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Abstract

This thesis addresses problems in planning and control of autonomous agents. The
central theme of this work is that integration of “low-level control synthesis” and
“high-level decision making” is essential to devise robust algorithms with provable
guarantees on performance.

We pursue two main directions here. The first part considers planning and control
algorithms that satisfy temporal specifications expressed using formal languages. We
focus on task specifications that become feasible only if some of the specifications are
violated and compute a control law that minimizes the level of unsafety of the system
while guaranteeing that it still satisfies the task specification. Examples in this domain
are motivated from an autonomous car navigating an urban landscape while following
road safety rules such as “always travel in the left lane” and “do not change lanes
frequently” or an electric vehicle in a mobility-on-demand scenario.

The second part of the thesis focuses on multi-agent control synthesis, where agents
are modeled as dynamical systems and they interact with each other while sharing
the same road infrastructure — all the while respecting the same road driving rules
expressed as LTL specifications. We discuss algorithms that identify well-defined no-
tions in the game theory literature such as Stackelberg equilibria and non-cooperative
Nash equilibria under various information structures.

This work builds upon ideas from three different fields, viz., sampling-based motion-
planning algorithms to construct efficient concretizations of general, continuous time
dynamical systems, model checking for formal specifications that helps guarantee the
safety of a system under all scenarios, and game theory to model the interaction be-
tween different agents trying to perform possibly conflicting tasks.

Thesis Supervisor: Emilio Frazzoli
Title: Professor of Aeronautics and Astronautics

Thesis Committee Member: Sertac Karaman
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CHAPTER 1

Introduction

Figure 1.1: MIT’s DARPA Urban Challenge car

From avoiding traffic jams in busy cities to
helping the disabled and elderly on their
daily commute, autonomous vehicles promise
to revolutionize transportation. The DARPA
Grand Challenges [LHT+08, BIS09, TMD+06]
were a gigantic leap towards this goal when
they demonstrated that self-driving cars can
not only traverse unknown terrain but can also
do well in an urban scenario, complete with
traffic rules. However, as autonomous cars
begin their transition from these experimental
projects into viable means of urban transporta-
tion, we are faced with a myriad of challenges, e.g., traffic management for autonomous cars,
interaction of these agents with other drivers, sharing road infrastructure with pedestrians etc.
— and most importantly, doing so while maintaining the same standards of safety that human
drivers are subject to.

To motivate the problems considered in this thesis, let us look at the DARPA Urban Challenge
of 2007. It required competing teams to traverse an urban landscape in a completely autonomous
manner. Doing so involved performing challenging tasks such as parking maneuvers, U-turns and
negotiating cross-roads — all the while obeying traffic regulations. Fig. 1.1 shows Talos, MIT’s
entry to this competition, which is an LR3 Landrover outfitted with 5 cameras, 12 LIDARs, 16
radars and one 3D laser (Velodyne) sensor. The computing system on the other hand consists of a
few hundred processes running in parallel on 40 processors. Team MIT was placed fourth in this
competition and it completed an approximately 60 mile route in about 6 hours.

Figure 1.2: Cornell-MIT crash

Fig. 1.2 shows a picture of the sensory and
control data when Talos encounters Cornell
University’s car (Alice). Alice unfortunately
has a bug in the software which causes it to
stall in the middle of the road. After waiting
for some time for Alice to make progress, Talos
plans an alternate trajectory around it. How-
ever, as Talos gets closer to Alice, a fail-safe
mechanism in Alice kicks in which says that
it should not be very close to another vehicle
and Alice moves forward. By this time how-
ever, both cars are committed to their respec-
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1.1 MOTIVATION AND CONTRIBUTIONS

tive fail-safe trajectories and they end up colliding. This incident — and a number of similar ones
happened to almost all teams — provides the main motivation for this thesis. Specifically, we
identify the following key points that resulted in the collision [FTO+08]:

1. An alternate trajectory that was classified as “safe” by Talos transitioned from the left-lane
into the right-lane, which is a potentially dangerous maneuver, in other words, high-level rou-
tines that reason about logical safety of a trajectory were completely decoupled from motion-
planning.

2. Alice had a number of conflicting fail-safe rules whose priorities were not clearly defined with
respect to each other. In particular, even though, each of them guaranteed reasonable behavior
individually, together, they were not able to guarantee the vehicle’s safety.

3. Talos did not correctly judge the intent of the other vehicle, i.e., sensory information and per-
ception algorithms were insufficient to classify Alice as “another car that is likely to move”.

Let us elaborate further on these points. In the next section, we will identify some fundamental
challenges in traditional engineering methodologies for such systems.

1.1 Motivation and Contributions

1.1.1 Integrated Decision Making and Control

Figure 1.3: The first picture shows the left lane as a
“virtual obstacle”. If no progress is made for 15 secs.,
as shown in the second picture, the software clears
the left-lane and allows the car to overtake a parked
car.

One of the main challenges of reasoning about
“high-level decision making” and implement-
ing it using “low-level controllers” is that the
computational models at these two levels are
incompatible. For example, logical rules like
“do not go into the left lane” that can be eas-
ily verified for discrete state-trajectories are
hard to verify (or even formalize) for dynam-
ical systems with differential constraints. This
has led to a hierarchy of design methodologies
wherein, tools from computer science and con-
trol theory respectively, are used independently
of each other. While this is both reasonable and
effective, one of the main challenges of this ap-
proach is that evaluating the performance or
proving the safety of the closed-loop system
with respect to its specifications, is difficult. In
fact, if the abstracted finite transition system is
too coarse, there is no guarantee that the op-
timal controller will be found even if one ex-
ists [WTM10], i.e., these methods are not com-
plete and cannot be applied to, for example,
dynamically changing environments.

In this work, we propose an integrated ar-
chitecture for decision making and control. We

10



1.1 MOTIVATION AND CONTRIBUTIONS

construct on line sequences of concretizations of general, dynamical systems known as Kripke
structures that also maintain low-level control laws. These Kripke structures are finite models
of the continuous dynamical system and algorithms from model checking in the computer sci-
ence literature can be readily used to evaluate temporal properties such as safety, fairness, live-
ness and their combinations. Also, we are interested in refining these Kripke structures to obtain
asymptotic-optimality of the resulting algorithms. In order to differentiate this from finite abstrac-
tions that are popular in literature, we call these, concretizations of dynamical systems.

This thesis proposes a way to construct concretizations of dynamical systems with differen-
tial constraints. We use ideas from sampling-based motion-planning algorithms such as Prob-
abilistic Road Maps (PRMs) and Rapidly-exploