ideas like deep Belief Networks (Hinton et al., 2006), deep
Boltzmann machines (Salakhutdinov and Larochelle, 2010), large-scale
training using GPUs (Raina et al., 2009) etc. The watershed moment
that got everyone’s attention was when Krizhevsky et al. (2012) trained
a convolutional neural network to show dramatic improvement in the
classification performance on a large dataset called ImageNet. This is a

dataset with 1.4 million images collected across 1000 different categories.

Performing well on this dataset was considered very difficult, the best
approaches in 2011 (ImageNet challenge used to be an annual competition
until 2016) achieved about 25% error. Krizhevsky et al. (2012) managed
to obtain an error of 15.3%. Many significant results in the world of
neural networks have been achieved since 2012. Today, deep networks
in their various forms run a large number of applications in computer
vision, natural language processing, speech processing, robotics, physical
sciences such as physics, chemistry and biology, medical sciences, and
many many others (LeCun et al., 2015).

This progress in deep learning has been driven by the availability
of data and cheap computation. Most importantly, it is driven today
by the intense curiosity of people from diverse fields of inquiry. Deep
learning in its modern form is a very young field. As is typical in new
fields, consolidation of ideas has not happened yet; so you will often see
conflicting explanations for the same concept. The dramatic progress
today is driven by ideas that are often quite unusual and a large number
of open problems remain in how we may build a more sophisticated
understanding of deep networks.

A You can explore the ImageNet dataset at
https://navigu.net/#imagenet.

https://navigu.net/#imagenet

15

1.5 A summary of our goals in this course

This course will take off from around late 1990s (kernel methods) and
develop ideas in deep learning that bring us to today. Our goals are to

1. become good at using modern deep networks, i.e., implementing
them, training them, modeling specific problems using ideas in deep
learning;

2. understanding why the many quixotic ideas in deep learning work.

After taking this course, we expect to be able to not only develop methods
that use deep learning, but more importantly improve existing ideas using
foundational understanding of the mathematics behind these ideas and
develop new ways of improving deep learning theory and practice.

1

Chapter 2

Linear Regression,
Perceptron, Stochastic
Gradient Descent

Reading
1. Bishop 3.1,4.1,4.3
2. Bishop DL 2.1-2.3

3. Goodfellow Chapter 5.1-5.4

2.1 Problem setup for machine learning
Nature gives us data X and targets Y for this data.
X =Y.

Nature does not usually tell us what property of a datum =z € X results in
a particular prediction y € Y. We would like to learn to imitate Nature,
namely predict y given x.

What does such learning mean? It is simply a notion of being able
to identify patterns in the input data without explicitly programming a
computer for prediction. We are often happy with a learning process
that identifies correlations: if we learn correlations on a few samples
(xt,y'), ..., (z, y™), we may be able to predict the output for a new
datum z"*!'. We may not need to know why the label of z"*!
predicted to be so and so.

Let us say that Nature possesses a probability distribution P over
(X,Y). We will formalize the problem of machine learning as Nature

was

16

21

22

23

24

25

26

27

28

29

30

31

17

drawing n independent and identically distributed samples from this
distribution. This is denoted by

Dtrain = {(mlvyz) ~ P}::l

is called the “training set”. We use this data to identify patterns that help
make predictions on some future data.

What is the task in machine learning?

Suppose Dypin consists of n = 50 RGB images of size 100x 100 of
two kinds, ones with an orange inside them and ones without. 10 is a
large number of pixels, each pixel taking any of the possible 2552 values.
Suppose we discover that one particular pixel, say at location (25,45),
takes distinct values in all images inside our training set. We can then
construct a predictor based on this pixel. This predictor, it is a binary
classifier, perfectly maps the training images to their labels (orange: +1
or no orange: -1). If :cfj is the (i7)™ pixel for image 2%, then we use the
function

flz) =

yk ifxf’j =z, forsome k=1,...,n
—1 otherwise.

This predictor certainly solves the task. It works correctly for all images
in the training set. Does it also work for images outside the training set?
Clearly no, because test images may not have this signature pixel.

Our task in machine learning is to learn a predictor that works outside
the training set. The training set is only a source of information that Nature
gives us to find such a predictor.

Designing a predictor that is accurate on Dy, is trivial. A hash
function that memorizes the data is sufficient. This is NOT our task
in machine learning. We want predictors that generalize to new data
outside Diin-

2.1.1 Generalization

If we never see data from outside Dy, why should we hope to do well
on it? The key is the distribution P. Machine learning is formalized as
constructing a predictor that works well on new data that is also drawn
independently from the distribution P. We will call this set of data the
“test set”.

Dy

This assumption is important. It provides coherence between past and
future samples: past samples that were used to train and future samples
that we will wish to predict upon.

How to find such predictors that work well on new data? The central
idea in machine learning is to restrict the set of possible binary functions

@ How many such binary classifiers are there
at most?

18

that we consider.

We are searching for a predictor that generalizes well but only
have the training dataset to ascertain which predictor generalizes well.

The right class of functions f is such that is not too large. Otherwise
we will find our binary classifier discussed above as the solution of the
problem (after all, it does achieve zero training error). This is not very
useful. The class of functions that we should search over cannot be too
small either, otherwise we won’t be able to make accurate predictions for
difficult images.

Finding an appropriate class of functions that is neither too big
nor too small and finding one predictor from within this class that fits
the training dataset well is what machine learning is all about.

2.2 Linear regression

Let us focus on a simpler problem. We fix the class of functions, our
predictors, to only have linear classifiers. We will consider that our data
X C R% and labels Y C R. If the labels/targets are real-valued, we call it
a regression problem. Our predictor for any x € X is

flz;w,b) =w'z +b. 2.1

This is a linear function in the data x with parameters w € R? and
b € R. Different settings of w and b give different functions f. Picking a
particular function f is therefore equivalent to picking particular values
of the parameters. Parameters are also called weights. We can visualize
what this predictor does in two ways. Consider the case of d = 2.

Figure 2.1: Linear least squares with X C R2.

@ Can you now think how machine learning
is different from other fields you might know
such as statistics or optimization?

20

21

22

23

24

25

26

27

28

29

19

Fig. 2.1 shows the hyperplane corresponding to a particular (w, b) with

the data 2%, 3/* (inred). Each hyperplane is a particular predictor f(x;w, b).

You can also think of the function f as a point in three dimensional space
w€R?and b € R.

Predicting the target accurately using this linear model would require us
to find values (w, b) that minimize the average distance to the hyperplane
of each sample in the training dataset. We write this as an objective

function.
)= o 3 (-

K2

) nl (2.2)

where we have written the predlctlon as
g =w'2" +b

The quadratic term for each datum 1 (y' — ¢) is known as the loss
function, or loss for short. The objectlve above is thus an average of the
loss for each datum. Finding the best weights w, b now boils down to
solving the optimization problem

w*,b* = argmin {(w,b). (2.3)
weR?, bER

How do we solve the optimization problem? We will learn many
techniques to solve problems of the form Eq. (2.3). We have a simple case
here and therefore can use what you did in HWO. The solution is given by

w* = (X"X)"'XTY (2.4)
where we have denoted by X € R"*(4*1) the matrix whose i row is

the datum with a constant entry 1 appended at the end [z?, 1]. Similarly
Y € R" is a vector whose i'" entry is the target 1°.

2.2.1 Maximum Likelihood Estimation

There is another perspective to fitting a machine learning model. We will
suppose that our training data was created using a statistical model. We
can write this as

y=w'z+b+e (2.5)

Of course we do not know whether Nature used this particular model
f(x;w,b) ;= w'x + bto create the data. It might have created the data
using some other model, e.g., f(z; A, w,b) := w ' sin(Ax) + b with the
sin function applied element-wise. In a statistical model, we pretend as

if the variables that we measure, e.g., ;vi, yi and the ones that we do not,

e.g., €, are random variables.

© Why use the average, as opposed to say the
maximum value?

© When is our solution to least squares
regression in Eq. (2.4) not defined?

© What are we losing by fitting a linear
predictor? Will this work if the true model
from which Nature generates the data was
different, say a polynomial?

20

0 1 0 1

T

Figure 2.2: Least squares fitting using polynomials. As the degree of the
polynomial M increases the predictor f fits the training data (in blue) better and
better. But such a well-fitted predictor may be very different from the true model
from which Nature generated the data (in green). The red curve in the fourth panel
in these cases is said to have been over-fitted.

This discrepancy between the two, the model that we fit upon the
data and the true model that Nature could have used to create the
data, is modeled as noise e. Noise in machine learning comes from
the fact that we—the designers—do not know Nature’s model.

What model is appropriate for the noise €? There can be many models
depending upon your experiment (think of a model that predicts the arrival
time of a bus at the bus stop, what noise would you use?). For our purpose
we will use zero-mean Gaussian noise

e~ N(0,0¢)

that does not depend on the input z. The probability that a sample (x?, °)
in our dataset Dy, was created using our statistical model is then

p(y' | ' w,b) = N(w'a" +b, o?).

We have assumed that the data was drawn iid by Nature so the likelihood
of our entire dataset is

n

P(Diain; w,b) = [[p(y' | 25 w,b).

i=1

Finding good values of w, b can now be thought of as finding values that

@ Can you think any other sources of noise?
For instance, if you scraped some images
from the Internet, how will you label them?

20

21

22

23

24

25

26

27

21

maximize the likelihood of our observed data

w*, b* = argmin — log p(Dirain; w, b). (2.6)

w,b

Observe that our objective is written as the minimization of the negative
log-likelihood. This is equivalent to maximizing the likelihood because
logarithm is a monotonic function. We can rewrite the objective as

n n

—log p(Dygain; w,b) = 5 log(of) log(27r) + — 557
ge i=1

Notice that only the third term depends on w, b. The first term is a function

of our chosen value crf, the second term is a constant. In other words,

finding maximizing the likelihood boils down to solving the optimization

problem
1 n
w*, b* fargmm Z Y —w' fb) 2.7
i=1

This objective is nothing other than our least squares regression objective
in Eq. (2.2) with 02 set to 1 and a factor of n in the denominator. This
objective is known as the maximum likelihood objective (MLE).

Using the MLE instead of the formula for linear regression has an
interesting benefit. In the least squares case, given an input x, all that our
fitted model can predict is

J= w* "z + b

MLE fits a statistical model to the data. We can now predict the entire
probability distribution

p(y | z; w*,b*) = N(w* "z +b*,02).
The solution of least squares is the mean of the Gaussian random variable
y | o w*, b,

and the variance of this random variable is o2. So instead of just predicting
1, the machine learning model can now give the probability distribution
p(y | ,w*,b*) as the output and the user is free to use it as they wish,
e.g., compute the mean, the median, the 5% probability value of the right
tail etc.

2.3 Perceptron

Let us now solve a classification problem. We will again go around
the model selection problem and consider the class of linear classifiers.
Assume binary labels Y € {—1, 1}. To keep the notation clear, we will
use the trick of appending a 1 to the data x and hide the bias term b in the

(yi —w'at — b)2

@ How does using a different value of o,
in Eq. (2.7) change the least squares solution
in Eq. (2.4)?

@ Think of what happens if we calculate the
maximum likelihood estimator with three
unknown parameters w, b and o..

@ Is a linear model appropriate if our data
consisted of natural images? What properties
have we lost by restricting the classifier to be
linear?

20

21

22

23

24

25

26

27

22

linear classifier. The predictor is now given by

f(z;w) = sign(w " z)
+1 ifw'z>0 (2.8)

—1 else.

We have used the sign function denoted as “sign” to get binary {—1, +1}
outputs from our real-valued prediction w " x. This is the famous percep-
tron model of Frank Rosenblatt. We can visualize the perceptron the same
way as we did for linear regression.

Let us now formulate an objective to fit/train the perceptron. As usual,
we want the predictions of the model to match those in the training data.

1 n
Ezero—one(w) = E Z l{yiqéf(z-i;w)}' (2.9)
=1

The indicator function inside the summation measures the number of
mistakes that the perceptron makes on the training dataset. The objective
is thus designed to find w that minimizes the average number of mistakes,
also known as the training error. Such a loss that incurs a penalty of 1 for
a mistake and zero otherwise is called the “zero-one loss”.

2.3.1 Surrogate Losses

The zero-one loss is the clearest indication of whether the perceptron is
working well. It is however non-differentiable, so we cannot use powerful
ideas from optimization theory to minimize it and find w*. This is why
surrogate losses are constructed in machine learning. These are proxies
for the actual loss function that we wish to minimize (the number of
mistakes in classification problems). The key property that we desire from
a surrogate loss is that a small surrogate loss should imply fewer mistakes
for the classifier.
The hinge loss is one such surrogate loss. It is given by

Ehinge(’w) = 1’1’1":1X(07 -y wTLL‘).

If the predicted label § = sign(w " z) has the same sign as that of the true
label y, then the hinge-loss is zero. If they have opposite signs, the hinge
loss increases linearly. The exponential loss

lexp(w) =™ (w'a)
or the logistic loss
Crogisiic (W) = log (1 + E*waz>

are some other popular surrogate losses for classification.

A The linear classifier remains unchanged if
we reorder the pixels of all images
consistently in our entire training set and the
weights w. The images will look nothing like
real images to us. The perceptron does not
care about which pixels in the input are close
to which others.

© Can you think of some quantity other than
the zero-one loss that we may wish to
optimize?

© Draw the three losses and observe their
differences.

@ There are also instances when we may
want to use surrogate losses for regression,
can you think of some?

© You may have seen the hinge loss written
as lhinge(w) = max(0,1 — y w'z). Why?

20

21

22

23

24

23

2.4 Stochastic Gradient Descent

We will now fit a perceptron using the hinge loss with a very simple
optimization technique. At each iteration, this algorithm updates the
weights w in the direction of the negative gradient. So first, let us compute
the gradient of the hinge loss. It is easily seen to be

Alhinee (W —y « for incorrect prediction on z,
lhinge () _ { Y P (2.10)

dw 0 else.

We will use a very naive algorithm, called the perceptron algorithm, to
update the weights using this gradient.

The Perceptron algorithm Perform the following steps for itera-
tionst=1,2,....

1. At the " iteration, sample a datum with index w; € {1,...,n}
from Dy, uniformly randomly, call it (z*t, y*t).

2. Update the weights of the perceptron as

) 2.11)

. T
ety ifsign(w® o) £ g
w else.

Observe that a mistake happens if w(t)Tsc‘”t and y“* are of different
signs, i.e., their product y**w " 2** is negative. The perceptron’s weights
are changed only if it makes a mistake on the datum (x**, y**). The update
to the weights is such that it improves the prediction of the perceptron
on this sample. We can see this as follows. The updated weights of the
perceptron for the latest sample satisfy the following identity.

y“’t (w(t) + wa,xwt>Tajwt — ywt <w(t)’ xwr,> + (ywt)Z <$wt’xwt>

=y (u®,2) + a5

In simple words, the value of y*t (w,z“*) increases as a result of the
update, it becomes more positive. If the perceptron makes mistakes on
the same datum repeatedly, this value will eventually become positive. Of
course, mistakes on other data in the training set may steer the perceptron
towards other directions and it may continue to cycle ad infinitum. It is
easy to show that the above algorithm ceases its updates when all data are
correctly classified. More precisely, if the training data are such that they
can be correctly classified using a linear predictor, then the perceptron
will find this predictor after a finite number of iterations.

It turns out that we have just seen one of the most powerful algorithms
in machine learning. This algorithm is called stochastic gradient descent

24

1 (SGD) and it is very general: so long as you can take the gradient of an
2 objective, you can execute SGD. The algorithm for fitting the perceptron
s above was given by Rosenblatt in 1957 and is popularly known as the
4 “perceptron algorithm”. The way we developed it, the perceptron algorithm
s is simply SGD for the hinge loss. SGD-like algorithms were known in the
¢ optimization literature long before 1957 (Robbins and Monro, 1951).

7 2.4.1 The general form of SGD

s SGD is a very general algorithm. We can use it so long as you have
o a dataset and an objective that is differentiable. The purpose of the
10 following section is to introduce some basic notation regarding SGD and
11 optimization that we will use in the following lectures.

12 Consider an optimization problem

1
* = argmin — 4
w' = argmi n; (w)

1s where the function ¢! denotes the loss on the sample (z,y’) and w € R?
14 denotes the weights. Solving this problem using SGD corresponds to
15 iteratively updating the weights using

det (w)
(t+1) _ () _ 22 A7/
v v " dw w=w®
16 The index of the sample in the training set over which we compute the
17 gradient is wy. This is a random variable
wy € {1,,’[7,}
1 The gradient of the loss £ (w) with respect to w is denoted by

devt (w)
dw w=w(t)

Vo, 04 (w®

Vo 09 (w)

Ve (wh) =

Vi, (4 (w®)
€ RP.
1o The gradient V<t (w®)) is therefore a vector in RP. We have written

devt (w)

dw, w=w(t)

legwt (w(t)) =

20 for the scalar-valued derivative of the objective £ (w(*)) with respect to
21 the first weight w; € R. We can therefore write SGD as

wt) = w® — v (w®). (2.12)

25

1 The non-negative scalar € R_ is called the step-size or the learning rate.
2 It governs the distance traveled along the negative gradient —V ¢~ (w(®))
s at each iteration.

1

2

3

1

12

14

5

Chapter 3

Kernels, Beginning of
neural networks

Reading
1. Bishop 6.1-6.3
2. Goodfellow 6.1-6.4

3. “Random features for large-scale kernel machines” by Rahimi
and Recht (2008).

3.1 Digging deeper into the perceptron

3.1.1 Convergence rate

How many iterations does a perceptron need to fit on a given dataset? We
will assume that the training data are bounded, i.e., ||z H < R for some
Randforalli € {1,...,n}. Let us also assume that the training dataset
is indeed linearly separable, i.e., a solution w* exists for the perceptron
weights with training error exactly zero. This means

yiw*—rxi >0 Vi

We will also assume that this classifier separates the data well. Note that
the distance of each input z* from the decision boundary (i.e., all z such
that w* "z = 0) is given by the component of % in the direction of w* if
the label is y* = +1 and in the direction —w™ if the label is negative. In
other words,

26

@ Draw a picture to convince yourself that
the distance to the boundary is indeed p.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

27

gives the distance to the decision boundary. The quantity on the right hand
side is called the margin, it is simply the distance of the sample ¢ from the
decision boundary. If w* is the classifier with the largest average margin,
= min g
P i€{l,...,n} P
is a good measure of how hard a particular machine learning problem is.
You can now prove that after each update of the perceptron the inner
product of the current weights with the true solution (w;, w*) increases at
least linearly and that the squared norm ||w; ||® increases at most linearly
in the number of updates ¢. Together, the two will give you a result that

after ¢ weight updates
R2
t< — 3.1
p
all training data are classified correctly. Notice a few things about this
expression.

1. The quantity 1;—22 is dimension independent; that the number of steps
to reach a given accuracy is independent of the dimension of the
data. This will be a property shared by optimization algorithms in
general.

2. There are no constant factors, this is also the worst case number of
updates; this is quite rare and we cannot get similar results usually.

3. We can think of the quantity R?/p? as a measure of the difficult
of the problem. The number of updates scales with the difficulty;
if the margin p were small, we need lots of updates to drive the
training error to zero.

4. This formula also provides some insight into generalization. Let
us make two assumptions (a) both train and test data have bounded
inputs ||| < R, (b) there exists some weights w* and margin p such
that yw* ' & > p|lw*| for all , y. In short, we are assuming that the
data can be classified perfectly by some perceptron. Now imagine a
different training procedure that does not reuse any data, i.e., the
perceptron looks at each sample only once, updates the weights and
then throws away that sample after that iteration. The number of
mistakes that the perceptron makes before it starts classifying every
new datum correctly is also exact R?/p?. In other words, if the
perceptron algorithm gets n ~ R?/p? samples for a problem where
the two assumptions hold, then it achieves perfect generalization.

3.1.2 Dual representation

Let us see how the parameters of the perceptron look after training on the
entire dataset. At each iteration, the weights are updated in the direction
(x!,y*) or they are not updated at all. Therefore, if o’ is the number of
times the perceptron sampled the datum (z°, y*) during the course of its

A 1f the perceptron makes a mistake in the ¢
update,

(wt7w*> = <wt,1 + ywt{Ewt,w*>
Z (w1, w") + pljw”||
= (0", we) > tpllw”.
Now,

e |

= [lwe_1 + y=rat||®

= [lwe—1]1* + 2 (wy, = a) + ||z |2
< Jlweoa | + [l

< Jlwe_s||* + R2.

— |w|)® < tR%

The cosine distance between w; and w* is

1> cos(wy, w*) = W)
[Jw* [[[[we ||
tp
> -
T RVt
R2
P

28

training and got it wrong, we can write the weights of the perceptron as
Z alylzt + w(© (3.2)

where o’ € {0,1,...,} and w(® is the initial weight configuration of the

perceptron. Let us assume that w(®) = 0 for the following discussion.

The perceptron therefore is using the classifier

[z, w) = sign(9)
n T
h P idi
where g (;aya:> T (3.3)
& iddl
:Zaym‘ .
i=1

Remember this special form: the inner product of the new input z
with all the other inputs 2° in the training dataset is combined linearly to
get the prediction. The weights of this linear combination are the dual
variables which measure of how many tries it took the perceptron to fit
that sample during training.

3.2 Creating nonlinear classifiers from linear
ones

Linear classifiers such as the perceptron, or the support vector machine
(SVM) can be extended to nonlinear ones. The trick is essentially the
same that we use when we fit polynomials (polynomials are nonlinear)
using the formula for linear regression. We are interested in mapping
input data x to some different space, this is (usually) a higher-dimensional
space called the feature space.

x = o).

The quantity ¢(x) is called a feature vector.

Figure 3.1

A As you see in Eq. (3.3), computing the
prediction for a new input z involves, either
remembering all the weights w at the end of
training, or storing all the {ai }Z.:me along
with the training dataset. The latter is called
the dual representation of a perceptron and the
scalars {o/} are called the dual parameters.

20

21

22

29

For example, in the polynomial regression case for scalar input data
x € R we used

o(x) = [1, \/596,3:2]T

to get a quadratic feature space. The role of /2 will become clear shortly.

Certainly, this trick of creating polynomial features also works for higher
dimensional input

T
¢($) = [1,%1,3}‘2,\/51‘13?2,37%,1‘%} .

Having fixed a feature vector ¢(z), we can now fit a linear perceptron on
the input data {¢(z?),y"}. This involves updating the weights at each
iteration as

e T

Gy _ 0@ 0t itsien(w® o) £y

Wt =3 (34)
w else.

At the end of such training, the perceptron is
n
w = Zazyz(b(xz)
i=1

and predictions are made by first mapping the new input to our feature
space

f(x;w) = sign <Z aiyiqﬁ(xi)Tqb(x)) . (3.5)

Notice that we now have a linear combination of the features ¢(z*), not
the data 2%, in our formula to compute the output.

3.3 Kernels

Observe the expression of the classifier in Eq. (3.5). Each time we make
predictions on the new input, we need to compute n inner products of the
form

o(z') " p(x).

If the feature dimension is high, we need to enumerate the large number
of feature dimensions if we are using the weights of the perceptron, or
these inner products if we are using the dual variables. Observe however
that even if the feature vector is large, we can compactly evaluate the inner
product

o(x) = [1, \/ix,xﬂ
o(x') = {1, \/ﬁx’,x’ﬂ

()T p(x’) =1+ 222’ + (x2')? = (1 + x2')" .

@ The concept of a feature space seems like a
panacea. If we have complex data, we simply
map it to some high-dimensional feature and
fit a linear function to these features.
However, the “curse of dimensionality”
coined by Richard Bellman states that to fita
function in R? the number of samples needs
to be exponential in d. It therefore stands to
reason that we need a lot more data to fit a
classifier in feature space than in the original
input space. Why would we still be interested
in the feature space then?

A Feature spaces can become large very
quickly. What is the dimensionality of ¢(x)
for a tenth-order polynomial with a
three-dimensional input data? It is the number
of terms in the multinomial expansion

(1 + 21 + 22 + 23)'° which is 286.

30

for input € R. Kernels are a formalization of this idea. A kernel
E: X xX =R

is any symmetric, positive semi-definite function with two arguments such
that

k(z,2') = ¢(x) " (x)
for some feature ¢ for all =, z’. Few examples of kernels are
k(z,2') = (72" + 0)2 ,
Bla,a') = exp (~llo - 2'*/(20%))

3.3.1 Kernel perceptron

We can now give the kernel version of the perceptron algorithm. The
idea is to simply replace any inner product in the algorithm that looks like
#(z) T ¢ (") by the kernel k(z, z").

Kernel perceptron Initialize dual variables a! = 0 for all i €
{1,...,n}. Perform the following steps for iterations t = 1,2,

1. At the t™ iteration, sample a data point with index w; from
Dyyin uniformly randomly, call it (zt, y**).

2. If there is a mistake, i.e., if

0>y (Z aiyw(xi)%(w))

i=1
n

=y (Z aly%(étﬂét“‘)) :
=1

then update
a®t — a®t + 1.

Notice that we do not ever compute ¢ () so it does not matter what
the dimensionality of the feature vector is. It can even be infinite, e.g., for
the radial basis function kernel. Observe also that we do not maintain
weights w. We instead maintain the dual variables {al, e a”} while
running the algorithm.

Note that the kernel perceptron computes the kernel over all data
samples in the training set at each iteration. It is expensive and seems
wasteful. The Gram matrix denoted by G € R™*"

Gij = k(2', 27) (3.6)

helps address this problem by computing the kernel on all pairs in the

@ Kernels look great, e.g., you can fit
perceptrons in powerful feature spaces using
essentially the same algorithm. How
expensive is each iteration of the perceptron?

A When ML algorithms are implemented in
a system, there exist tradeoffs between the
feature-space version and the Gram matrix
version of linear classifiers. The former is
preferable if the number of samples in the
dataset is large, while the latter is used when
the dimensionality of features is large.

@ Logistic regression with a loss function

-
logisic (w) = log (1 + e Y z)

is also a linear classifier. Write down how you
will fit a logistic regression using stochastic
gradient descent; this is similar to the
perceptron algorithm. Write down the
feature-space version of the algorithm and a
kernelized logistic regression that uses the
Gram matrix.

20

21

22

23

24

25

26

27

31

training dataset. We can now write step 2 in the kernel perceptron

Yyt <Z oziyik‘(xi, xwt)> =y’ (a® Y)TGewt.
i=1

where e,, = [0,...,0,1,0,...] with a 1 on the w;™ element, o =
[al, ceey a”] denotes the vector of all the dual variables, Y = [yl, ey y"]
is a vector of all the labels, and the notation a © Y = [a'y!,...,a"y"]

denotes the element-wise (Hadamard) product. This expression now only
involves a matrix-vector multiplication, which is more convenient than
computing the kernel at each iteration. Gram matrices can become very
big. If the number of samples is n = 10, not an unusual number today,
the Gram matrix has 10'2 elements. The big failing of kernel methods
is that they require a large amount of memory at training time. Nystrom
methods compute low-rank approximations of the Gram matrix which
makes operations with kernels easier.

3.3.2 Mercer’s theorem

This theorem shows that any kernel that satisfies some regularity properties
can be rewritten as an inner product in some feature space.

Theorem 3.1 (Mercer’s Theorem). For any symmetric function & :
X x X — R which is square integrable in X x X and satisfies

/ k(z,2') f(z) f(2') do dz’ >0 3.7
XxX

for all square integrable functions f € Lo(X), there exist functions
¢; : X — R and numbers \; > 0 where

k(z,2') = Z Xiy (z) ¢i(a')

for all z, ' € X. The condition in Eq. (3.7) is called Mercer’s condition.
You will also have seen Mercer’s condition written as follows: “for any
finite set of inputs {xl, N m”} and any choice of real-valued coefficients
c1, ..., Cy avalid kernel should satisfy

Zcicjk‘(xi,xj) >0
%]

There can be an infinite number of coeflicients \; in the summation.

Remark 3.2 (Checking if a function is a valid kernel). Note that
Mercer’s condition states that the Gram matrix of any dataset is positive
semi-definite:

w Gu>0 forallu e R™. (3.8)

@ A function f : X — R is square integrable
iff

/ 1£(2)]? da < oo
x€eX

@ We can think of a function f(z) as a long
vector with one entry for each z € X. The
integral in Theorem 3.1 in Mercer’s condition
is analogous to a vector-matrix-vector
multiplication like u " Gu.

1

21

22

23

32

This is easy to show.

n
UTGU: E ’U,inGij

= Z Uil (Z /\k¢k($i)T¢k($j)>
ij k=1

=3 e | D wiuidr(a) gr(a?)
=1 j

- T

Z)\k <Z Ui(ﬁk(ﬂﬁi)) Zuﬂbk(xj)

k=1 i J

= Z/\k
k=1

> 0.

Z w;i (")

On the second line, we have expanded the term G;; = k(z',27) =
> ek (zh) T ¢r(27) using Mercer’s condition. So if you have a function
that you would like to use as a kernel, checking its validity is easy by
showing that the Gram matrix is positive semi-definite.

Kernels are powerful because they do not require you to think of the
feature and parameter spaces. For instance, we may wish to design a
machine learning algorithm for spam detection that takes in a variable
length of feature vector depending on the particular input. If z[7] is the i
character of a string, a good way to build a feature vector is to consider
the set of all length k sub-sequences. The number of components in this
feature vector is exponential. However, as you can imagine, given two
strings x, x’

this string is interesting
txws sbhtqg is atso iyubgtnhpqg

you can write a Python function to check their similarities with respect
to some rules you define, e.g., a small edit distance between the strings.
Mercer’s theorem is useful here because it says that so long as your
function satisfies the properties of a kernel function, there exists some
feature space which your Python function implicitly constructs.

3.4 Learning the feature vector

The central idea behind deep learning is to learn the feature vectors ¢
instead of choosing them a priori.

How do we choose what set of feature vectors to learn from? For instance,
we could pick all polynomials; we could pick all possible Gabor filters

© Checking your Python function for whether
it is a good kernel is great using Eq. (3.8).
Can you think of a situation when you can get
a wrong answer using this approach, i.e., your
kernel is not a legitimate kernel but Eq. (3.8)
says that it is?

@ These are two different images of related
concepts, what feature space can we use to
say that they are similar?

g 48

21

22

33

that you saw in HW 1; we could also pick all possible string kernels.

3.4.1 Random features

Suppose that we have a finite-dimensional feature ¢(z) € RP. We saw in
the perceptron that

f(z;w) = sign <Z wi¢i(x)>

where ¢(z) = [p1(x),. .., ¢p(x)] and w = [wy, ..., w,] are the feature
and weight vectors respectively. We will set

d(x) =0 (STJC) , (3.9)

where S € RY*P is a matrix. The function o (-) is a nonlinear function of
its argument and acts on all elements of the argument element-wise

o(z) =[o(z1),...,0(z)] .

We will abuse notation and denote both the vector version of ¢ and the
element-wise version of o using the same Greek letter.

Notice that this is a special type of feature vector (or a special type of
kernel), it is a linear combination of the input elements. What matrix S
should we pick to combine these input elements? The paper by Rahimi
and Recht (2008) proposed the idea that for shift-invariant kernels (which
have the property that k(x, 2") = k(x — 2’)) one may use a matrix with
random elements as our S

wi
ST =

W

RMIEEE

where w; € R are random variables drawn from, say, a Gaussian
distribution and
o(z) = cos(z).

Using a random matrix is a cheap trick, it lets us create a lot of features
quickly without worrying about their quality. Our classifier is now

f(z;w) = sign (wTU (STa:)) (3.10)

and we can again solve the optimization problem

1 & o
= in — ¢ inge Za AZ; 3.11
w arglrulmnnlé1 hinge (4", "5 W) (3.11)

with yAZ =w'o (STzi) and fit the weights w using SGD as before.

Figure 3.2

As an example consider the heatmap of Gabor-like kernel k(z, 2")
in Fig. 3.2 on the left. Each row and column corresponds to one particular
input, z° or 27, so regions in the heatmap which are warm are pairs (¢, z7)
that are similar under the kernel. We can think of the decomposition

P
= Z o (w,;rxl) o (w,;rxj) (say for p black-white matrices)

k
= pixel (i, j) in the right-most picture.

In other words, the p random elements of the matrix S, namely wj, come
together to give us a useful kernel on the left. A large random matrix S
has many such terms on the right hand-side.

3.4.2 Learning the feature matrix as well

Random features do not work well for all kinds of data. For instance, if
you have an image of size 100x 100, and you are trying to find a fruit

we can design random features of the form

(bij,k:l = 1{mostly red color in a box formed by pixels (ij) and(kl)}-

We will need lots and lots of such features before we can design an object
detector that works well for this image. In other words, random features
do not solve the problem that you need to be clever about picking your
feature space/kernel.

Simply speaking, deep learning is about learning the matrix .S

© What kind of data do you think random
features will work well for?

35

in Eq. (3.10) in addition to the coefficients w. The classifier now is
flaz;w, S) = sign (w'o (STz)) (3.12)

but we now solve the optimization problem

1 <& o
w*, S* = argmin — Zﬁhmge(y’, 7") (3.13)
ws i
with §° = w'o (S'a") as before. This is our first deep net-

work, Eq. (3.12) is a two-layer neural network.

Moving from the problem in Eq. (3.11) to this new problemin Eq. (3.13)

is a very big change.

1. Nonlinearity. The classifier in Eq. (3.12) is not linear anymore. It
is a nonlinear function of its parameters w, S (both of which we
will call weights).

2. High-dimensionality. We added a lot more weights to the classifier,

the original classifier had w € RP parameters to learn while the new
one also has S € R?*P more weights. The curse of dimensionality
suggests that we will need a lot more data to fit the new classifier.

3. Non-convex optimization. The optimization problem in Eq. (3.13)

much harder than the one in Eq. (3.11). The latter is a convex
function (we will discuss this soon) which are easy to minimize.
The former is a non-convex function in its parameters w, S because
they interact multiplicatively, such functions are harder to minimize.
We could write down the solution of the perceptron using the final
values of the dual variables. We cannot do this for a two-layer
neural network.

. Chapter 4

. Deep fully-connected
. networks, Backpropagation

Reading
1. Bishop 5.1,5.3
2. Bishop DL 6.1-6.3.3, Chapter 8
3. Goodfellow 6.3-6.5

4. Notes at http://cs23 1n.github.io/optimization-2/

+ 4.1 Deep fully-connected networks

s A deep neural network takes the idea of a two-layer network to the next
s step. Instead of having one matrix S in the classifier

fz;v,S) = sign (UTO' (STx))
7 adeep network has many matrices S1,...,S5L
f(z;v,81,...,5L) = sign ('UTO' (Sz o (S;r J(S;—l’))). 4D

s We will call each operation of the form o (S, ...), a layer. Consider
o the second layer: it takes the features generated by the first layer, namely

=)

N

o(S] x), multiplies these features using its feature matrix S, and applies
a nonlinear function o (-) to this result element-wise before passing it on

to the third layer.

36

http://cs231n.github.io/optimization-2/

20

21

22

23

24

25

37

A deep network creates new features by composing older features.

This composition is very powerful. Not only do we not have to
pick a particular feature vector, we can create very complex features by
sequentially combining simpler ones. For example Fig. 4.1 shows the
features (more precisely, the kernel) learnt by a deep neural network. The
first layer of features are called Gabor-like, they are similar to ones you
constructed in HW 1. These features are combined linearly along with
a nonlinear operation to give richer features (spirals, right angles) in the
middle panel. The third layer combines the lower features to get even
more complex features, these look like patterns (notice a soccer ball in the
bottom left), a box on the bottom right etc.

Figure 4.1

The optimization problem for fitting a deep network is written as

§ 1 & o
, S} = argmin —Zghinge(yz7yl) 4.2)
U,S1,...,SL n i=1

v*, 57, ...
where the output prediction is
g=v'0 (S} ...0(8] o(S{x))...).

Notice that if fitting a two-layer network was difficult, then fitting a
multi-layer neural network like Eq. (4.1) is even harder. There are lots of

parameters and consequently we need a lot more data to fit such a model.

The optimization problem in Eq. (4.2) is also naturally much harder than
its two-layer version. The benefit for going through this difficulty is many
fold and quite astounding.

1. Not having to pick features is very powerful. Notice that we do
not need to worry about what kind of data z is at the input. So
long as we can write it into a vector, the classifier as written in
Eq. (4.1) works. In other words, the same type of classifier works
for image-based data, data from natural language processing, speech
processing, and many other types. This is the primary reason why a
large number of scientific fields are adopting deep networks.

A The mammalian retina Circuits in the
retina are hard-wired at birth because being
able to see is so important to survival; there is
no learning in the retina itself although there
is a clear hierarchy of neurons that
successively process information. Later parts
of the visual cortex get learned during your
lifetime.

The retina transcribes photons that are
incident upon the eye using rod cells (function
better in low light) and cone cells (function
better in bright conditions). This is further
processed by “bipolar” cells into action
potentials, or “spikes”. Amacrine cells make
lateral, inhibitory connections to remove
redundancy in the stimuli. Ganglion cells
create ~20 visual features (edges/spots, local
motions at 90°/120° angles, colors, etc.).
Altogether, ~80 types of neurons transmit
~10 Mbps of information to the brain. These
neurons are surprisingly similar to each other,
e.g., all cell types fire at 4-8 Hz and different
ganglion cells learn highly redundant features.
Read Balasubramanian (2015) for an exciting
description of why neural circuits are wired
the way they are.

A picture of the neurons in the retina drawn
by Santiago Ramén y Cajal using a
microscope in the 1900s.

23

24

25

26

27

38

2. Before the resurgence of deep learning, each of these fields essen-

tially had their own favorite kernels they preferred, these kernels
were designed across decades of insights from that specific field
(wavelets in signal processing, keypoint detectors and descriptors
in computer vision, n-grams in NLP etc.). It was very difficult for a
researcher to use ideas from a different field. With deep learning,
this has become much easier. There is still a significant amount of
domain insight that you need to make deep networks work well but
the bar for entering a new field is much lower.

. Deep neural networks are universal approximators. In simple words,

it means that provided the deep network has enough number of
layers and enough number of features in each layer, it can fit any
dataset. This is a theorem in approximation theory.

4.1.1 Some deep learning jargon

We have defined the essential parts of a deep network. Let us briefly take
a look at some typical jargon you will encounter as you read more.

Activation function. The nonlinear function o(-) in Eq. (4.1) is called
the activation function (motivated from the threshold-based activation
of McCulloch-Pitts neuron). It is also called a nonlinearity because it is
the only nonlinear operation in the classifier. There are many activation
functions that have been used over the years.

1. Threshold

1 ifz>0
threshold(z) = =
0 else.
. Sigmoid/Logistic
. . 1
sigmoid(z) = =t
P
. Hyperbolic tangent
x _ -
tanh(x) = £ -°
. Rectified Linear Units (ReLLU)
relu(z) = |z,
= max(0, z).
. Leaky ReLUs
ifz >0
oo(z) = x ifz
cz else.
. Swish

o(x) = x sigmoid(z).

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

39

Different activation functions work differently. ReLU nonlinearities are
the most popular and we will see the reasons why they work better than
older ones such as sigmoid/tanh nonlinearities in the backpropagation
section.

Logits for multi-class classification. The output
g=v'0 (S} ...0(8] o(S{z))...)

are called the logits corresponding to the different classes. This name

comes from logistic regression where logits are the log-probabilities of
belonging to one of the two classes. A deep network affords an easy way
to solve a multi-class classification problem, we simply set

v e RPXC

where C' is the total number of classes in the data. Just like logistic
regression predicts the logits of the two classes, we would like to interpret
the vector g as the log-probabilities of an input belonging to one of the
classes.

Mid-level features. The features at any layer can be studied once you
create a deep network. You pass an input image x and compute

W =8"...0(S o(S{z))... 4.3)

to get the pre-activation output of the [

is given by applying the nonlinearity

layer. The post-activation output

a(hbh).

Sometimes people will call the o(h%) as the feature created by a deep
network; the rationale here is that just like a kernel-based classifier uses
features ¢(z) and fits a linear classifier to these features we may think of
the feature of a deep network to be o(h%). These features are often very
useful, e.g., you can use the lower layers of a deep network trained on a
different dataset, say classifying cats vs. dogs, as the feature generator but
retrain the classifier weights v on your specific problem, say classifying
apples vs. oranges. Such pre-training is typically used to exploit the fact
that someone else has trained a large deep network on a large dataset, and
thereby learnt a rich feature generator. Training the large model yourself
on a large dataset like ImageNet would be quite difficult.

Hidden layers/neurons. The intermediate layers that create the features
h',...,h" are called the hidden layers. A feature is the same as a neuron;
think of the McCulloch-Pitts picture, just like a neuron takes input from all
the other neurons connected to it via some weights , a feature is computed
using a weighted combination of the features at the lower layer. We will
say that a neural network is wide if it has lots of features/neurons on each

@ How would you use a binary classifier to
classify 10 classes?

© What would the shape of v be if you were
performing regression using a deep network?

40

hidden layer. We will say that it is thin if it has few features/neurons on
each hidden layer.

4.1.2 Weights

It is customary to not differentiate between the parameters of different
layers of a deep network and simply say weights when we want to refer to
all parameters. The set

w = {U,Sl,SQ,...,SL}

is the set of weights. This set is typically stored in PyTorch as a set of
matrices, one for each layer.

Important. Every time we want to write down mathematical equa-
tions, we will imagine w to be a large vector. This is less cumbersome
notation. We denote by p the dimensionality of w and imagine that

w € RP,

The dimensionality p keeps things consistent with linear classifiers
where the features were ¢(z) € RP. When you use PyTorch to
implement an algorithm that requires you to iterate over the weights,
say you were implementing SGD from scratch, you will iterate over
elements of the set of weights. Using this new notation, we will write
down a deep network as simply

flz,w) 4.4)

and fitting the deep network to a dataset involves the optimization
problem

1 n o
* = in = (v, 9% w). 45
w’ = argmin ;:1 (', 9" w) (4.5)

We will often denote the loss of the i sample as simply

4.2 The backpropagation algorithm

We would like to using SGD to fit a deep network on a given dataset. As
we saw in Chapter 2, if the loss function is denoted by ¢“t (w) where w;
was the index of the datum sampled at iteration ¢, we would like to update
the weights using

dewt (w)

(t+1) — (1) _
v v g dw w=w®

41

We have used a scalar 7 > 0 as the step-size or the learning rate. It
governs the distance traveled along the negative gradient at each iteration.
Let us ignore the index of the datum wy in this section, imagine w; = 1.
Implementing SGD therefore boils down to computing the gradient
dl(w

dw

~—

Backpropagation is an algorithm for computing the gradient of
the loss function with respect to weights of a deep network.

4.2.1 One hidden layer with one neuron

Consider the linear regression problem with one layer and one datum,
w,z € R7and v,y € R:

L(w,v) = %(y - va(wTJ:))2

where o (+) is some activation function and our weights are {v, w}. Let us
understand the computational graph of how the loss is computed:

w,x — z —s h —> vh g, 4.6)
~—~ ~—~ ~—~ ~—~
layer 1 layer 2 layer 3 layer 4

where h = o(z) and z = w'z. Each node in this graph is either the

input/output or an intermediate result of the computation. The gradient of
the loss with respect to the weights using the chain rule is

% = (y —vo(w'z)) (—a(wa)) 4.7

and
2y vowTa)) (~vo’ (w7 0)) (2). @8)

1. Caching computations for computing the chain rule. The

42

first idea behind backpropagation is to realize that quantities
like (y — vo(w ' x)) or z = w ' x are computed multiple times
in the chain rule in Eqs. (4.7) and (4.8). If we can cache these
quantities we can compute the chain rule-based gradient for

the different parameters quickly.

. Cache is the output of each layer. The second idea behind
backpropagation is to realize that quantities like (y — vh),
h = o(z) and z = w " z are outputs of the third, second and
first layers respectively. In other words, the quantities we need
to cache in the chain rule computation are simply the outputs
of the individual layers.

. Derivatives of the loss with respect to the input of a layer only
depends on what happens in that layer and the derivative
of the loss with respect to the output of that layer. The
third observation is to see that the quantity o’(z) in Eq. (4.8) is
the derivative of the output of the activation function, namely
h = o(z) with respect to z, its input argument

dh
! —_
o'(2) o
This derivative is combined with the forward computation
(y — vh) to get the gradient with respect to the weights w.

Backpropagation is simply a book-keeping exercise that caches the
forward computation of the graph in Eq. (4.6) and uses these cached
values to compute the derivative of the loss ¢ with respect to the
parameters of each layer sequentially.

We will use a clever notation to denote the backprop gradient which
will make this process very easy. Denote by

dj
dv

V=

(4.9)

the derivative of the loss £ with respect to a parameter v. For our simple
two layer (one neuron) neural network, we are interested in computing the
quantities

w, .

Let us also denote the output of the second linear layer (layer 3) as

e = vh.

43

Now observe the following “forward computation”

z=w'z (4.10)
h=o0(z) 4.11)
e =vh (4.12)
= % (y—e). (4.13)

Let us imagine that we have cached all the quantities on the left hand side
of the equalities above. We use these quantities to perform the “backward”
computation as follows

e -
Eﬁ_é_l
-l
Roe—=7—
Se a
=—-1(y—e)=L0(—(y—e)). (fromEq.(4.13))
de
Ro7=¢ —
>V edv
=—(y—e) h=¢eh. (from Eq. (4.12))
- de
R = —
>h <
=2 (v). (from Eq. (4.12))
_ —dh
=ho'(2). (from Eq. (4.11))
dz
d " =7z ——
R Bw—zdw
=Zx. (from Eq. (4.10))
dz
Risz=%2 =
> de
=Zw. (from Eq. (4.10))

Remark 4.1. An interesting mnemonic to remember backprop is to see
that if the forward graph is

2 = wW1x1 + wWaTo

the backprop gradient is w7 = Z x1 and Wy = Z xo. If 21 was large and
dominated the computation of z during the forward propagation, then wy
which is the multiplier of z; also gets a dominant share of the backprop
gradient Z. The backprop gradient is shared equitably among the different
quantities that took part in the forward computation. This is useful to
remember when you build neural networks with complex architectures
on your own: if there is a part of the network whose activations are very
small and it is being combined with another part of the network whose
activations have a large magnitude, then the former is not going to going
to get a large enough backprop gradient.

27

28

29

30

31

32

33

44

Remark 4.2 (Gradient with respect to the input x). Notice that we
obtain the gradient of the loss with respect to the input x

d/
dx
as a by-product of backpropagation. Backpropagation computes the

gradient of the input activations to each layer v because this is precisely
the gradient that is propagated downwards. So the gradient = should not

be surprising, after all x is nothing but the input activation to the first layer.

This gradient is useful, you can use to find what are called adversarial
examples, i.e., input images which look like natural images to us humans
but contain imperceptible noise that gives a large value of T.

4.2.2 Implementation of backpropagation

Consider our neural network classifier given by

f(z;v,81,...,5L) = sign ('IUTO' (Sz...o (S;r J(S;—x))).

Computational Flow Graph Computational Flow Graph
« Forward propagation can be represented « Each object also has a bprop method
as an acyclic flow graph
~ it computes the gradient of the loss with
« Forward propagation can be implemented respect to each child box.

in a modular way: ~ fprop depends on the fprop output of
box's children, while bprop depends on the

» Each box can be an object with an fprop bprop of box's parents

method, that computes the value of the
box given its children
« By calling bprop in the reverse order, we

> Calling the fprop method of each box in obtain backpropagation

the right order yields forward propagation

Figure 4.2: Schematic of forward and backward computations in backpropagation.

When you build such a multi-layer network in PyTorch, the ™ layer
is automatically equipped with two member functions.

def forward(self, hr{k-1}, S_k):
computes the output of the kAth layer
given output of previous layer h*k and
parameters of current layer S_k
return hAk

def backward(self, h+k, d loss/dh*{k}, S_k):
computes two quantities
1. d loss/d{S_k}
2. d loss/d{h*{k-1}}
return d loss/d{S_k}, d loss/d{hA{k-1}}

Such forward and backward functions exist for every layer, including the
nonlinearities. If you implement a new type of layer in a neural network,
say a new nonlinearity, you only need to write the forward function.
The autograd module inside PyTorch automatically writes the backward
function by looking at the forward function. This is why PyTorch is so
powerful, you can build complex functions inside your deep networks
without having to compute the derivatives yourself.

A An example adversarial input to a deep

network

“panda”

57.7% confidence

“gibbon™
99.3% confidence

20

21

22

23

24

25

26

27

28

45

4.3 Weight initialization in fully-connected net-
works

We often talked about initializing the weights w(®) of a perceptron to zero
when we looked at the dual perceptron,

Z alyizt + w

Setting w(®) = 0 also produces an output of exactly zero in a deep network.
We will see in Chapter 6 that this can be normalized appropriately using
softmax to lead to a legitimate output (for a classifier zero weights after
softmax would produce a equi-probable distribution on all the classes).
But there are more important considerations in a non-convex optimization
problem. For example:

1. Scale symmetries Suppose we have a network
f(z,w) =v'o(Sy o(S] z)).

with a ReLU nonlinearity o(z) = max(0, z). If we multiply all
weights of the first layer by any scalar « and divide all weights of
the second layer by the same scalar «, notice that the output does

not change
T (eT (aT T S5 T
Va,v,581,52: v o(Sy 0(S]x)) =v o(—= o(aS; x)).
o ~—
S~~~ S’
55T !

The reason for this is that the ReLU non-linearity is, what is called,
positively homogeneous. This is a scale symmetry in the weights
of a neural network. It entails that for any weight configuration w,
there exists a direction (it is a straight line in our case) such that the
output of the network does not change. Our weight initialization
must be careful about these symmetries.

2. Permutation symmetries Next, suppose that S; € RY*? and
So € RP*P, We can permute the columns of S and correspondingly
the rows of .S, to keep the output unchanged. Formally, if T, is a
permutation matrix corresponding to a particular permutation 7 of
the sequence (1,2, ...,p), then

Vo, v,51,8 : v a(Sy o(S] x)) =v o((TrS2) o ((S1Tx)),

S~ S~~~
S5 51

again, for all data x (train or test) and weight configuration.

The choice w(®) = 0 is bad in terms of both scale and permutation
symmetries. It is the worst initialization for a deep network. For ex-
ample, observe that if most weights are exactly zero, we need not even

A Two important observations. First, the
gradient of any surrogate objective on any
data, train or test, along this symmetry is zero.
Second, deep networks actually have fewer
parameters than the total number of weights,
due to these symmetries some weights are
completely equivalent to each other (on all
data, train or test).

46

permute all elements of the sequence (1,2, ..., p) to get a different weight
configuration.

Exploding and vanishing gradients Observe that the backprop equa-
tions corresponding to Eq. (4.10)

r=w'x
are

W= zZx

T = zZw.

If w = 0, the derivative T = % ~ 0. This can cause a numerical

underflow. And if ||w|| >> 1, then we could also get a numerical overflow,
especially because z = ho'(z) = vés’(z) which implies

T = ves'(z)w.

In other words, the backprop derivative of the activations of lower layers
depends upon the product of the weights on the layers above. If these
weights take a large value (even at initialization, but in general at any time
during training), then we can get numerical overflows.

The weights of a deep network need to be initialized very carefully
(not very small, not very large, and in general cognizant of the
symmetries in the architecture). A poor choice of weight initialization
can be detrimental to obtaining good generalization, even if it does not
cause numerical issues. Ideas such as transfer learning, foundation
models (self-supervised learning) are specific techniques to initialize
the weights of a deep network.

4.3.1 Typical weight initialization schemes in deep learn-
ing

Consider a single neuron z = w 'z with 2 € R? and w € R?. Suppose

each dimension z; ~ N(0,7%). We are interested in initializing the

weights w by drawing them independently from a Gaussian distribution

wy; ~ N(O,O’2).

Our goal is to compute o. Observe that

o

47

and

Var[z] = E

%] - (E[2])?
d

= dazny.

In other words, while the mean of the pre-activation z is zero, its variance
scales with the number of inputs to the neuron d. If we do not ensure that

do? =1

then at higher layers, we will get even larger variances (because the
variance of the input to the next layer now depends upon the number of

inputs to the first layer, and the number of inputs to the second layer).

Therefore, PyTorch sets the Gaussian to have

1
= . 4.14
? \/# inputs to the layer ()

Xavier initialization It is also important to think of a similar argument
for the backward pass. Suppose we have a layer = ST x. Since

p
Ti=) Sji%j,
j=1

we need to initialize each weight S;; ~ N(0,1/,/p). While we cannot
make the forward pass and the backward pass happy, we can strike a
compromise by setting

2
7= \/#inputs + #outputs

PyTorch actually draws weights from a uniform distribution supported on

. /-6 6
d+p’ d+p |

A Actually, Pytorch initializes the weights
using a uniform distribution supported
between [—1/+/d, 1/+/d]. This distribution
has a slightly smaller variance than the
corresponding Gaussian. You can use
torch.nn.init to initialize weighs in different
ways.

1

2

3

Chapter 5

Convolutional
Architectures

Reading
1. Goodfellow 9
2. Bishop DL Chapter 10

3. “Striving for simplicity: The all convolutional net”, by (Sprin-
genberg et al., 2014)

So it turns out that we have been talking about what are called “fully-
connected” neural networks in the past chapter. There are a few problems
that are apparent even in our limited experience.

Fully-connected layers have a lot of parameters. If an input image
is of size 100x 100 = 10* grayscale pixels and we would like to classify
it as belonging to one out of 1000 classes, we need 10M parameters. It
is difficult to perform so many add-multiply operations quickly even on
sophisticated GPUs. Further, the curse of dimensionality never goes away;
we need lots of data to fit these many parameters.

Natural data is full of “nuisances” that are not useful for tasks such as
classification. E.g., illumination, viewpoint, and occlusions

48

@ Let us consider an example using local
connections instead of a fully-connected layer.
If each output neuron is connected to only 25
pixels of the 100x 100 image and there are
1000 output neurons, how many weights will
this layer have?

2

49

7 = viewpoint IT=hp), €#¢

or even semantic ones shown below

similar shape?

I, similar function?

Do fully connected networks work for such different images?

Nuisances can be defined as operations that act on the data before you
get to see it (nature creates these nuisances). Some of them are special and
they have a group structure, i.e., they satisfy certain algebraic conditions
https://en.wikipedia.org/wiki/Group_(mathematics). For instance, images
of the same chair taken from different vantage points are projections of
different rigid body transformations of the camera. Some other nuisances
such as occlusions do not have a group structure, e.g., there is no rigid
body transformation that allows us to backcalculate the pixels belonging
to a person standing behind a car. Convolutional layers are a simple way
to tackle one particular kind of nuisance, that of translations.

5.1 Basics of the convolution operation

So far, we have seen that the basic unit of a neural network is
o(w'z).

The basic unit of a convolutional neural network is

o(x *w)

https://en.wikipedia.org/wiki/Group_(mathematics)

50

1 where the % denotes a convolution operation. Consider two one-dimensional
> vectors € R3 and w € R?; we will imagine these to be arrays of infinite
s length with all the entries at indices (—oo, —2] U [2, 00) set to zero; this
4 is known as zero-padding the input

z=1[..,0,0,2,—1,1,0,0,..]
w=/[...,0,01,1,2,0,0,..].

s The convolution of x with w (which is called the filter) is denoted by

(x*w) = Z Tr Wi 5.1

T=—00

s The element (7 * w)y, at the k™ index is a composition of all the terms
7 in the summation on the right hand side. The term wy_, for negative
s arguments is interpreted as a mirror flip of the vector w. For continuous
s functions, you will have seen the expression

(zxw)(t) = /Oo z(T)w(t — 1) dr.

— 00

10 for the convolution operation. For our vectors x, w with three entries the
11 convolution operation looks as follows.

Figure 5.1: Flip and filter style computation of a convolution corresponding to the
summation in Eq. (5.1).

12 Remark 5.1 (Some identities regarding convolutions). Notice that we

A n the signal processing literature, the
words filter and kernels are used equivalently,
so convolutional filters are also often called
convolutional kernels.

@ Discuss the convolution of a square wave
with a saw-tooth wave w.

1

51

can change the variable of integration and set s =t — 7 to get
(zxw)(t) = /OO x(r)w(t —7) dr
= —/700 z(t —s) w(s) ds
= /OO w(s) z(t — s) ds

— 0o

= (w*x)(t).

Convolutions are therefore commutative; you can show similarly that they
are also distributive (f % g) * h = f % (g * h). Convolution is a linear
operator, you can show that

(f+g)xh=(f*h)+(g*h)

for any integrable functions f, g, h.

Remark 5.2 (Padding for implementing convolutions). In order to
implement the summation in convolution, we need to pad the input vector
x by zeros. How many zeros should we pad it by? You will notice that if
the kernel w has 2k + 1 elements, the input vector x need not be padded
all the way to infinity, we only need to pad it with 2k extra elements on
each side.

5.1.1 Convolutions of 2D images

Convolutions work in the same way for two-dimensional or three-dimensional
input signals. The kernel w will be a matrix of size k x k in the former
case and of size k£ X k x k in the latter.

oo

(T *xw)i; = Z Z Ts,t Wi—s j—t- 5.2)

s=—00 t=—00

A Most deep learning libraries implement a
slightly different operation instead of
convolution, even though they call it a
convolution. They implement the
cross-correlation operation

o
(z*w), = Z Ty Whtr-

T=—00

In simple words, the kernel w is not mirror
flipped about the Y axis before computing the
summation in Eq. (5.1). While such an
operation is not strictly a convolution (you
can see the difference if you consider an
asymmetric kernel w; cross-correlation and
convolution are the same for symmetric
kernels), the difference does not matter for
deep learning because the kernel w is learned
during training. You can mirror flip the kernel
after training and interpret the network as
indeed performing a convolution with the
flipped kernel.

Convolution

A

Cross-correlation Autocorrelation

Hu

52

3|1
11* 112
0 -1
2121
-1 0
1]3]1 X 24 1]58)7]2
101 6204 | 1
2|21 2164 |-3
092 |2 | 1

Figure 5.2: Flip and filter style computation of a convolution for a 2D input image
corresponding to the summation in Eq. (5.2).

5.1.2 Some examples

1. Since convolution is a linear operator we should be able to write

it as a matrix-vector multiplication. We take the kernel, flip it and
sweep it left to right to get the rows of the matrix.

1
1
(2,-1,1) % (1,1,2) = |2

DO = =
DO = =
—

Such amatrix is called a Toeplitz matrix https://en.wikipedia.org/wiki/Toeplitz_matrix.
Two-dimensional convolutions can be written as a matrix-matrix

multiplication using a similar construction; see https://stackoverflow.com/questions/16798888/2-
d-convolution-as-a-matrix-matrix-multiplication.

. Lots of non-trivial transformations of the image are possible using

slight changes in the weights. E.g., blurring

010
. 1 1

or sharpening,

https://en.wikipedia.org/wiki/Toeplitz_matrix
https://stackoverflow.com/questions/16798888/2-d-convolution-as-a-matrix-matrix-multiplication
https://stackoverflow.com/questions/16798888/2-d-convolution-as-a-matrix-matrix-multiplication
https://stackoverflow.com/questions/16798888/2-d-convolution-as-a-matrix-matrix-multiplication

20

21

22

23

24

25

26

53

ol-1]0
k |-1]8-
ol-1]0

We can also detect edges

. 1]0 -1

This filter is called the Sobel filter and is an integral part of image
pre-processing pipelines in computer vision.

. Just like fully-connected layers, we can also stack up convolutions.

The effective receptive field, i.e., the pixels that are considered by
the kernel in the convolutional operation increases as we go up the
layers.

. The operation Sz has S € R?*? weights and returns a vector

in RP. A convolution operator returns a vector (z * w) € R?
using K parameters in the kernel w. It is important to note
that a lot of parameter sharing is happening while computing
the values of the output neurons. You can find some animations
at https://colah.github.io/posts/2014-07-Conv-Nets-Modular and

https://colah.github.io/posts/2014-07-Understanding-Convolutions.

. Padding the input by zeros is common in signal processing because

the signals are usually a function of time. We can do a bit better for
images than zero padding (RGB = (0, 0, 0)) which is akin to creating
an artifact of a dark black border around the image. Reflection
padding is a technique (torch.nn.ReflectionPad2d in PyTorch) that

mirrors the pixels at the boundary and does not create such artifacts.

Remark 5.3 (Dilated convolutions). You don’t need to use a kernel that
looks like a contiguous array. We can create holes in the kernel and expand
the receptive field. Dilated convolutions do precisely this.

. ™ = ™ -~ TN
/ 3x3 Kernel \\ ,,/ 3x3 Kernel \‘\,‘ £ # 3x3 Kernel Y

Dilated Convolution J | Dilated Convolution]| Dilated Convolution
\ = 5 Rate =2 B Rate = 3] /
L (Rate =1) B / " (Rate = 2) / . (l)) 4

7

© What convolutional kernel does a dilated
convolution correspond to?

https://colah.github.io/posts/2014-07-Conv-Nets-Modular
https://colah.github.io/posts/2014-07-Understanding-Convolutions

20

21

22

23

25

26

27

28

29

30

31

32

54

These operators are very useful for image segmentation because they
capture correlations across large parts of the input image while still
enabling the parameter sharing of a convolutional layer.

Remark 5.4 (Separable convolutions). There are 9 weights in a 3x3
kernel. Even convolutional layers can get really big, e.g., a standard
CNN used for ImageNet has about 25M weights and is almost entirely
convolutional. Thus we might want to reduce the number of weights even
further. Separable convolutions are a trick to doing so. Consider a 3x3
kernel and split it into two kernels of 3x 1 and 1x3

3.6 9 3
4 8 12| =4 x[1 2 3].
5 10 15 5

Using the original kernel requires 9 multiply operations to compute each
pixel value. Using the split kernels requires only 6, it also has fewer
weights. These are called separable convolutions. The Sobel filter which
we saw before can be written as a separable convolution

because it measures the gradient of the image intensity independently in
the two directions; an edge in an image is a region such that it is either
an edge in the horizontal direction or an edge in the vertical direction.
Separable convolutions are very useful when you use high-dimensional
data in deep learning, e.g., medical images out of MRI are 4-dimensional
images (width, height, depth, channel).

5.2 How are convolutions implemented?

Convolutions are the most heavily used operator in a deep network. We
therefore need to implement them as efficiently as we can. There are a
few different ways of implementing convolutions.

1. Write a simple for loop. This works well if the kernel is small in
size and this is indeed how PyTorch implements convolutions for
kernels of size 3 x3 (the operation is coded up in C, not Python of
course).

2. We can expand out the kernel as a matrix and in this way a convolu-
tional layer is simply a matrix-vector multiplication. This method is
most commonly implemented and works well for sizes up to 5x5.

3. We can use the Fast Fourier Transform (FFT) to compute the
convolution as

rxw=F ' [Fx] Fw].

© Can we write every 2D convolutional filter
as a separable convolution? The answer is no:
you will notice that a separable kernel is a
rank-1 matrix. The singular value
decomposition (SVD) of a separable kernel A
is therefore

A=ocuv'
for two vectors u, v and singular value o. Can
we however approximate any convolutional
kernel as a sum of separable convolutions?
The answer to this is yes: observe using the
SVD of the kernel A € RP*P that it can be
written as

P
_ § T
A= g;uUv; .
i=1

where u;, v; are the singular vectors and o;
are singular values. You don’t have to pick all
the factors, if you pick a few terms in this
summation, you get a good spectral
approximation of the matrix A. You will see
in Section 5.3 how the convolutional layer in a
deep network is structured and may allow the
network to learn a complicated kernel A even
if the operations are only separable w;v,

i

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

55

This is efficient for large kernels, say greater than 7x7.

Typically, deep learning libraries will choose an algorithm for convolution
in run-time after looking at your neural architecture; you do not have
to worry about the specific algorithm. A library called cuDNN from
Nvidia implements a bunch of convolution algorithms on GPUs efficiently.
PyTorch will pick one of these algorithms by checking how long it takes
for the first forward-pass on your deep network. But the fact remains that
large kernels which allow a larger receptive field (long-range correlations
in the input image) are more expensive to compute than smaller kernels.
Architectures such as Inception that we will see soon are an attempt to get
a large receptive field while still keeping computations in the convolutional
layer small.

Remark 5.5 (Stride in convolutional layers). If you see the documenta-
tion for the convolutional layer in PyTorch at

(https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html) you will
also see a parameter known as stride. Stride simply means that the output

o0
(zxw), = Z TrWh_r

T=—00

is not computed at all values of k; if the stride is set to 2, the output is
computed only at every alternate value of k. Note that the default stride
as seen in the definition of convolution is 1. Since images change very
little from pixel to pixel, this is a neat trick to reduce the redundancy
of computing the convolution again and again over similar input. The
important artifact of using a stride larger than 1 is that the output (z * w)
is no longer the same length (even after padding) as the input, is half the
length if the stride is 2.

5.3 Convolutions for multi-channel images in
a deep network

We will now study how the convolutional layer is implemented in a
typical deep network. Let us denote the 2D convolution operation on a
single-channel 2D image A € R¥*" by a kernel w € R¥** by

Axw= B e RY*",

Imagine that we have an RGB input image of size w X h; the RGB indicates

that there are three input channels, one for each color. The input to a

convolutional layer in a deep network is therefore an array of size 3 X w X h.

Typical deep learning libraries, when they implement a convolutional

layer with a kernel w of size k x k, will output an image of size ¢ X w X h

where c are the number of channels in the image at the output of the layer.
Effectively, a convolutional layer maps

R3><w><h SA— Be chwxh.

A You can set torch.cudnn.benchmark =
False to prevent Pytorch from searching for
the best algorithm to compute convolutions
for your architectures every time it launches.
While such automated search speeds up
training by a small fraction, it may not be
desirable in case when you want to debug
your code, or evaluate the run time of your
algorithm.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

56

Figure 5.3: Convolutional layer in a typical deep network

The layer performs the operation

3
vj +ZAi>kwij = B;
i=1

where A; fori € {1,2, 3} denotes the i channel of the input image and
Bj for j € {1,...,c} denotes the j™ channel of the output image, and
the kernel w € R*** is the convolutional kernel. The scalar v; €R
denotes the bias. Effectively, there are 3¢ different kernels in one layer
and the convolutional layer sums up the result of convolutions on all the
input channels and adds a bias to create each output channel.

5.4 Translational equivariance using convolu-
tions

We now discuss the most important reason for using convolutions in deep
networks. Let us take our 1-dimensional signal x and translate it by A
units to the right

' (t+ A) = x(t).

© We said that convolutional filters are used
to learn the correlations across nearby pixels.
What would be the utility of 1x1
convolutions?

@ If there are 10 input channels and 25 output
channels, how many parameters does a
convolutional layer with a 55 kernel have?
What is the size of the output feature map if
convolution is performed with a stride of 27
Does stride change the number of parameters
in a convolutional layer?

1

2

20

21

22

23

24

25

26

27

57

You will see from the definition of convolution in Eq. (5.1) that the
convolution also gets translated

o0
(2 % w)y = Z LWy

= Z Tr— AWk —1
e (5.3)
oo
= Z TsWip_s—An (s=7—A)
= (T *W)p_A.

In other words, if you translate the signal by A then the output of
convolution is also translated by the same amount

(@' *xw)gyn = (T *w)g.

This property is called equivariance. Equivariance also holds for 2D
convolutions. Equivariance to translations allows us to build an important
property in a deep network. If we have a convolutional kernel that has
weights such that the output is high for a certain object (star in adjoining
picture, vertical/slanted strips in your Gabor filter homework), the output
of a convolutional layer is such that the features also “move” if the input
moves in the receptive field.

We can easily build a binary classifier using such equivariant features.
If we want to build a star classifier, we simply check if some features in
the output are large after convolution, e.g., we check if the largest feature
in the 2D-feature map is greater than some pre-determined threshold

f(l‘, U)) = 1{maxi_7{(z*w)i_7}25}- 5.4

5.5 Pooling to build translational invariance

We would like to build a classifier such that if the object moves to some
other location in the input image, the output of the classifier remains
unchanged, i.e., the deep network detects a test image as a cat even if it is
in some other part of the image in the training data. Equivariance is only
one part of the story to doing so. Remember that the last layer in a deep
network looks like

P
f(z,w) =sign (v k") = sign <Z vihf> .

=1

Even if the features h’ are equivariant when the input z is translated in
the 2D plane, the inner product v " h* cannot be equivariant. Essentially,
if a few weights v; are trained to check for objects like cat/dog in one
particular part of the image, even if the features h* move accordingly, the
output v " h” need not be constant because the weights v; at those new

A Translational equivariance is much more
insightful for 2D images. Let us consider an

example.
I(x) T[]
fl f
o (T =TIFD]

58

locations of features may be different.
In other words, we want features of a deep network to be invariant to
translations in the input.

Pooling is an operation that smears out the features locally in the
neighborhood of each pixel.

We can use our idea of setting all the weights to 1 to get what is called
the average pooling operation. It is a linear operation and equivalent to
convolving the input features using a kernel

LR
Wagpoor = g |1 1 1] (5.5)
111

The average-pooling kernel is fixed during training and does not have any
weights, otherwise it would be just another convolutional kernel.

Average pooling does not solve our problem of making the features
invariant; the smeared out version simply moves less than A when the
input translates by A. If we add many average pooling layers at various
stages in a deep network, we make the features move even less and this
may be sufficient to allow for weights v to be discriminative.

Max-pooling is another operation that builds invariance. It takes in an
input z € R**" and computes

(max-pool(z)),; = _Ircrgxgk _Irfrgltxgk Ties jt- (5.6)
Single depth slice
1 0 2 3
X
4 6 6 8 6 8
—>
3 1 1 0 3 4
1 2 2 4
Y

Example of Maxpool with a 2x2 filter and a stride of 2

Figure 5.4: Max-pooling with a 2x2 kernel and a stride of 2 reduces the size of
the input image by half. A stride of 1 would preserve the image size but would
give less invariance.

This is a clever way of building invariance, you simply take the
maximum value of the input in a window of size k X k, so even if
the input translates by k pixels in either direction, the output of a max-
pooling layer remains the same. If we add multiple max-pooling layers at
intermediate depths in a deep network, we achieve translational invariance
in a convolutional neural network.

A Making the weights of the top layer v all
equal to 1 will solve this problem, but this is
of course a very poor classifier. It smears the
entire input signal A together by just
averaging the features and therefore does not
have much discriminative power; it cannot
easily build a multi-class classifier for
instance.

A Average pooling blurs the image. We saw
this in the example in Section 5.1.2. Such
blurring at intermediate layers gives some
translational invariance by smearing out the
features.

@ Does max-pooling make sense for a
fully-connected network? There is no
equivariance property in such a network, so
even if we do perform max-pooling, it is just
like another activation function operating on
the features.

59

Remark 5.6 (Max-pooling destroys information). As we see in Fig. 5.4,
max-pooling destroys a lot of information in the input image. The result
of max-pooling is a much smaller feature map. This results in a large loss
of information in the input data and often leads to a loss of discriminative
power, i.e., accuracy, during training. This trade-off between building
a classifier that is invariant to changes in the input and discriminative
enough to distinguish between many different categories is fundamental.

Max-pooling has a side-benefit, it reduces the number of operations in
a deep network and the number of parameters by sequentially reducing the
size of the feature map with layers. This is useful because a typical image
you get from an autonomous car is easily about I0MP (107 pixels) and we
need to boil it down into, say 10 categories that are relevant to driving,
i.e., h” € R Max-pooling is a very useful for this, with the caveat that
too much pooling will dramatically reduce the signal in the input image.

5.6 Weight initialization in convolutional net-
works

Weight initialization in a CNN is done using the same considerations as
that of fully connected networks, except that the the number of inputs to
each neuron are now Cj, k? where Cj, is the number of input channels and
k is the kernel size. So the standard deviation of the Gaussian (or the
support of the uniform distribution) to draw weights from is

1
Cink?’

o =

@ We have talked about invariance to
translations in this lecture. Images taken from
a fish-eye camera are such that objects rotate
in the field of view.

Can you think of a trick to build invariance to
rotations?

1

2

3

Chapter 6

Data augmentation, Loss
functions

Reading
1. Bishop Chapter 5.5.3, 4.3
2. Bishop DL Chapter 6.4, 9.1

3. Goodfellow Chapter 7.4

6.1 Data augmentation

In the previous chapter, we looked at convolutions as a way to reduce
the parameters in a deep network, but more importantly as a way of
building equivariance/invariance to translations. There are a lot of
nuisances other than translation that do not have a group structure which
precludes operations such as convolutions that we can perform to generate
equivariance/invariance.

In this section, we will discuss techniques to build invariance to
nuisances that are more complex than just translations, these techniques
will seem brute-force but they also allow us to handle more complex
nuisances. The main trick is to augment the data, i.e., create variants of
each input datum in some simple way such that we know that its label is
unchanged. If our original dataset is D = {(z, yl)}7:1n we create an
augmented dataset

T(D) := {(T(mi),yi)}i:h_,n uD. 6.1)

where 7' is some operation of our choice. We have therefore expanded
the number of samples in the training dataset to 2n instead of the original

60

61

n. Effectively, data augmentation is a technique to create a dataset that is
sampled from some other data distribution P than the original one.

6.1.1 Some basic data augmentation techniques

The most popular data augmentation techniques are setting 7" to be changes
in brightness, contrast, cropping the image to simulate occlusions, flipping
the image horizontally or vertically, jittering the pixels of the input image
to simulate noise in the CCD of the camera/weather, padding the image
which changes the borders of the input image, warping the image using a
projection that simulates the same picture taken from a different viewpoint,
thresholding the RGB color channels, zooming into an image to simulate
changes in the scale etc.

You can see these operations at https://fastail .fast.ai/vision.transform.html#List-

of-transforms.

6.1.2 How does augmentation help?

A number of such augmentations are applied to the input data while
training a deep network. This increases the number of samples n we have
for training but note that different samples share a lot of information, so
the effective novel samples has not increased by much. Let us get an idea
of when augmentation is useful and when it is not. Consider a regression

A FastAl is a wrapper on top of PyTorch and
is an excellent library to learn for doing your
course projects.

https://fastai1.fast.ai/vision.transform.html#List-of-transforms
https://fastai1.fast.ai/vision.transform.html#List-of-transforms
https://fastai1.fast.ai/vision.transform.html#List-of-transforms

1

62

and classification problem as shown below.

Figure 6.1: Cows live in many different parts of the world. A classifier that also
uses background information to predict the category is likely to make mistakes
when it is run in a different part of the world. Augmenting the input dataset on
the left by replacing the background to include a mountain or a city is therefore
a good idea if we want to run the classifier in a different part of the world. This
will also force the classifier to ignore the background pixels when it classifies the
cow, in other words the classifier is forced to become invariant to backgrounds by
brute-force showing it different backgrounds.

In essence, data augmentation forces the model to tackle a larger
dataset than our original dataset. The model is forced to learn what
nuisances the designer would like it to be invariant to. Compare this to the
previous chapter: by replacing fully-connected layers with convolutions
and pooling we made the model invariant to translations. In principle,
we could have trained a fully-connected deep network on a very large
augmented dataset with translated objects. In principle, this would make
the fully-connected network invariant to translations as well.

6.1.3 What kind of augmentation to use when?

In the example with regression, we saw that the regressor on the augmented
data was essentially linear and had much less discriminative power than a
polynomial regressor. This was of course by design, we chose to augment
the data. If the test data for the problem came from the polynomial instead
of our augmented distribution, the new classifier will perform poorly.

Figure 6.2: The second panel shows the original scene with a mirror flip (i.e.,
across the horizontal axis) while the third panel shows the original scene after a
water reflection (i.e., flip across the vertical axis). The latter is an image that is
very unlikely to occur in the real world, so it is not a good idea to use it for training
the model.

By being invariant to a larger set of nuisances than necessary,
we are wasting the parameters of the model and risk getting a large
error if the test data was not from the augmented distribution. By
being invariant to a smaller set of nuisances than necessary, we are
risking the situation that the test data will have some new nuisances
which the classifier will perform poorly on. It is important to bear in
mind that we do not always know what nuisances the model should
be invariant to, the set of transformations in data augmentations
necessarily depends—often critically—upon the application.

Data augmentation requires a lot of domain expertise and often plays
a huge role in the performance of a deep network. You should think about
what kind of augmentations you will apply to data for speech processing,
or for data from written text.

6.2 Loss functions

We next discuss the various loss functions that are typically used for
training neural networks. As usual, we are given a dataset

D = {(xi’yg}i:l,..,,n'

6.2.1 Regression

MSE loss. If the labels are real-valued 3* € R, e.g., we are predicting
the price of housing in Boston given features of the houses (like you did
in HW 0), we are solving a regression problem and the loss function to
use for a deep network is also simply the regression loss.

1

lnse (w) = 5 (f ;) = y)? (6.2)

If you think about it carefully, it seems silly to add different dimen-
sions of the input x using the weights w. Consider the case of x =

[miles/gallon, number of other people with the same car, price of the car].

The three elements of x are in totally different units and totally different
scales. A popular trick to make things a bit more uniform for regression

@ If you are building a classifier for detecting
cars, motorbikes, people etc. for autonomous
driving application, do you want to be the
invariant to rotations?

@ Think of what kind of data augmentations
you would use for a language processing
model. What are the equivariances that we
might wish to capture?

20

21

22

23

24

25

26

27

64

is take a logarithmic transformation of the input, i.e., fit a model to log x
using the loss

5 (Floga;w) —y)*;

we can compute the logarithm element-wise for vector valued inputs.

Huber loss. The square-residual loss in Eq. (6.2) works in most cases
but it does not work well if there are outliers in the data. Outliers are data
in the training set that are noisy or did not come from the true model. In
such cases, we can use the Huber loss. If the residual is r = f(z; w) — y,
the Huber loss is

Lir? if [r| <0

6.3
§(Ir| — 30) else. (©3)

Ehuber(w; 5) = {

Observe that this does not penalize the model egregiously if the predictions
are bad (|rr| > §) for a particular datum. Doing so prevents the outliers
from biasing the loss towards themselves and ruining the residuals for the
other data.

MAE loss. The absolute-error loss (or 1)
gmae(w) = |f<.’17, ’LU) - y| (6.4)

has a similar motivation: it does not penalize the residual on the outliers.

Variable importance. For linear models, another way to answer the
same question is to fit two models, one with w; fixed to zero and all other
weights fitted using the MSE loss Eq. (6.2) and another model without
fixing w;; the difference between the average square residuals in the two
cases is a measure of how important the feature x; is for the prediction.
These techniques are called variable importance methods. We can also
undertake the same program for nonlinear models on non-image based
data.

Quantileloss. The quantile loss is another simple trick to make the model
more robust to outliers and get more information from the model than
simply the prediction f(x;w). Observe that if we have targets Y that are
random variables with cumulative distribution function F'(y) = P(Y < y),
the 7" quantile of Y is given by

Qy(r)=F'(r)=inf{y: F(y) > 7}

A We can perform regression in a clever way:
first set all weights w; = 0 and iteratively
allow a subset of the weights (say the ones
that improve the residuals the most) to
become non-zero; non-zero weights are fitted
using £se. This is known as forward
selection. Backward selection starts with
weights w* which minimize ¢, and
iteratively prune the weights. Both forward
and backward selection are techniques to fit a
model w* with sparse weights.

A Using a subset-selection technique or the
Lmse loss with 1 regularization on the weights

1
2n, 4

7

n
(Floga’;w))" + Auwll,
=1
leads to sparse weights w*. This makes the
model more interpretable than a model fitted
using fee loss. This is easy to understand for
linear models: input dimensions
corresponding to weights w; that are zero do
not take part in making predictions. So one
may answer questions of the form “is variable
x; arelevant predictor of the target .

65

for 7 € (0,1). We now learn a predictor for Qy (7) = f(x; w). It turns
out (you can try to prove this) that this corresponds to the loss function
r(r—1) ifr<0
gquantile(w; T) = ()
rT else. (6.5)
=T (T — 1{r<0}) .

where r = y — f(z;w) is the residual. A standard technique is to
fit multiple models using the quantile loss for different quantiles, say

7 =0.25,0.5,0.75 and give multiple predictions of the target f(z;w").

A typical example of quantile linear regression looks as follows.

2000

1500 + +

¥
1000 Y18

t=0.10
=025
=050 ——
t=075
t=090 ——

Household Food Expenditure

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Household Income

6.2.2 Classification: Cross-Entropy loss

We next discuss the case when the targets are categorical and we wish to
train a discriminative model that classifies the input into one of these m
categories

ye{l,...,m}.
One hot encoding.

An alternative representation of the targets in classification is so-called
the one-hot encoding where y is transformed to

one-hot(y) = e, € R™;
the vector e, has a 1 at the y™ element and zeros everywhere else. The
notation e, denotes the y™ row of the identity matrix I, x .-
Predicting class probabilities.

Instead of using the regression loss by treating y as a real-valued quantity,
it is more natural to predict the log-probability log p(k | z) for every
category k using weights w and predict the category using

f(z;w) = argmax logpy, (k | x). (6.6)
k

A The quantile loss is also called the pinball
loss. Unlike the regression loss, it is highly
asymmetric around the origin. If » > 0, we
are penalizing the model by 7|r|, and if r < 0,
i.e., if we predict something that is larger than
the true y, then we are penalizing the model
by (1 — 7)Jrl.

20

21

22

23

24

25

66

Just like we denoted the raw predictions of the model by ¢ in linear/logistic
regression, we will denote

R™">g=0v"0(S]...0(S; o(S 2))...) (6.7)

where v € RP*™. As we saw in Chapter 4, § are also called logits.
Observe that the logits ¢ are simply vectors in R™. How can we transform
these logits to get logp,, (k | z) for all & € {1,...,m} as the output of
the model?

Logistic loss.

Linear logistic regression has a scalar output § € R which is interpreted
as the log-odds of the class probabilities

ply=1]x) T
log ——— 2 = . 6.8
®py=0lz) " 8

This expression can be rewritten as p(1 |) = sigmoid(g). The likelihood
of data = under this model for y* € {0,1} is

n

pw({(x17y1)7 A (xn,yn)}) = H pw(]. | fﬂi)yipw(o | xi)liyi.

=1

Maximizing this probability (MLE) is the same as minimizing the
log-probability

glogistic(w) = - logpw({(zla yl), ceey (xnvyn)})

== y'logpu(l| ')+ (1-y")logpu (0| z*)

=1

(6.9)

In other words, the logistic loss is simply maximum-likelihood estimation
for the model Eq. (6.8).

Binary Cross-Entropy loss.

Let us turn back to neural networks and multi-class classification. Imagine
if each logit of a neural network in Eq. (6.7) acts independently, i.e., it
predicts whether there is class k in this input or not without paying heed
to what the other logits predict. This is not very prudent, for instance,
if we know beforehand that there is only one object in the input image,
then such a classifier is likely to have lots of false positives. Nevertheless,
observe that this is exactly like running m independent binary logistic
classifiers with the same feature h* € RP. We can write the loss for such
a classifier succinctly as

lhee(w) = = one-hot(y), log pu (k |). (6.10)
k=1

© We saw a different expression for the
logistic loss in Chapter 3

Elogistic(w) = log (1 + e Y 3}))

‘What is the difference?

21

22

23

24

25

26

27

28

29

67

If the ground-truth labels y* are such that there is only one class in each
input image, all entries of one-hot(y") at other categories will be zero, so
this loss penalizes only the output of one of the m independent logistic

classifiers.

6.2.3 Softmax Layer

Observe that our classifier which employs m binary logistic classifiers
for predicting all the categories independently does not predict a valid
probability distribution because

m

pr(k | 33)

k=1

is not always equal to 1. We can however posit that the model predicts
logits ¢ that are proportional to the log-probabilities

Ingw(k | :E) X yk

/T 6.11)

The result p,, (k |) is a valid distribution on k because it sums up to 1.

This operation, namely taking the logits ¢ and constructing a probabilities
out of them is called as a softmax operator. The constant 7" in Eq. (6.11) is
called the temperature. A large value of 1" results in a smoother probability
distribution p,,(k |) because the individual values of the logits matter
less. A small value of 7" results in a very large weight due to the exponent
on the largest logit and the distribution p,,(k | z) is therefore highly
spiked. The temperature is set to 1 by default in PyTorch.

The cross-entropy loss is now simply the maximum-likelihood loss
after the softmax operation

lee(w) = — Zone-hot(y)k log py (k| x)
k=1

~ m
_ yy 0y //T
__T+log<Zeyk)

k'=1

6.12)

Observe that the logit corresponding to the true class 7, is being pushed
higher; at the same time, if the logits of the incorrect classes are large they
are being pulled down in the summation. This is an important point to
keep in mind: the cross-entropy loss after softmax affects all logits, not
just the logit of the correct class.

6.2.4 Label smoothing

The correct logit in Eq. (6.12) is encouraged to go to +oo while the
incorrect logits are encouraged to go to —oo. This can lead to dramatic
over-fitting when the number of classes m is very large. Label smoothing

A You will often see people calling

log i e /T

k'=1

as the “softmax” of vector §. This is actually
a more appropriate usage of the word because

m
log Z eI /T m]?xg)
k=1)

if one of the entires of ¢ is much larger than
the others, or if 7' — 0. We will however use
the word “softmax” to refer to the operation
of transforming g into p,, (k |) because we
do not have any need for this softened version
of the max operator.

68

is a trick that alleviates the problem: instead of using a one-hot encoding
of the true label y, it uses the encoding

1—€ ifk=y,
label-smoothing(y); = ©! Y (6.13)
—< else.
The cross-entropy loss with this new encoding is now
m
rabel-smoothing-ce (W) = — Z label-smoothing(y)x log py, (k |)
k=1
€
=—(1—-¢€)logpu(y|z)— m—1 Zlogpw(k |)
k#y
(6.14)

If you take the derivative of this loss with respect to § you will see that
the value of ¢ that minimizes the loss is

Y = (6.15)

- {log((m -1 —-¢/e)+a ifk=y
else.

where « is an arbitrary real number. Notice that logits for both the correct
and the incorrect classes are finite in this case, they no longer blow up to
infinity.

6.2.5 Multiple ground-truth classes

If there are multiple classes that are all present in the input image, i.e., if
the ground truth data has multiple labels, we can easily use the vector

multi-hot(y) = Z ek
k

for all the present classes k and set

Loee (W) = — Zmulti-hot(y)k log py (k | x) (6.16)
k=1

in the BCE loss. We can also use this trick in the cross-entropy loss
after the softmax operator but it will not work well because the softmax
operator is designed to amplify only the largest logit in ¢; if we tried the
network would still be incentivized to predict only one class instead of all
classes.

1

Chapter 7

Bias-Variance Trade-off,
Dropout,
Batch-Normalization

Reading
1. Bishop 1.3, 3.2, 14.2-14.3
2. Goodfellow 5.1-5.4,7.1-7.3
3. Dropout Srivastava et al. (2014)

4. Batch-Normalization loffe and Szegedy (2015)

In this chapter, we will take our first look at how machine learning
classifiers generalize to new data. We will first discuss the so-called
Bias-Variance Tradeoff which indicates that the variance of the predictions
of a model can be reduced by increasing its bias. Regularization is a
technique to give us control over this tradeoff. We will then see a few
popular regularization techniques, in particular two that are important in
deep learning called Dropout and Batch-Normalization.

7.1 Bias-Variance Decomposition

Ideally, we want a classifier that accurately captures the regularity in the
data, which is what will make it work well for unseen data. We will
introduce this using regression.

Given our dataset D = {(z%, y*) }i=1,4..,'n, we fitamodel f(x;w) € F
where F is some class of models, say all neural networks with a given
architecture; we will keep the dependence of f on w implicit in this section

69

23

70

because we don’t need it. We use a loss £(f(z),y) = | f(z) — y|? to fit
this model by minimizing

R(f) =

SRS

Z(f(xi) —y')? (7.1)

This is of course the training loss, also called the empirical risk. A
classifier that minimizes R(f) works well on the training data. If we want
to measure how well a model works on new data from the distribution P
we are interested in the the population risk

R(f) = / (f(2) - 9)* P(x,y) dz dy
(7.2)

—| (@) -0 Pl o) au)

It turns out that because the loss is quadratic, we can write down the
minimizer of the population risk, formally, as

f*(x) =Ely | z]. (7.3)

In other words, the optimal regression is the conditional expectation of the

targets y given a datum x. Since we do not know the data distribution P,

we cannot compute the model f*. We now compare some regression f

that we may have obtained by minimizing Eq. (7.1) with the optimal f*.
Observe that

(f(@) =9)* = (fl@) = [*(@) + (@) -)°

= (f(z) = f*(@)" +2(f(2) = f*(2)) (f* () —y) + (f*(2) =)"

Substitute this expression in Eq. (7.2) to get

R(f)=E|(f@) - @7+ E_[(FF@-v*| a4

(z,y)~P

Observe that the cross-term

B| [20@) - @)@ - Pl 2) | =0
vanishes because f*(z) = E[y | z] = [yP(y |) dy. The decomposi-
tion in Eq. (7.4) is insightful. In the first term, there is no y because the
distribution P(y |) when integrated with respect to y is 1. The first term
tells us how far our model f(z) is from the optimal f*(z), at any input .
The second term tells us how much the optimal model itself is from the
data (x,y). The second term is not under our control because it does not
depend on f(z) at all. This term is called the

— * _ 2
Bayes error = (x,yl?~P [(f () —y) } . (7.5)

It is irreducible error of any classifier f that we can train. It is only zero

22

23

24

25

26

27

28

29

71

if the data (x, y) is coming from a deterministic source, i.e., there is no
noise in the true targets y created by Nature and Nature’s model. It is
important to realize that Nature’s model is not f*.

We will now investigate the first term better. Our model f is created
using a finite training dataset D. Let us emphasize it as

f(z; D)
and rewrite the first term in Eq. (7.4) as
(F(e: D) — £*(@)* = (f(2: D) ~ E[f(a: D)) + E[f(a: D)] ~ *(2))
— (f(:) - E[f(x: D))’
+ (Bl D)) - /(@)

—E
D
—E
D

+2(f(2:D) ~E[f(@: D)) (E[f(@: D)] - (@) -

Recall that the dataset is a random variable as well: it is a bunch of samples
from the Nature’s distribution over (z,y) denoted by P. Effectively,
f(z; D), which is our fitted model is a random variable that depends on
the randomness of D. We now take the expectation over the dataset D on
both sides of this equation.

2

E[(f(@: D) - £@))*] = (Elf(@: D) - ()

A You can think of the Bayes error as being
non-zero if the sensor used to measure ¥ is
noisy, there is no way we can get
deterministic data in that case. If on the other
hand the sensor is perfect, e.g., a large
number of humans are annotating data very
carefully like we often do in modern machine
learning, the Bayes error is essentially zero.

+E| (70 - 517 D)) .

(bias)? variance

(7.6)
The cross-term again vanishes when we take the expectation over the
dataset (convince yourself of this by writing out the cross-term). The
first term is called the squared bias: it is the gap between the predictions
of our model compared to the optimal model f* created across many
experiments, each with a different dataset D. The second term is the
variance and it measures how sensitive our model f(x; D) is to a particular
training dataset D. If our model fitted on D does not work well on most
others datasets, then the variance is large. We will parse these quantities
further soon.

We have therefore shown that

R(f) = E [bias® + variance] + Bayes error (1.7)

Recall that we want to minimize the population risk R(f). We cannot do
much about the Bayes error. If the model f(x; D) is large and is fitted
very well on the dataset D, i.e., if its predictions match true y (notice that
the optimal models predictions f* are also close to), the gap between
the predictions of the fitted model and the optimal model is small on the
dataset D. In other words, if our model is large we will have a small bias.
The bias of a model decreases as we consider larger models f(x; D). If
our dataset is small, the model f(z; D) is likely to have a large variance

A Here is a good mnemonic to remember.
Imagine the center of the bull’s eye as the
optimal classifier f* and our darts as the
model f(z; D). We have to collect n samples
for every dart we throw.

Low Variance High Variance

@O

»

0

Low Bias

High Bias

20

21

22

23

72

Total Error

Variance

Optimum Model Complexily

Error

& -

Model Complexity

Figure 7.1: Population risk as a function of model capacity

because it has not seen a large amount of data. The effect increases
for larger models because they may use a larger number of nuisances
i.e., features that are not relevant to prediction of targets. We call this
over-fitting.

If we plot a picture of how the bias and variance change as model
capacity (you can think of capacity simply as the number of parameters
in a model for now) increases, we see a famous U-shaped curve for the
sum of squared bias and variance shown in Fig. 7.1. Given a dataset
D we should pick a model that lies at the bottom of this curve to get a
good population risk; this model makes a good tradeoff between bias and
variance.

The caveat is that we do not have access to a lot of different datasets to
measure the bias or the variance. This is why the bias-variance trade-off,
although fundamental in machine learning/statistics and a great thinking
tool, is of limited direct practical value.

Bias-variance tradeoff for classification

We have only talked about the bias-variance trade-off for regression. The
development for classification is not very different and same principles
hold. We first define an optimal classifier

*(z) = argmin E
f () fge]'— (z,y)~P

[£(y, f(x))]

for a loss function ¢. The bias, variance of a given classifier f(z; D)
relative to this optimal classifier and the Bayes error are given by

bias = B [£(f"(x), f(z: D))

variance = E [((f(z; D), [**())] (7.8)
Bayeserror= E [{(y, f"(z))].
(zy)~P

where f*¢(z) = argmin; Ep [((y, f(z))]; under the MSE loss this is the
average of predictions of regressions on different datasets, for the MAE

A You should not try to draw analogies
between the bias-variance tradeoff for
regression and that for classification given
below. The former is classical but the latter
has many different formulations that are
designed more to follow the vague principles
of what bias and variance mean in the context
of classification.

20

21

22

23

24

25

26

73

loss this is the median of the predictions of models trained on different
datasets, for the zero-one loss it is the most frequent prediction of models
trained on different datasets. We again have a trade-off that is obtained by
decomposing the population risk

(]% - g[@(y,f(x;D))]} = bias + cpvariance + c¢;Bayes error.
T,y)~

where c1, co are constants. You can read more about this in Pedro (2000).

Double-descent

The surprising thing is that for deep networks, we do not see this classical
bias-variance trade-off. The population risk looks like

under-parameterized over-parameterized

“modern”
interpolating regime

“classical”

Risk

~ _Training risk
<

. _interpolation threshold
-«

Capacity of H

Figure 7.2: Double-descent curve: the validation error of deep networks decreases
even if more and more complex models are fitted on the same data; there is no
apparent over-fitting and growth in the variance of the classifier.

in what is now called the “double-descent” curve. The population risk
of deep networks keeps decreasing even if we fit very large models on
relatively small datasets, e.g., CIFAR-10 has 50,000 images, the model
you will fit in HW 2 has about 1.6M weights and is considered a very small
model by today’s standards. We will see some heuristic derivation into why
the population risk may look like this for deep networks but understanding
this phenomenon which goes flat against established knowledge in machine
learning is one of the big open problems in the study of deep networks
today.

7.1.1 Cross-Validation

We have seen that the bias-variance trade-off requires us to consider
multiple datasets. In practice, we only have one dataset that we collected
by running an experiment. If this data is large, we can split it into two
three parts

data = training set U validation set U test set.

The validation set is used to compare multiple models that we fit on the
training set and pick the best performing one. This model is then run on
the test set to demonstrate how well we have learned the data. The test
set is necessary because across your design efforts to fit different models,

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

74

you will evaluate on the validation set multiple times and this may lead to
over-fitting on the validation set.

If the available data is not a lot, we want to use as much of the data
as possible for training. If however only use a small fixed validation set
for comparing models, we risk making mistakes in our choices. Cross-
validation is a solution to this problem: it trains k different models, each
time a fraction (k — 1)/k of the data is used as the training set and the
remainder is used as the validation set. The validation performance of k
models obtained by this process is averaged and used as a score to evaluate
a particular model design (architecture, hyper-parameters etc).

Some practical tips

It is useful to think of the bias-variance trade-off when you fit deep
networks in practice. If the training or test error is high, there are a number
of ways to improve performance using the bias-variance tradeoff as a
thinking tool.
A

N Test error
. —_—

- “ Acceptable test error ¢

/ Trainingerror

v

Training instances

In the first regime on the left, we have high validation error across cross-
validation folds and low training error. This indicates that we have a
high variance in the bias-variance trade-off. Typical techniques to counter
this is to use a smaller model, get more data, or bagging a set of models
together (will cover this in Section 7.3). In the second regime on the right,
if the test error and the training error are close to each other but both are
large, the model is likely to have high bias. In these cases, we should
fit a more complex model (say increase the number of weights, or pick
a different architecture), add more features to the training data (in the
non-deep-learning setting) to give our model more discriminative features
to use, or use boosting (we will cover this in Section 7.3).

Cautionary Tale

You will however notice that a lot of research papers in deep learning
simply use validation data as test data. Their reasons for doing so are
as follows. All researchers have the same large dataset from which they
would create a potential test set, the researchers therefore also know the
ground-truth labels of test images and it is difficult to trust them not to
peek at the ground-truth labels to choose between models. If the test
data is hidden from everyone, we need a centralized server for evaluating
everyone’s results. This is difficult because research is fundamentally

A 4-fold cross-validation.

run 1

run 2

run 3

run 4

20

21

22

23

24

25

26

27

28

29

30

31

32

33

75

about discovering new knowledge. Kaggle competitions or the ImageNet
Challenge http://image-net.org/challenges/LSVRC are few instances where
such a centralized server is available.

It is therefore debatable whether the current practice of using validation
set as the test set should be considered valid. On the positive side, it
makes results across different publications comparable to each other; if
everyone reports the error of their model on the same validation set, it
is easy to compare Algorithm A versus Algorithm B. On the negative
side, this incentivizes extensive hyper-parameter tuning and risks results
that are over-fitted on the validation data, e.g., new fields such as neural
architecture search are particularly problematic in this context. This is also
the main reason for the current “style of research” where folks judges the
merit of machine learning research simply by checking whether Algorithm
A gets better validation error than Algorithm B on standard datasets. This
is not the correct way to do scientific research. The more appropriate
way to instantiate the scientific method is to first formulate a hypothesis,
e.g., is gene X correlated with cancer Y, then collect data that allows
us to evaluate such an hypothesis and undertake appropriate statistical
precautions report whether the hypothesis stands/does not stand.

That said, there are researchers who have evaluated others’ claims
(obtained using validation data, namely A better than B) on independent test

data and reached similar conclusions, see for example https://arxiv.org/abs/1902.10811,

so the evaluation methodology is broken but the progress is real.

7.2 Weight Decay

The set of models with smaller complexity are a subset of the set of models
with larger complexity, e.g., if you are fitting a polynomial regression, you
can consider the subset of models with coefficients of the higher-order
terms equal to zero and have thus created the set of linear regressions.
Effectively, the space of models looks as follows.

structure
e .C Sn c th’ ‘

Figure 7.3: A cartoon of the space of models. The n in the picture refers to
number of parameters in the model, not the number of data.

Let’s say we are fitting a class of models with large complexity and are
unsure whether the variance in the bias-variance trade-off will be large.
We can either collect more data, or we can modify the loss function to
encourage the training process to pick models of lower complexity.

Restricting the space of models that the training process searchers

http://image-net.org/challenges/LSVRC
https://arxiv.org/abs/1902.10811

20

21

22

23

24

25

26

76

over to fit the data is called regularization. We will denote regularizers
by
regularizer = Q(w)

and modify our loss function for fitting data to be

U (w;z,y) = L(w;2,y) + Qw).

Weight decay is one of the simplest regularization techniques and uses
e}
Qw) = 7 [lwl. (7.9)

This is more widely known as ¢5 regularization because we use the ¢, norm
of the weights as the regularizer. It is also called Tikonov regularization,
a name that comes from the literature on partial differential equations.
The name weight decay comes from the neural networks literature of the
1980s. The gradient of the modified loss is

which gives
wtt) = (1-n a)w(t) - Uvg(w(t)?“@ Y);

where 7 is the learning rate. In other words the weights w are encouraged
to become smaller in magnitude when SGD takes a step using the negative
gradient.

If we have a linear regression problem with f(z;w) = w'x and
XY are the matrices for the data and targets respectively, the regularized
objective is

T

1 2 « 2
SIY = Xwl|3 + 5wl

and you can compute the minimizer by taking derivatives and setting them
to zero to be)
w'=(X"X+al) X'V

In other words, weight decay for linear regression adds elements to
the diagonal of the data covariance matrix X ' X. This results in a
smaller inverse and thereby a smaller magnitude of w*. Notice that if the
covariance matrix is rank deficient, the regularized matrix is no longer
rank deficient. If the covariance matrix has a large condition number (ratio
of the largest and smaller eigenvalue), which makes taking the inverse
numerically difficult, the regularized matrix has a better condition number.

7.2.1 Do not do weight decay on biases

If the input data and targets in linear regression are centered we do not
need a bias parameter in our model. Notice however that if the dataset is
not centered, the bias parameter is essential. Should we perform weight

20

21

22

23

77

decay on the bias parameter in this case? The weight decay penalty
prevents the bias parameter to adapt to the non-zero mean of the data.
This is also important to keep in mind while training neural networks. We
should not impose weight decay regularization on the bias parameters of
the convolutional and fully-connected layers.

7.2.2 Maximum a posteriori (MAP) Estimation

MAP estimation gives a Bayesian perspective to regularization in machine
learning. In maximum likelihood (ML) estimation, we were interested in
solving for weights that maximize the likelihood of the observed data:

WMmLE = arg;mn n glogpw(y | 25 w).
MAP estimation enforces some prior knowledge we may have about the
weights w. In Bayesian statistics, such prior knowledge is represented as
a probability distribution, known as the prior, on the parameters w before
we see any data in the training process, i.e., a priori probability

prior = p(w)

MAP estimation is regularized ML estimation. Given a prior distribution,
we can use Bayes law to find the posterior distribution on the weights
after observing the data

_ p(D | w) p(w)

Remember that the left hand side is a legitimate probability distribution
with the denominator given by

(7.10)

2:=p(D) = [(D] w) p(w) du.

The denominator Z called the “evidence” or the partition function lies at
the heart of all statistics, we will see why in Module 4.

MAP estimation finds the weights that maximize this a posteriori
probability

wiap = argmax log p(w | D)
w

= argmax log p(D | w) + log p(w) — log p(D) a.11)

= argmaleogpw(yi | 2 w) + Q(w) — log Z.

W=t
In the second step, we have denoted the log-prior by €2

log prior(w) := Q(w).

A Weight decay is closely related to other
norm-based penalties, e.g., {1 regularization
sets

Q, (w) = allw],.

As we discussed briefly in Chapter 6, such a
regularizer encourages the weights to become
sparse. Sparsity penalties are very common in
the signal processing literature (e.g.,
compressed sensing, phase retrieval
problems) but they are less common in the
deep learning literature.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

78

Note that Z is not a function of the weights w and can therefore can be
ignored in the optimization.

Frequentist vs. Bayesian point of view

This section was our first view into Bayesian probabilities, as opposed
to frequentist methods where we estimate probabilities by counting how
many times a certain event occurs across our experiments. Frequentist
probabilities are not designed to handle all situations. For instance we may
be interested in estimating the probability of a very unlikely event, say
that of the sun going supernova. This event has of course not happened
yet and a frequentist notion of probability where we repeat the experiment
many times and estimate the probability as the fraction of times the event
occurs is not appropriate. The Bayesian point of view provides a natural
way to answer these questions and the key idea is to encode our belief that
the sun cannot go supernova as a prior probability.

An alternate way to think about this is that the weights w of a model
are considered a fixed quantity that we are supposed to estimate in a
frequentist setting. The likelihood p(D;w) is used to compare different
models w and if one wanted an estimate of how much error we are making
in our estimate, we would compute the variance in the Bias-variance
tradeoff namely, the variance of our estimate across different draws of the
dataset D. In the Bayesian point of view, there is a single dataset D and
the uncertainty of our estimate of w* would be expressed as the variance
of the posterior distribution p(w | D) in Bayes law.

Weight decay regularization is MAP estimation with Gaussian prior
Weight decay can be seen as using a Gaussian prior

llwii3
-y
Pweight-decay (w) xe @).

This is a multi-variate Gaussian distribution with mean zero and a diagonal
covariance matrix with o~ ! on the diagonal. The denominator is a function
of a~! and we do not need to worry about it while performing MAP
estimation because it does not depend on w.

In other words, we have seen that weight decay in the training objective
can be thought of as a MAP estimation using a Gaussian prior instead of
ML estimation.

The Gaussian prior captures our a priori estimate of the true weights:
the probability of the weights w being large is low (it is distributed as a
Gaussian/Normal distribution). The likelihood term fits the weights to the
data but instead of relying completely on the data which may result in a
large variance (in cases when data is few), we also rely on the prior while
fitting the model. This reasoning is captured in Bayes law.

Similarly, a sparsity penalty is MAP estimation with a Laplace prior
For scalar random variables, the Laplace distribution is given by

1 eyl

p(w) = 2%E

DID THE SUN JUST EXPLODE?
(ITS NIGHT, S0 WERE NOT SURE)

THIS NEUTRINO DETECTOR MEASURES
WHETHER THE SUN HAS GONE NOVA.
THEN, TROWS TWO DICE. IF THEY
BOTH COME UP SIX, ITUES TO US.
OTHERWISE,, IT TELLS THE TRUH.

LETS TRY.
DETELTOR! HAS THE
SMVCQVEMW)?

A

FREQUENTIST STATISTICIAN: BAYESIAN STATISTIOAN:

THE PROGABLITY OF THS RESULT

rwpmneavcwa:usx 0027 BET YOU $50
<0.05, T CONCLUDE. T HASNT.

THAF FIE SUN HAS EXPLODED.)

1Al

79

If we have
Q(w) = [[wll;

we can see that regularized ML, i.e., MAP estimation corresponds to using
a Laplace prior on the weights w.

7.3 Dropout

We will next look at a very peculiar regularization technique that is unique
to deep networks. Consider a two-layer network given by

§ = v dropout (0 (ST:E)) .
Dropout is an operation that is defined as
dropout, _,(h) =h O (7.12)

where r € {0, 1}" is a binary mask and the notation ® denotes element
multiplication. Each element of this mask 7 is a Bernoulli random
variable with probability 1 — p

0 with probability p
T =
"7)1 with probability 1 — p.

In simple words, dropout takes the input activations h and zeros out a
random subset of these; on an average p fraction of the activations are set
to zero and the rest are kept to their original values. In pictures, it looks
as follows.

(a) Standard Neural Net (b) After applying dropout.

Figure 7.4: Dropout picks a random sparse subnetwork of a large deep network
using the mask.

The default Dropout probability is p = 0.5 in PyTorch, i.e., about half
of the activations are set to zero for each input. Although you will see a
lot of online code and architectures with this default value, you should
experiment with the value of p, different values often given drastically
different training and validation errors.

A Tt is important to remember that a new
dropout mask r is chosen for every input in
the mini-batch.

@ The dropout mask is chosen at random for
each image. Let us imagine that we have one
dropout layer after every fully-connected layer.
For the network shown in the figure with two
hidden layers and 5 neurons at each layer, how
many distinct sparse networks can we choose
using dropout? Does the answer depend upon
the probability p?

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

80

7.3.1 Bagging classifiers

Bagging, which is short for bootstrap aggregation, can be explained using
a simple experiment. Suppose we wanted to estimate the average height
w of people in the world. We can measure the height of NV individuals
and obtain one estimate of the mean p. This is of course unsatisfying
because we know that our answer is unlikely to be the mean of the entire
population. Bootstrapping computes multiple estimates of the mean i
over many subsets of the data IV and reports the answer as

= mean(py) + stddev(py).

Each subset of the data is created by sampling the original data with N
samples with replacement. This is among the most influential ideas in
statistics (Efron, 1992) because it is a very simple and general procedure
to obtain the uncertainty of the estimate.

Effectively, the standard deviation of our new bootstrapped estimate
of the mean is simply the standard deviation in the Bias-Variance trade-off
with the big difference that we created multiple datasets D by sub-sampling
with replacement of the original dataset.

Bagging is a classical technique in machine learning (Breiman, 1996)
that trains multiple predictive models f(z;w*) for k € {1,..., M}, one
each for bootstrapped versions of the training dataset {Dl, ...,DM }
We aggregate the outputs of all these models together to form a committee

1 M 1 o k
flz;w ... w):MZf(a:;w).
k=1

You can see that this procedure reduces the variance of the model (the first
term in Eq. (7.4)) in the bias-variance trade-off by a factor of M if the
errors with respect to the optimal classifier f* of all the models {wk} are
zero-mean and uncorrelated. In other words, the average error of a model
can be reduced by a factor of M by simply averaging M versions of the
model.

Bagging is always a good idea to keep in your mind. The winners of
most high-profile machine learning competitions, e.g., the Netflix Prize
(https://en.wikipedia.org/wiki/Netflix_Prize) or the ImageNet challenge,
have been bagged classifiers created by fitting multiple architectures on
the same dataset. Even today, random forests are among the most popular
algorithms in the industry; these are ensembles of hundreds of models
called decision trees on bootstrapped versions of data. A lot of times, if
we are combining diverse architectures in the committee, we do not even
need to bootstrap the data. Bagging does not work when the errors of the
different models are correlated; this is however easy to fix by censoring
out features in addition to boostrapping like it is done while training a
random forests.

https://en.wikipedia.org/wiki/Netflix_Prize

20

21

22

23

24

25

26

27

28

81

7.3.2 Some insight into how dropout works

Consider the following, very heuristic but nevertheless beautiful, argument
in the original paper on dropout (Srivastava et al., 2014).

We will remove the nonlinearities and consider only a single layer
linear model with dropout directly applied to the input layer f(z;w) =
w " dropout(z). Linear regression minimizes the objective ||y — X w||§
and similarly the dropout version of linear regression for our model would
minimize

minE |||y — (RO X)w| (7.13)

where each row of the matrix R consist of the dropout mask for the i
row ! of the data matrix X. Think carefully about the expectation over
R on the outside, since we choose a random dropout mask each time
an input is presented to SGD, the correct way to write dropout is using
this expectation over the masks. Each entry of R is a Bernoulli random
variable with probability 1 — p of being 1. Note that

E[R®X]=(1-p)X
and the (ij)" element is

1-p?(XTX),, ifi#]
(1-p)(X"TX) else.

%

ij

(BEl[(RoX) (RO X)]) = {

We can use these two expressions to compute the objective in Eq. (7.13)
to be

Ellly = (R© X)wlly) = |ly - (1 - p)Xw|® + p(1 - p)w " diag(X " X)w.

Q(w)

In other words, for linear regression, dropout is equivalent to weight-decay
where the coefficient « in Eq. (7.9) depends on the diagonal of the data
covariance and is different for different weights. If a particular data
dimension varies a lot, i.e., (X TX);; 1s large, dropout tries to squeeze its
weight to zero. We can also absorb the factor of 1 — p into the weights w
to get

Elly (R X)ul,] =y - Xo]” + (£) a7 ding(X " X)a

Q(w)

(7.14)
where w = (1 — p)w. This makes the regularization more explicit, if
p ~ 0, most activations are retained by the mask and regularization is
small.

Next, bagging provides a very intuitive understanding of how dropout
works in a deep network at test time. We now write out the classifier

A Training with dropout is equivalent to
introducing weight decay on the weights.
Remember however that this argument is only
rigorous for linear regression models (the
derivation essentially remains the same for
matrix factorization). This connection of
dropout with weight decay will also be
apparent in Module 4 when we look at how to
train a Bayesian deep network.

20

21

22

23

24

25

26

27

28

29

30

31

32

82

explicitly as .
flaw,) = " wi (v 0rF);
i=1

note that the mask 7% is not a parameter of the model, we have simply
chosen to make it more explicit for the sequel. We now imagine each
mask as creating a bootstrapped version of the model; different masks 7"
give different classifiers even if the weights v and the input z is the same
for all.

It is important to realize that there is no subsampling of training dataset
happening here like classical boosting; we are instead forming multiple
models by adding randomness to how the input is propagating through the
deep network. For a linear classifier this is equivalent because

d
S s o) = 3 007k = S
=1

we can either mask out the input or mask the weights and think of the
masked weights w” as a new model.

Remark 7.1. You will often see folks in the literature say that dropout
regularizes by preventing co-adaptation of the neurons at each hidden
layer. The motivation for this statement is that the weights of the suc-
ceeding layer cannot fixate too much upon a particular feature at the
input because the feature can be zeroed out by the dropout mask. This
prevents specialization of neurons in the hidden layer and ensures that
the prediction is made using a large number of diverse features, not
just a few specific ones. This is not a rigorous argument but it is a
reasonable argument in view of the experiments of Hubel and Wiesel (see

http://centennial.rucares.org/index.php?page=Neural_Basis_Visual_Perception).

The human brain is quite robust to large parts of it going missing/being
inhibited.

Bagging is expensive at test time, it involves having to compute the
predictions of all the models in the committee. In the case of dropout, in
this linear regression setup, we can compute the committee’s prediction to
be

M
1 k
= (wo i) 2y (7.15)

This is very fortunate, it indicates that given weights w of a model trained
using dropout, we can compute the committee average over models created
using dropout masks simply by scaling the weights by a factor 1 — p
This should not be surprising, after all the equivalent training objective

http://centennial.rucares.org/index.php?page=Neural_Basis_Visual_Perception

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

83

in Eq. (7.14) has w = (1 — p)w as the effective weights of the weights.
Another important point to note is that there is no masking of activations
at test time when we scale the weights.

Although the argument in this section works only for linear models,
we will bravely extend the intuition to deep networks.

7.3.3 Implementation details of dropout

The recipe for using dropout is simple: (i) the activations at the input of
each dropout layer are zeroed out using a Bernoulli random variable of
probability 1 — p of being 1; the PyTorch layer takes the probability of
zeroing out activations as argument which is p in our derivations; (ii) at
test time, the weights of layers immediately following dropout are scaled
by a factor of 1 — p to compute the predictions of the “committee”.

Inverted Dropout. It is cumbersome to remember the parameter p that
was used for training at test time. Deep learning libraries use a clever trick:
they simply scale the output activations of the dropout layer by 1/(1 — p)
during training. Training or testing the modified model using dropout
gives an extra factor of (1 — p) like Eqs. (7.14) and (7.15) respectively and
therefore if activations are scaled by 1/(1 — p) during training, then the
final model can be used as is without any further scaling of the weights or
activations at test time.

The operation model.train() in PyTorch sets the model in the
training mode. This is a null-operation and does not do anything for
fully-connected, convolutional, softmax etc. layers. For the dropout later,
it sets a boolean variable in the layer that samples the Bernoulli mask for
all the input activations and scales the output activations by 1/(1 —p). The
complementary operation is model . eval () in PyTorch which you should
use to set the model in evaluation mode. This is again a null-operation
for other layers but for the dropout layer, it resets this boolean variable
to indicate that no Bernoulli masks should be sampled and no masking
should be performed.

7.3.4 Using dropout as a heuristic estimate of uncertainty

We can extend the motivation from bagging to use dropout as a cheap
heuristic to get an estimate of the uncertainty of the prediction at test time.
Suppose we use dropout at test time just like we do it at training time,
i.e., each time one test input is presented to the deep network, we sample
multiple Bernoulli masks 7!, ..., and compute multiple predictions
for the same test input

{f(z;w,rl),...,f(x;w,rM)}.

The variance of these predictions can be used as heuristic of the uncertainty
of the deep network while making predictions on the test input z. This
is an estimate of the so-called aleatoric or statistical uncertainty. It
captures our understanding that the weights w of a trained deep network

20

21

22

23

24

25

26

27

28

84

are inherently uncertain and different training experiments, in particular,
different masks r* will give rise to different weights. The variance across
a few sampled masks thus indicates how uncertain the model is about
its predictions. Dropout is a neat and cheap trick for this purpose; it is
quite commonly used in this fashion in medical applications where it
is important to not only predict the outcome but also characterize the
uncertainty of this prediction. We will see more powerful ways to compute
aleatoric uncertainty in Module 4.

Remark 7.2. Broadly speaking, the connection of dropout with weight
decay is not precise. If it were rigorous, we should be able to get the
same performance as dropout by using appropriate weight decay (this is a
good idea for the course project!). In practice, the validation error using
dropout is very good and cannot be achieved by tweaking weight decay.
Another aspect is that since we would like to average over lots of dropout
masks in the training process, networks with dropout should be trained
for many more iterations of SGD than networks without dropout to get
the same training error. The benefit is that the test error is much better
for dropout. What exactly dropout does is a subject of some mystery and
there are other alternative explanations (e.g., Bayesian dropout in Module
4).

Our understanding of dropout is no different than that of these blind
scientists trying to identify an elephant.

It'sa
Fan!

7.4 Batch-Normalization

Batch-Normalization (BN) is another layer that is very commonly used
in deep learning. BN is very popular with more than 20,000 citations in
about 5 years.

Batch normalization: Accelerating deep network training by reducing internal
covariate shift

S loffe, C Szegedy - arXiv preprint arXiv:1502.03167, 2015 - arxiv.org

Training Deep Neural Networks is complicated by the fact that the distribution of each layer's

inputs changes during training, as the parameters of the previous layers change. This slows

down the training by requiring lower leaming rates and careful parameter initialization, and ...

¥r 99 Cited by 21278 Related articles All 32 versions Import into BibTeX 88

22

23

24

25

26

27

85

7.4.1 Covariate shift

Covariate shift is a common problem with real data. The experimental
conditions under which training data was gathered are subtly different
from the situation in which the final model is deployed. For instance, in
cancer diagnosis the training set may have an over-abundance of diseased
patients, often of a specific subtype endemic in the location where the
data was gathered. The model may be deployed in another part of the
world where this subtype of cancer is not that common.

The mis-match between training and test input distribution is called
covariate shift. Even if the labels depend on on the covariates in the same
way, i.e., given the genetic features of a person x their likelihood of a
cancer y is the same regardless of which part of the world the person is
from, the fact that we do not have training data from the entire population
of the world forces the classifier to be tested on a data distribution that is
different from what it was trained for.

o Training samples
*

05
Test samples

True function

Learned function

Figure 7.5: Covariate shift correction for a regression problem

Covariate shift is outside our fundamental assumption in Chapter 1
that training and test data come from the same distribution. It is however
a problem that is often (perhaps always) seen in practice and typical ways
to counter it look as follows.

1. Train a classifier w on the available training data D.

2. Update the trained classifier using data from the test distribution
D' = {(a*, yi)}i:n+17.“,n+m in addition to the original training

dataset
n+m
* = i ¢y Qw — 7.16
w axg;nm - Z;p (w) + Q(w —) (7.16)

where p’ is some weighing factor that indicates how similar the
datum (2%, y*) is to the test data distribution. The regularization
Q(w — w*) forces the new weights w* to remain close to the old
weights .

22

23

24

25

26

27

28

29

30

31

86

The above methods go under the umbrella of doubly robust estimation.
We will not study it in this course. The results look similar to the ones
shown in Fig. 7.5.

7.4.2 Internal covariate shift

If we are working under the standard machine learning assumption of test
data being drawn from the same distribution as that of the training data,
then there is no covariate shift.

Recall that we whiten the inputs, i.e., transform the data so that its
correlation matrix X X ' is identity, we linearly de-correlate the input
dimensions. See Joe Marino’s webpage for a good explanation of different
kinds of whitening.

Deep networks are like any other model in this aspect and whitening
of the inputs is also beneficial; the ZCA transform (or Mahalanobis
whitening) is a close cousin of PCA and usually works better for image-
based data. It is natural to expect that since each layer of a deep network
takes the activations of the preceding layer as input, we should whiten the
activations before the computation in the layer.

The authors of the BN paper came upon an interesting thought, but
something that is clearly a mistake. Their reasoning was as follows. Say
we have a mini-batch of inputs {xl, N xﬁ} and our layer simply adds a
learnable bias b to these inputs

h=ux+b.

If this layer removes the mean from its output before passing it on to the
next layer, we will have

hi=h-—

| =

6
DN
i=1

fori € {1,...,6} being the samples in the mini-batch. The output hi
does not depend on the bias b. They argued, incorrectly, that the back-

propagation update of the bias b is equal to h. This is not true because of

course .
— = dh
b=h—=0
db
in our notation where h = d/¢/dh.
Nevertheless, the motivation of the batch-normalization operation is
sound: we would like to whiten the input activations to each layer of a
deep network.

Batch-Normalization is a technique for whitening the output
activations of each layer in a deep network.

A This is the mistake in the original BN
paper.

the training set, and E|x] + Z;\ p wi- Ifa gradient
descent step ignores the dependence of E[x] on b, then it
will update b + b + Ab, where Ab x —d€/dx. Then
u + (b + Ab) — E[u + (b + Ab)] u+ b — E[u + b].

https://joelouismarino.github.io/posts/2017/08/statistical_whitening/

20

87

Naively, this would involve computing expressions of the form

6
h = (Cov(h))~\/? <h - é 3 M‘) .

This is not easy to do because the features are high-dimensional vectors, the
covariance matrix Cov(h) is a very large matrix. This makes computing
h difficult for every mini-batch. Nevertheless, whitening helps and here is
how it is done in the batch-normalization module:

h—E({h',...,h})

P N D e

(7.17)

The constant € in the denominator prevents h from becoming very large in
magnitude if the variance is small for a particular mini-batch. Itisimportant
to note that both the expectation and the variance are computed for every
feature. Let us make this clear: if h € RE*P je., p features for this layer,
the i" € {1,...,6} input of the mini-batch and the j* € {1,...,p} of
the feature for h is given by

7 6
B = hij — %Zi:l hij
! \/V3‘r({h1j7h2j,--.,hﬁj)}+e

Let us give names to these parameters

R? 5 pu=E({h',...,n"})

7.18
RP 3 0% = Var({h',...,h"}). 719

The authors of the original BN paper felt that mere normalization is not
enough, e.g., if you normalize the activations after a sigmoid activation, the
layer may essentially become linear because the activations are prevented
from going too far to the right or too far too the left of the origin. This
brings the second idea in BN, that of affine scaling of the output h. The
BN layer implements

f 0o h—E({h',....h"}) e (7.19)
V/Var({ht, ... h0}) + e o .

where a, b € RP?, i.e., each feature has its own multiplier a and bias b. The
final BN operation in short is

R h_ﬂ>
h=a(——— | +0.
<\/02+e

The affine scaling parameters a, b are the only trainable parameters

20

21

22

23

24

25

26

27

28

88

in BN that are updated using back-propagation. The mean p and
2 are unique to every mini-batch and therefore do not have
any back-propagation gradient.

Execute the following code and check how the BN layer is
implemented in PyTorch

variance o

import torch.nn as nn

m = nn.BatchNormld(15)
print(m.weight, m.bias)
print(m.running_mean, m.running_var)

The weight and bias here are the affine scaling parameters; and
running_mean, running_var are /i, o> respectively. You will see that
requires_grad is True only for the former.

BN for convolutional layers

The activations of a convolutional layer are a 4-dimensional array
h e Rﬁ xexXwxh

The distinction between convolutional layers compared to fully-connected
layers is that the convolutional filter weights are shared for the whole input
channel w x h. We can therefore think of each channel as a feature and
compute the BN mean and standard deviation over the batch dimension,
as well as the width and height. In pseudo-code, this looks as follows.

t is still the incoming tensor of shape [bb, c, w, H]
but mean and stddev are computed along (0, 2, 3) axes and
have just [c] shape
mean = mean(t, axis=(0, 2, 3))
stddev = stddev(t, axis=(0, 2, 3))
for i in 0..bb-1, x in 0..h-1, y in 0..w-1:
out[i,:,x,y] = normalize(t[i,:,x,y], mean, stddev)

Running updates of the mean and variance in BN

BN computes the statistics over mini-batches. Even if we trained a model
using mini-batch updates we would still like to be able to use this model
at test time with a single input; it may not always be possible to wait for
a few test images to make predictions. The weights of the network are
trained to work with whitened features so we definitely need some way to
whiten the features of a test input, ignoring the whitening at test time will
result in wrong predictions.

The BN layer solves this issue by maintaining a running average of the
mean and variance statistics of mini-batches during training. Effectively,
the buffers running_mean, running_var (note that these are not parameter-
s/weights, they are not updated using backprop) are updated after each

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

89

mini-batch during training as
1 = p running_mean® + (1 — p) p

1 = prunning_var’ + (1 — p) o2

running_meant

running_var’

The parameter p is called a momentum parameter for the BN layer and
makes sure that updates to running_mean/var are slow and one mini-batch
cannot affect the stored value too much. Note that whitening is still
performed at training time using p, o%; we simply record the running
average in the buffers running_mean/var. If model.train() is called, then
the mini-batch statistics are used to whiten the features. If model.eval() is
called, then the stored buffers running_mean/var are used to whiten the
outputs.

How is all this related to internal covariate shift?

You might be surprised that nothing in this section is related to covari-
ate shift that we discussed at the beginning. Let us try to understand
heuristically why BN is said to help with internal covariate shift.

Each layer of a deep network treats its input activations as the data
and predicts the output activations. As the weights of different layers
are updated using backprop during training, the distribution of input
activations keeps shifting. Effectively, each layer is constant suffering a
covariate shift because the layers below it are updated and the weights of
the top layers have to adapt to this shifting distribution. This is what is
known as internal covariate shift. BN normalizes the output activations
to approximately have zero mean and unit variance and therefore reduces
the internal covariate shift.

7.4.3 Problems with batch-normalization

There are two big problems with BN.

1. The affine parameters are updated using backpropagation and small
changes to mini-batch statistics can result in large changes to the
whitened output (h — p)/v/02 + e. This will result in very large
updates to a,b. This makes the affine parameters problematic
when you train networks. In general, it is a good idea to first fita
model without the affine BN parameters, you can do so by using
affine=False in nn.BatchNorm1d.

2. The mean and variance buffers of the BN layer are updated using
running statistics of the per-mini-batch statistics. This does not
affect training because the statistics of each mini-batch are computed
independently, but it does affect evaluation because the buffers are
used to whiten the features of the test input. If the test input has
slightly different pixel intensity statistics than the training image,
then the BN buffers are not ideal for whitening and such images are
classified incorrectly.

A There are many caveats with this heuristic
argument. The main one is to observe that the
backpropagation gradient of all layers is
coupled, so it is not as if the layers are
updated independently of each other and
cause interval covariate shifts to the other
layers; the updates of all the weights in the
network are coupled and it is unclear why (or
even if) internal covariate shift occurs.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

90

BN before ReLU or ReLU before BN

Should we apply BN before or after the nonlinearity? The purpose of
a BN layer is to keep the activations close to zero in their mean and a
standard-deviation of one. Imagine if we are using a ReLU nonlinearity
after BN, about half of our features i have negative values which the
rectification will set to zero. In this case the distribution of features given
to the next layer is not zero-mean, unit-variance so we are not achieving
our goal of whitening correctly. Further, it is possible that the bias
parameter b in BN is negative in which case the activations could mostly
be negative and ReLU will set all of them to zero and result in a large loss
in information. On the other hand, if we have BN after ReLU, the input to
the BN layer has a lot of zeros and we are now computing mean/variance
over a number of sparse features; the mini-batch mean/variance estimated
here may not be accurate therefore BN may not perform its job of correctly
whitening its outputs. You can read more about similar problems at
http://torch.ch/blog/2016/02/04/resnets.html

As you can see, BN is an incredibly intricate operation without
necessarily sound theoretical foundation for all the moving parts. But it
works, training a deep fully-connected network is very difficult without
BN, and even for convolutional layers it often makes training insensitive to
the choice of learning rate. You should think about BN very carefully in
your implementations; a lot of problems of the kind, “I trained my model,
it gives a good training error but very poor validation error”, or “I am fine-
tuning from this task, but get very poor validation error on a new task™, or
other problems in reinforcement learning, meta-learning, transfer learning
etc. can be boiled down to an incorrect/inadequate understanding of batch-
normalization. This is further complicated by the interaction with other
operations such as Dropout, e.g., see https://arxiv.org/abs/1801.05134.
Studying the effect of BN in meta-learning/transfer-learning is a good idea
for a course project.

How does Dropout affect BN?

Since dropout is active during training, the buffered statistics are the
running mean/variance of the dropped out activations. Dropout is not
used at test time, so the test time statistics, even for the same image can be
quite different. A simple way to solve this problem is to run the model in
training model once on the validation set (without making weight updates
using backpropagation) for the BN buffers to settle to their non-droppped
out values and then compute the validation error; this usually results in a
marignal improvement in the validation error.

7.4.4 Variants of Batch-Normalization

There are variants of batch-normalization that have cropped out to alleviate
some of its difficulties. For instance, layer normalization

(https://arxiv.org/abs/1607.06450) normalizes across the features instead
of the mini-batch which makes it work better for small mini-batches. An-
other variant known as group-normalization computes the mean/variance

http://torch.ch/blog/2016/02/04/resnets.html
https://arxiv.org/abs/1801.05134
https://arxiv.org/abs/1607.06450

91

estimate in BN across multiple partitions of the mini-batch which makes
the result of group-normalization independent of the batch-size. These
variants work in some cases and do not work in some cases and often
the specific normalization is largely dependent on the problem domain,
e.g., group normalization works better for image segmentation but layer
normalization and batch-normalization do not so well there.

Batch Norm

Instance Norm

Layer Norm

Group Norm

H. W

The major differences among 4 normalization methods. The blue pixels are normalized by the same
mean and variance, computed on the values of these pixels.

1

3

Chapter 8

Recurrent Architectures
and the Attention
Mechanism

Reading
1. Goodfellow 10.1-10.3, 10.5-10.7, 10.9-10.12
2. Bishop DL Chapter 12
3. D2L.ai book Chapters 8, 9, 10

4. Paper on long short-term memory (Hochreiter and Schmidhu-
ber, 1997)

5. Paper on the Transformer architecture (Vaswani et al., 2017)

6. Paper on CLIP (Radford et al., 2021)

In this chapter we will consider data that evolves with time. Typical
examples of such data are videos and sentences in written/spoken language.
Some typical problems that we are interested in solving given such data
are classifying the activity going on in a video, classifying the object that
is being described in a sentence, etc. We can also think of generative
models for such temporal data, i.e., forecasting how the video/sentence
will look like a few time-steps into the future using the approaches in this
chapter.

We will look at three kinds of neural architectures, namely Recurrent
Neural Networks (RNNs), and the Long Short-Term Memory (LSTM)
and Attention modules, that are typically used to model such data.

92

20

21

22

23

24

25

26

27

28

29

30

93

8.1 Recursive updates in a Kalman filter, suffi-
cient statistics

Consider a scalar signal in time h; € R that evolves according to some
dynamics
hiv1 = ahy + &;

with the scalar a € R that we have modeled and the noise &; € R reflects
our understanding that the scalar a in our model of evolution of the signal
h; may not be the same as that of Nature. We model this discrepancy by
setting &; to be zero-mean Gaussian noise that is i.i.d across time

ét ~ N(O7U§)

Let us say that our dataset consists of observing the signal for some time
{x1,29,...,2:}. Think of h; being the location of a car at time ¢ and
our dataset being the observation of the trajectory of vehicle up to time
t. Assume that we do not observe the true trajectory of the vehicle, but
observe some noisy estimate of the state at each time

xt:ht—&—yt

where v, ~ N(0,02) is the noise in our observation.

In this section, we will estimate the true signal at the next time instant
ﬁt+1. A good estimate is the one that minimizes the MSE loss with the
true (unknown) signal

. 2
argmin E (ht+1 - ht+1> | z1,..., @, 1| . (B.1)
i —_——

- 1,15 841,V 41
+ “dataset”

The expectation is taken over the noise because there could be many
trajectories that the system could have taken, each corresponding to a
particular realization of the noise.

Our estimate should only depend on the dataset

hiy1 = function (21, ..., 2, Teq1) -

Since predictions are likely to be required across a long range of time, we
want to construct a recursive update for hy; that takes in the estimate at
the previous time-step h; and updates it using the most recent observation
Tt+1-

Kalman filter updates the sufficient statistic

Like we computed the optimal predictor in the bias-variance tradeoff for
regression as the conditional distribution of the labels given the data, it is
possible to prove that the best estimate fLHl is the conditional mean given
past data X

ht+1 =E [ht+1 | L1, L2y ,l’tJrl] .

A Tn machine learning parlance, this setup is
called online learning where data are
provided sequentially one after other and you
train/update the model to incorporate the
latest datum; future predictions of this model
are made using this updated model.

94

Not surprisingly, to estimate the location of the car at time ¢ + 1, you need
to watch the entire past trajectory of the car.

A major result in control theory is that for our problem (where the model
of the signal is linear with additive Gaussian noise and our observations
x, are a linear function of h; corrupted with Gaussian noise) we only need
to recursively update of the first two moments of our estimate. If we have

hipr = N1, 084,)
where
Hi+1 = E [ht+1 | Lly--- ,$t+1] (8 2)
0't2+1 =var (heg1 | 21,0, Teg1) -

and update the mean and variance recursively using their values at the
previous time-step as

o1 = apiy + ki (Tey1 — apie)
(a%0? + O‘g)(l — k)
azat2 + Jg

ao? + O'g + 02

Ut2+1 (8.3)

You can derive this part very easily. Show that if the objective in Eq. (8.1)
was optimal at time ¢ for h; in Eq. (8.3), then the expressions in Eq. (8.3)
also minimizes the objective at time ¢ + 1 for h;11. This algorithm is
known as the Kalman filter is one of the most widely used algorithms
for estimation of signals based on their observation. The key property to
remember for us from the Kalman filter is the following.

The two quantities fi;, o, capture all the information from the past
trajectory x1, . . ., x¢. Instead of creating our MSE estimate hy using
the entire data as shown in Eq. (8.1) each time instant, if we maintain
these two quantities and recursively update them using Eq. (8.3) we
obtain the best MSE estimate.

In other words, (i, o, are sufficient statistics of the datax1, ..., x4
for the problem of estimating the next state h;,1. The notion of a
sufficient statistic means that you do not need anything beyond these
two functions of the data x4, ..., x4 to estimate hyy .

A statistic is simply any function of data. Therefore a sufficient
statistic is a quantity such that if you have it, you can throw away the
data without losing any information. Not all statistics are sufficient,
and not all sufficient statistics look like a few moments of data. For
more interesting signals the sufficient statistics are non-trivial and
difficult to find.

The structure of neural architectures for sequence modeling is

95

intimately related to the above result. Just like a CNN learns features
that are “sufficient” to classify the input data, a recurrent model learns
the statistics of the past sequence that are sufficient to predict future
elements.

8.2 Recurrent Neural Networks (RNNs)

The data to an RNN is a set of n sequences
D = {(xllv yi)v (33127:(}%), S (x’lfvyé")}izl’m’n :

Each sequence has length 7 and each element of the sequence zi € RY.
There can be labels at every time-step, e.g., these labels can be, say,
ground-truth annotations of the activity “playing with a basketball” going
on the video at that time, or also forecasting the inputs by one (or more)
time-steps y; = z} ;.

target = target = target =
"quick" "brown" "fox"

time 1 time 2 time 3
hidden units hidden units hidden units

input = input = input =
"quick" "brown"

Figure 8.1: A recurrent model predicting the next word in a sentence.

Let us focus on one particular sequence {(z{,}),..., (2%, y%)}
from the dataset. To predict the labels !, the RNN maintains a statistic,
let us denote it by

hi = @((xllvyi)a7(m;’)) :

Here ¢ is some function that we would like to build. Similar to a Kalman
filter we hope to learn a sufficient statistic. In this case sufficiency means
that the quantity h; can predict the target y;. Again, we would like to
update the statistic recursively.

ht+1 =@ (hh l“t+1) 5 (8.4)

notice the similarity with the updates in Eq. (8.3) where updates to ji;, oy
also used the latest observation x;;. We will also have the RNN use the
latest input 2;11. You can think of h; as a summary of the past sequence
or some memory that is updated recursively. This summary/statistic is
also called the “hidden state” in the RNN literature.

We do not know what function ¢ to pick (for the Kalman filter we
knew that it is the conditional mean/variance of h; given past observations)

A Note that just like we cannot claim that the
features learned by a CNN are sufficient
features, i.e., the only information from the
data necessary to predict the targets, we
cannot claim that h; is a sufficient statistic of
the past sequence. If the RNN/CNN are
making predictions accurately, then it is
reasonable to expect that we have learned
something close to a sufficient statistic.

20

21

22

23

24

25

26

27

28

29

30

31

96

so we are going to learn it using parameters. We will set
hiy1 = o (wp hi + wg T411) 5 (8.5)

where w;, € RP*P , € RP*? are weights that multiply the previous
statistic and the current input to calculate the current statistic. Again o (-)
is a nonlinearity that is applied element-wise.

Weights of an RNN are not a function of time It is important to
observe that the weights wy,, w, do not change as the sequence moves
forward. The same function is used to update the statistic at different
points of time; notice that this does not mean that the statistic hi remains
the same across ¢. In this sense, an RNN is effectively the same neural
model unrolled into the future as it takes in inputs of a sequence.

Training objective for an RNN Output predictions can now be made
as usual by learning weights

g = v hl. (8.6)
The loss function of an RNN is a sum of the error in the predictions for all
time-steps for all samples

n

> i, g) 3.7

1t=1

1
nT 4

2

and we can train the RNN by updating weights wp, w, using back-
propagation. In some problems, you may only have targets for the final
time-step ¥ (say predicting whether it is going to rain right now or not
based on the weather data of the past few hours). This does not change
things much conceptually, we will simply have only one term in the
summation above.

The exponential of the cross-entropy loss (which is equal to 1 divided
by the likelihood of the dataset) is called the “perplexity” in natural
language processing problems

n T

C
. 1 e .
perplexity = exp (—nT > 3D Leyizey logp(g; = 0)> ;

i=1 t=1 c=1

where the sum over ¢ ranges over the unique elements of the sequence
(e.g., words/tokens etc.). You will see the perplexity being calculated in
base 2 many times. The reason for this is as follows. The cross-entropy
loss in Eq. (8.7) can be interpreted as the number of bits (actually this is
called “nats” since we wrote the loss using the natural logarithm) required
to predict each element of the sequence. If the cross-entropy loss per
time-step (which is what we have written in Eq. (8.7)) is 3.55, then the
perplexity
2355 ~ 11.7,

A Tf each element of a sequence z; is
distributed uniformly over C' possible values,
i.e., the sequence is perfectly random with no
predictable patterns within it, then the
cross-entropy loss for predicting the next
element of such a sequence will be equal to
the Bayes error, which is —log C. The
perplexity exp(— log C') = C is therefore the
number of distinct alternatives that the
learned model predicts over when it predicts
the next token.

20

21

97

and therefore the learned model is confused as if it had to choose uniformly
among about 12 different possibilities. Smaller the perplexity, better the
predictive model.

Multi-layer RNNs

We have created a single-layer RNN in Eq. (8.5). We can use the same

idea to create a multi-layer RNN the same way that we did for CNNs.

We combine different parts of the hidden state/statistic and use these as
features. In an RNN, it is traditional to combine the features both from

the lower layer and features form the previous time-step of the same layer.

As a picture it looks as follows

s Yt-1 Yt Yeg1 - - -

We can write an expression for this as
I+1 _ 1 opl+l ol
ht =0 (wtt h/t71 + whh ht) .

Again we have used trainable weights w;; € RP*P and wy, € RP*P
to compute the hidden state/statistic/activations of the top layer. For a
multi-layer RNN with L layers, the predictions at each time step are given
by

G = v hE.
The utility of having multiple layers in an RNN is similar to that of a
CNN, more layers let us create more complex predictors than the recurrent

perceptron-style predictor in Eq. (8.6) by learning a richer set of features.

8.2.1 Backpropagation in an RNN

Let us see how to compute the gradient of the loss function with respect
to the weights of an RNN in order to train the model using SGD. We will

@ How should we initialize the first hidden
vector hg in an RNN? We have not seen any
element of the sequence yet, so the value of
ho has no meaning per se. Typically, Ay is
initialized either using Gaussian noise or
simply to zeros.

98

consider a sequence of two time-steps for a single-layer RNN
hi = o(uxy) where weset hg =0
i =vhy

8.8
he = o(uxe + why) 88)

U2 = vho

The weights we would like to update are u,v and w. Let us say that
the loss function is only computed at the final time-step ¢t = 2 as ¢ :=

U(y2,92) = |ly2 — 9=2||>. Using our notation for backpropagation we have
de -
ds
— - d
Go =0 —
Y2
= —(y2 — 92)
T =1 @
%2 4y
= —(y2 — 2) h2
ha =gz v

_ dh
U = hy o' (uxs + why) <x2 + w1>
du

You should write down the update steps completely for an RNN making
predictions at each time-step, using the loss function

~ 112 ~ 112
0=y — 41 ll” + lly2 — ||

and see how the gradient of the loss at each time-step with respect
to weights “accumulates” in w,v and w. Backpropagation in RNNs
is also called backpropagation-through-time (BPTT). There is nothing
special going on inside BPTT, it is simply backpropagation applied to a
computational graph that is unrolled in time.

8.2.2 Handling long-term temporal dependencies

Implementation of BPTT for RNNs has a number of numerical issues.

Gradient vanishing

Notice that the gradient

_ dh
U = hy o' (uzs + why) (1‘2 + wdu1>

A dh
= —(y2 — J2)v o' (ux2 + why) <x2 + wdul>

A Computational graph of a single-layer
RNN. Please ignore the notation in this figure
and see Eq. (8.8).

(D) () o)
i Nt N
?.-'I vI t-L
fj::l.n‘ i '/Jr-—l-;}' H ;’;;[:i]
a9) .
i T 1 T (7 T

-~ -

.Q{m (i.@l Q@

A Note that expression for 7 where we get a
term %. Such terms are coded up in Pytorch
using gradient accumulation, i.e., if the same
function is used twice in the forward
propagation, the gradient w of its parameters
will be accumulated for each of the

backpropagation calls.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

99

in our backprop equations depends on the gradient of non-linearity. If we
have a sigmoid non-linearity and if the input activations to it uxs + why
have large magnitude, the output ho will be saturated. This results in
1, ho having small magnitudes. Further notice that % also depends upon
products of the weights v and the inputs xo. If you unroll this further
for a few more time-steps (like we did in HW2) you will see that future
activations h; are recursive products of past activations with weights. It is
easy to observe that if we have a matrix A and a vector x the product

lim A%z (8.9)
k—oo
goes to zero if the largest singular of Aislessthan 1,i.e., Amax = [| 4|5 < 1.

The product goes to positive/negative infinity if the largest singular value
is greater than 1 if x has a non-zero inner product with the corresponding
singular vector. In other words, if the length of the sequence is long, it is
due to the recursive computation in an RNN that the activations can blow
up to infinity. This can also lead to gradient explosion. The activations
can also become zero which can result in gradient vanishing.

All this is also true for CNNs with many layers: the weights of the
lower layers get their backprop gradient after it goes through multiple
nonlinearities (ReLLUs lead to saturation as well if the input is negative)
and can therefore receive a small gradient. While typical CNNs have 10
or so layers, typical RNNs handle sequences of length 50-100 (or more).
The chance of having vanishing gradients to the weights is thus much
higher in RNNs.

Propagation of information in BPTT

You would think that if the objective is a sum of the loss at each time; this
alleviates the problem of gradient vanishing. But there is a deeper point
we are trying to make here. The backprop gradient is an indication of
how much we should change u, ho to make more accurate predictions at
some future time-step y;. If ¢ > 2, the value of ho does not play a strong
role in making predictions too far into the future. In other words, the
predictions of the RNN become myopic we do not learn statistics that are
a function of the entire past trajectory, the statistics are highly dominated
by the near past which makes it difficult to capture long-range correlations
in the sequence and predict high-level concepts.

Which nonlinearities are good for RNNs?

Think about which nonlinearities are good for training RNNs. Gradient
vanishing is a large problem with sigmoids whereas both gradient vanishing
and gradient explosion can occur for ReLU nonlinearities. You might be
tempted to design a nonlinearity that does not saturate on either side of
the origin but such nonlinearities look closer to and closer to an identity
mapping and, as we have a seen, a linear model is much less powerful
than a nonlinear model. In other words, gradient explosion/vanishing is a
problem in BPTT for RNNs but there is really no effective solution to it.

21

22

23

24

25

26

27

28

29

100

Gradient clipping

We can avoid gradient explosion ruining the weights being updated by
using gradient clipping. There are many ways of implementing this
idea. The most prevalent one is to clip the {5 norm of the gradient to a
pre-specified value. The SGD update is modified to be

wdD = w® — g clip, (Ve (w?))

where V¢« (w(®)) is the gradient of the objective on the sample with
index w; € {1,...,n} in the dataset computed at weights w; and clipping
performs the operation

Ccv

1i = —
ipe(v) = [, e

where c is a pre-specified value and it is the /5 norm of the clipped
gradient. The scalar € in the denominator prevents numerical issues when
the gradient magnitude is small.

Sometimes you instead clip the per-weight gradient at values [—c,],
i.e., if the gradient vector is v € R? and vy, is the gradient at the k™
element

clip.(v) = [min(max(—c,v1),¢), ..., min(max(—c, vp),c)] .

Orthonormal initialization of weights

If A is an orthonormal matrix, we have
ATA=1T.

All singular values of an orthonormal matrix have an absolute value
of 1. This helps when we perform repeated multiplication with the
weight matrices in forward-backward propagation because the norm of
the intermediate products does not change

14%2 (], =

if A is orthogonal. The weight matrices of an RNN are typically initialized
as orthogonal matrices; this is easy to do by first initializing the matrix
using random Gaussian entries as usual and then setting the actual weights
to be the left singular vectors after computing an SVD of the matrix.

Moving window over the data

We wrote down SGD updates as sampling a random (input,target) pair
from the dataset at each iteration. The data for an RNN consists of a
number of trajectories/sequences. We can sample one (or a mini-batch) of
such sequences and a contiguous chunk of each of those sequences as a

A The function clip_grad_norm performs
gradient clipping. When you observe it
closely you will realize that it is really scaling
the gradient and should therefore be called
gradient scaling.

@ If the weights of an RNN are initialized as
orthogonal matrices, do they remain so after
multiple steps of SGD?

1

20

21

22

101

mini-batch in an RNN

Dmlm batch —{(33217yi)7-~ x257y25)}u
{(3?%73/%), $30ay30)}u
{(Jc’f?),yf?)) mgsaykg)}u

The hidden state ho of the RNN can be initialized to zero/randomly at the
beginning for all these trajectories.

We can however also play a neat trick while sampling mini-batches in
an RNN to give it the ability to handle more long-range correlations. The
mini-batch is treated as a moving window over the data and it is rolled
forward sequentially, i.e.,

Dininicvateh 1 = { (23, 41), - - - (Ths, yhs) } U
{@lvd), s (hy i) pU
{5, y1)s s (@55, 055) F U -
and the next mini-batch is chosen to be
Dhninibatch 2 = { (%, Ybg)s - - - » (T505 Ys0) } U
{(@ho. o). (wlo ydo) J U
{('Tgﬁaygﬁ)a) (xlgO:ylgo)} U...

In this case, we simply copy the hidden state/statistic ho5 of the previous
mini-batch as the initialization hq for the next mini-batch. While this
creates strong correlations in the consecutive mini-batches and data for
SGD is not sampled iid, it is a useful trick to increase the effective rage of
temporal correlations modeled in the RNN without essentially any special
operations. You can see an implementation of this idea at

https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L131

Roughly speaking, data that consists of sequences of length up to
25 can be trained with RNNs.

8.3 Long Short-Term Memory (LSTM)

Innovations on top of the basic RNN architecture try to improve their ability
to handle long-range correlations in the data. We saw that the updates to
the hidden state/statistic h; is the key to doing so. The architectures called
LSTMs, and their simpler counterparts called GRUs, are mechanisms that
give us more control to update the hidden state.

https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L131
https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L131
https://github.com/pytorch/examples/blob/master/word_language_model/main.py#L131

20

21

22

23

24

25

26

27

28

29

30

31

32

102

8.3.1 Gated Recurrent Units (GRUs)

GRUs “gate” the hidden state, i.e., the architecture has a mechanism to
control when the hidden state gets updated and when it does not. For
instance, if the first symbol in our sequence is very predictive of the future
of the sequence we want the RNN to learn to not update the hidden state,
and similarly if there are irrelevant words in the middle of the sequence
we want the hidden state to not be updated at those time-steps. A GRU
also has a mechanism to “reset” the hidden state that reduces the influence
of the previous hidden state on the next hidden state.

Recall that the hidden state for an RNN with a single layer is updated
as

hit1 = o (wphy + wemiyq) .

A GRU has two more variables that are called the reset variable and
the zero variable respectively, each created from previous x;, h; using
learnable weights

rer1 = sigmoid(wyy Tt + Why b
t+1 .g ' (e+ Whr) (8.10)
Ziy1 = sigmoid(wy, x4 + wpe hy).

The entires of 7, z; are between (0, 1). The update to the hidden state in
an RNN is modified to be

ht+1 = (172t+1)ht+zt+1 ®tanh (’UJh (7"t+1 ® ht) —+ wmxtﬂ) . (811)

If entries of 2,41 are close to O, the old state is propagated almost
unchanged to result in /44 1; information from ;1 is essentially ignored
in this case. If entries of z;4; are close to 1, the reset gate is used to
decide what the next state h;; is: if 7,41 is close to one, then the update
is the same as that of a conventional RNN; if 7, ; is close to zero, then the
previous hidden state does not play any role in the update and the update
is only dependent on the observation x4 1.

8.3.2 LSTMs

The design of an LSTM was inspired by logic gates in a computer and is a
bit complicated. The original LSTM paper is an assigned reading for this
lecture. LSTMs are powerful models in sequence modeling and in spite
of being developed all the way back in 1997, they are among the few deep
learning models that remained popular through the second Al winter and
are still the workhorse of the NLP industry today.

An LSTM has three new variables on top of an RNN, these are called
the “input, forget, and output” gates respectively

itr1 = o(Whs ht + Wai Tei1)
ferr = o(wng he + wop T141) (8.12)

0141 = 0(Who ht + Wao Ti41)

A The idea that the hidden state is the
memory in sequence models is more clear in
this context. In some cases we may want to
update our memory after observing a
particular part of the sequence, in some cases
we want to keep the memory unchanged,
while in some cases we may wish to
reinitialize the memory before observing the
future data.

A There are many variants of a GRU which
will reduce the number of operations used in
the GRU. For example, Light GRU, does not
use a reset gate and uses ReLU instead of tanh
(denoted here as ()), along with
batch-normalization.

Zep1 = (bn(wgs @) + whz he) 4
hiv1 = (1 = zi41) e + 20410
(wpht +bn(werig 1)), -

A GRUs are very useful recurrent models
because they are more general than RNNs but
at the same time much simpler than other
models such as LSTMs. In most cases, it is a
good idea to first try to fit the data using a
GRU before using more complex models.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

103

where all the above weight matrices are learnable parameters. In the GRU
we had the convex combination using the zero gate in Eq. (8.11) to prevent
forgetting. In an LSTM we use the two gates f;, i; for this purpose. The
hidden state of an LSTM is propagated as

hir1 = 0p41 © Cpp1 (8.13)
where the variable
Cty1 = fie1 © ¢t + i1 © tanh(wpe Ay + Weeliy1) (8.14)

is thought of as a memory cell. Understanding crisply what an LSTM ought
to learn is a bit difficult but we can think of an LSTM as parameterizing
the operations of GRU; convex combination in Eq. (8.11) is replaced by a
weighted combination using the input and forget gates in Eq. (8.14) while
the output gate in Eq. (8.13) is identity in a GRU.

Just like we can handle multiple layers in an RNN, we can also
have multiple layers in an GRU. Each layer gets its own gates; temporal
propagation is performed using the above equations and only the hidden
state h; is propagated up to the deeper layers.

You will notice that a lot of non-linearities in GRUs/LSTMs are sig-
moids and hyperbolic tangents. This is because these gates are interpreted
as Boolean variables that the model is supposed to learn. There are two
lessons to draw from this. First, if you are modeling some computation
and would like to learn a Boolean variable, it is a good idea to compute a
learnable function of the inputs and use a sigmoid nonlinearity. Second,
vanishing gradients are a problem with LSTMs/GRUs as well, the various
mechanisms (reset/zero in GRUs and input/forget/output in LSTMs) alle-
viate this to an extent but do not eliminate vanishing gradients. Roughly
speaking, we can use LSTMs to model sequences of up to length 50.

8.4 Bidirectional architectures

Until now, we have imagined that we would like to predict the future words
in a sequence or design a predictor that uses a statistic of the sequence
to predict the output. Our recurrent models were causal in the temporal
direction, i.e., future elements of the sequence did not play a role in the
outputs and updates of the model at time ¢. This is indeed how a lot of
computation is performed, e.g., if you want to predict the next location
of a vehicle in a video, you should not build a predictor that uses future
frames because this model cannot be run at test time without access to the
future frames. However, there are also problems in which you have access
to some future observation and estimate the present state. For instance,
you may fill in the following blanks totally differently depending upon the
context of the future words.

I am very
I am very for school.
I am very , I need a big dinner.

20

21

22

23

24

25

26

27

28

29

104

Bidirectional models help us distinguish between the three situations
and allow predicting context-specific output. Just like we motivated
recurrent models using a Kalman filter and sufficient statistics of the past
sequence, we can also derive an analogy with what is called Kalman
smoothing (predicting the current state given the past observations and
the future observations).

Building bidirectional models using RNNs is easy. We have two RNN's
running in opposite directions as shown in the following picture.

N R

Byl £

1
H,

==}
A

S

.'1

| =

[-}
ol g L
]

e

We maintain two sets of weights, one for the forward RNN and the
other for the backward RNN. This gives two hidden states, one in the
forward direction and another in the backward direction

i = o Zi41)

backward __ backward 7, backward backward
hy = o(wy hETME + wy, xt).

w’;‘;)rward hiorward 4 wg)rward

The concatenation of these two hidden states is now the sufficient statistic
of the entire sequence. So the output §; is now a function of both these
hidden states
Z)t — UforwardT h;‘orward + ,UbackwardT h;)ackward. (815)
Let us emphasize that these two directions have nothing to do with
backpropagation. There is a backpropagation for the backward directions as
well, which updates h2k"* 4 using hy****4_You should do the following
exercise: imagining that the loss is only computed on the predictions at
time ¢, i.e., £ = {(y;, ;) and think of how the backpropagation gradient
flows in a bidirectional RNN.

Just like we have bidirectional RNNs, we can also build bidirectional
GRUs and LSTMs.

8.5 Attention mechanism

The human perception system is quite limited by its sensors, we do not
have eyes at the back of our heads. It is also limited by computation, the
human brain consumes only about 12W of power when it works, about
30% of this power is consumed by the visual system.

21

22

23

24

25

105

[Van Essen, '02]

Figure 8.2: This is a picture of the human brain by a neuroscientist named David
Van Essen. Around the early 90s it became clear that brains consist of different
parts, each specialized to processing different kinds of data. The visual system
takes up a bulk (30%) of the real estate.

Our perceptual system is very powerful considering the limits of this
computation. We discussed reasons for this in Chapter 1, the ability to
move gives us the ability to specialize the processing on different parts
of the environment instead of passively processing all the incoming data
from the sensors. For instance, when you are driving, you look over your
shoulder only before you merge on the right, you do not really care to
remember where every car in your vicinity is at any given point of time.
Similarly, experiments on race car drivers reveal that even at high speeds
they do not pay attention to all parts of the environment, a driver typically
only cares about two variables, the heading of the car while going into a
turn and the distance to the apex of the turn. When you watch TV, you are
paying attention to only a small part of the TV screen. You can read more
about these experiments at http://ilab.usc.edu/surprise and in the work of
many other researchers who study such problems.

The human perceptual system is tuned to pay attention to only parts
of the input data that is relevant. Attention in machine learning is an
attempt to model this phenomenon. It turns out that since understanding
which part of a long sequence is relevant to making a prediction at a
particular time instant, attention is well-suited to mitigating the problems
with long-range correlations in sequence data.

8.5.1 Weighted regression estimate

Consider a regression problem where the true function is drawn in orange
and the dataset is shown in blue.

-20 -15 -10 -05 00 05 10 15 20

If we wanted to predict the targets, then the green line given by

TOEES Y
=1

http://ilab.usc.edu/surprise

7

8

9

106

is the world’s simplest estimator: it predicts the same output irrespective
of the test input z. We can do better using the Watson-Nadaraya estimator.
This computes the weighted combination

j(x) = Z k(x,a') y' (8.16)

where the kernel k(x, z*) computes some similarity between the input z*
in the dataset and the test input x; the kernel weighs the target y° higher if

: i
x is close to x*.
not not \ oo 7
el O\ o 7\
oso] \ /7 \
o5 \ /\ o]\ / \
/ / \
X ¢ om \ \
o4 \ \\\ —02s \ / \
02 \\ \ oo \ / Z k(x, x \
\ s N\ = 3y \
N oo N/ - Z/ k(%)

20 -15 -10 -05 00 05 10 15 20 20 -1s -l0 05 00 05 1o 15 20 20 -1s -l0 -05 00 05 10 15 20

Figure 8.3: The left panel shows the Gaussian kernel k(-, 2*) for different inputs
in the dataset. The kernel is not normalized so we cannot match the target values
y* easily using a weighted combination of the kernels. The second panel fixes this

by picking a normalized kernel k(z, z*) := %
; k=,
9(z) using a weighted combination of this normalized kernel is a non-parametric

estimator of the targets.

The estimate of the target

0 2 4 [2 4 0 2 4
Sigma 0.1 Sigma 0.2 Sigma 0.5 Sigma 1
0 g
o

104 .] 0.10
204 1

. 0.05
301 L 1

0 20 40 0 20 40 0 20 40 0 20 40
Sigma 0.1 Sigma 0.2 Sigma 0.5 Sigma 1

Figure 8.4: Top row: For the true function y = 2sin(z) + x + € where € is
zero-mean Gaussian noise (dotted lines), we sample 40 data points from the domain
of x (orange points) and fit the targets using the Watson-Nadaraya estimator using a
Gaussian kernel for different values of o. Bottom row: For each of these problems,
the heatmap denotes the term k(z*, 27) /(3> k(2*, ") where 7, j and k range
over the 40 data points (say arranged in ascending order from left to right on
the real line). As the bandwidth o increases, the “attention map” denoted by the
kernel becomes more diffuse and takes into account farther and farther data points.

The Watson-Nadaraya estimator in Fig. 8.3 is a simple interpolation
mechanism and it is also consistent, i.e., as the amount of data n — oo,
the regression error goes to zero. There are no “weights” in this model; all

A We can come up with many different
kernels that will work for this problem, e.g.,

Gaussian = exp<||x - x'||2/(202))

Box = 1{ja—arj<c}
Laplace = exp(—\||z — 2|

Any of these are reasonable kernels to use for
the Watson-Nadaraya estimator.

21

22

107

the intricacy lies in choosing the kernel to calculate the similarity between
two samples.

An attention layer can be thought of as learning a particular kind
of weighing function in our regression estimate.

8.5.2 Attention layer in deep networks

Let us consider a typical kind of attention that is heavily employed in deep
learning. It is called the dot-product attention mechanism. This takes in
two matrices as input: k& € RT*? which is called the “key” and v € RT*?
which are called “values”. Given a query vector ¢ € RP the attention
module outputs

o (k;q) U4

i=1

(8.17)

where k; denotes the ;™ row of the matrix and likewise for the values.

Observe that the summation is a weighted combination of all the values
v; with weights given by the similarity of the query with each of the keys
k;. Just like the Watson-Nadaraya estimator, we would like these weights
to be normalized, so we choose

.
eki a

o(k;' q) = softmax,(k; ¢) = =
Zj €’
the softmax normalization is performed over the time-axis 7. In simple
words, the expression is a weighted combination of the values where the
kernel is computed using a simple dot product and normalization of the
kernel is performed using softmax. If a particular query vector q is similar
to one of the keys k;, that value v; gets up-weighted in the summation.
The expression for attention is equivalent to the Watson-Nadaraya
estimator with

train data x; = k; keys

test data x = g query
targets y; = v; values
ek

kernel k(x;, z) = 9 exp-dot-product

.
eki a

Xyt

normalized kernel a(k:iT q)

If the query is one of the keys k;, this is called the self-attention
operation.

How can we use this in a deep network? First let us consider a standard
convolutional network with features h! € R™*¢ at the ™ layer; we have

A Tt is traditional to replace the inner-product

by k\i;; . Keys and queries will be
parameterized by the weights of a neural
network later. And they can become quite
correlated to each other and result in a very
large inner product. The denominator v/d is
chosen with the rationale that if we have two
p-dimensional random vectors with standard
Gaussian entries, then their inner product has
zero mean and variance p; we can think of
this division as an attempt to preserve the
magnitude of the similarity kernel in
attention.

A This is not the only kind of attention. The
additive attention operation uses

o(k;,q) = tanh (w,Ik; + quq) ;

in general, as we said above we can use any
kernel for attention.

20

21

22

23

24

25

26

27

28

29

30

31

108

reshaped the width and height of the feature map into a single dimension
of size m, the number of channels is ¢. And we have not shown the
dimension corresponding to the batch-size. If we set the keys, values and
queries to be learnable quantities

R™*¢ 5 k = relu(w, h')
R™%¢ 3 q = relu(w, h') (8.18)
R™*¢ 5 ¢ = relu(w, h')

then the output of the attention block would be given by a weighted
summation over the features for each pixel

hé.‘“ = Z softmax; (k; ¢;) v;. (8.19)

i=1

This is a just a more complex version of the correlation operator. It creates
output features hé-“ for j € {1,...,m} that capture the similarities
between queries and the keys.

Handling set-valued data with attention Note that the output of Eq. (8.19)
is unchanged if keys k; were permuted and their values were permuted
consistently. The attention operation, or a self-attention operation, is
permutation invariant. This makes it very useful for modeling problems
where we are interested in making predictions using a set of entities, and
would like the output to not depend upon the order of the inputs, e.g., the
path of an autonomous vehicle depends upon the set of other vehicles in
its vicinity and their locations, not the order in which they are presented;
the number of chairs in a room does not depend upon the order in which
the camera them as it pans around the room. The attention-operation is
ideally suited to model such problems.

Zaheer et al. (2017) proved that a function f({z!,...,z"}) that
operates upon a finite set (n < co) of inputs {z!,..., 2"} with 2* € Ris
permutation invariant if and only if it can be decomposed in the form

f{at,. 2™ =p Z@(xi)

for some transformations p and ¢. The function ¢ can be thought of as
a feature generator that runs on each input of the set x*; these features
are aggregated (which makes the sum invariant to permutations of inputs)
before the transformation p acts upon it. The basic Watson-Nadaraya
kernel in Eq. (8.16) is permutation invariant. The attention operation
in Egs. (8.17) and (8.19) is also permutation invariant. This indicates that
for any problem where we need a permutation-invariant representation,
we can use the attention layer fruitfully.

A Draw a picture of the computation in an
attention module

A Tf we want to build permutation invariance
through data augmentation, we will need to
augment the dataset to have each permutation.
For a sequence with n elements, there are n!
permutations. It is much better to build
permutation invariance via a clever choice to
the architecture.

20

21

22

23

24

25

26

27

N
®

29

109

Position Encoding For many problems we do need to consider the order
of the elements in the set, e.g., for predicting the next word in a sentence,
we should consider the order in which we saw the previous words. A
permutation-invariant model would generate very poor English sentences
(but it would do perfectly fine for languages which do not need a fixed
word order such as Latin, Greek, Polish, or Sanskrit). Therefore, attention
operation would lead to a poor model of sequences for which the order
matters (most sequence are like this).

Position encoding modifies the input to retain information about the
position at which the particular input arrived in the sequence. There are
many ways of doing so, for example we could think of simply concatenating
time to the original input to get (¢, z;). But this makes it difficult to handle
very long sequences, e.g., as t increases, the domain of the inputs to the
model also increases, and if the test data has longer sequences than those
in the training data then we will surely see a distribution shift in the data.
It is therefore popular in sequence modeling to use Fourier features, e.g.,
sinusoids, and use the input

Zy =p(t) + x¢, where
RY 5 p(t) = [sin(wit), cos(wit), sin(wat), cos(wat), ... (8.20)

. ,sin(wd/gt),cos(wd/zt),]T,

and the frequencies are chosen by the user. For example, Vaswani et al.

(2017) used
w; = 1078(i71)/d

where z; € RY. The number of frequencies should be chosen after
considering the length of the largest sequence that we wish to model. Each
128-dimensional row of the following figure shows the elements of the
position encoding (t), each row represents a different value of position
t; depending upon the dimensionality of the input z;, the width of this
picture would be truncated to obtain the position encoding.

[100

Depth

It may seem peculiar that we are summing up the encoding of time
©(t) and the original input z;;. The dimensions of the signal z; and the
different dimensions of the position encoding ¢(t) mean very different
things. We could have also used

(o (t), 1)

20

21

22

23

24

25

26

27

28

29

30

31

110

4
Positionwise
FFN

Add & norm

[}
Multi-head
attention

:

)

Figure 8.5: One block of the encoder of a Transformer architecture.

The difference between the two is a tricky implementation detail. If we sum
the position encoding, then on one hand, an attention-layer in Eq. (8.18)
that uses these inputs does not have to consider the time part and the input
data distinctly but on the other hand, the magnitude of inputs x; needs
to be chosen carefully to ensure that the temporal information (which
is magnitude 1 for each dimension and depends upon the length of the
sequence. . . which is perhaps why Vaswani et al. (2017) used frequencies
w; that also depend upon d). If we concatenate the position encoding, then
on one hand the attention-layer in Eq. (8.18) needs to select its weight
matrices to correctly account for the position encoding. On the other
hand, we need not worry about the relative magnitude of ¢(¢) anymore.
In practice, most people use summation.

Multi-head attention Just like we have multiple channels in convolu-
tional networks, we can have multiple channels in attention-based networks.
What we have shown in Section 8.5.2 is a typical “encoder” block from
the Transformer architecture. The multi-head attention layer implements
multiple sets of keys, queries (in the more common self-attention layer,
the queries are the same as the keys) and values and concatenates the
output features in Eq. (8.19) for these different sets, followed by a fully-
connected layer to bring back down the dimensionality of the output. A
layer normalization layer is used to normalize these concatenated outputs;
usually there is a residual connection where the input to the multi-head
attention layer is added to its output. The position-wise FFN shown in
this picture is simply a fully-connected layer that runs on the features of
each time-step independently.

8.5.3 Attention in recurrent networks

The attention operation is very useful for sequence modeling because it
completely eliminates the problem of vanishing/exploding gradients. For
a sequence of length T, the attention layer computes the same operation
as in Eq. (8.19). Observe that this expression, rewritten here with the
number of features m = T corresponding to the time dimension and the

20

21

22

23

24

25

26

27

111

feature size c = p
T
W =) " softmax (k' ¢;) vi
i=1

has hidden state h;“ that depends on the hidden states of the lower layer
ht,i € {1,...,T}. Effectively, the attention layer acts as a temporal
shortcut that makes the hidden states of an RNN dependent on both past
and future hidden states for the sequence. In a picture, this looks as
follows.

Attention i

- | Recurrent layer

- | Recurrent layer

Embedding

T i

Sources

The recurrent layers compute features in a causal fashion but the attention
layer connects all the time-steps together. If you think of how backpropa-
gation gradient flows down from the output layer via the attention, you
will realize that the gradient of the loss computed at step ¢, say £(yz, §¢)
flows back to the hidden states ho using two paths; the first is the standard
BPTT path of the recurrent layers while the second one is a more direct
path of the cross-correlation operation in the attention layer. This is a huge
benefit because it essentially eliminates problems with gradient vanishing
and allows recurrent model very long sequences. Modifications of this
attention module can easily handle sequences of a few hundred words.

What is the sufficient statistic that is built by attention? We began our
discussion on recurrent models by arguing that we need to build a statistic
of the past sequence that can predict the next element of the sequence, i.e.,
a sufficient statistic. To repeat Eq. (8.4)

hiy1 = @ (he, 2p41)

and recurrent models such as RNNs and GRUs/LSTMs implement such
an update. But as we said the updates to the sufficient statistic were made
recursive simply for computational purposes. Attention predicts the output
directly using all the past inputs

Je1 = func(xy, ..., 2e41)

in a non-recursive fashion. In other words, attention-based models are
no different—conceptually—than the recurrent models that we have seen

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

38

112

before. Except that attention-based sequence models are quite peculiar,
there is no hidden state in these models. Attention-based layers are also
therefore fundamentally more expensive in terms of computation.

The upside of extra work is that in other recurrent models, the
same statistic h; has to maintain information about all kinds of future
words/tokens etc. For example, if we are building a language model that
can create new text, then this same statistic h; has to learn both the local
structure of nearby words and also global structure about the language,
context consistency between successive sentences etc. We have seen the
issues while doing so for RNNs or GRUs/LSTMs, e.g., vanishing gradients
for long sequences. Attention-based networks circumvent this by simply
not having the hidden state.

This discussion also suggests that one can forego the recurrent
layers altogether in the above picture and simply use attention-based
layers for the entire network.

Attention operator can be computed completely in parallel Note that
the number of features p can be quite large, say p ~ 103 and similarly
the length of the sequence that we would like to address with attention-
based models can be quite large T~ 103. Calculating the self-attention
operation in Eq. (8.17) requires O(pT?) amount of work. There are a
lot of important techniques that have been implemented over the years to
hide the latency of this calculation and speed-up attention. It important to
remember that although attention allows us to handle sequences of very
large lengths, the amount of computation that needs to be performed scales
quadratically with the sequence length. This is not as bad it seems, because
unlike recurrent models where have to predict the outputs sequentially,
the outputs of an attention-based network can be computed completely
in parallel. In other words, while an RNN does O(T p2) work, it needs
O(T) time to process things sequentially. An attention-based network has
to do O(p*T?) work in O(1) time. The factor of p* comes from the size
of the key, value and query matrices in an attention-based network, or the
weight matrices for updating the hidden state in an RNN.

8.6 Some applications of attention-based net-
works (transformers)

Attention-based models are ideally suited for problems where we need
to work with a sequence of inputs. Certainly, they can also be used for
problems where there is no temporal structure, e.g., for any problem where
we used a multi-layer perception or a convolutional network, we can also
use an attention-based layer. Roughly speaking,

Multi-layer perceptron D Self-attention-based layer O Con-
volutional layer,

A For many applications, the inputs to each
attention layer are masked to ensure that the
output, say ¢, is computed causally by the
layer at time ¢, i.e., it does not depend upon
future inputs such as x;,. This masking can
be done by modifying the operation

in Eq. (8.19) as

T
hy = Z softmax (k;rqt + mst) Vs
s=1
where mg; = —oo if s > t and zero

otherwise. This is called causal attention.
You can use masking to enforce many
different kinds of restrictions on how the
attention-based computations should be
performed. Variants of causal attention need
to be implemented very carefully on each
layer of an attention-based network to ensure
that we are not using information form the
future, see a good example at (Sukthanker

et al., 2022).

A Due to the popularity of the Transformer
architecture, first built by Vaswani et al.
(2017), self-attention-based networks have
become essentially synonymous in the
literature with “Transformers”.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

113

i.e., any function that can be fitted using a CNN can also be fitted by
an appropriate attention-based model (you can think of attention as a
particular nonlinear convolutional kernel with width equal to the size of
the input), and any function that can be fitted by a self-attention-based
model can also be fitted by an appropriate fully-connected network (the
computation performed by the attention layer of course can be fitted by
the MLP). Self-attention-based networks strike a good balance between
versatility (similar architecture can be used for text and language and
many other modalities, CNNs and MLPs can also be used like this but
it takes some creativity to do so) and ease of training (training large
MLPs is very difficult due to numerical issues which we will see in
the next Module). All this, coupled with the rise of efficient libraries
that implement attention well, e.g., Hugging Face transformers library
https://github.com/huggingface/transformers, there is a huge number of
applications that have seen good results using attention-based architectures.
We will next briefly survey some examples.

8.6.1 Pretraining on natural language

Very often, models are trained in two stages. First a model is trained on a
large source of data for some simple task, e.g., predicting the next word.
This first stage is called “pre-training”. Next, the final layer of this model
is reset, or often modified, to allow it to make predictions on some new
problem using a new dataset, e.g., answering questions about a piece of
text, which requires the model to generate new words in response. This
second stage is called “fine-tuning”.

We might be able to understand using the bias-variance tradeoff why
such a strategy is fruitful; the essential idea is similar to the procedure
called doubly robust estimation that we saw in the section on correcting
for covariate shift. The pretraining phase restricts the class of models to
the ones that can effectively solve the pretraining task, namely predicting
the next word. And the fine-tuning stage now needs to select a model
from a much smaller set. The variance of the fine-tuning procedure can
therefore be small even if we do not have too much data in the second
stage. The success of this procedure hinges upon two things: (i) whether
the pretraining task is broad enough that the solution of the fine-tuning
stage lies within the reduced set of models, and (ii) whether the pretraining
task is narrow enough that it meaningfully restricts the set of models to
create the reduced set.

We will next look at a few ways to pretrain representations on sequential
data. Consider a dataset D = {(«}){_,},_, with n sentences and T
words in each sentence. Let us suppose that our goal is to calculate
whether a new sentence (z;)7_; is like the ones in our dataset, i.e., we
would like to learn a probability distribution

p(x1,...,27)

that gives high likelihood to sentences that look like they belong to
our dataset and low likelihood to sentences that are outside. This is a

A For image classification, you can imagine
that in the pre-training stage we build a model
to predict the RGB pixel intensities of a patch
of the input image. The input and output of
this architecture will have the same size

<

v
EEE - EEEEEEEEEEEE
\
EENEN

The above picture is an example of a masked
autoencoder (ignore the details of the
architecture for now). After pretraining, we
can use the features of one of the layers of this
model as inputs to a classifier layer and
fine-tune an image classification model.

https://github.com/huggingface/transformers

20

21

22

23

24

25

26

27

28

29

30

114

complicated distribution, e.g., say a sentence has 7' = 15 words, and
we have about 10,000 unique words, then this probability distribution is
supported on a domain of size 159" ~ 1012000 which is an absurdly
large number. Of course, the set of legitimate or natural sentence is much
smaller and that is why we can hope to learn something meaningful using
this approach.

Bidirectional Encoder Representations from Transformers (BERT)
Instead of modeling the likelihood as a joint probability over all the T’
words, BERT models it as

T
0= — Zlogpw(xi | xl_t) (8.21)
t=1

where ', = (2%,...,2}_,2i ,...,2}) denotes the sequence of
length T with x} replaced by a special masked token to indicate missing in-
formation. Each term in the summation is the log-likelihood of predicting
the word z¢ using all the words that came before it in the same sentence
and all the words that came after it—hence the name bidirectional. We
can also code up the term p,, (2% | 2 ,) using masking to ignore z¢. The
training objective of BERT is simply the maximum likelihood objective

using this model
I~
(= — 2.

The other details of the architecture, e.g., position encoding (BERT uses
learned position encodings), multi-head attention, layer normalization etc.
are the same as that of the Transformer architecture.

As we said above, BERT provides a good pretraining objective without
any annotations. After this stage, we can use its outputs for a variety of
fine-tuning tasks. For example, in the figure below, the sentence is going
to be classified as grammatically correct or incorrect using annotated data.

Label

Repgs- Rep; Rep, Rep; Rep, Reps Reps Repesep-
t t t t t t t

BERT

<cls> Token, Token, Tokeng Token, Tokeng Tokeng <sep>

- - -
\\\\\\ \\ / -
R N

- -
-7~

Single text sequence

The outputs of the individual words are not being used here, only the
output corresponding to the first token (which is a special “word” that
signals the beginning of a sentence) is being used to classify. In other
problems, e.g., prediction of the part of a sentence, we would use the other
outputs.

A The original BERT paper also used a loss
where the model takes as input two sentences
in different orders and fits a binary classifier
to detect which sentence came first in the text.
Let us ignore this for clarity’s sake.

A Once we become comfortable with writing
these kinds of likelihoods for pretraining
objectives, there are many alternatives to
think of, e.g.,

T

- ZF‘ [logpw(xta <oy LT | (O] .’t)]
t=1 "

where the mask denoted by 7 = (r;)_; for
ry € {0, 1} hides a random sub-sequence of
consecutive words in the sentence x using a
single special token. This loss, in addition to
the BERT objective, was used to train a
famous model named T5 by Google.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

115

word2vec with a contiguous bag of words We can also build a rather
simplistic model of the data by writing

T

= =3 Mog pu(@h | T ooy @ Thy, e Ty). (8.22)
t=1

2m neighboring words

where instead of using the entire sentence to predict ¢, we only use the
m words before and after. Such a network would not be able to model
long-range dependencies between words but it would be good at using
local context to fill in the blanks, i.e., predict ;v; This model called
word2vec was one of the first examples of highly versatile and effective
word embeddings (there are many uses for this, e.g., in content retrieval
and text search). A smaller window of 2m words also reduces the amount
of computation that we need to do for predicting the embedding of each
word in the sentence.

Generative Pre-trained Transformer (GPT) The BERT objective is
not causal, i.e., the prediction of a word depends upon both which words
came before it and which ones came after. Such a pretraining objective
cannot be used if our desired task is to generate new text. The GPT
objective is

T
0= — Zlogpw(xi | 2L,). (8.23)

t=1
where 2%, = (2%, ..., x}_,) denotes the sequence of length ¢ — 1 that ends

just before . Each of the terms in the summation is the log-likelihood of
predicting the next word z} using all the words that came before it; as we
saw before we can easily use a mask to force GPT to ignore z%,. GPT
uses sines and cosines as position encodings, multi-head attention, layer
normalization etc.

The interesting aspect of writing the probabilistic model like Eq. (8.23)
is that at inference time, we can draw samples

B~ pu(| 2<r) VE=To+1,...,T,

starting from Ty initial words of a sentence (1, ..., 2zr,); this starting
sequence is called a “prompt”. The predicted sequence at each time-step
as the model runs forward is

Tt = (Ih e 7IT0753T0+175E16—1)-

Later variants of GPT are very similar to this objective, except that GPT-3
was trained on about 500 billion tokens (roughly the same thing as words).

Reconstruction of the original input is a good pretraining task In
general, the pretraining task can be any task that restricts the set of
hypothesis sufficiently before the fine-tuning phase begins. It has been
noticed that for many problems, completing masked versions of the input

20

21

22

23

24

25

26

27

28

116

(e.g., predicting missing words in the text, in-painting masked patches
of an image) or building invariance to transformed versions of the input
(e.g., ensuring that the features of the original input image are close to
those of the same image rotated, translated, masked, blurred etc.) are very
good pretraining tasks. Such tasks, specifically reconstruction of masked
versions of the input, force the model to learn features that are a lossless
encoding of the original inputs—in our words, the features are a statistic
of the original input that are sufficient for reconstruction.

8.6.2 Handling multi-modal inputs

Since the attention layer can be used for different input modalities, we have
a neat way of combining them while building our model. For example,
the CLIP model shown below (from (Radford et al., 2021)) computes a
joint embedding from images and text.

(1) Contrastive pre-training (2) Create dataset classifier from label text

L1

T T | T Ty

PR P T R P A T

> b || BT | LT | LT LTy L R AN R 5

» Image
Lo | aT 5T | BT 15Ty
Encoder imaga | [T BTy | LT Ty LT
) | Ty | 0Ty | Ty

Given a dataset of images and their captions (e.g., those derived from
Instagram, or created manually from visual recognition datasets such as
Imagenet to have captions such as “a photo of a dog”), CLIP pretrains the
model in a simplistic fashion. At each mini-batch, the text embedding
of the caption is forced to be similar to the image embedding of the
corresponding image, while being far away from the image embedding of
all the other images in the mini-batch. Given n input pairs (¢, ¢') where
2% is an image and ¢’ is a caption, we can use an objective

| 2

o~ M2|[e(a")—e(c)

Zj e=A/2lle(@h)—p(ch)]|?

0. = —log

o~ M2|e(e—ea)]?

i 8.24)
=1 — (
fem Tl >, e M2 @I

2

Effectively, in £¢ we are setting up a Gaussian mixture model where the
centers of the Gaussians are at o(2*) and we are maximizing the likelihood
of the correct caption embedding ¢(c?) being closer to this Gaussian than
the others; a similar loss is used to get /2 where the Gaussians are now
centered at ¢(c') and we are calculating the likelihood of the image
embeddings being close to the correct Gaussian.

A These techniques, when combined with
the fine-tuning phase for a particular task, e.g.,
image classification, text translation,
generative modeling of images/text/sounds
are called self-supervised learning. Most
people also pretrain models on very large
amounts of data, e.g., millions of images, or
terabytes of text, to pretrain “foundation
models” from which we can fine-tune to a
very large set of tasks.

117

This is a very simple objective but CLIP is very effective at a wide
variety of problems ranging from supervised learning (i.e., a CLIP model
trained using this loss can be used for image classification as shown in
the figure (b) and (c), you can also use a linear classifier using the CLIP
features).

20

21

22

23

24

25

26

Chapter 9

Background on
Optimization, Gradient
Descent

Reading
1. Bishop DL Chapter 7

We have covered the cliff-notes of the practice of deep learning in
the previous eight chapters. It is by no means a complete overview.
The practice of deep learning is an enticing, mysterious, and sometimes
frustrating enterprise. The more time you spend playing with code,
the more you will learn about deep learning. New ideas are routinely
discovered using very simple experiments that each of you is capable of
running now.

As we discussed, there are three main concepts in machine learning.
First, the class of functions f(z;w) that you use to make predictions, this
is called the hypothesis class or the architecture. Second, the algorithm
you use to find the best model in this class of functions that fits your
data; this uses tools from optimization theory. Third is the generalization
performance of your classifier. Machine Learning is about picking a good
hypothesis class, finding the best model within this class and making sure
that the model generalizes.

The above process is relatively well-understood for simpler models
such as SVMs but the story is quite murky for deep networks. Often
in practice, it is never clear which architecture you should pick for your
problem (many of you have asked this question in the office hours for
instance). Training a deep network involves a number of bells and whistles
(some of which like Batch-Normalization and Dropout that we have seen)
and if at the end of this exercise we get a high validation error, it is unclear

118

20

21

22

23

24

25

26

27

28

29

30

119

how one should change the parts of the process to improve performance.
Disentangling this vicious cycle is what “understanding deep learning” is
all about.

Goal Module 2 will develop an understanding of optimization and
generalization for more generic machine learning models first. It will
end with an insight into understanding their interplay for deep networks.
Module 2 has a different flavor, it is more theoretical. Our goal is to grasp
the general concepts behind these theoretical results and understand the
training process of deep networks better. This will also help us train deep
networks much better in practice.

9.1 Convexity

Consider a function ¢ : R? — R that is convex, i.e., for any w, w’ that
lie in the domain (which is assumed to be a convex set) of f and any
A € [0, 1] we have

(Aw + (1= Nw') < M(w) + (1 = A)l(w'). ©.1)

A function ¢(w) is concave if —¢(w) is convex. If the function f is
continuous, it is enough to check this definition for a particular value of
A, say A = 1/2 if you need to prove that a function is convex. Some
examples of convex functions are

e powers w® forw > 0and o > 1,

* powers of absolute values |w|” forw € Rand « > 1,

* exponential exp(w), negative logarithm — log(w) for w € R,
* affine functions Aw + b,

e quadratics w' Aw +bTw + ¢ with A > 0,
d P 1/p
* norms [|w||,, = (Zi:l |w;]|) forp > 1, or||wl| ,, = maxy, |wy|,

* log-sum-exp f(wi,...,wq) = log)y, exp(w;) for w € RP.

A couple of standard tricks that help prove that a function is convex
The first one is called “midpoint convexity”. If a function is continuous,
then showing that the definition of convexity is satisfied for A = 1/2is
sufficient to prove that the function is convex. The proof is as follows.
Suppose we have

A The Cauchy-Schwarz inequality states that

(£2) (£#) = (£o)

A generalization of this is Holder’s inequality
which states that

() () ()

forany 1/p+1/qg = 1.

20

21

22

23

24

25

26

120

This can be used iteratively to show that

2"L
wy + wo + ... wan 1
() < 5 5w
k=1

for n arguments wy, ..., wsn € RP. Now set wy = -+ = w,, = w and
Wyl = -+ = won = w'. This gives
¢ (%w + (1 - Qﬁn) w’) < Qﬁne(w) + (1 - Zﬁn) O(w').

This proves the definition of convexity for ¢ for all A = m/(2"). Now,
dyadic rationals, i.e., numbers of the form m/(2") are dense in the unit
interval, i.e., any real number A is arbitrarily close to a rational of the
form m/(2") for some m and n. Therefore, we can take the limit as
m/(2™) — X to see that the definition of convexity holds for any value of
A

The second important trick is to observe that if a function £ : RP — R
is convex, then it is convex “in any direction”. Consider a function
g:R—=R

9(\) = fw + A(w' — w))

for any two points w,w’ € RP. Now see that, for all A € [0, 1]:

(1= XNw + ')
9(A)

(1= \)l(w) + M(w')

<
< (1=X)g(0) + Ag(1).

Strictly convex functions Strictly convex functions have the property
that for all w # w’ in the domain (which is assumed to be convex) and
Ae(0,1)

LAw~+ (1= Nw') < M(w) + (1 — N)e(w').

First-order condition for convexity If / is differentiable, the definition
of convexity in Eq. (9.1) is equivalent to the following first-order condition.
A differentiable function ¢ with convex domain is convex iff

L(w') > (w) + (VE(w),w" —w). 9.2)

for all w, w’ in the domain. Note that the first-order condition is equivalent
to the definition of convexity in Eq. (9.1) for differentiable functions. The
proof is long but easy; you can see https://www.princeton.edu/ aaa/Pub-
lic/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf for the proof. For
strictly convex functions the inequality is strict

L(w') > l(w) + (Vl(w),w —w).

Monotonicity of the gradient for convex functions The first-order
condition for convexity gives a useful, and equivalent, characterization of

https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf
https://www.princeton.edu/~aaa/Public/Teaching/ORF523/S16/ORF523_S16_Lec7_gh.pdf

20

21

121

the gradient. Write Eq. (9.2) for w, w’ in two opposite directions

t(w)
(w")

(w') + (Ve(w'),w — ')

>/
> L(w) + (VL{(w),w" —w)

and add them to get

(Ve(w) — VEe(w'),w —w') > 0. 9.3)

This is called the “monotonicity of the gradient” condition for convexity.

In words, it says that the change in the gradient V{(w) — V{(w’) and
the change in the weights w — w’ are aligned, i.e., their inner product is
non-negative.

Second-order condition for convexity If / is twice-differentiable and
the domain is convex, then ¢ is convex iff

V20(w) = 0, 9.4)

for all w in the domain. The symbol > denotes positive semi-definiteness
of the Hessian matrix V2/(w) whose entries are given by

_9H(w)

ij awlc“)wj

(V20(w))

For strictly convex functions, the inequality in Eq. (9.4) is strict, i.e., the
Hessian is positive definite.
As an example using the second-order condition of convexity to
show that a function is convex, note that the least squares objective
1

l(w) = gHy — Xng is convex because

VH(w)=X"TX =0

which is positive semi-definite for any X.

Strongly convex functions A function is strongly convex if there exists
an m > 0 such that

l(w) — %Hwﬂg is convex. 9.5)

It is easy to see that strong convexity implies strict convexity. Since
the function £(w) — m/2||w||” is convex, it satisfies:

(Ow + (1 — Nw') — %wa + (1= N

9.6)
m 2 _ Ny 2
<A (#w) = Slwl?) + @ =) () = Zle'|).
But
m 1—-XA)m m
A 2 2 P (1) > 0

A Try to prove that monotonicity of the
gradient is equivalent to convexity.

1

2

20

21

22

23

122

for A € (0,1) for all w # w’ because ||w||? s strictly convex. This shows
that if we have a strongly convex function / it also satisfies
(Aw + (1= X'

) < M(w) + (1= N)(w').

In other words, we have

strong convexity == strict convexity == convexity.

We will see that strongly convex functions are easier to optimize

for our algorithms. It will also always be much easier to prove a result,

e.g., the number of iterations that we should run gradient descent for, for
strongly convex functions. In your homework, you will show that the
second-order condition for strongly convex functions reads as

V2(w) = mIpxp.

We will use the following first-order condition for strongly convex
functions often. A function is m-strongly convex if and only if

fu') = 0w) + (Ve(w),w’ —w) + ' —wl* ©.7)

for any w, w’ in the domain. This is easy to show by observing that the
function of v = w’ — w
9(v) = (v +w) = L(w) = (Vi(w),v),

where w is fixed, is also m-strongly convex if £ is and therefore g(v) —
m/2|v]|? is convex.

9.2 Introduction to Gradient Descent

In this chapter, we will write ¢(w) to denote the training objective, i.e.,

if we have a classifier f(z;w) and a dataset D = {(
samples we will denote

ey}, ofn

3

liﬁw x ,y
i=1

The objective ¢ will always be a function of the entire dataset but we
will keep the dependence implicit. Note that the number of samples n is
usually quite large in deep learning, so the summation above has a large
number of terms on the right-hand side.

Gradient descent is a simple algorithm to minimize ¢(w). Before we
study its properties, it will help to refresh the following few facts.

A For m-strongly convex functions the
monotonicity of the gradient gives:
(Vl(w) = Ve(w'),w —w') = mlw—uw'|",
for all w,w’. Try to prove it. This condition
boils down to simple monotonicity of the
gradient for m = 0 (which is just a convex
function). This is why it is also called strong
monotonicity of V. This condition is also
called “coercivity”.

A Another implication of strong convexity.
The Polyak-Lojasiewicz (PL) inequality says
that

S IVE@)IE > fw) — ™). ©08)

Functions that satisfy the PL inequality need
not be convex (it simply says that the
magnitude of the gradient at a point w should
be large if w and w* are very different) but it
has been studied that such functions are also
easy to optimize using first-order
optimization methods. It has been empirically
found that the PL inequality holds for many
deep networks. Prove that a strongly convex
function satisfies PL inequality, you can first
prove Eq. (9.7) and minimize both sides of
this inequality over w’.

20

21

22

23

24

25

26

27

28

29

30

123

9.2.1 Conditions for optimality

Local and global minima A point w is a local minimum of the function
¢(w) for all all w’ in a neighborhood of w we have ¢(w) < ¢(w’). The
point is a global minimum of the function ¢ if this condition is true for all
w’ in the domain, not just the ones in the neighborhood.

Local minima are global minima for convex functions This is easy to
see using an argument by contradiction. If w is a local minimum that is
not the global minimum, there exists a point w’ in the domain such that
f(w'") < €(w). The function is convex, so pick a pointv = Aw’+(1—X\)w
and see that

() = 6(w) < A(b(w’) = £(w));

using the definition of convexity. Since w is only a local minimum, we
can pick A\ to be small enough that the left hand side is non-negative. This
shows that £(w’) > £(w) but this means that w is a global minimum and
we have a contradiction.

Global minimum is unique for strictly convex functions If a function
is strictly convex on a convex domain the optimal solution (if it exists)
must be unique. Indeed, if there were two solutions w, w’ that were both
minimizers we would have

l(w) = L(w') < L") Yw". 9.9)

We can now apply the definition of convexity to the point v = (w +w')/2
to get

() < %E(w) + %E(w’) — {(w),

which contradicts Eq. (9.9). The least-squares objective is strictly convex,
so the solution is unique global minimizer of the objective.

First-order optimality condition If w is a local minimum of a continu-
ously differentiable function ¢, then it satisfies

Vi(w) = 0. (9.10)

If further ¢ is convex, then V/(w) = 0 is a sufficient condition for global
optimality from the above discussion.

9.2.2 Different types of convergence

Let us assume that we have a continuously differentiable convex function
£ and let
w* = argmin ¢(w)

w

be the global minimizer of this function.

20

21

22

23

24

25

26

124

We would like to develop an iterative scheme that takes in the initial-
ization of the weights w" and updates them to obtain a sequence

w® w® L w®

Along this sequence we are interested in understanding the

1. convergence of the function value £(w®)) to the minimal value
£(w*), and

2. convergence of the iterates ||w(t) — w* ||

Descent direction We are going to perform a sequence of updates given

by
wtD — ® 4 n d® 9.11)

where d® is called the descent direction and the scalar parameter 1 > 0
is called the step-size and determines how far we travel using this descent
direction. Any direction such that

<V€(w(t)), d<t>> <0

is a good descent direction because this leads to a reduction in the value of
the function E(w(tﬂ)) after the weight update locally. There are numerous
ways to pick a good descent direction. Among the simplest ones is gradient
descent which descends along the direction of the negative gradient and
thereby performs the following set of updates

wttD) — O _ nVE(w(t)) (9.12)

given an initial value w(?). The step-size (also called the learning rate) is
chosen by the user. The step-size need not always be fixed, for instance
you can chose it to be a function of the number of weight updates ¢ in the
homework. A good step-size is one that does not overshoot the minimum
w*. For instance, after having chosen a particular descent direction d(*)
we can compute the best step-size to use at time ¢ by solving

n® = argmin £(w® 4+ 5 dV).
n>0

This is known as line-search in the optimization literature. You may have
seen Newton’s method

-1
WD — ® (v2g(w<t>)) Ve(w®). (9.13)

which does not have a user-tuned step-size and further modifies the descent
direction to be the product of the inverse Hessian with the gradient.

A Draw a picture of overshooting using a
large step-size.

@ Can you think of an algorithm for
minimizing a function that does not use the
gradient of the function to compute the
descent direction?

20

21

22

23

24

25

125

9.3

Convergence rate for gradient descent

We will next understand how quickly gradient descent converges to the
global minimum. There are two concrete goals of this analysis

1.

2.

9.3.1

to be able to pick the step-size to avoid overshooting without doing
line-search, and

characterize how many iterations of gradient descent to run until we
are guaranteed to be within some distance of the global minimum.

Some assumptions

Before we begin, we will make a few simplifying assumptions on the
function ¢(w). These are quite typical in optimization and ensure that we
are not dealing with functions that are arbitrarily difficult to optimize.

1.

9.3.2

Lipschitz continuity/bounded gradients We will assume that £ is
uniformly Lipschitz continuous over the entire domain, i.e.,

[e(w) — £(w")| < Bljw —w'|,. 9.14)
for some B > 0. You might also see this condition written as
IVi(w)|| < B

for differentiable functions; show that the second one is an implica-
tion of the first.

Smoothness We will always consider “smooth” functions with
gradients that are L-Lipschitz, i.e.,

IVe(w) — Vo), < Ljw —w'|l,. (.15)
If ¢ is twice-differentiable, this is equivalent to assuming
VZi(w) 2 L Lyxp. (9.16)
From the Cauchy-Schwarz inequality which states that
(u,v) < [ull o]l

for two vectors u, v, we have the following implication of smooth-
ness:

(Ve(w) — Ve(w'),w—w') < Lllw—w'|>. (9.17)

This inequality is equivalent to Eq. (9.15) for convex functions. See
https://arxiv.org/abs/1803.06573 for a proof.

GD for convex functions

We begin with the so-called Descent Lemma.

https://arxiv.org/abs/1803.06573

20

126

Lemma 9.1 (Descent Lemma). For an L-smooth function, we have
’ ' L ' 2
L(w") < Ll(w) + (Ve (w),w —w>+§||w —wl”. (9.18)

for any two w, w’ in the domain.

Proof. First, you should compare this with the first-order characterization
of convexity
L(w') > l(w) + (Vl(w),w" —w).

The two conditions can be used to sandwich the value of £(w(*+1)) given
the value of #(w(")) in gradient descent with room for a quadratic term
Ll — w||®. This marshals the intuition as to what L-smooth really
means; a large value of L means that the function ¢ has a large curvature.
Let v = w + A(w’ — w) and use Taylor’s theorem to see that

1
l(w') = l(w) +/0 (Ve(v),w" —w) d\ 9.19)

Subtract (V{(w), w’ — w) from both sides to get
1
l(w') —(w) — (Vl(w),w —w) = / (Ve(v) — Vl(w),w —w) dA.
0

Observe that

(w') — l(w) — (Vl(w),w —w)| = /0 (VE(v) = Vl(w),w —w) dX

< /0 [(VL(v) — Vi(w),w" —w)|dA
1
< / IVe(w) — Ve()|l ' — wljdA

1
< L/ Ml — w]2dA
0

L

2
= Sl —

This completes the proof after removing the absolute value on the left-hand
side. O

We can use the Descent Lemma twice on two points to w,w’ to
get Eq. (9.17). Another direct consequence of the Descent Lemma is
the following corollary that relates the value ¢(w) at any point w in the
domain to that of the global minimum.

Corollary 9.2. For L-smooth convex function ¢, if w* is the global
minimizer, then

Sp VeI < tw) — tw) < Sw—w' 2. 920

Proof. Since V/(w*) = 0, the right-hand side follows directly from the

1

2

127

Descent Lemma. To get the left-hand size, let us optimize the upper bound
in the Descent Lemma using w’ = w + Av with ||v|| = 1 as follows

l(w*) = 1£f (w")

< inf {#(w) + (Vetw) !)+ Ll -]}

2
. L.,
:||11J\r|1£1 1nf{)+ M {(VLi(w), >+2)\}
_ i o L ,
a IIUH£1 {a) - oL (Vl(w),v)) }
={(w) — LLHVé(w)HZ_

O

In other words, the gap between the function values £(w) — ¢(w*) is upper-
bounded by the gap to the minimizer Ljw—w* ||* and lower-bounded by

the norm of the gradient 5 || V4(w 12

Co-coercivity of the gradient The gradient being L-Lipschitz is equiv-
alent to co-coercivity of the gradient with parameter 1/

1

(Vl(w) — Ve(w"),w —w') > EHV[(w) - Vﬁ(w')||2. 9.21)

We can see that co-coercivity implies Lipschitz continuity of the
gradients V/(w) using Egs. (9.17) and (9.21). The reverse is also true
and you will show both of these sides in the homework. A sketch of the
reverse goes as follows.

Note that Lipschitz-continuity of the gradient implies the Descent
Lemma (LLemma 9.1). Now define two functions

(u) = (Ve(w),u)
(u) = (VE(w'),u) .

Both of these have L-Lipschitz gradients. Note that © = w minimizes
g(u) (the minimum is zero). Observe that

U(w') = L(w) = (Vl(w), v —w) = g(w') - g(w)

1
> ﬁl\Vg(w’)ll2 from Eq. (9.20)

1
= 57 IV = Ve(w)|.
Apply the same again to & to get
1
Uw) = £w') = (VUW), w — ') > 52 [|VEw) = Vi(w)]

and add the two inequalities.

A The condition in Eq. (9.21) is called
co-coercivity because there is a related
condition called coercivity for m-strongly
convex functions

(Ve(w) — Ve(w'),w—w') > m|w— o[,
for all w, w’. Try to prove it. Note that this
condition boils down to simple monotonicity
of the gradient for m = 0 (which is just a
convex function). This is why it is also called

strong monotonicity of V.

128

We can now get our first result on how gradient descent makes
monotonic progress towards the solution.

Lemma 9.3 (Monotonic progress for gradient descent). For gradient
descent w(t+t1) = w® — VL (w®), if we pick the step-size

1
<= 9.22
NSz 9.22)
we have
LY < w®) = 1 Hw t>)H vt. (9.23)
Further,
1 2 2
(D) — p(w*) < o (Hw S Hw(tH) —w*) 9.24)
which implies
2 2
Hw(t-‘rl) —wtl| < me —w* (9.25)

Proof. Substitute < 1/L in the Descent Lemma and simplify to

get Eq. (9.23). The second result is obtained by

0 < Lw ™) — f(w*) < Lw®) — (" WHW (t))H

IN

<w (w®), fw*>ffHV€(w t>)H2
L
7

1 2
— (Hw(t) - w* w* > .
2n

Observe that since the left-hand side is positive, the claim in Eq. (9.25) is
true. O

(t+1) _

_ Hw

We have therefore shown that if the step-size is not too large (the
smoothness parameter of the function determines how large the step-size
can be) then gradient descent always improves the value of the function
with each iteration Eq. (9.23). It also improves the distance of the weights
to the global minimum at each iteration Eq. (9.25).

Lemma 9.4 (Convergence rate for gradient descent, convex function).

For gradient descent w1 = w® — nV(w®) with step-size n < 1/L,
we have

™) — fw*) < —— Hw<0> - (9.26)

2tn

@)

129

1 Proof. We sum up the expression in Eq. (9.24) for all times ¢ to get

IURISPES o 1

2n =

1
(Wm
2n

1
7Hw<o> —w
21

IN

_ Hw<s>

2
w*

2
_ Hwa) _

2

IN

2 We know from Eq. (9.23) that £(w®)) is non-increasing, so we can write

2

0) 15 100 - 0) £ 1 o

s=1

If we want to find weights with
HwD) — f(w*) < e
for a convex function, we need to run gradient descent for at least
=0(1/e)

iterations. This is an important result to remember.

+ 9.3.3 Gradient descent for strongly convex functions

s Things are much better if the function we are minimizing is strongly
s convex. First we have the following lemma for strongly-convex functions
7 which involves a rewriting co-coercivity condition for strongly convex

s functions.

o Lemma 9.5 (Co-coercivity for strongly convex function). If {(w) is

10 m-strongly convex, and L-smooth, then

mL

(Vl(w) = Vl(w"),w —w') > oo

112 1
o =+

1 Proof. If the conditions of the lemma hold, then the function g(w) =
2 l(w)—F [|lwl|® is convex and (L — m)-smooth. The convexity of g(w)
13 is immediate to see from the definition of strong convexity of /(w). Use

1+ the monotonicity of the gradient of g(w) to get
0 < (Vg(w) = Vg(w'),w —w’)
= (Ve(w) — Vi(w'),w —w') —m|Jw —w'||
< (L —m)llw — ']

[Ve(w) —
9.27)

Vi(w'

)17

130

We can now rewrite the co-coercivity condition for Vg and simplify to
get Eq. (9.27). O

Lemma 9.6 (Convergence rate of gradient descent for strongly convex
functions). For strongly convex functions we have pick a step-size

0
<n< m+ L
to get
2 2mL 2

=+ "< (1 H () _ gy 9.8
Hw w < (nm—l—L) w w ()

which gives
Hw(t) —w*|| < ||w0 — w*H2 (9.29)

where ¢ = (1 — n%)

Proof. We expand the left hand-side in Eq. (9.28) to get

2

Hw(t+1) W 2 Hw(t) —Ve(w®) — w*

[

2mL
< (10255) Ju -

2mL
< (rond) o

We have substituted the co-coercivity condition from Eq. (9.27) for the
inner-product with w’ := w® and w := w* to get the first inequality. This
implies that the distance to the global minimum Hw(t) — w*|| decreases
multiplicatively; compare this with Eq. (9.25) where the progress is
additive. The additional assumption of strong convexity therefore means
that we are making very quick progress towards the global minimum. We
can use this inequality repeatedly for all iterations ¢ to get

m+ L
2

2

*

< b Hwo —w

-

where ¢ = (177772,;1%) O

Strong convexity enables much faster progress towards the global

c_ 2n <V€(w(t))7w(t) - w*> + 772HV€(w(t))H2
2 2 2
oo) I

1

131

< e we need

minimum. If we want Hw(t) —w*

O(log(1/e))

iterations of gradient descent. This is much less than that for a convex
function. Quite non-intuitively, this is called linear convergence be-
cause we need a constant number of iterations to reduce the gap to the
optimal in half. The naming convention is a bit unusual here but you
will see that if we plot log ||w® — w*|| (or log (¢£(w™) — £(w*)))
on the Y-axis and number of iterations ¢ on the X-axis, we get a
straight line for gradient descent on strongly-convex functions; you
can see this from Eq. (9.29).

We say that the convergence rate of gradient descent for non-
strongly convex functions is sub-linear. The longer we run GD for
convex functions, the slower its progress.

Further, if we pick the largest step-size n = 2/(m + L) we get

=
c= <1. (9.30)

k+1

where k = L/m is the condition number of the Hessian (it is the
ratio of the largest eigenvalue and the smallest eigenvalue). Larger
the condition number x, closer to 1 the multiplicative constant ¢ and
slower the convergence rate of gradient descent.

A few more points to note

1. The step-size if limited by m + L but the convergence rate depends
on k = L/m. Smaller the value of ¢, faster the convergence.

2. Larger the L, smaller the ideal step-size n

3. You can get the upper bound

ALy o
7”10

2
Yw®) = 0(w*) < gHw(ﬂ —w* 2 931)

<

_ w*‘
using Eq. (9.20).

You will also see the convergence rate written in many papers as

(9.32)

< e~dt/n Hwo —wll.

-

You can get this inequality by using the fact that 1 + = < e® in Eq. (9.30).

We can use this to pull out the dependence on & in the convergence rate;
for strongly convex functions, gradient descent requires

O(rlog(1/e))

iterations to reach within an e-neighborhood of the global minimum £(w™*).

This suggests that smaller the condition number x fewer the iterations

A Plot the convergence rate of gradient
descent for convex and strongly-convex
functions.

A The nomenclature is a bit non-intuitive in
the optimization literature. An algorithm with

(t+1)) _ *
) —)

t—o00 K(w(t)) — [(u}*)

is said to be sub-linear if p € (0, 1), linear if
p = 1 and super-linear if p = 0.

20

21

22

23

24

25

26

27

28

29

30

31

132

required.

We can intuitively understand why convergence of gradient descent is
slower for a large condition number. A large condition number means that
some directions of the objective ¢ are highly curved while some others
are very flat. It is difficult to pick one single scalar step-size in such
situations that makes quick progress along the flat directions but also does
not overshoot the highly curved directions. You might imagine that clever
schemes to change the step-size depending upon the local geometry of the
function £(w®) could help solve this issue and indeed it does, but such
adaptive schemes are expensive to implement computationally. We will
see some algorithms that pick different step-sizes for different weights in
Chapter 11.

9.4 Limits on convergence rate of first-order
methods

It is a powerful and deep result that we cannot do better than a linear
convergence rate for optimization methods that only use the gradient of
the function ¢(w). More precisely, for any first-order method, i.e., any
method where the iterate at step ¢ given by w(*) is chosen to be

w® € w® + span {VL(w?),..., Ve(w')},
we have the following theorem by Yurii Nesterov.

Theorem 9.7 (Nesterov’s lower bound). If w € RP, forany ¢ < (p—1)/2
and every initialization of weights w? there exist functions ¢(w) that are
convex, differentiable, L-smooth with finite optimal value £(w™*) such that
any first-order method has

' oo 3 Ll —w|”
wD) — f(w*) > RN

Let us read the statement of the theorem carefully. It states that
fixed a time t and initial condition w®, we can find a convex function
£(w) such that it takes any first order method at least O(1/+/€) to reach
an e-neighborhood of the optimal value ¢(w*). The implication of this
theorem is as follows. The convergence rate O(1/¢) we obtained for
convex functions is not the best rate we can get. Nesterov’s lower bound
suggests that there should be gradient-based algorithms that only require
O(1/+/¢) iterations. Such methods will be the topic of the next Chapter.

A Draw a picture of this phenomenon for a
quadratic objective £(w) = (w, Aw) for
matrices A > 0 with different condition
numbers x.

Chapter 10

. Accelerated Gradient

20

21

Descent

Reading

1. The blog-post titled “Why momentum really works?” at
https://distill.pub/2017/momentum

In the previous chapter we saw two results that characterize how many
iterations gradient descent requires to reach within an e-neighborhood of
the global optimum for convex functions. If the function ¢(w) is convex,
GD with a step-size at most 1/ L requires O(1/¢) iterations. If the function
£(w) is strongly convex, then the step-size can be as large as 2/(m + L)
and GD requires O(r log(1/e€)) iterations where

is the condition number of the Hessian V2¢(w). A large value of x means
that there are some directions where the function is highly curved and
others where it is relatively flat. The main point to remember is that we
often do not know a good value for m, L. Since the step-size of GD
depends upon the curvature of the function; if the step-size is too large
then GD overshoots on the highly curved directions and if the step-size is
too small then GD makes slow progress along a direction.

We will study two algorithms in this chapter which accelerate the
progress of gradient descent.

10.1 Polyak’s Heavy Ball method

The most natural place to begin is to imagine gradient descent as a
kinematic equation. Let w(®) be the iterate of GD at time ¢, let us associate

133

https://distill.pub/2017/momentum

20

21

22

134

to it an auxiliary variable called the “velocity” v(*)
v® = D) — (0, (10.1)
Gradient descent can then be written as
v = —pVe(w®), (10.2)

which allows us to think of the term —V/(w(")) as some kind of force
that acts on a particle to update its position from w(*) to w**+1). This
particle has no inertia, so we will say that the applied force directly affects
its position. If the magnitude of the gradient is small in a certain direction,
the velocity is also small in that direction.

We now give our particle some inertia. Instead of the force directly
affecting the position we will write down Newton’s second law of motion
(F' = ma) for a particle with unit mass m = land time discretization n
(or equivalently, with a time discretization of 1 and a mass of 1) as

—Ve(w®) =
Ui
_1 <w<t+1) _ 9w w(t—m) (10.3)
Ui
— D = w® — yve(w®) + (w(t) - w(t*1)> .

Notice the third term on the right-hand side above, it is the gap between
the current weights w(®) and the previous weights w1 if we have

<w(t) —wtY), Vf(w(t))> <0,

i.e., the change from the previous time-step is along the descent direction,
then the weights w(**1) get an extra boost. If instead, the change from
the previous direction is not along the gradient descent direction, then
the third term reduces the magnitude of the gradient. The third term is
effectively the inertia of gradient updates. This method is therefore called
Polyak’s Heavy Ball method.

We give ourselves some more control over how inertia enters the
update equation using a hyper-parameter p (which is akin to mass)

wtY = w® — pvew®) +p (w(t) — w(t_1)> . (10.4)

If p = 0, we do not use any inertia and Polyak’s method boils down
to gradient descent. Typically, we choose p € (0, 1). This inertia is
called momentum in the optimization literature and p is called the
momentum coefficient.

Polyak’s method is simple yet very powerful. In the previous chapter,
we showed a lower-bound of Nesterov which indicates that first-order
optimization algorithm (that only depends on the gradient of the objective)

135

cannot be faster than O(1/4/€). It turns out that Polyak’s method converges
at this rate, i.e., if we want

Hw(t) —w*|| <e€

we need to run Polyak’s Heavy Ball method for O(1/+/€) iterations for
convex functions. If the function is strongly convex, the number of
iterations comes down to

O(Vklog(1/e)).

Both of these are improvements upon their convergence rates for gradient
descent. These improvements are also quite a lot, we need quadratically
fewer iterations than gradient descent in Polyak’s method and the only
incremental cost of doing so is that we have to maintain a copy of the
weights w1 while implementing the updates in Eq. (10.4).

An alternative way to write Polyak’s updates We can rewrite the
updates in Eq. (10.4) using a dummy variable u(*) as

u® = (1+ p)w(t) —pw®Y

wtY =4 ® — pve(w®). (10>

This is how these updates are implemented in PyTorch. This is convenient:
effectively, the code needs to maintain only the difference «®) = (1 +
p)w® — pw=1) in a buffer u(*) and subtract the gradient V/(w®) from
this buffer to result in the new updates. GD can be implemented with a
simple change by setting u(*) := w®) with corresponds to p = 0. The

dummy variable is initialized to u® = w?.

A yet another way to write Polyak’s updates We can also rewrite
the updates in Eq. (10.5) as

W) —)y ()

Wt = O 4 D) (10.6)

This set of updates brings out idea of momentum more clearly. The
variable u(*) in this case is exactly the velocity v(*) that we have seen
above except that it is updated slightly different than our expression
(F' = ma) in the first equation. The first term

u = pu® — vi(w®)

reduces the velocity u(*) by a factor p before adding the gradient to it.

A Draw Polyak’s updates for a
two-dimensional function.

21

22

23

24

25

26

27

28

29

136

10.1.1 Polyak’s method can fail to converge

The caveat with relying on the inertia of the particle to make progress
is that near the global minimum, when the iterates overshoot the global
minimum, the inertia is often very different from the gradient. Polyak’s
method can become unstable and can result in oscillations under such
conditions, e.g.,

100

80

60

20

However it is a very simple method to accelerate gradient descent and
works great in practice.

10.2 Nesterov’s method

Nesterov’s method is an advanced version of Polyak’s method. Let us
understand these oscillations better. We saw that incorporating a notion
of inertia in Polyak’s method gave us accelerated convergence; this is
intuitive, if the velocity is along the descent direction the particle descends
faster. The same inertia hurts towards the end because the velocity can be
very different than the gradient when the particle overshoots the minimum.

A simple way to fix this is to incorporate damping (friction) into
Newton’s law of motion; you can read about the simple harmonic oscillator
at https://en.wikipedia.org/wiki/Harmonic_oscillator. We are going to
write

ma = F — cv.

where m is the mass, cis the coefficient of damping, a and v are acceleration
and velocity respectively and F is the force as usual. The effective force
decreases with the velocity. Doing so does not slow down the weight
updates much when the gradient magnitude is large at the beginning of
training. But when the gradient magnitude is small (when the particle is in
the neighborhood of the global minimum), this friction prevents excessive
overshooting.

With that background, let us see how Nesterov’s updates for gradient
descent look.

We will write a similar set up of updates as that of Eq. (10.6).

https://en.wikipedia.org/wiki/Harmonic_oscillator

137

Nesterov’s updates correspond to

wttD) = o) — Vé(w(t) +npu?)

wtD) = O 4 gy D), (10.7)
The only difference between Eq. (10.7) and Eq. (10.6) is the term
in blue; effectively the gradient is computed as if the weights w(®)
moved using the velocity u(*); and then this new velocity u(*t1) is
used to obtain the new updates w(**1). Nesterov’s method solves the
problem of instability in Polyak’s method by essentially computing
the gradient (the blue term) as given by the current velocity. You can
see how this slows down the updates if the velocity is well-aligned
with the gradient; we are reducing the benefit of inertia/momentum.
However, doing so prevents overshooting as the iterates reach the
neighborhood of the global minimum.

An alternative way to write Nesterov’s updates We can rewrite the
updates in Eq. (10.7) to look like those in Eq. (10.5), to get

u® = (14 p)w® — p =

wtD = 4® — pve(u®). (108)

Again the blue term is the only difference between Polyak’s method and
Nesterov’s method. The term «(*) is conceptually a forecasted version of
the weights w(*) because notice that

u® = w® 1 p(w® — D),

The new weights w(*+1) are now obtained by thinking of u(*) as the actual
weights. We initialize w(*t1) = w® to w® for t = 0.

10.2.1 A model for understanding Nesterov’s updates
We will set the damping coefficient (p) in Eq. (10.8) to a special value

t—1

P:m’

effectively as ¢ — oo the friction becomes larger and larger. This simplifies
our updates to
w® —) p L1 (wm _ w(t—l))
t42
wtY = 4® — gy veu®).

which upon collapsing together give

t—1
(t+1) _) — 27 2 (@ gyt)
w w P (w w) nVe(ut™). (10.9)

138

We now choose a different way of interpreting these updates. We will
imagine that the sequence

{wo,wl, ... ,w(t),w(t+1), .. }
is the discretization of a smooth curve
{W(r):7€0,00)}.

How is this curve W (7) related to the original sequence? We are going to
study the updates under the setting

7= /it (10.10)

Essentially the time of the discrete-time updates Eq. (10.9) increments
in intervals of 1, but the time of the curve W () is real-number. Each
increment in discrete-time corresponds to /7 increment of the time 7 for
the curve W (7). This gives

W(r) = w®
W(r + /1) = w.

We now do a Taylor expansion for the continuous curve X (7) to get

wtD —w® = W(r + /n) — W(r)

. 1 . (10.11)
= W(n)vin+ sW(r)n+ o).
Here)
W(r) = SWr), W)= W)

are the first and second derivative of the curve with respect to time and
o(4/n) denotes higher-order terms. Similarly

w® —wY = W(r) = W(r — V1)
. 1 .
=W(r)yin—sW(r)n+o(n).
Note that due to our special scaling of time we have

gflfiwlfgflfw
t+2 t+2 ot T

We now do a Taylor expansion of the loss term V/(u(®) to get

t—1
)y —) 1 27 2 (p®) =1
Veiut) = VL (w + g (w w)

= V/{(w®) + higher order terms (10.12)

= VUW (7)) + o(\/n).

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

139

Substitute Eqs. (10.11) and (10.12) in Eq. (10.9) and divide both side by
/7 to get

W)+ Wi+ oty = (1= 220 (W) - 5+ o

— V1 VLW (7)) + o(n).

This equation is true for all values of 7, so we can compare the coefficients
of /1 on both sides to get

W+ %W + V(W) = 0. (10.13)

This equation looks very similar to Newton’s law with friction ma + cv =
F. Again, the term V{(TV) is acting as the force, the second derivative
TW is the acceleration and the friction term %W increases with velocity.
We have shown that for a particularly chosen value of the momentum
coefficient, Nesterov’s updates result in an ordinary differential equation
that looks much like that simple harmonic oscillator that most of you have
seen before in high-school. This approach gives an alternative, and very
simple, way of understanding Nesterov’s updates which is nice because
the updates in Eqs. (10.7) and (10.8) were quite non-intuitive and created
by Nesterov through a sheer tour de force.

Remark 10.1. Derive a similar ordinary differential equation for Polyak’s
updates using the same setting of friction (t—1)/(¢+2) as thatin Eq. (10.9).
You will notice that if viewed in continuous-time Polyak’s updates are
exactly the same as Nesterov’s updates. This is because the continuous-
time model is a more abstract point-of-view and eliminates the subtle
differences between the updates between the two algorithms.

Such continuous-time models are very useful to understand what these
updates actually do, e.g., we know that Nesterov’s updates correspond to
having damping in Newton’s law which is not apparent by looking at the
equations in Eq. (10.8). It is also very easy to obtain the convergence rate
of the continuous-time version; it is an ordinary differential equation and
we can use a lot of tools from dynamical systems, in particular Lyapunov
functions. It will amuse you to know that obtaining the convergence rate
for Nesterov’s updates using the continuous-time version Eq. (10.13) takes
about half a page but doing the same proof in discrete-time (like Nesterov
did it originally) takes a few dozen pages.

10.2.2 How to pick the momentum parameter?

Nesterov’s updates converge at a rate that is similar to that of Polyak’s
updates. For convex functions, we need

O(1/Ve)

iterations to get within the e-neighborhood of the global minimum if we
set

p=(t—1)/(t+2)

140

in Eq. (10.6). If we are minimizing a strongly-convex function we can
pick the momentum coefficient to depend on m, L: we can set

_VE-1
P=Jrt1

and n < 2/(m + L). If we do so, we need

O(Vklog(1/e))

weight updates to reach within an e-neighborhood of the global minimum.
The expression in Eq. (10.14) gives some insight in how momentum
accelerates things. If k ~ 1, i.e., the Hessian of the objective is well-
conditioned without a big diversity in the curvature in different directions,
we do not really need friction p =~ 0 to avoid overshooting close to the
minimum; progress in all directions is balanced. On the other hand, if
Kk > 1, the objective is badly conditioned and the friction coefficient
p ~ 1 should be large to avoid overshooting near the global minimum.

(10.14)

How to pick p in practice? If we know what m, L are for a given
problem (you will see an example of this in HW 4), it is straightforward
to pick the momentum coefficient and get accelerated convergence of
gradient descent. If we do not know m, L, we pick some constant value of
p. For instance, p = 0.9 is popularly used in most deep learning libraries.
Typically, the momentum coefficient is not increased with the number
of weight updates using (¢ — 1)/(¢t 4+ 2). You will some heuristics for
modifying the momentum coefficient in this week’s recitation.

1

2

3

Chapter 11

Stochastic Gradient
Descent

Reading

1. “Stochastic gradient descent tricks” by Bottou (2012). Great
paper with lots of little tricks of how to use SGD in practice.

2. Up to Section 4.2 of “Optimization methods for large-scale
machine learning” by Bottou et al. (2018). This is advanced
material, you do not need to be able to follow it completely.

3. http://fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html

4. “Adam: A Method for Stochastic Optimization” by Kingma
and Ba (2014).

5. Stochastic Weight Averaging (SWA) by Izmailov et al. (2018).

Stochastic Gradient Descent (SGD) has its roots in stochastic opti-
mization. A stochastic optimization problem looks like

w* = argmin}g[f(w,g)} (11.1)

where ¢ is a random variable. This is a very old and rich area, there was
lots of action in it already in the 1950s, e.g., (Kushner and Yin, 2003;
Robbins and Monro, 1951). It is also a highly relevant problem: for
instance, when a plane goes from Los Angeles to Philadelphia, the route
that the plane takes depends on the local weather conditions along its
path and airlines will optimize this route using a stochastic optimization
problem of the above form. The variable w will be the trajectory of the
plane and ¢ are the weather conditions which we do not know exactly but
may perhaps have estimated a distribution for them. Such problems are

141

http://fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html

20

21

22

23

24

142

very common in other fields like operations research, e.g., optimizing the
time at which an Amazon package arrives with various disturbances such
as delays in shipping, missing inventory in the warehouse etc.

In machine learning, we are interested in solving a slightly different
problem called the finite-sum problem. Given a finite dataset D =
{(z", y) }i:1,..“n we minimize

1~
l(w) = - E (w) (11.2)
i=1

where we will use the shorthand
C(w) == L(w; 2, y")

to denote the loss on the datum (2%,) with weights w. Essentially, the
random variable £ in Eq. (11.1) represents the samples in the training
dataset; with important differences being that neither do we know anything
about the distribution of the input data, nor do we have an infinite number
of samples.

It is difficult to do gradient descent if the number of samples n is large
because the gradient is a summation of a large number of terms

1 < .
Vi(w) =~ ; Vi (w).
If the mini-batch size is 1, i.e., at each iteration we sample one of the
training samples denoted by
wr €{1,...,n}
we update the weights using
wtD = ® — v (w®), (11.3)

For a larger mini-batch of size 6 let us denote the samples in the mini-batch
by

{@), @y
where each wf € {1,...,n} is the index chosen uniformly randomly
from the training dataset. We will choose these indices with replacement

(analyzing SGD for sampling without replacement is quite hard). The
gradient on this sampled mini-batch is denoted by

Vgg (w) =

S| =

ﬁ .
3 e (w) (11.4)
=1

and we update the weights as usual using

wt) = w® — Ve (w®).

21

22

23

24

25

26

27

28

29

30

31

32

143

If 6 = 1, we will denote the gradient by V/,, to keep the notation clear.

What is an epoch in PyTorch? We will not think of epochs when
we develop the theory for SGD. An epoch is a construct introduced in
deep learning libraries for bookkeeping purposes. It also ensures that if
Algorithm A obtains so and so training/validation error after 100 epochs,
it can be compared directly with Algorithm B which obtains the same
training/validation error after, say, 120 epochs, e.g., one can say Algorithm
A is faster than Algorithm B at training a network. Instead of sampling a
mini-batch of data uniformly randomly with replacement, PyTorch shuffies
the entire training set at the beginning of each epoch and samples the
mini-batch with replacement during each epoch. This is reasonable but
there will be some discrepancies in the performance of SGD as predicted
by theory and obtained by PyTorch on deep networks, especially if the
mini-batch size is large.

Although we will not discuss this, SGD using mini-batches sam-
pled with replacement is faster than with mini-batches sampled without
replacement (Recht and Ré, 2012).

11.1 SGD for least-squares regression

Let us understand SGD for one dimensional least-squares, our data and
targets are x', ' € R and the objective is

n

1))
fw) =~ > (@'w —y')? (11.5)

=1

for the weights w € R. Notice that the objective is a sum of n different
quadratics, each quadratic is minimized by different weights

in other words, each sample in the training dataset would like the weight
to be y*/x" to minimize its residual and the least-squares objective which
sums up their individual residuals forces them to made trade-offs. Focus
on two quantities

Wnin = miin {w*(@)}, wWmx = max {w*(@)}.

Notice that the interval (—o0, wpax) is the region where the descent
direction on any sample in the dataset moves the weights w® to the right.
The interval (wmax, 00) is the region where the descent direction on any
sample moves the weights to the left. If weights are initialized in the
latter region, w® >> max; w* (i), successive iterations of SGD will quickly
bring the weights to

w® € (Wiin, Winax) (11.6)

A Draw the objective here for different
values of w’ and understand how SGD works
for this problem.

1

2

3

20

21

144

which we will call the “zone of confusion”. Similarly, if weights are
initialized w® < Wy, they will move right until iterates reach the zone
of confusion.

After w® e (Wmin, Wmax), there is no real convergence of the
weights, if the learning rate 7 is fixed, since the samples w; are
sampled uniformly randomly, depending upon which sample was
chosen to compute the gradient the weights move to the right or the
left and therefore keep shuttling back and forth in this region.

Notice that the objective in Eq. (11.5) is convex because it is the
sum of convex functions so there is a unique global minimum namely

* Z?:l ‘riyi
w' = S,
>im()?
If one were to execute gradient descent on this same problem w(*+1) =
w® — nVe(w®), we will converge to this value. But since SGD
samples a different sample at each iteration, SGD never converges, it
remains in this large zone (Wmin, Wiax)-

11.2 Convergence of SGD

If the learning rate is large, SGD makes quick progress outside the zone
of confusion but bounces around a lot inside the zone of confusion. If the
learning rate is too small, SGD is slow outside the zone of confusion but
does not bounce around too much inside the zone. You can explore how
the learning rate changes the dynamics of SGD at
http://fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html.

In this section, we will study under what conditions SGD converges to
the global minimum and how the learning rate of SGD should be reduced
to make it converge quickly. We will first analyze SGD with mini-batch
size of 1.

Strongly convex functions The proofs for convex functions are tedious,
so we will only consider strongly convex functions in this section. As
usual the strong convexity parameter is m and smoothness parameter is L.
One key thing to notice that these constants L, m refer to the full objective,
ie.,

IVE(w) = Ve(w')|| < Lljw — w'||

and m
((w) — §||w|\2 is convex.

Here ¢(w) is the full objective

l(w) = %Zei(w).

http://fa.bianp.net/teaching/2018/eecs227at/stochastic_gradient.html

25

26

145

What is the appropriate notion of convergence? The key difference
between updates of SGD and those of GD is that SGD updates also depend
on the random variable w;. The iterate w; is a random variable and
therefore instead of simply bounding the gap ¢(w®) — £(w*) we will
have to obtain an upper bound for

E [aw(ﬂ)} — f(w).

w(t)

Similar to the case of SGD, let us construct a descent lemma for one
iteration of SGD update.

Lemma 11.1 (Descent Lemma for SGD).

E [[(w(tﬂ)) —(wD) | w(t)] < - <v€(w(t))’£ [V@M (w(t))w
1 E[feerwal]
t (11.7)

Proof. First, compare this with the descent lemma for gradient descent
(if we substitute w(‘t1) — w® = —yV(w®) from Chapter 9)

Ln? 2
(D) — () < —n (T D), Ve ®)) + TUHW(“’@)H
The only difference now is that in the case of SGD we have
wD —w® = —pveer (w®).

The most important different however is that the descent term, namely
the left-hand side in Eq. (11.7) is conditioned on the random variable
w®. The proof of this lemma is easy, we simply substitute the expression
for the weight updates of SGD and take an expectation over the index of
datum sampled by SGD w; on both sides of the inequality. O

The implication of the above lemma is that SGD updates need more refined
conditions under which we can claim monotonic progress towards the
global minimum. Effectively, we need to make sure that the right-hand
side is negative, always irrespective of what the value of the random
variable w® is. We would like to upper bound the right-hand side by a
deterministic quantity ideally.

11.2.1 Typical assumptions in the analysis of SGD

1. Stochastic gradients are unbiased. Assume that the stochastic
gradient is unbiased

Vi(w) :E[Vﬂ”(w)] (11.3)

for all w in the domain. This is akin to assuming that the way we
sample images in the mini-batch is such that the average is always

20

21

22

23

24

25

26

146

pointing towards the true gradient with a similar magnitude. This is
a natural condition and will only change if the sampling distribution
is not uniform. This assumption allows to control the first term in
the descent lemma.

2. Second moment of gradient norm does not grow too quickly.
We will assume that there exist scalars oy and o such that

E[IVe@)P] <o+ o|vew)’. a19)

This assumption allows to control the second term in the descent
lemma for SGD. It assumes that the stochastic estimate of the
gradient in SGD V¢“* (w) is not too different than the full gradient
¢(w®). In the neighborhood of a critical point (locations where
the full gradient V/(w) = 0), the stochastic gradient is allowed to
grow in a similar fashion as the true gradient except with a scaling
factor ¢ > 0 and a constant oy.

Let us see how the descent lemma changes with these additional
assumptions.

Lemma 11.2 (Descent Lemma for SGD with additional assumptions).
If SGD gradients are unbiased and the second moment of the stochastic
gradients can be bounded, we have

E [((w(t-i-l)) — (w®) | w(t)}
< <W(w<t>),5 [ww (w<t>)}> + L—”2 E [HWM (w<t>)m
<o+ 5 g o]

afo-2) e 122

(11.10)

The proof is given in Eq. (11.10) itself. Compare this to the corre-
sponding result we have derived for gradient descent in Chapter 9

YD) — g(w®) UHW (t))H

In addition to the negative term — || V¢ (w(t))’ ? we have two additional

positive terms

n°Log

o

this indicates that depending upon the magnitude of these terms we may
not get monotonic improvement of the objective for SGD. There is no
such concern for gradient descent, we get monotonic progress at all parts
of the domain.

£

20

21

22

23

147

We need to pick the learning rate 7 in such a way that balances
the the right-hand side of Eq. (11.10) and makes it negative.

11.2.2 Convergence rate of SGD for strongly-convex func-
tions

Theorem 11.3 (Optimality gap for SGD). If we pick a step-size
< 1
= Lo
for m-strongly convex and L-smooth function ¢(w) then the expected

optimality gap satisfies

E [ﬂ(w(tﬂ))} — ()

W1,W2,...,Wt

nLoy ¢ 0 « _ NLog
< 1— _ _
<5 + (1 —nm) (E(w) — £(w*)

2m

) (11.11)

We will not cover the proof of this theorem, it is a direct application of
the descent lemma. See Bottou et al. (2018, Theorem 4.6) for an elaborate
proof.

This theorem beautifully demonstrates the interplay between the step-
size and and the variance of SGD gradients. If there is no stochasticity,
ie., 090 = 0 and o = 1, we get the same result as that of gradient descent,
namely, the function value £(w(*+1)) converges at a linear rate (1 —nm)*.
Some points to notice

1. The random variable w(**t1) depends upon all the indices w1, ws, . . . , wy
that were sampled during updates of SGD and therefore the expec-
tation in Eq. (11.11) should be over all these random variables.

2. When the stochastic gradient is noisy, we have a non-zero oy we
can no longer get to the global minimum, there is a first term which
does not decay with time.

3. If we pick a small 7, we get closer to the global minimum but go
there quite slowly. On the other hand, we can pick a large 7 and get
to a neighborhood of the global minimum quickly but we will then
have a large error leftover at the end.

How can we make SGD converge and drive down the first term

148

in Eq. (11.11) to zero? A simple trick is to reduce the learning
rate 7 with time. We do not want to decay the learning rate too
quickly however because the second term in Eq. (11.11) is small, i.e.,
optimality gap is reduced quickly by its multiplicative nature, for a
large value of the learning rate. A good schedule to pick is

o0 o0
d m=o0, and Y nf <o (11.12)
t=1

t=1

Heuristic for training neural networks The two terms in the con-
vergence rate of SGD explain the widely used heuristic of “divide the
learning rate by some constant” if the training error seems plateaued. We
are reducing the size of the ball in which SGD iterates bounce around by
doing so.

Theorem 11.4 (Convergence rate of SGD for decaying step-size). For
a schedule

_ B
t+to

1 1
Nt where 5 > — and ¢ is such that ; < —
m Lo

then the expected optimality gap satisfies

W1 ,W2,.. ., Wt t-l-to

E [e(w““))] — (") = 0(! > . (11.13)

We will not do the proof. If you are interested, see Bottou et al. (2018,
Theorem 4.7). Compare this to the convergence rate of O(x log(1/¢) for
gradient descent for strongly-convex functions. Notice that we converge
only at a sub-linear rate for SGD even for strongly convex loss functions.
SGD is a much slower algorithm than GD.

Convergence rate for mini-batch SGD The mini-batch gradient V4 (w)
is still an unbiased estimate of the full-gradient

E [Vl (w)] = Ve(w)

but the second assumption in SGD improves a bit. Since the mini-batch
gradient is averaged over 6 samples we have

2 0o O 2
E[IVG()| < 2+ ZIVew))

21

22

23

24

25

26

27

28

149

if og, o were the constants in Eq. (11.9). This changes the convergence
rate in Theorem 11.3 to

E [ﬂ(w(tﬂ))} — ()
L L
< 1290 4 (1 —)t (z(wO) — (w*) — 1290

2mb

(11.14)
~ 2mé))

Note that the maximum learning rate in Theorem 11.3 is inversely pro-
portional to o so we can also pick a larger learning rate < Lf’%ﬂ. If we
do so, the first and last terms above are not affected by the batch-size but
multiplicative term (1 — nm)? is. Since

(1=) < et

we see that increasing the learning rate by a factor of ¢ will reduce the
number of iterations required to reach the zone of confusion by a factor
of 6. Of course, this comes with the caveat that each iteration also
requires O (%) more computation to compute the gradient compared to
single-sample SGD.

11.2.3 'When should one use SGD in place of GD?

Theorem 11.4 indicates that SGD is a very slow algorithm, GD is much
faster than SGD to minimize strongly convex functions. This gap also
exists if we do not have strong convexity: we did not prove this but SGD
requires O(1/¢€2) to reach an e-neighborhood of the global optimum for
convex functions whereas GD requires a much smaller O(1/¢). One
might wonder why we should use SGD at all.

It is critical to remember that the objective in machine learning is a
sum of many terms

0(w) = % > tiw)

One iteration of SGD requires us to compute only V¢“¢(w) whereas one
update of GD requires us to compute the full gradient V/(w). One weight
update of GD is O(n) more expensive than one weight update using SGD.
Let us do a back-of-the-envelope computation for convex functions. If
we want to reach an e-neighborhood of the global minimum of a convex
function, we need O(1/¢) iterations of GD, which requires

°(%)

operations. SGD needs O(1/¢2) iterations and therefore requires

°(2)

operations to reach the e-neighborhood. This indicates that if our chosen

20

21

22

23

24

25

26

27

150

e-ball is

€

QN
S

GD requires fewer overall operations. But if e-ball is larger than this, we
should use SGD because it is computationally cheaper.

SGD is particularly suited to machine learning compared to GD for
the following reason. Let ¢! = ¢*(w®) — ¢*(w*) be the residual on the
i datum in the training dataset. Observe that our e-neighborhood is

1 n)
e=L(w?) — (w*) = - Z €.
i=1

If € is constant and does not depend on the number of training samples
n (i.e., say we are happy with the average error over the training dataset
being 2% even and do not seek a smaller one even if we collect more
data) then we should use SGD to train our model because it is cheaper.
This is not always the case for other problems, e.g., if you are doing
computational tomography (capturing multiple images from a CT-scan
machine and trying to reconstruct the heart/lung region in the thoraric
cavity), we may seek a more and more accurate answet, i.e., small € if we
have more data.

11.3 Accelerating SGD using momentum

The convergence rate of SGD is quite bad, it is sub-linear. Roughly
speaking, the successive iterates of SGD are computed using different mini-
batches; the gradient on each such mini-batch is a noisy approximation
of the full-gradient on the training dataset (that of GD). This makes the
SGD iterates noisy and one may improve the convergence rate of SGD
by simply averaging the weights. This leads to a simple technique to
accelerate SGD which we discuss next.

Polyak-Ruppert averaging Consider the updates

wtY = w® — Vs (w®)
* w4+ w4t (11.15)
u = t .

In a series of papers, Polyak (1990); Polyak and Juditsky (1992); Ruppert
(1988) showed that the quantity

E [f(u(t))] — ()

Wi, ,Wt—1

converges faster than the quantity

E [z(w@)} — (")

Wiyee,We—1

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

151

both of these still converge at rate O(1/¢?) but the former has a smaller
constant. This is quite surprising and useful: essentially we are still
performing mini-batch updates for the weights w® but instead of thinking
of w® as the answer, we think of u(*) as the output of SGD. This averaging
of iterates does not change the SGD algorithm. Computing this output
requires us to remember all the past iterations w?, ..., w’ but we can
easily approximate that step by exponential averaging of the weights

u® = puY 4 (1 - p) w®;

exponential averaging is likely to achieve the same purpose with a much
smaller memory requirement.

Further, this idea of using averaged iterates to speed up stochastic
optimization algorithms is quite general and also works for algorithms
other than SGD. The papers on Entropy-SGD by Chaudhari et al. (2016)
and Stochastic Weight Averaging by Izmailov et al. (2018) perform
weight averaging (with quite different motivations) and works very well
in practice.

11.3.1 Momentum methods do not accelerate SGD

We saw that momentum is very useful to accelerate the convergence of
gradient descent. The power of momentum lies in making faster progress
using the inertia of the particle: if the velocity and the current gradient are
aligned with each other (as is the case at the beginning of training when
the iterates are far from the global optimum) momentum speeds up things.
Towards the end of training when gradients are typically mis-aligned with
the velocity, we need friction (as in Nesterov’s updates) to reduce this
effect.

Observe that in SGD, the gradient is always incorrect; it is after all only
a noisy stochastic approximation of the full gradient on the dataset. Since
the velocity w® — w(*~1) was computed using the previous stochastic
gradient, there is no reason to believe that this velocity is accurate and
will speed up SGD. Here is a very important point (Kidambi et al., 2018;
Liu and Belkin, 2018) that you should remember.

Momentum methods (Polyak’s or Nesterov’s) do not significantly
accelerate SGD.

To be more precise, we saw that for Nesterov’s updates in GD for
strongly-convex functions we have a result of the form

< IV |

-

while the constant without momentum is larger, it is e~t/*, This term is
directly related to the second term in Theorem 11.4. The above authors
come up with counterexamples to show that Nesterov’s updates with SGD
only improve this multiplicative term to something like e ~°*/* for some c;

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

152

in other words using Nesterov’s updates with SGD only lead to a constant
factor improvements in the convergence rate.

Accelerating stochastic optimization algorithms is done via the use of
control variates (Le Roux et al., 2012). Broadly speaking these methods
work by using the previous gradients in SGD { V¢+1 (w?), ..., V£t (w®)}
to compute some surrogate for the current full gradient Vé(w(t)) and
compute the descent direction using both this surrogate full gradient and
the standard SGD gradient.

Why do we use Nesterov’s method to train deep networks? It is
worthwhile to think why we use Nesterov’s momentum to train deep
networks: (i) we know that momentum does not help speed up training,
and (ii) momentum is simply a faster way to minimize the same objective
¢ so it does not have any regularization properties that help generalization
either. We do not have a definitive answer to this question yet but here is
what we know.

Datasets that we use in deep learning represent quite narrow distribu-
tions (natural images of animals, household objects etc.). For instance,
the two images below are essentially the same in spite of belonging to
different classes.

Most weights of a deep network will have a similar gradient for these
images as input, the weights for which the gradient will differ are likely to
be the weights at the top few layers of the network. This entails that even
if the stochastic gradients are computed on different mini-batches, they
are essentially quite similar to each other, and thereby to the full-gradient.
More precisely, the covariance of mini-batch gradients

cov (Vey(w), Vig(w) = E [(wﬁ(w) — Vi(w)) (Vg (w) — Ve(w))

is a matrix with very few non-zero eigenvalues; only about 0.5% of
the eigenvalues are non-zero (Chaudhari and Soatto, 2017) even for
large networks. This means that the SGD gradient while training deep
networks is essentially the full gradient and we should expect momentum
to accelerate convergence in practice.

Line-search is not common in SGD Note that the function ¢ in machine
learning is a summation over a large number of samples in the training
dataset; in this case computing the gradient /(w) involves a large sum as
well

1 — o
Vi(w) = - ZVK(w;x’,y’);
i=1

20

21

22

23

24

25

26

27

28

29

30

153

stochastic gradient descent computes this sum only over a subset of the
data. Solving the line-search problem involves computing more gradients
with respect to n which adds to the computational cost. Further, the
gradient V£(w) is only a noisy estimate of V¢(w) so it wouldn’t improve
progress much if we carefully picked the step-size.

11.4 The Adam optimizer

We will next look at a very popular optimizer for deep networks called
Adam. This is extremely popular and is the default optimization algorithm
that most people use when they build a network for a new problem. It
combines two key ideas from optimization, namely control variates and
second order updates. These ideas are very effective at accelerating
stochastic gradient descent but implementing them for deep networks
is very expensive. The key reason behind the success of Adam and its
widespread adoption is that the authors used the right approximations and
implemented them in incredibly clever ways.

Adam: A method for stochastic optimization

DP Kingma, J Ba - arXiv preprint arXiv:1412.6980, 2014 - arxiv.org

... stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based

on ... We propose Adam, a method for efficient stochastic optimization that only requires first-order ...
Y¢ Save YU Cite Cited by 160431 Related articles All 27 versions 99

Control variates

We will first discuss a technique called “control variate” from Monte Carlo
methods that can be used to accelerate stochastic gradient descent. The
key idea behind this technique is to observe that if we want to accelerate
the convergence rate of SGD, our goal should be to compute a more
accurate gradient (i.e., something close to the non-stochastic gradient)
using work that is not too much more than that required to compute the
stochastic gradient.

Say we have a random variable X and we would like to guess its
expected value 1 = E[X]. Note that X is an unbiased estimator of x but
it might have a large variance. If we have another random variable Y with
known expected value E[Y], then

X =X +c¢(Y —E[Y]) (11.16)
is also an unbiased estimator for y for any value of c. The variance of X is
Var(X) = Var(X) + ¢ Var(Y) 4 2¢Cov(X,Y).

which is minimized for

Cov(X,Y)
© var(Y)

*

20

21

22

23

24

25

26

27

28

29

30

31

154

to
Var(X) = Var(X) — ¢** Var(Y)

= [1 - (mﬂ Var(X).

By subtracting Y — E[Y] from our observed random variable X, we have

reduced the variance of X if the correlation between X and Y is non-zero.

Most importantly, note that no matter what ¥ we plug into the above
expression, we can never increase the variance of X; the worst that can
happen is that we pick a Y that is completely uncorrelated with X and
end up achieving nothing.

Suppose that the mini-batch size is 1. We can maintain a buffer
{g¥ = V¢*}"_, that contains the stochastic gradient for each sample
in the training dataset. As our optimization algorithm samples different
mini-batches (i.e., different samples w for a batch-size of 1), the values
in this buffer are updated after each iteration. Given this buffer, if we
sampled a datum w for the current iteration, we can update the weights
using the control variate-corrected gradient

1 o .
AV (w) — <)\g“ - = ng>)
=1

For A = 1, this is an unbiased estimator of V¢“ (w). Effectively, we have
used the quantity g~ — % | g* from the buffer as a control variate to
reduce the variance. This algorithm is called stochastic averaged gradients
(SAGA). This algorithm converges linearly, i.e., at a rate O(log(1/¢)) for
strongly convex functions. This is remarkable because it is the same as
the convergence rate of gradient descent for strongly convex functions.

We can also consider biased control variates, after all since we do
not calculate the optimal value ¢* in Eq. (11.16), we do not know which
way the bias-variance tradeoft for our modified stochastic gradient (with
respect to its mean the true gradient) is. One particular biased control
variate is popular, and incidentally that is how the idea of accelerating
SGD was essentially discovered,

vew) (¢ 1,
n _<n_n§g>

which we obtained by setting A = 1/n in Eq. (11.17). You see that the
expected value of the term in the round brackets is no longer zero and
therefore this is a biased control variate. But this algorithm, named as
stochastic averaged gradients (SAG) was also shown to give a convergence

(11.17)

(11.19)

rate of O(log(1/¢)) for strongly convex functions, so it works pretty well.

Now notice that if we replace the value g by the latest calculated

A There is also a non-buffer version of the
SAGA algorithm called SVRG (stochastic
variance reduced gradient). At some
infrequent instants during training, we
calculate the full gradient V/(w(®)) and use
this to reduce the variance of the stochastic
gradient at later times. Again suppose that the
mini-batch size is 1. At iteration ¢ if we
sampled w, the weights are updated using the
quantity

Ve (w®) — (ww(w@) - W(w<8>)) :
(11.18)

note that the round bracket has zero expected
value. In other words, we store some
checkpoint w(*) and calculate the stochastic
gradient using the latest datum w using the
checkpoint as well as the current weights w(®),
SVRG therefore requires calculating two
stochastic gradients at each iteration. But it
avoids maintaining a large buffer like that of
SAGA and also converges linearly.

155

gradient V/* (w) in our buffer to obtain a new buffer {¢g’“’}"_,, then

Vv (w) @ 1 1
- (nnz >nz (11.20)

=1

In other words, the SAG gradient is the average of the updated buffer.
Note that the different gradients in the buffer were calculated using
different weights over the course of past iterations, so their average is
not equal to the full gradient.

This is the first big idea implemented in Adam: to average the
past stochastic gradients. Instead of the Euclidean average as done
in Eq. (11.20), Adam computes an exponential average. We can
implement better control variates and use the SAGA gradient but
Adam does not need to maintain a buffer. Adam has been shown to
obtain a convergence rate of only 1/¢? for convex functions.

Pre-conditioning the gradient

Newton’s method for solving a minimizing problem argmin ¢(w) corre-
sponds to weight updates

W) = w® — (V2w))71W(w(t>). (11.21)

Newton’s method converges quadratically, i.e., £(w*tD) — f(w*) <
c(b(w®) —¢ (w*))Q, the sub-optimality shrinks very quickly. It is how-
ever very difficult to implement Newton’s method for large optimization
problems, such as deep networks, because the Hessian V%(w) c RP*P is
a very large matrix. Inverting such large matrices at each step of descent
is very expensive and furthermore, for many real problems the Hessian
is extremely ill-conditioned Amax / Amin & 108; in fact for deep networks
which have two times as many weights as the number of weights the
Hessian always has zero eigenvalues. In general, we can use any other
pre-conditioning matrix in place of the inverse Hessian so long as it is
positive semi-definite

w D = w® — G712 ve(w®); (11.22)

the square root is taken to emphasize the positive definiteness. We can
approximate the Hessian using the so-called Gauss-Newton matrix:

VZ(w ZWZ WO (w) T (11.23)

if the gradients V/?(w) ~ 0. We will derive this in Chapter 14 in Eq. (14.4).
In other words, the Hessian, up to an approximation that holds towards
the end of training, is equal to the average of the outer products of the
individual sample gradients. This is still a very large matrix, so let’s use

A One can implement Newton’s method for
some small-scale neural networks using
Hessian-vector products.

156

only the diagonal and set the off-diagonal elements to zero:

=1

i.e., the diagonal elements of the Hessian under this approximation are the
averages of the squares of the gradients of the individual samples. We can
now write the pre-conditioned descent direction as

de(w®)
(G‘l/QVE(w(t))) ~ dw; . (11.24)
i 1 n det(w) 2
w it (W)
When implementing this descent direction using stochastic gradients, we

can calculate the denominator using a run-time average of the square of
the gradients

t
1 W s S
7 > Vit (w))
s=1

Adam implements a pre-conditioned version of the gradient
descent equation using a (square root of the) diagonal approximation
of the Hessian as the pre-conditioning matrix. The new descent
direction is Eq. (11.24) where again the denominator is calculated
using exponential averaging instead of the Euclidean average.

The updates of Adam combine control variates and pre-
conditioning and are given by

mD = (1= 1) (Bm® + (1=)V (w))

o = (1=)7 (Bov® + (1= Bp) diag (V6 ()W T e

t+1
wttD — p(® _ UL-

v+l ¢
(11.25)

The factors of (1— /%)~ come from debiasing the exponential average,
and all three equations are computed element-wise. The default values of
parameters are 81 = 0.99 and S5 = 0.999; tweaking 3 is usually quite
useful in practice. It is useful to remember that running Adam requires
three times the amount of memory to store the weights as that of SGD.

11.5 Understanding SGD as a Markov Chain

The preceding development tells us how SGD works and how many
iterations of SGD we need to get within an e-neighborhood of the global

)

20

21

22

23

24

25

26

27

157

minimum for convex functions. Things are not this easy to understand for
non-convex functions; essentially if we have two minima u*, v*

Vei(u*) =Vel(*) =0

depending upon where GD/SGD are initialized they can converge to
different places. In this section, we will look at an alternative way of un-
derstanding how SGD works for non-convex functions. The development
here will be much more abstract that the preceding section because we
want to capture the overall properties of SGD.

11.5.1 Gradient flow

Let us first talk about gradient descent. Just like we constructed a model
for Nesterov’s updates using a differential equation, we will first construct
a model for gradient descent using a differential equation. The updates
are given by

wlttD — () — —nVE(w(t)).

If we again imagine a continuously differentiable curve W (7) as a model
for these discrete-time updates and time

dr :=n
we can write a differential equation of the form

W Vi) = v WO =ul. (126)

This is called gradient flow. If we wanted to execute gradient flow on a
computer, we can do so using Euler discretization
W(r+ Ar) —W(r)

W)~ Ar = ~VUW(r)).

for any value of the time-step A7. If the time-step AT = 1 we get exactly
gradient descent. More precisely, gradient flow is the limit of gradient
descent as the learning rate — 0. It is important to always remember
that gradient flow is a model for GD, not GD itself. Our goal in the
remainder of the section is to develop a similar model for SGD.

11.5.2 Markov chains

Consider the Whack-The-Mole game: a mole has burrowed a network of
three holes w', w?, w? into the ground. It keeps going in and out of the
holes and we are interested in finding which hole it will show up next so
that we can give it a nice whack.

A A non-convex function with two local
minima. The one on the left is the global
minimum but gradient descent may not
always reach here.

21

22

23

24

25

158

@ Three holes:
X ={x1,x,x3}.

@ Transition probabilities: o4 06
04 06
0.1 04 05
0.1 0.4
T=104 0 06 05
0 06 04

This is an example of a Markov chain. There is a transition matrix P
which determines the probability P;; of the mole resurfacing on a given
hole w? given that it resurfaced at hole w? the last time. The matrix P? is
the ¢-step transition matrix

P = P(w® =w | w® = w).
If there exist times ¢, ¢’ such the both the probabilities
Pw® =w | w® =w)) P =uw'|w® = w)
are non-zero the two states w® and w? are said to “communicate”
w' > w?

The set of states in the Markov chain that all communicate with each
other are an equivalence class. This means that the Markov chain can
visit any state from any other state in this equivalence class with non-zero
probability, we just might have to wait for a really long time if Pfj ~ 0
for two states w*, w’. If all the states in the Markov chain belong to
the same equivalence class, it is called irreducible. A related concept
is that of “positive recurrence”, i.e., if the Markov chain was at a state
w at some time, it comes back to the same state after some finite time.
Since the process is Markov it forgets that is just came back to the same
state and therefore positive recurrence also means that if we consider an
infinitely long trajectory of a Markov chain, the chain visits the same state
infinitely many times along this trajectory. You can see the animations at
https://setosa.io/ev/markov-chains to build more intuition.

Invariant distribution of a Markov chain The probability of being in
a state w’ at time ¢ + 1 can be written as

N
P(wY) = w') = Z P(w™V) = ' | w® = w’) P(w® = w’).
j=1
This equation governs how the probabilities P(w(?) = w") change with
time ¢. Let’s do the calculations for the Whack-The-Mole example. Say
the mole was at hole w’ at the beginning. So the probability distribution

https://setosa.io/ev/markov-chains

20

21

22

23

24

25

26

27

159

of its presence

P(w® = w')
7® = [P(w® = w?)
P(w® = w?)
is such that
7' =[1,0,0]".

‘We can now write the above formula as

2D — pTo(®)

and compute the distribution 7(* for all times

w2 =P'7! =[0.1,0.4,0.5];
7 =P 7% =[0.17,0.34,0.49] ";
7t = PTn® =[0.153,0.362,0.485] ' ;

7° = lim P!«
t—o0

=[0.158,0.355,0.487] "

If such a distribution 7 exists, the Markov chain is said to have “equilib-
riated” or reached an invariant distribution. The numbers P(w**1) = w?)
stop changing with time. We can compute this invariant distribution by
writing

7° =P g™,

Does such a limiting invariant distribution 7> always exist? It turns out
that if a Markov chain has a finite number of states then the invariant
distribution 7°° always exists; this is easy to show yourself. If the
Markov chain is irreducible and aperiodic, then the invariant distribution
is also unique. We can also compute the 7> given a transition matrix
P: the invariant distribution is the (right-)eigenvector of the matrix P T
corresponding to the eigenvalue 1.

Periodicity of a Markov chain A state of a Markov chain is periodic
with period k if the probability of coming back to the same state is zero
for times that are not integral multiples of £ and the probability of coming
back to the same state is non-zero for all times that are integral multiplies
of k. To take a simple example, every number of a clock is a periodic
state; the Markov chain comes back to that state at regular intervals. If we
cannot find such a time k for a given state, then the state is aperiodic. It is
easy to see that if there exists an aperiodic state in one communicating
class, then all the other states in that class also have to be aperiodic. It is
useful to remember that if a particular state has a non-zero probability of
self-transition, then the state is aperiodic.

Example 11.5. Consider a Markov chain on two states where the transition

21

22

23

24

25

26

27

28

29

30

160

matrix is given by

0.5 0.5
P= [0.4 0.6]

This is an irreducible Markov chain because you can hop between any two
states with non-zero probability within one step. It is also recurrent: this
is intuitive because say the Markov chain was in state 1, it is easy for it
to come back to this state after a few hops. After the chain comes back
to state 1, the Markov property means the chain forgets all the past steps
and will again come back to state 1. The expected number of times the
Markov chain comes back to state 1 is infinite. Each of the two states has
a non-zero probability of self-transition, so both of them are aperiodic.

We are therefore guaranteed that a unique invariant distribution exists
for this Markov chain. In this case it is

7t = 057" 4+ 0.472
w2 = 0.57! + 0.672.

Note that the constraint for 7 being a probability distribution, i.e., 71 472 =
1 is automatically satisfied by the two equations. We can solve for 7!, 72
to get

al=4/9 7*=5/9.

Time spent at a particular state by the Markov chain We can observe
a long trajectory of a Markov chain and compute the number of times the
chain is in a particular state w®. This is directly proportional to 7 (w?).
In other words, if the invariant distribution gives small probability to a
particular state, if we stop the Markov chain at an arbitrary time during its
trajectory, we are very unlikely to find the Markov chain at this state.

11.5.3 A Markov chain model of SGD

The updates of SGD with mini-batch size 6 are given by
wtY —w® = v (w®).

Notice that conditional on the iterate w(?), the next iterate w1 is
independent of w*~1), all these three quantities are random variables
because they depend on the input data wy, . . . ,w; sampled by SGD in the
previous time-steps. You should never make the mistake of saying that
gradient descent is a Markov chain; there is no randomness in the iterates
of GD.

Transition probability of SGD What is the transition probability
p(w(t+1) ‘ w(t))
for SGD? If we take the conditional expectation on both sides

1{;: [w(H-l) —w® | w(t)} = _,71;: [Vé(w(t))} = —nVe(w®);

20

21

22

161

in other words, on-average the change in weights at w(*) is proportional
to the full gradient V/(w®). Notice that the change in weights exactly
the same for GD; this should not be surprising after all, if the gradient of
SGD is unbiased then SGD is GD “on-average”.

Variance of SGD weight updates The variance is computed as follows

Varg (w(Hl) —w® | w(t)> = n? Varg (Vﬂg(w(t)) | w(t))

=’E [(Wﬁ(w@) = veq®)) (Vo) - V“w(”)ﬂ

Notice that the variance of the weight updates in SGD is proportional
to the square of the learning rate. We have seen this before, larger the
learning rate more noisy the weight update as compared to the update
using the full-gradient nV¢(w(®)). The variance is a large matrix € RP*?;
this matrix depends on the current weight w(®).

If we are sampling the data inside a mini-batch with replacement the
stochastic gradients are independent for different samples w' and w? in
the mini-batch

Ve (w) L Ve (w).

In other words

E {(ww (w®) = Ve(®)) (Ve (w®) - W(w@)ﬂ ~ 0.

wl w?

You can use this to show that

6
Varg (w(”l) —w® | w(t)) =n? Var,1 6 (; Z \as (w(t))>

= g—z i Var (Vﬂ“i (w(t)))

i=1
= Z;Varw (Vﬂw (w(t))>

(11.27)

The last step follows because we are sampling inputs w® uniformly randomly

and therefore gradients V¢*' (w(*)) are not just independent but also

identically distributed. In other words, a mini-batch size of ¢ reduces the

variance by a factor of 6.

SGD is like GD with Gaussian noise We now model the transition
probability P(w**1) | (")) as a Gaussian distribution. Let us denote by
Wt Wt etc. the updates of this model. We now have

WD — w® 4 gt

21

22

23

24

25

26

27

28

29

30

31

162

where £* is Gaussian noise

&~ N (—nVﬁ(w(t)), T;;Varw (Vfw(w(t)») .

In other words, on-average SGD updates weights like gradient descent, by
aterm —nV/(w®)) but SGD’s updates also have a variance.

Such equations are called stochastic difference equations and they
are quite difficult to understand compared to non-stochastic difference
equations (what we see in gradient descent). So we will make a drastic
simplification in our model. We will say that the variance of the mini-batch
gradients is identity. Our model for SGD is

WD — W v ®) + %8 (11.28)

where we have zero-mean unit-variance Gaussian noise £ ~ N (0, I,x,)-

Remark 11.6. The above model for SGD is a Markov chain except that
the states in the Markov chain is infinite; the number of states in the
Whack-The-Mole example were finite. It is easy to see that the above
model is not exactly SGD: (i) we assumed the the transition probability
was a Gaussian which need not be the case while training a deep network,
(ii) we further assumed that the Gaussian noise does not depend on w®
and has identity covariance. You can implement the above model on a
computer, first you compute the full gradient V¢(w")) and then sample
Gaussian noise £¢ to update the weights to T/ (**+1)_ This is obviously not
equivalent to SGD which updates weights using the stochastic gradient
Vﬁf; (w(t)) .

11.5.4 The Gibbs distribution

In a Markov chain we were interested in the invariant distribution because
that gives us a way to understand where the chain spends most of its time.
We can compute the invariant distribution for our model of SGD. It is
a very powerful result (which we will not do) and leads to the so-called
Gibbs distribution. The probability density of the invariant distribution is
given by

1
00 _ —BL(w)
w)=——-—=¢€ . (11.29)
P> (w) 70
The quantity -
B =— (11.30)
n

and Z () is a normalizing constant for probability density

Z(B) = /}R e P qu,

Let us list a few properties of the Gibbs distribution that are apparent
simply by looking at the above expression.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

163

1. The invariant distribution is reached asymptotically and is the

limiting distribution of the weights. For instance the sum of the
weights along an infinitely long trajectory converges to the mean of
the Gibbs distribution

T
: 1 t e}
%EHWT;W —/wwp (w) dw. (11.31)

Similarly, the second moment of the weights along a long trajectory
of SGD converges to the second moment of the Gibbs distribution;
and same for the variance.

.].) L / / / /
Th_I)réOTZZ<Wt> (Wt)T:/ /wapoo(w)poo(w)dwdw.
(11.32)

t'=1t=1 w,w

. The probability that the iterates of SGD are found at a location w

is proportional to e~#4(") If the training loss ¢(w) is high, this
probability is low and if the training loss is low, the probability is
high. The Gibbs distribution therefore shows that if we let SGD run
until it equilibriates we have a high chance of finding the iterates
that have a small training loss. This observation is powerful because
it does not require us to assume that #(w) is convex. However this
statement does require the assumption that the steps-size n of SGD
does not go to zero; after all SGD iterates stop if n = 0.

. The quantity 1/4 is quite common in physics where it is called the

“temperature”. This temperature 5~ = 5 fundamentally governs
how the Gibbs distribution looks. Higher the temperature, more
the noise in the iterates and vice-versa. If the learning rate 7 is
large or the batch-size 6 is small, it is easy for our model of SGD to
jump over hills. This is the reason why the Gibbs distribution will
be spread around the entire domain at high temperature. On the
other hand, if temperature is very small, the Gibbs distribution puts
a large probability mass in places where the training loss is small
and the probability of finding iterates at other places in the domain
diminishes. In particular, if 3 — oo, the Gibbs distribution only
puts non-zero probability on the global minima of the loss function
L(w).

. Written in another way, if we want the Gibbs distribution to remain

the same we should ensure that

L= % is a constant.
If you increased the batch-size by two times, you should also
double the learning rate if you desire that the solutions of SGD are
qualitatively similar.

. We have achieved something remarkable by looking at the Gibbs

distribution. We have discovered an algorithm to find the global

20

21

22

23

24

25

26

27

28

29

164

minimum of a non-convex loss function.

o Start from some initial condition w?;

» Take lots of steps of SGD with learning rate 7 until SGD
reaches its invariant distribution, i.e., until it equilibriates;

* Reduce the step-size 1 and repeat the previous step

This is only a formal algorithm but in theory it will converge to the
global minimum of a non-convex function ¢(w) if the number of
steps is very large. The catch of course is that at each step we have
to wait until SGD equilibriates. For many problems, it may take an
inordinately long amount of time for SGD to equilibriate.

It is very important to remember that when we train a deep
network we are executing one run of SGD. The invariant distribution
is an abstract concept that does not really exist on your computer. We
have constructed this model to help us understand how updates of
SGD behave.

11.5.5 Convergence of a Markov chain to its invariant
distribution

For gradient descent and SGD, we had quantities like ||w(t) —w* H or
f(w®) — £(w*) that let us measure the progress towards the global
minimum. For a non-convex problem, there may not exist a unique global
minimum, or there may be multiple local minima in the domain where the
gradient vanishes. We discussed in the preceding section how the invariant
distribution of SGD is achieved even if the loss ¢(w) is non-convex. In
this section, we will see a simple tool to measure progress towards this
distribution.

Let us define a quantity called the Kullback-Leibler (KL) divergence
between two probability distributions. For two probability distributions
p(w) and g(w) supported on a discrete set w € W, the KL-divergence is
given by

KL(p|lq) = > p(w) log z EZ; (11.33)
weWw

This formula is well-defined only if for all w where ¢(w) = 0, we also
have p(w) = 0. The KL-divergence is a measure of the distance between
two distances, it is zero if and only if p(w) = ¢(w) for all w € W. It

is always positive (you can show this easily using Jensen’s inequality).

However, the KL-divergence is not a metric because it is not symmetric

KL(p||q) 2KL(g | p) = 3 qw) log L.
weWw p(w)

@ How much time does it take SGD to
equilibriate for a convex loss function?

165

For probability densities, the KL-divergence

KL(p || q) = / p(w) log M dw (11.34)
w q(w)
is defined analogously and has the same properties.

We will now show a very powerful result: the KL-divergence of
the state distribution of a Markov chain decreases monotonically as the
Markov chain converges to its invariant distribution. Although, this result
is true for SGD as well, we will only prove it for a Markov chain with finite
states. Let the initial distribution of the Markov chain be 7, its transition
matrix be P and its invariant distribution be 7°°. We will assume that the
Markov chain is such that the invariant distribution exists (it is irreducible
and recurrent).

Let us also assume that a reverse transition matrix

P =P(w® = wwl* = w).

exists; such Markov chains are called reversible. For any states w, w’ this
transition matrix satisfies the definition of conditional probability

P(w™V) = o' |w® = w)P(w® = w) = P(w® = w|w® =) P(w*) = w').

In our notation, this becomes
szuﬂr(w’) o Pw/uﬂr(w')
m(w) o Purwm(w’)

Lemma 11.7. For a reversible Markov chain with an invariant distribution
7, the quantity KL(7*° || w*) decreases monotonically:

rev.
ww' T

KL(7 || ') < KL(7™> || 7%). (11.35)

1

20

21

22

166

Proof. The proof is a simple calculation.

t+1) T (w)

T (w)
= Zw) log S P ()

/Pw’w t /
:_Zﬂ_ lngw 7T(’U})

=) 7%(w) log (Z P,))) (substitute definition of P™®" for distribution 7°°)

()
t /
< - Z 7 (w) Z P log 7% (Jensen’s inequality)
w/
o0 /
= Z Z P, 7% (w) log 7r<(w)) (flip the negative sign, exchange sum)
w’

() log T (W)
=2 o8
:KL(7T°°||7T).

The distance to the invariant distribution 7 decreases at each step of the
Markov chain. A similar statement is true for the reverse KL divergence:

KL(7 || 7%°) < KL(7? || 7°°).
O

The above result is also true for SGD which, as we discussed, can
be modeled as a Markov chain with infinite states. It gives us some
very important intuition. Just like gradient descent makes monotonic
progress towards the global minimum w*, a Markov chain (or SGD) makes
monotonic progress towards its invariant distribution. The big difference
between them is that while we required that the loss function £(w) is
convex for gradient descent to guarantee this monotonic progress, the loss
need not be convex for the case of the Markov chain model of SGD.

This result does not mean that SGD makes monotonic progress towards
the global minimum w* = argmin,, £(w). We choose to look at SGD not
as one particle undergoing (stochastic) gradient descent updates but rather
as a Markov chain. The probability distribution of states of this Markov
chain is then a legitimate object (the distribution 7 is the distribution of
weights W obtained after many independent run of SGD from different
initializations). Although 7? is not meaningful across one run of SGD,
we can use it to get an abstract understanding of how SGD also makes
monotonic progress as it converges if we imagine many independent runs
of SGD occurring simultaneously.

1

3

4

Chapter 12

Shape of the energy
landscape of neural
networks

Reading
1. Goodfellow Chapter 13

2. “Neural Networks and Principal Component Analysis: Learn-
ing from Examples Without Local Minima” by Baldi and
Hornik (1989)

3. “Entropy-SGD: Biasing gradient descent into wide valleys”
by Chaudhari et al. (2016)

In this chapter, we will try to understand the shape of the objective for
training neural networks. We would like to characterize the difficulty of
training neural networks. We know that the objective is not convex and
training a network is difficult because of it. But how non-convex is the
objective? The questions we want to answer here are of the following form.
1. How many global minima exist? 2. How many local minima and saddle
points exist? 3. What is the loss at the local minima or saddle points? If
we train with gradient descent or stochastic gradient descent, what loss can
we expect to obtain even if we don’t reach the global minimum? 4. What
is the local geometry of the loss function? 5. What is the global topology
of the loss function?

This will help understand how SGD seems to train deep networks
so efficiently and why we often get very good generalization error after
training. As a pre-cursor to how the picture of the energy landscape of a
neural network looks like, here’s one picture from Li et al. (2018):

167

168

(a) without skip connections (b) with skip connections

Figure 12.1: A picture of the training loss. The picture on the left was created by
sampling two directions randomly out of the millions of weights for a residual
network without skip-connections and computing the training loss by discretization
of this two-dimensional space. The picture on the right is a similar picture for the
resnet with skip-connections intact. In this picture, we see that while the training
loss is very complex on the left-hand side with lots of local minima and saddle
points, the loss is much more benign on the right-hand side.

12.1 Introduction

Let us introduce a few quantities that will help characterize the energy
landscape. We will consider the case when the function ¢(w) is twice-
differentiable.

Global minima are all points in the set

{w : £(w) < {(w') forall w'} .

Note that there may exist many different locations all with the same loss
{(w), they would all be global minima in this case. Local minima are all
points in the set

{w: Vl{(w) =0,V*(w) = 0}.

i.e., all points w where the Hessian V2¢(w) is positive semi-definite.
Note that the two conditions (i) first-order stationarity V/(w) = 0 and
(ii) positive semi-definiteness of the Hessian V2¢(w) > 0 also have to
be satisfied for all global minima. Critical points are all locations which
satisfy only first order stationarity

{w: Vl(w) =0}.

Saddle points are critical points but which are neither local minima
not local maxima

{w: V{(w) =0, V*((w) is neither positive nor negative semi-definite} .

Non-convex functions, in general, can have all these different kinds of
locations in the energy landscape and this makes minimizing the objective

© Draw the Gibbs distribution of SGD if
£(w) has multiple global minima.

@ Draw the Gibbs distribution of SGD if
£(w) has multiple global minima and multiple
local minima.

20

21

169

difficult. Our goal in this chapter is to learn theoretical and empirical
results that help paint a mental picture of what the energy landscape looks
like.

12.2 Deep Linear Networks

Let us consider the simplest case of linear neural networks first. We will
have a two-layer neural network which takes in inputs z* and aims to
predict targets y°. For simplicity, we will consider the case when both

zt yt e R
and use the regression loss
1 n ; ; 9
(A, B) = %2Hy — AB '], (12.1)

We use the standard trick of appending a 1 to the input 2* so that we don’t
have to carry around biases in our equations.
The matrices A, B are the weights of the neural network with

A e R B ¢ RPX4,

We will consider the case when p < d. We are interested in finding A and
B and will develop some results from Baldi & Hornik’s paper.

Least squares solution A simple calculation reveals that for a single-
layer network the solution of the problem

N D BN in2
L :argzmn%;Hy — Lz H2

is
L* =%, 5.} (12.2)

1,7
Dyw = E y'x
i
P E A A
i

The matrices X, and ¥, are the data covariance matrices.

where

Projection of a vector onto a matrix It will be useful to define a
projection matrix. Say we have a vector v that we want to project on the
span of the columns of a full-rank matrix

M:[ml mo ... mn].

170

If this projection is © € span {my, ..., m, }, we know that it has to satisfy
(v—0) Lmygforallk <n = mj(v—>2)=0forallk<n.

The vector © is also obtained by a combination of the columns of M, so
there exists a vector ¢ which allows us to write

U= Mec.
These together imply
c=M"M)"*M"%
and finally

o=MM"M)"*MTv

projection matrix

= PM V.

where the matrix Py, is called the projection matrix corresponding to the
matrix M.

Back to deep linear networks We know from the homework problem
that there is no unique solution to the problem

* * . 1 . 7 i2
A* B :arx%fgm%;Hy — ABx H2

If A*, B* are solutions, so are A* P, P~ B* for any invertible matrix P.
We also showed in the homework that the objective is not convex. But if
we fix either A or B and only optimize over the other, the loss is convex.
Notice that the rank of AB is at most p.

Fact 12.1 (Critical points of B if A is fixed). For any A, the function
¢(A, B) is convex in B and has a minimum at

(ATA) BA)S,, = ATS,,.
If X, is invertible and A is full-rank, then we can write
B(A) = (ATA)'ATy,, 5 L. (12.3)

Note that these are all locations when the gradient

or
0B
Fact 12.2 (Critical points of A if B is fixed). We have an analogous

version of the previous fact for A: if B is fixed, the loss is convex in A,
for full-rank ¥,.,. and B, then for g—ﬁ = 0, we should have

=0.

ABY,,B" =%, B". (12.4)

A Note that P, = Py, i.e., if we project the
vector twice onto the column space of M, the
second projection does nothing. Also, any

projection matrix P is symmetric. To see this,
consider two vectors v, w and the dot products

(Pv,w), and (v, Pw) .

In both cases, one of the vectors lies
completely in the column space of M and
therefore the dot product ignores any
component that is orthogonal to the column
space of M. This means

(Pv,w) = (v, Pw) = (Pv, Pw).
We can now rewrite the first equality to obtain

(Pv)" w=10" (Pw)
— v ' Plw=v"Pw

and since this is true for any two vectors v, w,
we have that P = P,

20

21

171

Or in other words,

A(B) =%y, BT (BS..BT) . (12.5)

Fact 12.3 (Critical points of (A, B)). We now solve the equations Eqs. (12.3)
and (12.5) to get a critical point, i.e., the gradient of the objective in both
A and B is zero. First

W =AB = Pa %,.2.}. (12.6)

from Eq. (12.3). Next, multiply Eq. (12.4) on the right by AT to get
W, W' =ABY,,B"A" =%, B"AT =%, W".

Now we substitute the value of W from Eq. (12.6) to get the condition
that A should satisfy

PAE = ZPA = PAEPA-

where
DIEED I Vit D

Fact 12.4 (If IV is a critical point, then it can be written as a projection
of the least squares solution 3,3 on the subspace spanned by
some p eigenvectors of). This is an important fact. Let us say we have
a full-rank ¥ with distinct eigenvalues A\ > ... > A4. Let u;, be the
eigenvector associated with the i eigenvalue of 3, i.e.,

R4 5% =UAUT.
Given any index set of p eigenvalues

Z={i1,...,ip} with 1 <4, <dforallk.

we can define a matrix of rank p
UI = [Uil Ujy . uip]

formed by the orthonormal eigenvectors of 3 associated with the eigen-
values A;,, ..., A;, of the index set.

One can then show that the matrices A and B are critical points if and
only if there is a set Z and an invertible matrix C' € RP*P such that

A=UsC 127
B=C"'U] .5 '

You can find the proof in the Appendix of Baldi & Hornik’s paper. Because
U7 is a matrix of orthonormal vectors we also have

Py, =Uz U}

A Proving Eq. (12.4) is slightly involved and
you can read the Appendix of the original
paper for the proof. It relies upon a clever
rewriting of the regression objective using the
identity

vec(PQR") = (R® P) vec(Q)

where the Kronecker product of two matrices
R ® P is obtained by replacing each entry
R;; of the matrix R by the matrix R;; P.
Using this, we can write our original
objective in Eq. (12.1) as

1 i in2
LSy as|
:%HveeY—(XTBT(X)I) vecAH2

where X is a matrix with 2* as the ™ column.
Now we can use our standard formula for the
solution of linear regression to solve for the
vector vec A in terms of the other known
quantities.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

172

and therefore
W = Py, Sy.200

which is the same form for W as Eq. (12.6) in Fact 3 and L* in Eq. (12.2).
In other words, the solution W = AB in a two-layer linear network
is given by our original least squares regression matrix followed by an
orthogonal projection onto the subspace spanned by p eigenvectors of 3.

Fact 12.5 (If W is the global minimum for a two-layer network, then
it is a projection of the solution for a single-layer network onto the
subspace spanned by the top p eigenvectors of). You can further
show that the objective

(A, B) = trace(Syy) — Y iy (12.8)
1L EL

at a critical point (A, B). The first term is a constant with respect to
the parameters of the network A, B. The second term is a sum of the
eigenvalues of the matrix X at indices that we picked in our set Uz. What is
the index set that minimizes this loss? It is simply the largest p eigenvalues
of 3. This is also a unique value for the loss because we have assumed
that all the eigenvalues are distinct. This also solidifies the connection
of this model with Principal Component Analysis (PCA), the matrix W
is projecting on the sub-space spanned by the top p eigenvectors in the
auto-associative case.

Fact 12.6 (There are exponentially many saddle points for a two-layer
network). There are a total of (Z) possible index sets Z. One of them as
we saw above corresponds to a global minimum. It can be shown that all
the others are saddle points. Note that there are exponentially many saddle
points. This is an important fact to remember: there are exponentially
many saddle points in a hierarchical architecture.

Smaller the number of neurons in the hidden layer p (also the upper
bound for the rank of the weight matrices), fewer are the number of saddle
points but this also creates a dimensionality bottleneck in the feature space.
If p is too small as compared to d we lose large amounts of information
necessary to classify the image and the network need not work well.

Fact 12.7 (There are no local minima in a deep linear network; all
minima are global minima). The proof of Fact 12.6 also shows that any
index set Z # {1,...,p} cannot be a local minimum (see the Appendix
of the paper). There are no local minima for a deep linear network, only
global minima and saddle points. This is often summarized as “linear
networks have no bad local minima”.

Fact 12.8 (The global minimum is not unique). This is perhaps the most
important point of this chapter. The loss at the global minimum is unique,
not the global minimum itself. Any full-rank square matrix C' € RP*? of
our choice gives a pair of solutions (A, B). How many such solutions are
there? There are lots and lots of such solutions, in fact, given any solution
with a particular C' if we can perturb the C' without losing rank (quite easy

@ Based on the previous two facts, what can
you say about the solution W if p > d and %2
is invertible? Since the two-layer network
simply projects on the p eigenvalues of X, if
p > d and ¥ is invertible, the solution already
lies in the column-space of 3 and therefore
W = L*.

6

173

to do by, say, changing the eigenvalues slightly) we get another solution of
a linear network.

Fact 12.9 (All the previous results are true for multi-layer linear
networks). The same results are true for deep linear networks (Kawaguchi,
2016). These results also hold if dim(y;) = 1, i.e., for the regression case.

We used a simple two-layer linear network to obtain an essentially
complete understanding of how the loss function looks like. A
schematic looks as follows.

There are lots of locations where the global minimum of the function
is achieved. There are lots of saddle points in the energy landscape.
The Gibbs distribution for this energy landscape has a lot of modes,
one each at the global minima.

How does weight-decay
(A, B) = A (Jl4l5 + 1BI})

change the energy landscape of deep linear networks? It changes the
number of global minima, only the ones that have the smallest /5 norm
remain in the energy landscape. It also reduces the number of saddle
points because the Hessian at saddle points has an extra additive term that
involves .

12.3 Extending the picture to deep networks

Let us think carefully about the non-uniqueness of the solution for a
two-layer network. We know that all critical points are of the form

A=U7C,
B=C"'U;%,. 5

The gradient at these critical points is zero. Given a particular C', we can
perturb it slightly and obtain a new critical point (a new saddle point, or a
new global minimum) and this keeps the objective unchanged. Effectively,
we have a connected set of global minima and saddle points for a deep
linear networks.

If one were to try to visualize this energy landscape and extend the
picture heuristically to deep networks with nonlinearities, we can think of
the global minimum as looking like the basin of the Colorado river.

174

The important point to remember from this picture is that all the points
at the basin of the river are solutions that obtain a good training loss.
Although gradient-based algorithms (GD/SGD etc.) do not allow us to
travel along the river (the gradient is zero along it), if the river basin snakes
around in the entire domain, no matter where the network is initialized,
we always have a global minimum close to the initialization. Essentially,
the objective of deep networks is not convex, but current results indicate
that it is quite benign. And this is perhaps the reason why it is so easy to
train them.

20

21

22

23

24

25

26

27

28

29

Chapter 13

Generalization
performance of machine
learning models

This chapter gives a preview of generalization performance of deep
networks. We will take a more abstract view of learning algorithms here
and focus only on binary classification. We will first introduce a “learning
model”, i.e., a formal description of what learning means. The topics
we will discuss stem from the work of two people: Leslie Valiant who
developed the most popular learning model called Probably Approximately
Correct Learning (PAC-learning) and Vladimir Vapnik who is a Russian
statistician who developed a theory (called the VC-theory) that provided a
definitive answer on the class of hypotheses that were learnable under the
PAC model.

13.1 The PAC-Learning model

Our goal in machine learning is to use the training data in order to
construct a model that generalizes well, i.e., has good performance outside
of the training data. Formally, we search over a hypothesis space F,
e.g., a specific neural net architecture, using the available data to find a
good hypothesis f € F. As we motivated in Chapter 2, without further
assumptions, we cannot guarantee that this hypothesis works well on test
data. We therefore assume two things in this chapter:

1. Nature provides independent and identically distributed samples
x € X from some (unknown to the learner) distribution P.

2. Nature labels these samples with ¢(z) which is again unknown to
the learner.

Both training and test data are samples from Nature’s distribution P.
We will also assume that even if the true labeler ¢(z) is unknown to us,
we know that it belongs to a chosen hypothesis class ¢(z) € C and is

175

https://amturing.acm.org/interviews/valiant_2612174.cfm
https://www.youtube.com/watch?v=Ow25mjFjSmghttps://www.youtube.com/watch?v=Ow25mjFjSmg

20

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

176

deterministic, i.e., Bayes error is zero. Changing this assumption does not
change the crux of this theory.

Consider a learning algorithm, denoted by L. Given a dataset
D = {(2,¢(z")},_, and a hypothesis class C, the population risk
(for classification) of the hypothesis output by this learning algorithm is

R(f) = E, [L{p@e)]

Let us assume that the learning algorithm is deterministic for now, i.e.,
given a training dataset D it returns a unique answer f. Let us assume
that the hypothesis class that the learner searches over, named F is the
same as the hypothesis class C. What do we want from this algorithm?
We expect that it works well for all hypotheses Nature could use to
label data ¢ € C and all datasets D drawn from P. The PAC-Learning
model postulates the following desiderata upon the learning algorithm.

1. We are okay with an answer f with error

R(f) €[0,1/2)

because we only have access to finitely many training data. This is
the “approximately correct” part of the PAC-Learning. The error
should decrease as n increases.

2. The dataset D is a random variable. This implies that the hypothesis
output by the learning algorithm f (D) is also arandom variable. The
above statement therefore should hold with some large probability
over draws of the dataset D. In other words, there can be a small
probability that a non-representative dataset D is drawn and we do
not expect the learner to output a good hypothesis with R(f) < 1/2.
However the probability of such failure, let us call it § € [0,1/2),
should also become smaller if more data is provided. This is the
“probably” part of PAC-Learning.

We can now use these two postulates to give a definition of what it
means to be a good learning algorithm.

Definition 13.1 (PAC-learnable hypothesis class). A hypothesis class C
is PAC-learnable if there exists an algorithm L such that for every true
labeling function ¢ € C, for every €,6 € [0,1/2), if L is given access to
n(e,) i.i.d. training data from P and their corresponding labels ¢ then it
outputs a hypothesis hp € C such that

Pp (R(f) <e)=1-4.

We want the learner to be statistically efficient, i.e., as our desiderata
€, 0 get smaller, we should expect n(e, §) to not grow too quickly. One
classical setting under which we analyze learning is the case when n(e, §)
is a polynomial function of 1/¢ and 1/4.

Sample complexity and computational complexity The minimum
number of samples n(e, d) required to learn a hypothesis class C is

20

21

22

23

24

25

26

27

177

called the sample complexity of C. One is also typically interested in
the computational complexity of finding f, e.g., to avoid a brute-force
algorithm L that searches over the entire hypothesis class F = C; we will
not worry about it here.

It is important to notice that PAC-learning assumes nothing about
how the learner L is going to use the data D to create a hypothesis
f(D), e.g., whether it runs SGD or some variant, or what surrogate
loss it uses, or even whether it performs Empirical Risk Minimization.
In this sense, the above learning model is very abstract and we should
expect only qualitative answers from this theory.

Example 13.2 (Learning Monotone Boolean Formulae). Let x =
[z1,...,24] € {0,1}* be a datum and let the true label c(z) be the
conjunction of the entries of z, e.g.,

c(x) =x1 N3 A xy.

To take a few examples, ¢(10011) = 0 and ¢(11110) = 1. Such formulae
are called monotone because no literals show up as negated in the formula.

We can have the hypothesis class F to be the set of all possible
conjunctions of d variables z1,...,z4. Each literal x; can be in the
conjunction or not, so the total number of hypotheses in F is 2¢. !
Observe that since this is exponential in d, an algorithm L that brute-force
searches over F will have a large computational complexity. Also observe
that since the true hypothesis ¢ € F, there exists an answer f that the
algorithm L can output that achieves zero training error, i.e.,

L
min > ; Lir@h)seay = 0-
But for a fixed amount of data n, there is some probability that the
minimizing hypothesis f has zero training error but large population risk.
As the number of data n is large, we expect this event to be less and less
probable.

Consider an algorithm L that does the following. It starts with the
hypothesis

ffl@)y=a1 Aza A Ay

with all literals and for every datum with a label 1, it deletes all literals x;
from the hypothesis f° that were not a part of that datum; this makes sense
because if the deleted literals were zero in some input, f and ¢ would
predict different outputs. Remember that since ¢(z) € F, we cannot have
a datum with input 1111. .. 1 and output 0.

! Actually the total number of conjunctions is 2¢ + 1 because for the null-conjuction
(without any literals) we can have the constant ¢(z) = 0 or ¢(x) = 1 for all z. We should
therefore explicitly make sure ¢(111...11) = 0 is not in the true labeling function. But we
ignore this corner case, and silently assume that only the hypothesis ¢(z) = 1Vz is in our
class C.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

178

What kind of errors does this algorithm make? If some literal z; was
deleted, it is because it had the value z; = 0 on a positively labeled sample.
So we only output a wrong hypothesis if more literals are present in our
hypothesis than those in ¢(x). If we think about this carefully, the output
f(x) can only make an error on data that are labeled 1 by ¢(x), never on
the ones labeled zero. Our algorithm therefore only has false negatives.

We now see why having more samples diminishes the probability of
this event happening. Let p; = P, p [c(z) = 1,2; = 0 in z]. Therefore

R(h) <) p;

z,€f

If some p; is small, then it does not contribute much to the error. If
some p; is large then we make sure to see enough samples so that we
remove that x; from f. After all, it only takes one appearance of this
event to delete this x;, and the event has probability p; which is large.
Rigorously, if all z; in f have p; < €/d then R(h) < e. On the other
hand, if some x; has p; > €/d then the probability of having this x;
in f is the probability that the event of p; never happens in the draw
of n samples. But this new probability is smaller than 1 — ¢/d. And
the event will never happen in n i.i.d. draws with probability at most
(1 —¢/d)™ < e~"/4, Using the union bound, since there are at most d
literals in f, the probability that there is at least one such “bad event” is at
most de~"¢/¢,

If this bad event never happens the population risk is less than €. Of
course, such a bad event happening would be devastating. For some
distributions it could lead the error up to 1. However, in our PAC-learning
setting we can accept this as long as it happens rarely with probability at
most §. And therefore we can say that if

de "/ <« § = n>de ! log(d/d)

then we are guaranteed to meet the PAC criteria: of error less than e with
probability at least 1 — 6.

Note that both the sample complexity and computational complexity
are polynomial in this example. We have thus shown that the class
of Monotone Boolean Formulae is (e, d)-PAC learnable. The sample
complexity n is linear in the number of dimensions d of the data.

13.2 Concentration of Measure

Two very important results from probability theory that we will use are
the Union Bound and the Chernoff Bound.

20

21

179

13.2.1 Union Bound (or Boole’s Inequality)

For any countable set of events, {Ay,--- , 4,, - },

P (UA) < ;P[Ai].

This is a rather loose, but useful, upper bound and is (mostly) embedded
in the assumptions of what we call a “probability measure” in probability
theory (o-subadditivity). This essentially means that it can be used without
any extra assumptions in practice.

By the inclusion-exclusion principle for finite set of events { Ay, - - , A, },

P (0 Ai> = iP(AZ-)— > P4 A+ (=) P (Ay, Ay, -
=1 =1

1<i<j<n

We can get better approximations of the union, if we use the first k < n
terms above. If we stop at odd k, we get an upper bound. If we stop at
even k we get a lower bound. The error of the approximation is decreasing
with k.

N

: BHAnC

13.2.2 Chernoff Bound

Let Aq,---, A, be a sequence of i.i.d. random variables. We focus on
the case of Bernoulli random variables where P (4; = 1) = p. We would
like to estimate p from samples. One way to do this is to compute the
empirical average

) 1
p(n) = - Z A
i=1
and estimate how close it is to the true p. We know that as n — oo

Weak Law For all ¢ > 0 we have
lim P([p(n) —p| <) = 1.

n—oo

This is also known as convergence in probability.
Strong Law In this case, we also have almost sure convergence, i.e.,

P(lim p(n) :p) =1.

n—r oo

A If we want a better approximation of the
probability of the union of multiple events
and we know more about the problem at hand
we can use what are called Bonferroni
inequalities.

s An)

© Where did we use the union bound in the
proof for the PAC-learnability of the class of
monotone Boolean functions?

@ Try to prove that
P(A4)21-T8, e
i=1

22

23

24

25

26

27

28

29

180

Central Limit Theorem As n — oo, the quantity \/n(p — p) is
distributed as a Normal distribution with mean zero and variance p(1 — p).
Notice that as opposed to the law of large numbers, the central limit
theorem also gives us a rate of convergence, i.e., how many samples n are
necessary if want the difference to be close to a Normal distribution. If
we set 02 = p(1 — p) we can rewrite the Central Limit Theorem as

P([p(n) — p| > €) < 2e7 7/ (%),

Chernoff Bound Since 02 = p(1 — p) < 1/4 we have from CLT that

(e

An easy way to remember the Chernoff bound is that if we want the
average of n random variables to be e-close to their expected value with
probability at least 1 — J, then we need

2
> e> < 2e72me,

n=Q (e *log(1/6))

samples.

Concentration of measure is a beautiful area of probability theory and
similar results can be obtained for other distributions, other functions than
averaging of random variables Ay, ..., A, etc. Popular inequalities are
Markov’s Inequality, Chebyshev’s Inequality and Chernoff Bounds (and
Hoeftding’s Inequality as an important special case). They are written in
terms of increasing tightness, but also of increasing assumptions of what we
need to know in order compute them. You canread a very good introduction
to this topic at https://terrytao.wordpress.com/2010/01/03/254a-notes-1-
concentration-of-measure/.

13.3 Uniform convergence

We now lift the assumption that Nature’s labeling function ¢ € C. After
all, even if there exists such a true deterministic ¢ we can never be sure that
it is inside F, say the class of neural networks of a specific architecture
that we are using. This model is called the Agnostic PAC-Learning model.

We will stay within the confinements of Empirical Risk Minimization
where we are provided with some samples where we output the hypothesis
with the smallest training error

. 1 n
R(f) = - Z 1(f(zi)zyi} Minimizing this gives fgrm € F.
=1

A This picture makes it easy to remember
concentration inequalities for an
n-dimensional Gaussian random variable Y.

Prl¥=a]

O

g \.‘tr inn

w=EM

@ Do you see any patterns in the Chernoff
bound with sample complexity in
PAC-learning?

https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/
https://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/

181

1 The population risk is

R(f) = (1? - [1{fﬁm(m);ﬁy}] minimizing this gives f* € F.
z,y)~

2 Observe that f* is not the Bayes optimal predictor that we saw in the

s bias-variance tradeoff. This is because we are now restricted to the

4 hypothesis class F while there was no such restriction before.

Our goal while computing a generalization bound is to ask the
following question: if we obtain an ERM hypothesis fgrm With a
good training error, then does this also mean that the population risk
of the best hypothesis within the class, i.e., f*, is small?

5 The above question is central, answering it in the affirmative ensures
s that we are using a correct hypothesis class (say neural architecture) and
7 that the error on the training dataset is a good indicator of the performance
s on the entire distribution. This involves the following two steps.

9 1. First, we need to make sure that the difference

R(ferm) — R(ferm)| = 0, n — oo.

10 This is easy, it is akin to the concentration of measure we saw in the
1 previous section.

12 2. Second, we need to ensure that

R(ferm) =~ R(f*)

13 with high probability for every training dataset of n samples using
14 which fgrym is computed. If this is true, it tells us something about
15 the ERM procedure itself, i.e., it tells us whether minimizing the
16 empirical risk]%(f) is a good thing if we want to build a classifier
17 that works well on the population.

18 This is difficult to do, after all fgrym and f* are totally different
19 hypothesis. Vladimir Vapnik set up a powerful approach to do this.
20 He showed that a sufficient condition to achieve the above is that the
21 empirical risk and population risk are similar for all hypotheses in F.
22 This framework/assumption is known as uniform convergence.
23 Let us now develop the two points above. Since data are drawn iid, we

2« can use the Chernoff bound to get that
Vf e F,P (‘J?(f) - R(f)) >e) < 2e72

s If the hypothesis class is finite F, we can use the union bound to show

N

20

21

22

23

24

182

that for any hypothesis, the training error and population risk are close.
P(3rer:]R(f) fR(f)‘ >e)
<> p([an-rin|>¢)

feFr
< |F|2e72n¢

If we want this above probability of a bad event to be less than § we
therefore need

n > 21?10g¥ (13.1)
training samples.

Suppose we had a classifier f with 2% gap (¢ = 0.02) between
the training error R(f) and the validation error (which is a proxy for
the population risk R(f)), if we want to reduce this gap by half to 1%
(e = 0.01), we need 4 times as many training data. We could also reduce
this gap by fitting a classifier with small |F| but in this case, both the
training and validation error might increase even if their gap decreases.

Next, we need a relation between the population risk of fgry and the
best possible predictor f* in our hypothesis class F. Observe that

R(ferm) < R(ferm) + € (Chernoff bound on frrv)
< R() +e (ferm has the smallest training error)
S R(f") + 2e (Chernoff bound on f*).

The two Chernoff bound inequalities hold with probability at least 1 — 9
so the final inequality

R(ferm) < R(f") + 2¢

holds with probability at least 1 — 2§. Substitute this in Eq. (13.1) to get

R o) < () +2 o log 17 (132)
n

with probability 1—§. A result of this kind is called a Vapnik-Chernovenkis

(VC) bound or a PAC bound. Notice how this bound changed from the

Monotone Boolean function example: we need O(1/e) times more

samples in Eq. (13.1).

Let us consider our monotone Boolean formulae example again. Since
| F| = 24, if the input dimension is d = 1000 and we set § = 1073, the
VC-bound predicts the following (we should imagine running ERM to
pick the best hypothesis fgrM, not the elimination algorithm we discussed

in the section on monotone Boolean formulae):

1. With n = 1000 data, we have R(fgrm) < R(f*) + 1.42. This is
vacuous/non-informative since the population risk is an expectation
of indicator variables and should therefore be less than 1.

2. With n = 10°, we have R(ferm) < R(f*) + 0.45. This is

22

23

24

25

26

27

28

29

30

31

32

33

34

183

informative: it means that the population risk of the classifier
obtained by ERM is within 44% of the population risk of the best
classifier f* in that class. Of course it is only meaningful if f*
generalizes well, i.e., if R(f*) is small. This will happen if the
hypothesis class F is large enough.

3. With n = 10°, we have R(fgrm) < R(f*) + 0.04.

13.4 Vapnik-Chernovenkis (VC) dimension

In the above section, the concept/hypothesis class was assumed to be finite
|C| < oo. The union bound of course breaks if this is not the case. Notice
that once we pick a neural architecture (hypothesis class), the number
of possible models (hypotheses), each with different weight vectors, is
infinite. Observe that in the monotone Boolean formulae example, the
algorithm L was using the training data to eliminate hypothesis from
C, this is not going to work if C is not finite. It is therefore a natural
question whether we can still learn a hypothesis class with infinitely-many
candidate hypotheses with a finite number of training data.

Vladimir Vapnik and Alexey Chernovenkis (Vapnik, 2013) developed
the so-called VC-theory to answer the above question. Technically, VC-
theory transcends PAC-Learning but we will discuss only one aspect of
it within the confinements of the PAC framework. VC-theory assigns a
“complexity” to each hypothesis f € C.

Shattering a set of inputs We say that the set of inputs D = {z!,--- 2"}
is shattered by the concept class C, if we can achieve every possible label-
ing out of the 2" labellings using some concept ¢ € C. The size of the

largest set D that can be shattered by C is called the VC-dimension of the

class C. It is a measure of the complexity/expressiveness of the class; it

counts how many different classifiers the class can express.

If we find a configuration of n inputs such that when we assign any
labels to these data, we can still find a hypothesis in C that can realize this
labeling, then

VC(C) > n.

On the other hand, if for every possible configuration of n + 1 inputs, we
can always find a labeling such that no hypothesis in C can realize this
labeling, then

n < VC(C).

If we find some n for which both of the above statements are true, then
VC(C) = n.
Some examples.

¢ d-dim Linear Threshold Functions: VC-dim = d + 1.

184

3 points shattered 4 points impossible

Figure 13.1: d=2: See that for the lower bound, we found some configuration
of the 3 points, such that a linear threshold function always separates the points
consistently with the labels; for any possible labeling. 3 such labellings are shown,
convince yourselves that it can be done for all 8 cases. Observe that we cannot do
the same for 4 points. In the figure above one such unrealizable configuration is
given (With the “XOR” labeling). To prove the upper bound we need to talk about
ANY configuration though. See that the only other case for 4 points, is that one
point is inside the convex hull generated from the other 3. Find the labeling that
cannot be obtained with linear classifiers in this case.

» 2 dimensional axis aligned rectangles: VC-dim = 4 (exercise)
¢ Monotone Boolean Formulae: VC-dim = d (exercise).

* If the hypothesis class is finite, then
VC(F) < log|F]|.
e If x € R and our concept class includes classifiers of the form
sign(sin(wx))
where w is a learned parameter, then

VC = 0.

* For a neural network with p weights and sign activation function

VC = O(plogp).

It is a deep result that if the VC-dimension of concept class is
finite V' = VC(F) < o0, then this class has the uniform convergence
property (for any f € F, the empirical and population error are
close). Therefore, we can learn this concept class agnostically
(without worrying about whether Nature’s labeling function c is in
our hypothesis class F or not) in the PAC framework with

v, Vv 1 1
n 9(620g€+620g5>

training data. If a hypothesis class has infinite VC-dimension, then it
is not PAC-learnable and it also does not have the uniform convergence

property.

21

22

23

24

25

26

27

28

29

30

31

32

33

34

185

The above result written in another form looks as follows. For a (finite
or infinite) hypothesis class F with finite VC-dimension V' = VC(F)

R(feaw) < R(7) + 2,/ 2V ~10g0) (133)

with probability at least 1 —§. This is an important expression to remember:
the number of samples n required to learn a concept class scales linearly
with the VC-dimension V. A more refined version of this same bound
looks like

R(ferm) < R(f") + 2\/71 (V (log 2771 + 1> + log 3), (13.4)

but such expressions should essentially be understood to be saying the
same thing, namely that the number of samples required to learn scales
linearly with the VC-dimension.

Bounds on the VC-dimension of deep neural networks For general
classifiers, it is typically difficult to compute the VC dimension. One
instead finds upper and lower bounds for the VC dimension to be used in
inequalities of the form Eq. (13.4). Bounds on the VC-dimension of deep
network architectures are available (Bartlett et al., 2019). With p weights
and L layers, an essentially tight VC-dimension looks like

Q (p Llog%) = VC(F) = O(p Llogp)

for deep networks with ReLU nonlinearities.

This bound is not entirely useful in the VC-theory however. For
instance, the ALL-CNN network you used in your homework with p ~ 10°
and L = 10 has VC = 108. If we use the coarse VC-bound in Eq. (13.3)
with n = 50, 000 samples, we have

R(ferm) < R(f*)+40

which is a vacuous generalization bound. However, remember that this is
simply an upper bound on the generalization error of ERM. It is clear from
empirical results in the literature (including your homework problems)
that deep networks indeed generalize well to new data outside the training
set and that means R(fgrm) is small.

The gap in applying VC-theory to deep networks therefore likely
stems from the need for uniform convergence: we may not need that the
empirical and population risk are close for all hypotheses in the class. If
we only have uniform convergence within a small subset F' C F and if
VC(F) < VC(F) and if the training algorithms like SGD always find
ERM minimizers fgrm € F', then VC-theory/PAC-Learning do predict
that deep networks will generalize well. Of equivalently, instead of
considering concept classes C that are learnable with polynomially-many
samples n, we should consider simpler concept classes that require fewer

A You have noticed this in one of your
homework problems. When data is sampled
from a small part of the domain, even if the
true labeling function is very complicated, we
can build a hypothesis that generalizes well.
But this hypothesis may not generalize if data
is sampled from outside this domain.

186

1 samples to learn. Understanding this is the subject of a large body of
2 ongoing research.

1

2

20

21

Chapter 14

Sloppy Models

Reading

1. Sections 1 and 2 of “Geometry of nonlinear least squares with
applications to sloppy models and optimization” (Transtrum
etal., 2011)

In the previous chapter we have seen some classical ideas on how
to capture the size of the hypothesis space, e.g., using a quantity called
the VC-dimension. This lets us estimate the number of samples required
to learn data from a given concept class. In this chapter, our goal will
be to obtain an understanding of the shape of the hypothesis class, e.g.,
its geometry (which models are close by to which models and which
ones are far away), its topology (are there some models that are identical
to others), etc. The ideas that we are going to discuss form a part of
a field called “Information Geometry” (developed by Shun’ichi Amari
https://en.wikipedia.org/wiki/Shun%?27ichi_Amari). It is a very rich field
that combines ideas from geometry and information theory to understand
learning. We will not go into a lot of mathematical details in this chapter.
But you will see that these ideas give a very visual understanding of both
optimization and generalization of deep networks (and also other machine
learning models).

14.1 Model manifold of nonlinear regression
Consider a dataset {(z°,y*") }?:1 where true outputs y** € R and inputs

x' € R%, We will fit this dataset using a nonlinear function and assume
that the underlying probabilistic model is

y* = flr;w) + &

187

https://en.wikipedia.org/wiki/Shun%27ichi_Amari

21

22

23

24

25

26

27

28

29

30

188

where £ = N(0,0?) is Gaussian noise for some scalar ¢ > 0. This
setup is identical to the one we did in Lecture 2 for maximum likelihood
regression. The weights of this model are w € RP. The residual of the fit,
i.e., the error incurred at each datapoint is given by

y*' = fatw)
- :

ri(w) = (14.1)
Since all our samples are independent and identically distributed, the
residuals r; are normally distributed with zero mean and unit variance
(this is because we divided by o). In other words, the likelihood of our
dataset under the model with weights w is

n

P(ri,...,m;w) = Wexp (—; Zri(w)2>)

i=1

It should not be surprising at this point that it is this likelihood that we
maximize when we fit a model using maximum likelihood estimation or
perform nonlinear least squares regression.

Data space Let us create a shorthand for the vector of residuals of each
input datum
¥ = [7‘1,7"2, . 77°n].

We can similarly create a short-hand for the vector of the true outputs and
the predicted outputs

R" 5 27* _ [y*l’y*Z’ o ’y*n]
R" 3 g(w) = [§%,9%,...,9"].

Notice that ¢(w) is a function of the weights of the model. The key idea
of this chapter (and information geometry) is to realize that the above
quantities are simply vectors in R™. We can therefore plot them in this
space and understand distances between them. For example, the “truth”
" can be written as

§ = jw) + o 7

We will give this space a name: it is called the “data space”.

Model manifold A manifold is a mathematical object which locally
looks like Euclidean space. A good example to keep in mind is the surface
of the Earth: at each point to us walking on it the Earth is locally flat, but
the Earth can have a more complex shape than what is evident to us on it
surface (a sphere). It will also be useful to keep in mind that the Earth is an
object in 3-dimensional Euclidean space but it is a 2-dimensional manifold.
Because of the constraint that points on the surface are equidistant from
the center, every point on the surface can be described by two variables:
the latitudes and longitudes.

189

Let M be the manifold swept by ¢(w) for different values of w
M ={y(w) : w € RP}.

We will give this a name: it is the “model manifold” of our model f(-; w).
The model manifold is embedded in the data space so its dimensionality
is at most n. Notice that the truth ¢* need not lie on the manifold M.

Fisher Information Metric It is useful to define a metric that helps us
understand how far away two points on the manifold are. Any point that
lies on the manifold also lies in the data space. And therefore we can use
some reasonable way to measure distances in the data space in order to
talk about the distances on the manifold. Since we are performing least
squares regression, let us define squared distances between two points in
the n-dimensional data space as the sum of the squares of the coordinates
(2 norm). Distance from the truth 3™ is

Cw) = 5= 3 () —) = 5 Y ()

this is the standard least squares regression objective.

Armed with this new language, we can now say: fitting a model
is equivalent to finding the closest point to ™ on the model manifold
M.

For two nearby points on the manifold #(w) and g(w’) with w’ =
w + dw, this corresponds to

dfw.w') = 3= 37 (3 (w) — 3 (u))

X

|
4
E

|
=
5
=

w'=w

(14.2)
where we took the Taylor series approximation of (-)2 and defined

2

1 % ~1 ’
RPP S g(w) = o= 0 (§'(w) = §'(w)) " | ey (143)

Now notice that since §‘(w) — §*(w’) = 0 when w = w’, the first
derivative term in the Taylor series is zero. We therefore have, up to
second order,

dist(w, w + dw) = = dw
(14.4)

1
dw + 3 dw ' g(w)dw.

A Picture of the model manifold and data
space

190

where the Jacobian
d’l“i

R™*P 3 Jik =
k dwk

is the derivative of the i sample’s residual with respect to the k" weight
wy, in the model. The matrix g(w) is called the Fisher Information
Metric (FIM) because it gives us a way to measure the distance between
two infinitesimally nearby points on the model manifold. It is important to
realize that the FIM g(w) is a function of the weights that it is calculated
at. At the global minimum when r; = 0 for all 4, the FIM is equal to the
Hessian (observe this in the adjoining derivation).

Remark 14.1. The distance in the data space C'(w) is like our standard
Euclidean distance in 3-dimensional space. But we know that the shortest
path between two points on the surface of the Earth is not the straight line
that joins them (which does not lie on the surface but cuts through it) but
instead along the great circle that joins the two points (this is the path that
airplanes usually fly along, and longitudes are defined using). The great
circle path is “shortest” because among all continuous paths that join two
points w, w’ on the surface of the Earth (not necessarily nearby), the great
circle path has the shortest value of

/01 Vdw' g(w) dw.

Such paths are called “geodesics”. They are the analogue of straight lines
in Euclidean space for manifolds.

Optimization involves initializing the weights w at some point
w(®) which corresponds to some point %/(w(®)) on the model manifold
M and finding the point on the manifold w* that is closest to i as
measured by the cost C(w*) = 5= 3. 7;(w*)%. The trajectory of
the weights during optimization corresponds to a trajectory on the
model manifold. Among all trajectories, it would potentially help to

take the shortest trajectory, shortest as measured by the FIM.

Generalization corresponds to making statements about the
width of the manifold in the (n + 1) dimension given a particular
point (w) in the n-dimensional manifold. If the width is small,
then the model has a small variance (i.e., its predictions do not vary
much on the new datum). If the true 77 € R"*! is also close to
7(w) € R™! then the model also has a small bias and only then it
generalizes well. Instead of thinking of adding an extra dimension,
we can also think of taking slices of our n-dimensional data space
(i.e., projecting it into lower dimensions) and build a similar mental
picture: if projecting into different (cardinal) subspaces usually ends
up eliminate axes along which the manifold was thin, then the model
generalizes well.

A Deriving Eq. (14.4) is not hard. But to
make it easier, you can also imagine that *
lies on the manifold and we are working in a
neighborhood of some weight w* that gives
. In this case,

1
(g(w)>kl = awkawl % Z ’I“?
1
= E Z (awk Ti) awlri

+ Z T awk 87111 T
%

Q

1
=2 (i) O
- (JTJ)M :

The approximation follows from noticing that
if we have a model that fits the data well, the
residuals 7; ~ 0 for all samples ¢ and
therefore the second term is small.

20

21

22

23

24

25

26

27

28

29

191

14.2 Understanding optimization for sloppy
models

The FIM is a fundamental object in the study of probability distributions.
We will list some of its properties below that will shed light upon how
the geometric structure of the model manifold and the FIM allows us to
understand some key phenomena in optimization and generalization.

FIM does not depend upon the ground-truth labels The FIM depends
upon the inputs {2’} and the model that fits the data f(z;w). It does
not depend upon the ground-truth targets. Notice that it depends upon
the derivatives of the residuals in Eq. (14.3) (not the residuals...which are
functions of the ground-truth labels).

FIM for classification problems Although we have defined all quantities
in the case of nonlinear regression, we can define the FIM, the model
manifold and all relevant quantities for any probabilistic model. For
classification, if our network predicts p,, (y |) where y takes C' distinct
values, the FIM is defined as

n C i Ii
(g(w))kl = %ZZ awk-pw(y | x) 8wlp,w(y |)

puw(y | %)

i=1 c=1

Notice again that it does not depend upon the ground-truth labels. In this
sense, it is very different from the Hessian of the cross-entropy loss

1 iy
(V2e(w) === > 0w O Jogpu(y™" |).

The FIM € RP*Pg(w) = J ' J is a positive semi-definite matrix. The
Hessian has both positive and negative eigenvalues in general. The two
are equal at the global minimum of the cross-entropy loss.

FIM characterizes how the weight space maps into the data space
Since d(w, w + dw) = % dw" g(w) dw, the matrix g(w) defines how the
weight space gets mapped to the data space. More precisely, a unit ball in
the data space centered around ¢(w), i.e., the set

. L. L 2
A= {aw): gl - gl <1
n
corresponds to an ellipse
_ /. 1 r T o
B= w.2(w w) ' g(w)(w—w") <1
in the weight space. The matrix g(w) therefore controls how changes

in the weights w — w’ reflect in the changes in the outputs of the model
on all the samples ¢(w) — §(w’). Suppose we write the singular value

20

21

22

192

decomposition of the FIM as
glw) =UZ?U".

where the singular values are sorted in decreasing order of their magnitude
along the diagonal of a diagonal matrix Y2 and columns of U are the
singular vectors. Changes in weights w — w’ along singular vectors that
have small singular values will have a small value of (w —w’) T g(w)(w —
w’) and therefore will not result in very different predictions %(w) and
'),

The volume of the ellipse B in the weight space is proportional to

vdet g(w).

For many problems, the determinant of the FIM is very very small.
Such phenomena have been studied under the name ““sloppy models”.
We have seen one example of this phenomenon. For the 1-dimensional
polynomial regression problem in the midterm exam, we were doing linear
least squares regression with y = Aw where

1 a a3 - aﬁl_l

1 ay a3 -+ a?l
A =

1 a, a®> --- a%!

was the Vandermonde matrix. It is easy to check that the FIM for linear
least squares problem is g(w) = A" A. The determinant of such FIMs is
very small

det g(w) ~ €™V & 0 for large n.

Here € is the maximum distance between two data points in the dataset.
Enormous volumes in the weight space correspond to tiny volumes in the
data space for such problems.

Deep networks are sloppy

10
== Data
; Fisher Information Matrix
10 —— Hessian
| = = Activations
107"
(]
p=}
©
g -3
.091)10
]
107°
107

0 500 1000 1500 2000 2500 3000
Index of sorted eigenvalues

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

193

This pattern persists even for deep networks. For a wide residual
network trained on CIFAR-10, Yang et al. (2022) computed the first
3000 eigenvalues of the FIM (orange) and compared them to the top
2000 eigenvalues of the Hessian (green) and the eigenvalues of the input
correlation matrix % > ziz! . Notice that eigenvalues of the FIM drop
by about 8 orders of magnitude within the first 3000 entries; the network
has many more weights p ~ 3 x 10° and it is expected that the orange
curve keeps decreasing all the way to zero; we know that some eigenvalues
have to be zero because the network has many more parameters than
the number of data points. The FIM of this network will therefore be
extremely small. All neural networks trained on typical datasets seem to
have sloppy FIMs.

Optimization for sloppy models is slow because the condition number
is large Notice that in the above plot, the eigenvalues of the Hessian
also drop quickly (by about 4 orders of magnitude). If we take a quadratic
approximation of the loss near the final point in the above figure, the
objective can be written as
/ 1 *\ T w72 *
U(w) = i(w —w") wa(w)|w=w*(w —w").

If the Hessian is sloppy, the contours of this objective (even if it convex
and quadratic) are very elongated ellipses. Roughly, the largest axis of
the ellipse is about 100 times longer than the 2000™ largest axis. This
entails that the best learning rate along the direction of the largest axis is
100 times smaller. As we have discussed in the chapters on optimization,
this makes it difficult to pick a good value for the learning rate. We know
that the number of steps required even if we use the best learning rate is
proportional to v/, this is very large for sloppy models.

But why is optimization for deep networks so effective then? The
above point is less of a problem that it may seem because the eigenvectors of
g(w) corresponding to the smallest eigenvalues (which are the “sloppiest”
subspaces) are exactly the directions along which we need not change
the weights much. These changes will not result in large changes to the
predictions and therefore the loss. In the picture of the eigenvalues above,
there is a very large number of such sloppy directions and a very small
number of “stiff” non-sloppy directions. If the model can make accurate
predictions after making progress along the stiff directions (we do see this
in practice, e.g., the loss decreases very quickly in the beginning and very
slowly towards the end), then we can stop at some reasonable point after
training for a short duration and expect accurate predictions. This is the
reason we train deep networks for so few epochs—this is not sufficient to
fit the data perfectly (you will notice that the loss is never zero) but it is
presumably good enough to fit most of non-sloppy dimensions well.

A 1f you think about it, you can convince
yourself that lengths of the axes of the ellipse
are proportional to the square root of the
eigenvalues of the Hessian.

A A good visual description of the
optimization landscape can be obtained by
noticing that the ratio of the length of a
human hair to its width is also about 100. So
the ellipses that correspond to the quadratic
objective roughly force us to travel down the
length of the hair without falling off (although
there are hills on the sides for our
optimization problem...).

A You will notice that we have not
characterized how the FIM/Hessian changes
with weights w—which would be necessary to
say things like “optimization does not change
the sloppiest subspace much”. It is often the
case for neural networks that the FIM/Hessian
do not change much with the weights w.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

194

14.3 Understanding generalization for sloppy
models

Cramer-Rao bound Such a pathologically ill-conditioned FIM is not
necessarily an issue. Whether a model fits the data depends upon whether
the manifold M has a point that is close to ™ or not; it does not depend
upon the FIM. If the FIM has a very small determinant, it simply means that
there are many weights in the weight space that lead to similar predictions
on the samples. This is noticed all the time for large models such as
deep networks, e.g., if you train the same network twice you will get a
similar training and generalization error but the weights of the network
will be totally different. We have seen this as there being many equivalent
solutions A* = U;C and B* = C~U/ L* for any non-singular matrix
C for a two-layer linear neural network.

But there are many problems where one is interested in estimating
parameters as opposed to simply making predictions using the fitted model,
e.g., finding the foci of the ellipses of the orbits of the planets in the solar
system using observations in the sky. If such models are sloppy, then
we would not be able to estimate the parameters of the model precisely
because many parameters would map to the same point in the data space.
Sloppy models were discovered by the authors of the paper listed as
reading material when they noticed this while fitting some models to data
from biology.

A key result in statistics called the Cramer-Rao bound states that the
variance of any unbiased estimator w using n samples is at least as large
as the inverse of the determinant of FIM

n Cov(w) = g~ H(w). (14.5)

For sloppy models det g~*(w) = 1/det g(w) is very very large. This
entails that any procedure to estimate the parameters of the model (which
would be weights of the network in our case) in an unbiased way will have
a huge covariance. In simple words, if the model is sloppy then accurate
prediction is not necessarily hard, but parameter estimation is very hard.

PAC-bounds for sloppy models We could obtain very good general-
ization if the right hand-side of the Cramer-Rao bound were small—for
sloppy models it is not. But we also know that we need not fit exactly the
same model as the one that generated the data (Nature’s model) in order
to generalize well (we would know how to check this anyway).

In Yang et al. (2022), it was shown that for sloppy models we can obtain
generalization bounds that are not vacuous. The reason for this is as follows.
Recall that when we complained about the vacuousness of generalization
bounds in the previous chapter, we argued that the VC-dimension of deep
networks is so large because they have a large number of parameters. For
sloppy models (see the eigenspectrum in the picture above), very few
combinations of the weights play a role in making predictions (these would
be the number of large singular in the FIM/Hessian and the singular vectors

A Can you guess when the problem of
finding the foci of the ellipses using
observations of them in the sky will have a
sloppy FIM?

195

would give the specific combinations of the weights). Therefore, even if
the model has a large number of weights, if the model is sloppy, its weights
are under-determined by the training data—the precise value of most of
the weights is immaterial to the model making accurate predictions. We
can therefore, roughly speaking, calculate the PAC generalization bounds
only in the non-sloppy subspace and obtain a much more accurate picture
of the generalization error.

. Chapter 15

. Variational Inference

1.

Reading

Sections 1-2 of “Variational Inference: A Review for Statisti-
cians” by Blei et al. (2017).

Sections 1-5 of “Auto-Encoding Variational Bayes” by Kingma
and Welling (2013)

. Chapter 2 of Durk Kingma’s thesis:

https://pure.uva.nl/ws/files/17891313/Thesis.pdf.

Bishop Chapter 11.5-11.6

Bishop Chapter 10-10.3

Lots of great intuition at http://ruishu.io/2018/03/14/vae/

Variational Diffusion Models https://arxiv.org/abs/2107.00630

We have been primarily concerned with models for classification and
regression as yet in this course. The task there is to match the target (a
class identity or a real-valued outcome). We now change tracks to consider
generative modeling, these are models that are trained to synthesize new
data. Effectively, the task here is not match a target datum, but given
a training dataset of images/text, create a model that outputs similar
images/text at test time. We will first take a look at variational methods
and generative modeling using these methods in this chapter and do
implicit generative models such as Generative Adversarial Networks in
the next chapter.

196

https://pure.uva.nl/ws/files/17891313/Thesis.pdf
http://ruishu.io/2018/03/14/vae/
https://arxiv.org/abs/2107.00630

19

20

197

15.1 The model

Imagine how you would draw the image of a dog = on paper. First, you
would decide in your mind, its breed, its age, the color of its fur etc. Let
us call these quantities “latent factors”. Latent factors can also include
things that are not specific to the dog, e.g., the background of your painting
(grass, house, beach etc.), the weather on that day (cloudy, sunny etc.), the
viewpoint (zoomed in/far away). We will denote all such quantities by

z := latent factors.

Having decided upon all these factors, you realize your painting x. The
painting x is not unique given latent factors z, e.g., two people can start
off with the same latent factors and draw two totally different pictures.

We therefore model the generative process as a obtaining samples
from a probability distribution

p(| 2).

Given a latent factor z and an image z, the quantity p(x | z) denotes the
likelihood of the sample. Given the painting image x, we do not know
what the latent factors are. For instance, it is not easy to say whether the
following image is that of a cat or a dog.

In other words, the latent factors of data x are not known to us if
we do not take part in the generative process. Nature is in charge of
generating the data and our goal here is to guess the parameters of
this generative model to be able to synthesize new samples that look
as if Nature generated them.

There can be lots of latent factors z. So let us control this complexity
and assume that we know a prior over the latent factors

prior p(2)

1

2

198

that models our belief of how likely a factor “dog with color blue” is in

Nature.

images/text.

Let us imagine Nature’s generative model as running in two steps
1. First, sample a latent factor z from some distribution, and then
2. sample a datum = ~ p(z | 2).

The central point to appreciate is that we know neither Nature’s
distribution for sampling latents z nor its generative model p(z | z).
We will need to fit both these quantities using a training dataset of

The purpose of doing so can be many-fold, e.g., we may want to
generate new data to amplify the size of our training set, given a part of
the input image (say due to occlusions, or image corruption) we may want

to complete the rest of it.

INPUT

OUTPUT

piX2pix

process

Most such applications require the knowledge of the latent factors that
generated the data. Therefore, formally, we are interested in computing
the posterior distribution of the latents and Nature’s distribution of the

latents

posterior p(z | x)

prior p(z)

using samples in a training dataset D = {:1:2 }?:1. Notice that we do not
need labels for this problem, effectively labels 3° = 2 itself because our
generative model should of course be very good at generating samples

from the training data.

22

N

4

199

15.2 Some technical basics

15.2.1 Variational calculus

We will first take a brief look at what is called variational calculus.

A function is something takes in a variable as input and returns the
value of the function as the output, e.g., R 3 f(z) =5 22 for z € R.
Similarly, a functional is an object that takes in a function as an input and
returns a real number as the output. An example of this is entropy

R Hlpl = - [ple)logp(a) do

which takes in a probability density p as the input and returns a real number.
Entropy is therefore a functional. Just like standard calculus where we
take derivatives/minimize over functions, we can also take derivatives of
the functional.

dH[p]

The functional derivative T (x) is defined in a funny way as

Hlp + ep] — H[p]

[5B @) o) as = i

for any arbitrary function ¢. Essentially, you perturb the argument to the
functional p by some epsilon and see how much the functional changes.
The change in the functional is measured using the test function ¢ by
integrating its changes 51;{71()13) (z) at each point x in the domain. There may
be certain conditions that the perturbation ¢ needs to satisfy depending
upon the problem, e.g., since p + e should also be legitimate probability
density, the functional derivative above should only consider test functions

o such that

Ve /(p(x) +ep(x)dr=1 = /go(x) dz =0.

The KL-divergence between two probability densities,

KLl o) = [p@)logggg da,

is another such functional; it has two arguments p and q.

Variational optimization is concerned with minimizing functionals.

For instance, while a problem looks like

w* = argmin {(w)
weRP

in standard optimization, a variational optimization problem with KL-

A Two important properties. The
KL-divergence is always non-negative, and
zero if and only if its two arguments are equal.
This is easy to see using Jensen’s inequality:

KLy | 0) = [p(2) log;g;dx
< log/p(fv)zgg da

=0.

KL-divergence is also a convex functional of
its two arguments, i.e., for any densities p1, po
and q1, g2, we have

KL(Ap1 + (1 = N)p2 || A1 + (1 = N)go)
< AKL(p1 || q1) + (1 = MKL(p2 || g2)-

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

200

divergence as the loss given a fixed density p looks like

¢* = argminKL(q || p). (15.1)
qeQ

The variable of optimization is the probability density ¢ and we will denote
the domain of the variable by Q. Since we want ¢ to be a legitimate
probability density, we should choose

QC P(X)

where P(X) denotes the set of all probability densities on some domain
X.

Picking the domain and objective in variational optimization Picking
a good domain Q to minimize over is important. It is similar to the notion
of the a hypothesis class in machine learning. If Q is too big, it is
difficult to solve the optimization problem but we obtain a better value to
KL(g||p). If Q is too small, the optimization problem may be easy but
we may not match the desired distribution p very well. Imagine if p is
a mixture of two Gaussians and we pick Q to be a family of uni-modal
Gaussian distributions. Since the KL-divergence is zero if and only if the
two distributions are equal, we are never going to be able to minimize
it completely. On the other hand, if we pick Q to be the family of
distributions with 2 or more Gaussian modes, then we can perfectly match
p. Essentially, the crux of variational inference boils down to picking a
good family of distributions Q that makes solving Eq. (15.1) easy.

What functional should we use to measure the distance between ¢ and
p? The KL-divergence is popular and easy to use in practice but there
are many others. For example, when we studied the Gibbs distribution
we briefly talked about something called “Wassserstein metric”: if one
imagines a mountain of dirt given by distribution ¢ and another mountain
of dirt p, the Wassserstein distance Ws(q, p) is the amount of work done
in transporting the dirt from g to p; it is also called the “earth mover’s
distance”. The Wassserstein metric is as legitimate a distance between
two distributions, just like the Kullback-Leibler divergence.

15.2.2 Laplace approximation

Laplace approximation is a very useful trick to solve variational optimiza-
tion problems approximately. Here is how it works. Suppose we have to
estimate an expectation of our random variable ¢(w)

lp(w)] = / eI p(w) du

wr~e—nt(w)

over draws w ~ from some probability distribution e ~"(*) for some large
value of n. The above integral takes many values, some have small £(w)
and some have large ¢(w). The values of w where ¢(w) is small are the

https://jeremykun.com/2018/03/05/earthmover-distance
https://jeremykun.com/2018/03/05/earthmover-distance
https://jeremykun.com/2018/03/05/earthmover-distance

20

21

22

23

24

25

26

27

201

ones that have the highest e~ () especially as n — 0o, and therefore
the ones that count for most in the integral. The Laplace approximation
is a trick to estimate the integral for large n. It replaces the integral by
taking a Taylor series expansion of the exponent as follows.

/e—ne(w) o(w) dw ~ /go(w) efn(é(w*)+%(wfw*)TVQZ(w*)(wfw*)) dw

— e—n[(w*) /(P(w) e—%(u;—w*)—rvzf(w*)(w—w*) dw

(15.2)
where w* = argmin ¢(w) is the global minimum of ¢(w). The integral is
now with respect to a Gaussian distribution and can be done more easily.

How does a Laplace approximation look? Let us look at an example.

30

20

10

0 0 3
-2 -1 0 1 2 3 4 -2 -1 0 1 2

Figure 10.1 lllustration of the variational approximation for the example considered earlier in Figure 4.14. The
left-hand plot shows the original distribution (yellow) along with the Laplace (red) and variational (green) approx-

imations, and the right-hand plot shows the negative logarithms of the corresponding curves.

Although the Laplace approximation trick is reasonable only for very
large values of n, it is a quick way to estimate what the correct domain
of the a variational optimization problem should be. For example, if we
are approximating a probability distribution with a Gaussian family, the
Laplace approximation tells us what the mean of the family should be
and we can only consider the variance as the variable in a variational
optimization problem.

15.2.3 Digging deeper into KL-divergence

Let us take an example to understand KL-divergence better.

Fig. 15.1 compares two forms of KL-divergence. The green contours
represent equi-probability lines (1,2,3 standard deviations) for a two-
dimensional correlated Gaussian p(z1, z2). Red contours represent similar
equi-probability lines for the variational approximation of this distribution
using an uncorrelated Gaussian distribution

q(2) = q1(21)q2(22)

where both ¢1, g2 are one-dimensional Gaussians. The variational family
q € Q thus consists of factored uncorrelated Gaussians and we are trying
to find the best member of this family that approximates the correlated
true distribution p(z).

3

4

202

[
3

0.5 0.5

0 0.5 z1 1 0 05 z1 1
(a) (b)

Figure 15.1: Comparison between the variational approximation of a correlated
Gaussian using forward and reverse KL divergence and a factored Gaussian family.

IS

Figure 15.2: Approximating a multi-modal distribution using a uni-modal varia-
tional family.

Left panel (a) in Fig. 15.1 shows the result using the forward KL-
divergence minimization

q* = argminKL(q || p).
qeQ

while the right panel (b) shows the result for the reverse KL-divergence
minimization
q" = argminKL(p || q).
q€Q

We see that both these forms capture the mean of the true distribution
p(z) correctly. The variance of the two approximations is quite different
depending upon which form we employ.

We next consider the case when a multi-modal probability distribution
p(z) is approximated using a unimodal Gaussian distribution. Both these
examples are very often seen in practice, the distribution of true data/latent
factors is often correlated and multi-modal. We have seen one instance of
this: the distribution of weights of a deep network in the Gibbs distribution
is multi-modal because of multiple global minima.

The distribution p is bi-modal and a finite-dimensional parameter-
ization of the variational problem can find different solutions in such
cases—this is in spite of the fact that the underlying problem is convex.
Depending upon the initial condition using ¢, one may get different so-

@ Use the expression of the KL-divergence to
convince yourself why the forward KL
under-estimates the variance while the reverse
KL over-estimates the variance in Fig. 15.1.

13

14

203

lutions shown in panels (a), (b) or (c). You should also think about the
fact that the solution in panel (a) could be the solution of optimizing the
reverse KL divergence; in contrast, the solutions in panels (b) and (c) have
to be the ones obtained from optimizing the forward KL divergence.

KL-divergence is not the only distance used in variational inference
and there are many many other ones. You should think of these different
ways to measure distances between probability distributions in variational
inference as different surrogate losses; which one we use is highly problem
dependent although the forward KL-divergence KL(q || p) is the most
common.

15.3 Evidence Lower Bound (ELBO)

We now go back to the generative model.

We will formalize our goal in generative modeling as computing
Nature’s posterior distribution of latent factors

p(z | @),

We have access to a training dataset D = { (x?) }?:1. We do not know
(i) what form Nature’s posterior distribution takes, e.g., Gaussian,
multi-modal distribution etc. and (ii) we do not know the true latent
factors z that Nature uses. So we are going to approximate the true
posterior using some variational family of our choice

Q3¢ (z|z)=p(z])

This is the basic idea of variational inference: to approximate a
complex distribution p(z | x) using a member of from a simpler
family of our choosing Q. In practice, this variational family Q will
be parameterized by a deep network.

With this background, the mathematical process of executing the above
program is quite simple. We will simply minimize the KL-divergence

1 & . _
q*(z | £) = argmin — ZKL (q(z |) || p(2 | a:’))) (15.3)
g€ M

1

204

We next rewrite this KL-divergence above in a special form.

0 <KL (q(z | 2) || p(= | "))
(=] 2")
el [Og oz m}
=— E [logp(z|2")]+ E [logq(z|2")]

zrq(z]z?) zrq(z]z?)

—— E [logp(z,xi) — logp(xi)} +) E [logq(z | z")]

z~q(z]z?) ~q(z]z?)
=logp(z')— E [logp(zw’)] + E [log q(z | xz)] .
z~q(zlzt) z~q(zlz?)
= logp(z')> E [logp(z,2")] = E [logq(z|2")]

zrq(z]z?) zrq(z]z?)

This is quite interesting. The left-hand side of this inequality is the
log-likelihood of the data under Nature’s distribution, i.e., it is fixed and
independent of what we do. The left-hand side is also called the “evidence”
in statistics (which is a bit ironic because we can never know the evidence).
The right-hand side

ELBO(¢,2'):= E [logp(z,a")] —

zrq(z]z?)

[log q(z | x’)] .
(15.4)

is a lower bound on the evidence and therefore called the Evidence Lower
Bound (ELBO).

z~q(z]z?)

Next comes a key step: a good generative model should be such
that the evidence of the training data, i.e., the log-likelihood of this
data under Nature’s distribution, should be large under the model.
We therefore want to maximize the ELBO on our training data

1< :
q*(z |) = argmax — ZELBO(q,xl). (15.5)
€@ Mo

to find the posterior distribution of the latent factors ¢*(z). Maximiz-
ing ELBO is equivalent to minimizing the average KL-divergence
KL(q(z | %) || p(z | 2%) over all training samples.

We will again solve the optimization problem in Eq. (15.5) using
stochastic gradient descent. Before we study how to do that, let us consider
what model we have developed so far. The solution to this problem

¢ (z|x) = p(z | z)

approximates Nature’s posterior distribution. If we maximize ELBO well,
given an input x, samples z ~ ¢*(z | x) are likely to be the latent factors
that Nature could have chosen while rendering this image. But we still do
not know how to synthesize an image x for these latent factors. We now

205

rewrite ELBO in a different form to understand this.

ELBO(q,z") = FI) [log p(z,2")] — F“) [logg(z | z")]
z~q(z|x?t z~q(z|x?t
= E [logp(z'|2)+logp(z)] = E [logq(z|az")]
z~q(z|z?) z~q(z|z?)
= __E_ Dlogp(e' |)] - KLia(z | =) || p(2))
This form of ELBO
ELBO(.a') = _E [logp(s’ | 2)] ~KL(g(z| ') || p(z)) (156)

is very interesting. The first term is Nature’s log-likelihood of datum z°
given the latent factor z sampled from our candidate posterior q. The
second term is the discrepancy between our variational approximation
of the posterior ¢*(z | #) ~ p(z | x') and Nature’s true marginal
distribution over latent factors p(z). This alternative form of ELBO is
conceptually very similar to what we do in standard classification, e.g.,

argmin {E(w) + %Hw”g} .

We would like our (2 | z*) to be close to Nature’s prior distribution p(z)
but at the same time be such that samples from ¢(z | x%) have a high
log-likelihood p(x® | 2) of synthesizing images in the training set. The
KL-term is therefore a regularizer for the first data-fitting term.

15.3.1 Parameterizing ELBO

What variational family Q should we choose? Say we parametrized each
distribution ¢(z | z*) by its mean and diagonal of the covariance.

R™ 5 2 ~q(z | o) = N(u(a'), 0%(a")]) € Qa')

where i (2%), 0?(2) € R™. The ELBOin Eq. (15.6) is totally independent
for each z* in the training dataset, so all i € {1,...,n} we can solve for

p*(z"),0%(z") = argmax ELBO (N (u(2),0?(2")1),2").

w,o2

But this is not a good idea: the parameters y,o? are distinct for each
input 2% and effectively they are being trained using a dataset of only input
image z°.

Amortized variational inference is a clever trick that ties to-

20

21

206

gether the variational families Q(x%). We will be using a deep
network with parameters u € RP that takes z° as the input and gives
w(x;u), 0% (2% u) as the outputs

Encoder : 2 — u(:ﬂi;u)702(33i;u)~

parameters u

The variational family Q(z") that we are considering is therefore the
set of distributions expressed by this deep network with p parameters.
The family Q(z?) is still distinct for each datum x? but they are are
all tied together by the same weights .

Encoder. We will call this deep network the encoder because it
takes in an input % and encodes it into u(z%;u), o2 (x%; u) which
parameterize the distribution of the latent factors.

Decoder. Observe that although we have now parameterized the distri-
bution ¢(z | z°) using a deep network with weights u, we still do not know
how to model the term p(z? | 2). After all, this is Nature’s log-likelihood.
We have a dataset {(:rl, zi)}?zl that consists of the images z* and
their corresponding latents z* sampled from our encoder. We are going to
model Nature’s rendering process p(z | z) using a deep network. This is
a program that we have done many times in the past, e.g., we model the
targets in classification y* as samples from the softmax distribution with
images x as the input and train the weights using maximum-likelihood
(as you may recall, this is equivalent to the cross-entropy loss).

We can repeat that program here: we are going to learn a deep network

Decoder : p,(z° | z) = p(z' | 2).

with parameters v € RP that models Nature’s likelihood p(z® | 2).

Different possible decoders for MNIST Depending upon the type of
data %, we will code up the deep network in different ways. For instance,
if each pixel of 2° € R?8%28 is grayscale [0, 255] like it is in MNIST, the
output of the decoder is a multinomial with size 28 x 28 x 256.

If we take the training dataset as binarized MNIST (if pixel jk is less
than 128 set it to 0, else set it to 1), then the output of the decoder has size
28 x 28 x 2 and we can fit this using a logistic distribution at each pixel

28
po(a' | 2) = H p1)($}k | 2)
k=1 ——

logistic distribution for pixel m;k €{0,1}

The log-likelihood term in Eq. (15.6) will then correspond to the logistic
loss as discussed in the Homework.

A The distribution of labels 3/ in
classification was one-hot vectors, so the
softmax layer created a multinomial
distribution on the classes.

22

23

24

25

26

27

28

29

207

Using a mean-field prior p(z). We do not know what the prior distri-
bution p(z) in Eq. (15.6) is. We will choose a simple prior

p(z) = Hm(zj) (15.7)

where p; (2;) is the distribution of the i latent factor ;. Such distributions
are called mean-field priors (where the distribution of a vector z € R™ is
modeled as independent distributions on its components). We will further
choose each distribution

pj(zj) = N(()? 1)

to be a zero-mean standard Gaussian distribution. This is a Gaussian
mean-field prior. Just like the choice of a regularizer is critical in machine
learning for obtaining good generalization, the chose of a prior is critical
in variational inference for synthesizing good images from the generative
model.

15.4 Gradient of the ELBO

‘We now have all the ingredients in place for training a variational generative
model. Let us summarize our setup.

1. Encoder parameters v are weights of a deep network that takes
in 2% as input and outputs parameters u(z?), 0%(z*) of the latent
distribution. We have tacitly assumed the latent posterior p(z | z°)
to be a Gaussian here; if you have a problem where you wish to have
a different latent, e.g., all the latent genes that could have caused
a particular cancer, then you want to output the parameters of that
distribution from the encoder.

2. The decoder models the likelihood p, (x* |) using parameters v.

3. The prior p(z) will be a mean-field Gaussian distribution. The prior
has no parameters in our case, although you may see research papers
where the prior also has its own parameters. A popular choice is to
use

ELBOs(q,z') = E [logp(a’ | 2)]—B " KL(q(z | 2*) || p(2))

z~q(z]zt)

in place of the standard ELBO. The hyper-parameter 5 > 0 gives
more control over the strength of the prior; this is of course akin to
picking the weight-decay coeflicient.

The ELBO when rewritten in terms of the encoder and decoder

A The concept of variational inference and
ELBO are much more general than generative
models or the encoder-decoder structure that
we have developed. Go through the assigned
reading material to learn more.

208

parameters looks as follows.

ELBO(u, v;z%) = "]%ZW) [log pu (2’ | 2)] —KL(gu(z | 2°) || p(2)).
(15.8)
Our goal is to fit the weights u, v using
u*, v* = argmax L iELBO(v; ') (15.9)
, U7 = — U, v; . .
u,%E]RP n i—1

The number of parameters of the encoder and decoder can be different
but for clarity we imagine them to be the same.

Eq. (15.9) is an optimization problem and in this section, we will see
how to compute the gradient of the objective so that we can solve the
problem using SGD.

15.4.1 The Reparameterization Trick
Focus on the gradient with respect to u of the first term of ELBO

(2)]-

u .
zrvq(z|at)

We have written log p, (z% | 2) = ¢(2) to keep the notation clear; we do
not care about the exact form of the integrand in this section.

If we draw a computational graph for the forward propagation of this
term, it looks as follows

u, x* — sample z from g, (z | ") — ().
The intermediate sampling step is troublesome, we do not really know
how to use the chain rule of calculus across sampling, i.e., given

d

p(2) = gel2)

we need to compute © = d¢/d,, u. We only know how to apply the chain
rule for deterministic operations of the form

u, x" — 2z = some deterministic function g(u, z*) — ¢(z),

in which case we use the standard backprop across the function g.

The Reparameterization Trick enables us to obtain backpropaga-
tion gradients across sampling operations via a creative use of the
Laplace approximation of the distribution ¢, (z | z?).

We known from the Laplace approximation that we can compute an
expectation over z using a Gaussian centered at the global maximum of

209

the distribution ¢, (z | 2*) with variance equal to the inverse Hessian at
that maximum. Motivated by this, the Reparameterization Trick rewrites
the random variable z as

2z = p(xu) + oz’ u) @

where
€~ N0, Lnxm)

is a sample from a standard multi-variate Gaussian distribution and the
notation ® denotes element-wise product. Effectively, we imagine that
the encoder outputs

p(a's u) = argmax g, (= | 2°)
z
o?(2";u) = diag ([Viqu(z | zi)]il) .
Just like the integral in Eq. (15.2) was performed over the Gaussian, the
integral over z can be rewritten as an integral over e

Ve mqﬁzlwi) ()] = Vu ENNE(O,I) [(n(asu) + o(2'u) © €)]

= ENNFZO " (Vg (u(a';u) + oz u) © €)]

1 .
szucp (z';u) + o(z;u) © €/) , where € ~ N(0,1).

We can take the gradient operator inside the expectation in this case because

eno longer depends on the weights u. Theterm V. (u(z%; u) + o(2%;u) © €f)

is a deterministic operation given a sample 2z’ and can be computed using
standard backpropagation.
15.4.2 Score-function estimator of the gradient

Let us look at an alternative way to compute the same gradient.

V, E V/) qu(z | 2*) dz

zrvgy (z|a?)

— [¢(2) Vaau(z |)
~ [oe) 2L a0t a:

qu(z | %)
- /SO(z) Vauloggu(z [2') qu(z |) dz

zrgy (2|2t

N
1
NZQD (29)Vo log qu (27| , with 27 ~ g, (2 | 2%).
j=1
(15.10)

210

The term]
Vugu(z |)
qu(z | 2%)
is called the score function of a probability distribution ¢,. The above
calculation is quite beautiful: calculating the gradient of the expectation
of any quantity ((2) is equal to the expectation of the same quantity
weighted by the score function

= Vo logqu(z | 2¥) (15.11)

Vu E [p(2)] = E [p(2)V,logqu].

Eaad N Eaad N
Due to this trick, we can compute the gradient using N samples
2~ pu(z] xY) (15.12)

from the encoder; this is easy if, say, the encoder outputs the mean and
standard-deviation of the distribution of the latents. Given 27, the gradient

V. log qu (2 | %)

is just the standard back-propagation gradient of the quantity log q,, (27 | z°)
with respect to weights u of the deep network and can be computed using
autograd.

The key difference between the Reparameterization Trick and
the score-function estimator is that in the latter, we do not need to
make sure that the gradient d¢/dz7 can be back-propagated across the
sampling operation. The score-function estimator directly computes
the gradient of the entire expectation by a weighted average across
the samples.

Having two different ways of computing the same gradient may
seem redundant but they both are suited to very different applications.
The Reparameterization Trick is not accurate in cases when the
distribution ¢, (z | %) is multi-modal because we have only one
mean 4 (z*) around which the samples are drawn. The score-function
trick does not have this problem because so long as iid samples are
drawn in Eq. (15.12) (using any method, e.g., importance sampling)
we obtain true estimate of the gradient. The problem in score-function
estimator lies in that the denominator g, (2 | z*) in Eq. (15.11) can
take very small values if the particular sample z is unlikely. The
summation Eq. (15.10) is a combination of many /V, some very large
in magnitude and some very small; the variance of score-function
estimate of the gradient in Eq. (15.10) can therefore be quite large in
most problems.

Typically, the Reparameterization Trick is commonly used in
generative models while both the Reparameterization Trick and the
score-function estimator are used widely in Reinforcement Learning.

20

211

15.4.3 Gradient of the remaining terms in ELBO

The gradient with respect to weights v of the decoder of the first term in
ELBO

Ve E [logpy(a]2)]

zroqy (z|2t)
is simply the standard backpropagation gradient (the sampling distribution

of the encoder does not depend on the weights of the decoder).
Let us focus on the second term

m

KL | qu(z [2) || [Tpi(z)] - (15.13)
=1

where p;(z;) = N(0, 1) are terms of the mean-field prior. The gradient
of this term with respect to weights of the decoder is zero

VoKL | qu(z | 2*) || T]pi(z) | =0.

j=1

Following the reasoning in the Reparameterization Trick, we are positing
that ¢, (2 | 2%) is a Gaussian distribution:

qu(z | 2") = N (u(z';u), 0 (2';u)I) .

Notice that o%(z*; u) € R™ is the diagonal of the covariance and therefore
the individual marginals ¢, (z; | #*) and g, (zj | 2*) for two indices 7, j'
are independent. We can therefore write

m

@u(z | ') = [[N(uj(a'sw), 05 (@ w). (15.14)

Jj=1

The KL-divergence of a univariate Gaussian N (y1, 0%) with respect
to the standard Gaussian is
ol +pu? 1

—. 15.1
5 5 (15.15)

1
KL (N (,0%) || N(0,1)) = log — +
The general formula is

oy 0P+ (g —p)? 1
KL (N (1,0%) || N(tz, 03)) = log 22 + CLH 0 —p2) 1
o1 205 2

(15.16)

Due to Eq. (15.14), the KL-divergence in Eq. (15.13) is a sum of the

KL-divergences of the individual univariate Gaussians

; 1 :
KL(gu (2 | 2°) |Ip(2) 52 loga a?(g;’;u)—u?(m su)+1).
j=1

(15.17)
The right-hand side of this equation is only a function of « and its gradient
can be calculated using standard back-propagation.

@ Prove that

m

KL H (%) | Hpj(zj)

ZKL aj(z5) llpj (z5))-
j=1

212

This completes our development of ELBO. Using the gradient calcu-
lated in this section, we can use SGD to maximize the objective in Eq. (15.5)
and train a generative model.

Some comments on VAEs

Although the mathematics of ELBO seems complicated, it is quite easy to
implement generative models using variational inference in practice. You
did for a simple MNIST problem in the homework/recitation but if the
encoder and decoder are convolutional and deconvolutional architectures
respectively, we can get very sophisticated generative models.

\l

b

Figure 15.3: Samples from a state-of-the-art VAE trained on ImageNet (Razavi
et al., 2019)

Variational inference and information-theoretic methods are a rich
(and old) area of research and there are many modifications/innovations
to ELBO, e.g., read Alemi et al. (2018) for some simple yet deep modifi-
cations.

15.5 Diffusion Models

Our discussion of variational autoencoders provides us with a particular
approach to building generative models

encoder: x +—> z

decoder: z — .
Imagine if we had two latent variables

encoder: x — 21, 2o

decoder: z1, 29 — x.

A The maps q(z | 2) and p(z | 2) are
stochastic in a VAE, and that is why we used
variational optimization to fit them. If they
were deterministic, i.e.,

q(z | x) = § {x = q(x)}, then we would
have what is called a standard autoencoder

T 2z T

If the map ¢(x) is built using a neural
network, then this is a generalization of
principal components analysis (PCA) which
uses a linear map to project data into a
different vector space (Hinton and
Salakhutdinov, 2006).

1

2

213

where both 23, z5 € R™. We can write ELBO for this again to get, for
any datum x,

log p(z) = log/dzl dzo p(x, 21, 22)

XT,21,%
= log/dz1 dza q(21, 22 | x)m
q(z1,22 | x)
(15.18)
1 [p(x, 21, %2) }
= Og —_—
21,22~q(21,2202) | q(21, 22 | @)
X, 21, %
> E [log p(’l’?)} .

z1,22~q(21,22|) Q(ZlaZQ ‘ ‘T)

Just like we did in the chapter above, we are free to factor the joint
likelihood p(z, 21, 22) to obtain a decoder. Let us factorize it as

p(33721,22) Zp(l" | Zl)p(zl | 22)p(22)~
We can build the encoder to have a similar structure
q(z1,22 |) = q(z1 | w)q(22 | 21).

Effectively, we now have a “two layer” VAE where the latent factors 21, 25
can be interpreted as hierarchical latent factors. To continue the analogy
from k-means and clustering. Imagine a problem where there

29 = topic, e.g., soccer

z1 | z2 = all entities that typically associate with the topic, e.g., a specific soccer player

x| z; = all words associated with this soccer player, e.g., Messi is from Argentina.

This particular example are actually quite famous, they are called topic
models, and the method latent Dirichlet allocation. In general, having two
layers of latent factors allows us to encode hierarchical structures in the
generative process of data. Learned features in a CNN at higher layers
are more and more abstract combinations of low-level features. Similarly
higher-level latent factors are more coarse clusters of the data.

The ELBO in Eq. (15.18) can be simplified for this two-stage VAE to
be

logp(z) > E [logp(z | 21)]

z1~q(z1|w)

- B [KL(g(22 | 21) || p(22))]

z1~q(z1|x)

o B KL(g(a | 2) || p(ot | zm]
z1~q(z1|z) | z2~q(z2]z1)
(15.19)

The first term is the reconstruction likelihood of the data. The second and
third terms are complexity terms that control how different the posteriors
of each stage q(z2 | z1) and ¢(z; | x) are allowed to be compared to their
priors p(z2) and p(z; | z2) respectively.

214

Diffusion models are variational auto-encoders with a hierarchy
of latent factors

ZO=S X > 21> 29> o > 2.

They are trained by maximizing ELBO

T

q(z \ Z4-1)

logp(e) = B llogp(z|z) ; S EAE)
(15.20)
with the understanding that p(zr | zr+1) = p(zr). That the levels of
the hierarchy are denoted by some kind of “time” ¢ = 1,...,7 is just

tradition. Diffusion models were discovered using tools in stochastic
processes, and they have some nice connections to the score function
we saw in Eq. (15.11).

15.5.1 Specific choices for the encoder and decoder in
diffusion models

It is a bit cumbersome to implement every term in Eq. (15.20) using a
neural network. For example we will need to implement different encoders

for each q(z; | z;—1) and different decoders for p(z¢—1 | z¢) and p(z | 21).

Diffusion models use some very clever choices.

Encoders do not have any parameters

q(zt | ze-1) = N(\/1 = Brzi—1, Be),
i,z =/1—Brz1+ /B ©efore~ N(0,I).

where 31, ..., by are fixed scalars. In words, the encoder at each level
of the hierarchy does not have any trainable parameters. It simply scales
down the input by 4/1 — 3; and adds Gaussian noise of standard deviation
v/B;. Due to this simplistic encoder, we can calculate the latent factor at
any level directly from the input x = 2y

zﬂxzﬁx—!—\/l—ﬁt@e;eNN(O,I) (15.22)

t

Bt = H(l - BS)

s=1

(15.21)

where

The latent factor z; is a Gaussian random variable. To enable us to assume
a mean field prior on the final latent p(z7) = N(0, I), these numbers of
chosen to be such that zr | z ~ N(0,1).

Decoder for different levels of the hierarchy share the same weights
Quite like the case for standard VAEs, the likelihood of the decoder depends

A Notice that with this choice the
dimensionality of the latent factor z; is the
same as that of the original input x. This is
why diffusion models are computationally
expensive.

20

21

22

215

upon the kind of data that we are generating. Suppose = € R? (or real-
valued images), then we know that in a diffusion model the latent factors
21,...,% € RY Therefore the decoder at each level of the hierarchy must
take d-dimensional vectors as inputs and return d-dimensional vectors as
outputs. Diffusion models choose

Po(ze1 | 2t) = N(po(2e, 1), 021). (15.23)

where v in p,, refers to the weights of the decoder. There are two important
things to notice.

1. The mean
Mo (Zh t)

takes as input both the latent z; and the step t. The step ¢ is given as
input to the decoder using position encoding. Similar to attention-
based networks, we project the step ¢ upon the Fourier basis and
add this encoding to every dimension of x.

2. The standard deviation o does not depend upon the parameters v.
This is a simplifying assumption, and it also enables us to exploit
the fact that we know the exact posterior distribution of the latent
q(2¢ | z¢—1) in Eq. (15.22). Due to this, it can be shown that for the
encoder

q(Zt,1 | Zt,.'lf) = N(ﬂ(zt,x),aff)

. BB VI=B(1—B)
iz,) = 1-5 " + -3 2t (15.24)
1— 75
o} = 1_&&1@ I

We can therefore simply fix the variance of the decoder to be the
same as that of the encoder
1— B
2 t—1
= —f. 15.25

Oy 15 t ()
This choice ensures that the terms corresponding to variance cancel
out in the expression for the KL-divergence in Eq. (15.16).

s N
Data Destructing data by adding noise Noise
S -SR-S SR | SEEee | S
Data Generating samples by denoising Noise

20

21

22

23

24

25

26

27

28

29

30

31

32

216

15.5.2 The training objective for diffusion models

The simplifying assumptions above are very useful. The distribution
of the encoders posterior and the decoders outputs is Gaussian at each
level of the hierarchy. Therefore, we can calculate all terms of the ELBO
in Eq. (15.20) in closed form. The only trainable parameters in a diffusion
model is the decoder p, of each level. Each of the term in ELBO is
the KL-divergence of two Gaussians with the same isotropic diagonal
variance, and therefore the only term in Eq. (15.16) that is non-trivial is the
one corresponding to (1 — p12)?/(202). The objective that is minimized
while training a diffusion model is therefore

1 n |$ _/’("U 217 || H:U’ Zt? M’U(Zt’t)HQ
E; {El [2072 +ZE [202

i

(15.26)
where 1(2;,) and o2 are from Eq. (15.24) and j, (24,) is the mean of
the output distribution of the decoder at stage ¢. The first term is the
reconstruction term, while the second term controls the complexity of the
distribution of the latent factors at each level of the hierarchy. The terms
corresponding to p(z7) do not have any parameters and they therefore
dropout.

A simplified objective for diffusion models Notice that the different
terms in Eq. (15.26) are simply squared residuals of each stage. We know
that the encoder adds noise to the scaled version of its input at each stage,
in Eq. (15.21). We can use this to simplify Eq. (15.26) into a very simple
expression.

From Eq. (15.22) we know that

1- Bt ©e

VB

Substitute this value of x in Eq. (15.24) to calculate [i(z¢,). The second
term in the ELBO Eq. (15.26) therefore encourages the decoder pi,, (2, t)
to predict a scaled version of its input z; a deviation coming from the
noise € that was added to create z; from zg = x in Eq. (15.22). Instead of
thinking the decoder as something that gives the distribution of the latents
as the output, since the objective only depends upon the mean, we can

equivalently think of the decoder as predicting the amount of noise €. In
other words, the training objective of a diffusion model is simply

n T

i=1

(15.27)
Each of the terms in the second part corresponds to the residual of a
network that takes in as input 2° corrupted by noise € and tries to predict

A A large number of levels in the hierarchy
can lead to wild overfitting, akin to having a
large number of clusters in k-means. But the
various simplifying choices in diffusion
models are chosen very carefully and allow us
to fit these models extremely well. This is the
key reason for the popularity of diffusion
models as compared to VAEs. The former
can certainly model more complicated data
distributions, but they can also be fitted
relatively easily.

tz<2at<1—g§><1—ﬁt)MOI) [H = (Vs + VT=fe)| }

217

1 the noise e. Larger the level ¢, larger is the magnitude of noise e that is
2 added to the original image x°. Each level in the decoder is therefore
s doing denoising of harder and harder problems.

1

2

3

Chapter 16

Generative Adversarial
Networks

Reading

1. Andrew Ng’s notes on generative models
http://cs229.stanford.edu/notes/cs229-notes2.pdf

2. The original GAN paper by Goodfellow et al. (2014)

3. “The Numerics of GANs” by Mescheder et al. (2017)

In the previous chapter, we used variational methods to build a
generative model for the data. In this case, we are given samples D =
{a'}._, and would like to build a model that can synthesize new data. For
every data x that a decoder synthesizes at test time using latent variables
z, we can calculate the likelihood

x ~ py(z|z), forany z ~ N(0,1).

This likelihood is an indicator of how unlikely the data z is under z.
Models for which we can calculate such likelihood are called explicit
generative models, i.e., they give a sample x and also report its likelihood.
In this chapter, we will look an alternative class of generative models that
are implicit, i.e., they only give a sample z but do not report its likelihood.

A Generative Adversarial Network (GAN) consists of two neural
networks: a Generator and a Discriminator. The Generator works in the
same way as the decoder in a variational auto-encoder. Given a sample
z from some distribution, most commonly a standard normal, we train a
neural network to generate a sample

z = gy(2).

http://cs229.stanford.edu/notes/cs229-notes2.pdf

20

21

22

23

24

25

26

27

28

219

GANSs differ from explicit models in how they train the generator, the
discriminator is used for this purpose. We will look at this next.

16.1 Two-sample tests and Discriminators

We will first take a short trip into an area of statistics known as decision
theory. Consider two datasets coming from two distributions p(z) and
q(x)) .

Dy ={z",...,a",: 2" ~ p(z)}

Dy = {xl,...,:z:",: zF ~ q(x)}

We would like to check if these two distributions are the same given
access to only their respective datasets D¢ and Ds. Let us define the null
hypothesis which claims that the two distributions are the same.

Ho:p=gq
The alternate hypothesis is

Hi:p#q.

The goal of the so-called “two-sample test” is to decide whether H| is
true or not. A typical two-sample test will construct a statistic (recall from
Chapter 7 that a statistic is any function of the data)

t

out of the two datasets, e.g., their individual means, their variances, and
will use this statistic to accept or reject the null hypothesis, i.e., decide
whether Hj is true or false.

Let’s say that we pick a threshold t,,, and the test statistic 7 is the
difference of the means

Level of a test A statistician will then say that the null hypothesis is
valid with level o if

PDyp, Damp (T > ta) < . (16.1)

In other words, if the null hypothesis were true (both D; and D, are
drawn from the same distribution p) and if the probability of our empirical
statistic being larger than some chosen threshold t,, is smaller than some
chosen probability «, then we know that the two distributions are the same
despite only having finite data to check. The threshold « is called the
p-value in the statistics literature and you will have seen statements like
“gene marker XX is correlated with disease YY with p-value of 107" or
“smokers and non-smokers have different distributions of cancers with

A The concept of a hypothesis here is
different from what we saw in
generalization/VC-theory. Hypothesis in
decision theory simply means our hunch
about a particular situation, e.g., p = q.

220

p-value of 10737,

Power of a test The power of a two-sample test is the probability of
rejecting the null hypothesis when it is actually false. We want tests with
a large power, i.e., we like

PpypDang (T > ta) (16.2)

being large if the two datasets D; and D5 are drawn from two different
distributions p and q respectively.

The key point to remember about two-sample tests is that they let
us check if two distributions are the same without knowing anything
about the distributions. We only need access to the samples and can
run this test. This is fundamentally different than say

q(x)
KL(q || p :/qxlog—dx
@l = [a@os L]
where we need to know the probabilities ¢(z), p(z) to compute the
distance between distributions.

Example 16.1. A two-sample test requires three things, a statistic 7, a
level «v and a threshold for the statistic ¢,,. The latter two are numbers that
a statistician can pick, e.g., picking oo = 0.05 is an accepted standard in
most biological studies.

Two Gaussians with different means Two Gaussians with different variances Gaussian and Laplace densities

Prob. Density

» 16.2 Building the Discriminator in a GAN

Finding two-sample test statistics for arbitrary distributions is

221

difficult, especially for high-dimensional problems where the samples
are natural images. The key idea behind a Generator Adversarial
Network (GAN) is to learn the statistic .

A good statistic is the one that lets us distinguish between data
that comes from Nature’s distribution and data that is synthesized by
our generative model. This statistic, which is called the discriminator
in GAN, is a critic of the generative model’s results. It has a high
power in Eq. (16.2) if the generated samples are different from those
of Nature. Why? Because in this case for most thresholds ¢, that we
can pick, the power of the two-sample test in Eq. (16.2) will be large.

The discriminator should also be sound, i.e., if the two distribu-
tions are indeed the same (e.g., if our generator is as good as good
as Nature’s renderer), the discriminator should have a low level o
in Eq. (16.1).

We are going to train a binary classifier
dy : X —[0,1]

that will act as the discriminator in a GAN. You should think of the
decision boundary of this binary classifier as the difference of the test
statistic and our threshold ¢ — t,,.

We next create a dataset to train this classifier. Given n images from
Nature’s distribution p(z) and the distribution of our generator’s images
q(z), we will label the former with y = 1 and the latter with y = 0 to
create a joint dataset:

D, = {(xz7 1)72:1,...,n : xi ~ p(x)}
Dy = {(xi,o)i:l,...,n Dt~ q(:c)}
D =DyUDs.

Fitting d,, on this problem can be done simply using the logistic loss
wherein d,, is modeling

P(y = 1|z) = du(2).
The logistic loss is therefore
X 1 1
u” = argmin —— Z logd,(z) — - Z log(1 — dy(x)). (16.3)
w z~D1 z~D>

Observe that this is the same logistic loss that we are used to; the only
difference being that the entire dataset has 2n samples with all the ones in
D1 having labels y = 1 and all the ones in Dy having labels y = 0.

A Notice how rigorous theory is used as an
inspiration for developing GANs. This is a
common theme that you will see in the deep
learning literature; the models may seem ad
hoc and sprung out of sheer intuition, but the
reason they work well is often because there
are sound theoretical principles behind them.
Building this skill requires studying the
classical curriculum (ML, statistics,
optimization) but being creative in applying
this curriculum with deep networks.

222

1 What is the ideal discriminator? The population risk corresponding
2 to the discriminator’s objective in Eq. (16.3) is

d* = argmax Ep [logd(x)] + Eq [log(1 — d(x))]. (16.4) A For a functional
d xrn~ xrn~
s We can take the variational derivative of this objective (just like you did Lld] = / log d(z)p(x) dx
4+ in HW 3 to compute the optimal classifier in the bias-variance tradeoff) to
s get the variational derivative is
ey p(z)
d*(z) = m (16.5) 5—L(x) _]@
od d(z)

s Observe that the ideal discriminator is 1/2 if the two distributions p and
7 q are the same. The intuitive reason for this is that if the data D were Similarly, the variational derivative for
s really coming from the same distribution, we would never be able to fit a
s logistic classifier to get better than 50% error because D1 and D5 have Lid] = /log(l —d(z))q(x) dx
10 different labels in spite of having similar input data.
1 Think of you would use our discriminator to build a two-sample test is
12 for a given dataset. If given two datasets D1 and D> labeled as above oL q(x)

5= T aw

R 1 1
l:= - Z leg, (@)>03 T o Z 104, (2)<0}
xeDy z€D>

13 and an appropriate threshold ¢,. This construction is an example of what
12 is called a “classifier-based two-sample test”; you can read more about it
15 at Lopez-Paz and Oquab (2016).

It can be shown that if the two distributions are not the same, the
power of the two-sample test is an increasing function of the statistic
t. Therefore if we wanted to maximize the power, maximizing the
test statistic £ of the discriminator is a good idea. This makes the
discriminator more and more sensitive to the differences between
samples from p and q.

« 16.3 Building the Generator of a GAN

The second key idea in a GAN is that the generator

223

Latent variable (z)

Generator =]
(G) —‘L \
(nees @]

Real data —E

Discriminator
(D)

Real/Fake probability

Figure 16.1: Schematic of the architecture in a GAN

Gy Z2 = X

that maps the latent space Z C R to data space X is trained to
minimize the power of the two-sample test.

The generator g,, wants to synthesize data that look like they came
from Nature’s distribution p(z). As the generator’s distribution ¢
comes closer to p, the accuracy of the discriminator d,, will degrade (it
cannot distinguish between them as easily) and thereby discriminator
will be forced to make its test statistic more sensitive to subtle
differences between the two distributions.

16.4 Putting the discriminator and generator
together

The GAN objective combines two objectives: the discriminator updates
its weights u to maximize the power and the generator updates its weights
v to minimize the power. We will write the population version of the
optimization problem as follows.

mvin max Epp(z) [logdu(z)] + Epg(ey [log (1 —du(z))] (16.6)
Let us fill in a few more details. The dataset of real images consists of
samples from Nature’s distribution p(x), so we will write it as a finite sum
over our dataset D = {xl ~ p}?zl. The generator uses samples z from
some generic distribution, e.g., a standard Gaussian distribution.

1
min max — >~ Nlog du(@)] + E.ono.r) log (1 = du(gu(2)))]. (16.7)

v u
xzeD

Training a GAN The objective in Eq. (16.7) is an example of a min-max
optimization problem. Such problems are quite difficult to solve and this
is why training GANSs is quite difficult. In practice, we typically resort to
a few crude tricks. We sample a mini-batch of real images {xl, cey scﬁ}
and another mini-batch of noise vectors {z*, ..., 2" }. Using these two
mini-batches

1. we update the generator g,, using the gradient of the objective with
respect to v.

20

21

22

23

24

25

26

27

28

29

30

31

224

2. update the discriminator d,, using the gradient of the loss with
respect to u.

There is no need for the Reparametrization Trick here because there is
no expectation being taken over parametrized distributions. This is a big
benefit of the GAN formulation as compared to variational inference; the
former does not have to be careful while picking a variational family and
complex deep networks can be used as the generator or the discriminator
easily. Let us next make a few comments about the objective in Eq. (16.7).

Solving min-max problems is difficult This is a min-max problem: the
generator is minimizing the objective and the discriminator is maximizing
the objective. Such problems are hard to solve in optimization especially
with gradient descent techniques. Consider an example of a saddle point

where the loss function increases in one direction and decreases in the
other direction. Finding the solution of the min-max objective involves
finding the saddle point. It is easy to appreciate that depending on how
many steps of gradient descent we take for either of the min/max players
we risk falling down or climbing up the hill. There are many many other
other factors that make solving such problems hard, e.g., learning rate,
momentum, stochastic gradients if we are using mini-batches. Hyper-
parameters are very tricky to pick while training GANs and this is often
called “instability of training”.

A harsh discriminator inhibits the training of the generator The
generator has a much more difficult task than the discriminator. During
early stages of training, the generator needs to learn how to synthesize
images whereas the discriminator can easily distinguish between bad
images generated by the generator and good ones from our original dataset
using very similar test statistics, e.g., an average of the RGB values all the
pixels.
The gradient of the second term in the objective is

_ Vodu(gs(2))
1 —du(go(2))

As a function of d,, (g, (z)) the second term in the objective thus looks like

Vylog(l —du(gv(2))) =

20

21

22

23

225

= log(1—-D(G(2)))

Gradient
o

0.0 0.2 04 0.6 0.8 1.0
D(G(2))

In other words, the gradient with respect to the generator’s weights v
is essentially zero if the generator is not working well (this is the case
when d, (g, (2)) predicts a large negative value). This does not allow the
generator to learn well; it is essentially like your advisor shooting down
all your ideas.

Most GAN implementations therefore modify the second term in the
objective to be

- zwl\lf;zo,l) [log du(gv(2))]

which does not suffer from the small gradient problem.

—— log(1-D(G(2)))
15 \ —— logD(G(2))

Gradient
o

0.0 0.2 0.4 0.6 0.8 1.0
D(G(2)

Synthesizing new images from a GAN The generator samples la-
tent factors z ~ N(0,I) at test time to synthesize new images. The
discriminator is not used at test time.

16.5 How to perform validation for a GAN?

For variational generative models, we can use the log-likelihood of
synthesized images to obtain some understanding of whether the model
is working well. If the log-likelihood of new images is similar to the
log-likelihood of images in the training data then the new images are good
at least as far as the model is concerned even if they may have perceptual
artifacts.

Doing so is not so easy for implicit models because they do not output
the likelihood of the generated samples. Run the generator a few times to
eyeball the quality of images it generates.

20

21

22

23

24

25

26

226

But this is a very heuristic and qualitative metric.

Frechet Inception Distance (FID) A number of other metrics exist
for evaluating generative models. One popular one is the so-called
Frechet Inception Distance (FID) where we take any pre-trained model for
classification, in this case people typically use the Inception architecture,
and evaluate

FID(p, q) = ||up — uqllg + trace (Zp +3,-2 (E,,Zq)l/z))

where 1, 2, are the mean and covariace of the features of an Inception
network when real images are fed to it and similarly p,, Y, are the
mean/covariance of the features when GAN-generated images are fed to
the same network.

The above formula is the Wasserstein distance between the two densities
P, q, There are many similar techniques such as the Maximum Mean
Discrepency (MMD) that can be used to understand the discrepancy
between the two distributions once the features are computed using some
pre-trained model on their respective images.

Roughly speaking, the evaluation methodology in generative models,
especially for images, is quite flawed. This is not a new phenomenon in
machine learning/statistics because it is a intrinsically difficult problem to
measure when two distributions are the same given only finite data from
them. The problem is exacerbated in deep generative models because
deep networks are very good at over-fitting, e.g., GANs can often end up
memorizing the training data, they can generate very realistic images that
are essentially the same as those in the training data. Nevertheless, a lot
of techniques exist to make GANs synthesize high-quality images. See
some examples at Brock et al. (2018); Karras et al. (2017).

The key behind the empirical success of GANS is to convert

227

a problem about estimating distributions, sampling from them etc.
into a classification problem. Deep networks are extremely good
at classification as compared to other problems like regression,
reconstruction etc. and GANSs leverage this remarkably. This is a
trick that you will do well to remember when you use deep networks
in the future: typically you will always get better results if you manage
to rewrite your problem as a classification problem. I suspect the real
reason for this is that we do not have good regularization techniques
for deep networks for non-classification problems.

16.6 The zoo of GANs

Due to the numerous issues with GANSs, there have been a large number
of variants and attempts to improve their empirical performance. They
fall mainly into the following categories.

1. Optimization tricks to train the generator-discriminator pair in a
more stable fashion.

2. New loss functions that change the binary cross-entropy loss of the
discriminator to something else. A majority of papers, including
the example we saw above, fall into this category.

3. Characterizing the kind of critical points, equilibria of the training
process; this is a similar line of analysis as the study of the energy
landscape of deep networks for standard supervised learning.

4. Connections with variational inference suggest that GANs and
their training techniques are essentially variational inference in
disguise (Nowozin et al., 2016).

5. Coming up with new ways of evaluating generative models.

In addition to the above lines, there are many other novel and interesting
applications such as Cycle-GANs and conditional-GANS.

20

21

22

23

24

25

26

27

28

29

Bibliography

Aizerman, M. A. (1964). Theoretical foundations of the potential function method in pattern recognition
learning. Automation and remote control, 25:821-837.

Alemi, A., Poole, B., Fischer, 1., Dillon, J., Saurous, R. A., and Murphy, K. (2018). Fixing a broken elbo. In
International Conference on Machine Learning, pages 159-168. PMLR.

Amari, S. (1967). A theory of adaptive pattern classifiers. I[EEE Transactions on Electronic Computers,
(3):299-307.

Balasubramanian, V. (2015). Heterogeneity and Efficiency in the Brain. Proceedings of the IEEE, 103(8):1346—
1358.

Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis: Learning from examples
without local minima. Neural networks, 2(1):53-58.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A. (2019). Nearly-tight vc-dimension and pseudodimension
bounds for piecewise linear neural networks. J. Mach. Learn. Res., 20:63—1.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859-877.

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages 421-436.
Springer.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale machine learning. Siam
Review, 60(2):223-311.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123-140.
Breiman, L. (2001). Random forests. Machine learning, 45(1):5-32.

Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale gan training for high fidelity natural image
synthesis. arXiv preprint arXiv:1809.11096.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J., Sagun, L., and
Zecchina, R. (2016). Entropy-sgd: Biasing gradient descent into wide valleys. arXiv:1611.01838.

Chaudbhari, P. and Soatto, S. (2017). Stochastic gradient descent performs variational inference, converges to
limit cycles for deep networks. arXiv preprint arXiv:1710.11029.

Cortes, C. and Vapnik, V. (1995). Support vector machine. Machine learning, 20(3):273-297.

Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics, pages
569-593. Springer.

228

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

229

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern recognition.
Neural networks, 1(2):119-130.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. (2014). Generative adversarial nets. In Advances in neural information processing systems, pages
2672-2680.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural
computation, 18(7):1527-1554.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks.
science, 313(5786):504-507.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735-1780.

Hubel, D. H. and Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex.
The Journal of physiology, 195(1):215-243.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson, A. G. (2018). Averaging weights leads to
wider optima and better generalization. arXiv preprint arXiv:1803.05407.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive growing of gans for improved quality,
stability, and variation. arXiv preprint arXiv:1710.10196.

Kawaguchi, K. (2016). Deep learning without poor local minima. In Advances in neural information processing
systems, pages 586-594.

Kidambi, R., Netrapalli, P., Jain, P., and Kakade, S. (2018). On the insufficiency of existing momentum
schemes for stochastic optimization. In 2018 Information Theory and Applications Workshop (ITA), pages
1-9. IEEE.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097-1105.

Kushner, H. and Yin, G. G. (2003). Stochastic approximation and recursive algorithms and applications,
volume 35. Springer Science & Business Media.

Le Roux, N., Schmidt, M. W., Bach, F. R., et al. (2012). A stochastic gradient method with an exponential
convergence rate for finite training sets. In NIPS, pages 2672-2680.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436-444.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989).
Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541-551.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

230

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the loss landscape of neural nets. In
Advances in Neural Information Processing Systems, pages 6389-6399.

Liu, C. and Belkin, M. (2018). Mass: an accelerated stochastic method for over-parametrized learning. arXiv
preprint arXiv:1810.13395.

Lopez-Paz, D. and Oquab, M. (2016). Revisiting classifier two-sample tests. arXiv preprint arXiv:1610.06545.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115-133.

Mescheder, L., Nowozin, S., and Geiger, A. (2017). The numerics of gans. In Advances in Neural Information
Processing Systems, pages 1825-1835.

Minsky, M. and Papert, S. A. (2017). Perceptrons: An introduction to computational geometry. MIT press.

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-gan: Training generative neural samplers using variational
divergence minimization. In Advances in neural information processing systems, pages 271-279.

Pedro, D. (2000). A unified bias-variance decomposition and its applications. In 17th International Conference
on Machine Learning, pages 231-238.

Pickering, A. (2010). The cybernetic brain: Sketches of another future. University of Chicago Press.
Polyak, B. T. (1990). A new method of stochastic approximation type. Avtomatika i telemekhanika, (7):98-107.

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM Journal
on Control and Optimization, 30(4):838-855.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin,
P, Clark, J., et al. (2021). Learning transferable visual models from natural language supervision. In
International conference on machine learning, pages 8748-8763. PMLR.

Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines. In Advances in neural
information processing systems, pages 1177-1184.

Raina, R., Madhavan, A., and Ng, A. Y. (2009). Large-scale deep unsupervised learning using graphics
processors. In Proceedings of the 26th annual international conference on machine learning, pages 873-880.

Razavi, A., van den Oord, A., and Vinyals, O. (2019). Generating diverse high-fidelity images with vg-vae-2.
In Advances in Neural Information Processing Systems, pages 14866—14876.

Recht, B. and Ré, C. (2012). Beneath the valley of the noncommutative arithmetic-geometric mean inequality:
conjectures, case-studies, and consequences. arXiv preprint arXiv:1202.4184.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics,
pages 400-407.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the
brain. Psychological review, 65(6):386.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science.

Ruppert, D. (1988). Efficient estimations from a slowly convergent robbins-monro process. Technical report,
Cornell University Operations Research and Industrial Engineering.

20

21

22

23

231

Salakhutdinov, R. and Larochelle, H. (2010). Efficient learning of deep boltzmann machines. In Proceedings
of the thirteenth international conference on artificial intelligence and statistics, pages 693-700.

Scholkopf, B. and Smola, A. J. (2018). Learning with kernels: support vector machines, regularization,
optimization, and beyond. Adaptive Computation and Machine Learning series.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). Striving for simplicity: The all
convolutional net. arXiv:1412.6806.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., and Salakhutdinov, R. (2014). Dropout: a simple way
to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929—-1958.

Sukthanker, R. S., Huang, Z., Kumar, S., Timofte, R., and Van Gool, L. (2022). Generative flows with invertible
attentions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11234-11243.

Transtrum, M. K., Machta, B. B., and Sethna, J. P. (2011). Geometry of nonlinear least squares with applications
to sloppy models and optimization. Physical Review E, 83(3):036701.

Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the Turing Test, pages 23—65.
Springer.

Vapnik, V. (2013). The nature of statistical learning theory. Springer science & business media.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, 1.
(2017). Attention is all you need. In Advances in neural information processing systems, pages 5998—-6008.

Wiener, N. (1965). Cybernetics or Control and Communication in the Animal and the Machine, volume 25.
MIT press.

Yang, R., Mao, J., and Chaudhari, P. (2022). Does the data induce capacity control in deep learning? In
International Conference on Machine Learning, pages 25166-25197.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017). Deep sets.
Advances in neural information processing systems, 30.

	What is intelligence?
	Key components of intelligence
	Intelligence: The Beginning (1942-50)
	Representation Learning

	Intelligence: Reloaded (1960-2000)
	Intelligence: Revolutions (2006-)
	A summary of our goals in this course

	Linear Regression, Perceptron, Stochastic Gradient Descent
	Problem setup for machine learning
	Generalization

	Linear regression
	Maximum Likelihood Estimation

	Perceptron
	Surrogate Losses

	Stochastic Gradient Descent
	The general form of SGD

	Kernels, Beginning of neural networks
	Digging deeper into the perceptron
	Convergence rate
	Dual representation

	Creating nonlinear classifiers from linear ones
	Kernels
	Kernel perceptron
	Mercer's theorem

	Learning the feature vector
	Random features
	Learning the feature matrix as well

	Deep fully-connected networks, Backpropagation
	Deep fully-connected networks
	Some deep learning jargon
	Weights

	The backpropagation algorithm
	One hidden layer with one neuron
	Implementation of backpropagation

	Weight initialization in fully-connected networks
	Typical weight initialization schemes in deep learning

	Convolutional Architectures
	Basics of the convolution operation
	Convolutions of 2D images
	Some examples

	How are convolutions implemented?
	Convolutions for multi-channel images in a deep network
	Translational equivariance using convolutions
	Pooling to build translational invariance
	Weight initialization in convolutional networks

	Data augmentation, Loss functions
	Data augmentation
	Some basic data augmentation techniques
	How does augmentation help?
	What kind of augmentation to use when?

	Loss functions
	Regression
	Classification: Cross-Entropy loss
	Softmax Layer
	Label smoothing
	Multiple ground-truth classes

	Bias-Variance Trade-off, Dropout, Batch-Normalization
	Bias-Variance Decomposition
	Cross-Validation

	Weight Decay
	Do not do weight decay on biases
	Maximum a posteriori (MAP) Estimation

	Dropout
	Bagging classifiers
	Some insight into how dropout works
	Implementation details of dropout
	Using dropout as a heuristic estimate of uncertainty

	Batch-Normalization
	Covariate shift
	Internal covariate shift
	Problems with batch-normalization
	Variants of Batch-Normalization

	Recurrent Architectures and the Attention Mechanism
	Recursive updates in a Kalman filter, sufficient statistics
	Recurrent Neural Networks (RNNs)
	Backpropagation in an RNN
	Handling long-term temporal dependencies

	Long Short-Term Memory (LSTM)
	Gated Recurrent Units (GRUs)
	LSTMs

	Bidirectional architectures
	Attention mechanism
	Weighted regression estimate
	Attention layer in deep networks
	Attention in recurrent networks

	Some applications of attention-based networks (transformers)
	Pretraining on natural language
	Handling multi-modal inputs

	Background on Optimization, Gradient Descent
	Convexity
	Introduction to Gradient Descent
	Conditions for optimality
	Different types of convergence

	Convergence rate for gradient descent
	Some assumptions
	GD for convex functions
	Gradient descent for strongly convex functions

	Limits on convergence rate of first-order methods

	Accelerated Gradient Descent
	Polyak's Heavy Ball method
	Polyak's method can fail to converge

	Nesterov's method
	A model for understanding Nesterov's updates
	How to pick the momentum parameter?

	Stochastic Gradient Descent
	SGD for least-squares regression
	Convergence of SGD
	Typical assumptions in the analysis of SGD
	Convergence rate of SGD for strongly-convex functions
	When should one use SGD in place of GD?

	Accelerating SGD using momentum
	Momentum methods do not accelerate SGD

	The Adam optimizer
	Understanding SGD as a Markov Chain
	Gradient flow
	Markov chains
	A Markov chain model of SGD
	The Gibbs distribution
	Convergence of a Markov chain to its invariant distribution

	Shape of the energy landscape of neural networks
	Introduction
	Deep Linear Networks
	Extending the picture to deep networks

	Generalization performance of machine learning models
	The PAC-Learning model
	Concentration of Measure
	Union Bound (or Boole's Inequality)
	Chernoff Bound

	Uniform convergence
	Vapnik-Chernovenkis (VC) dimension

	Sloppy Models
	Model manifold of nonlinear regression
	Understanding optimization for sloppy models
	Understanding generalization for sloppy models

	Variational Inference
	The model
	Some technical basics
	Variational calculus
	Laplace approximation
	Digging deeper into KL-divergence

	Evidence Lower Bound (ELBO)
	Parameterizing ELBO

	Gradient of the ELBO
	The Reparameterization Trick
	Score-function estimator of the gradient
	Gradient of the remaining terms in ELBO

	Diffusion Models
	Specific choices for the encoder and decoder in diffusion models
	The training objective for diffusion models

	Generative Adversarial Networks
	Two-sample tests and Discriminators
	Building the Discriminator in a GAN
	Building the Generator of a GAN
	Putting the discriminator and generator together
	How to perform validation for a GAN?
	The zoo of GANs

	Bibliography

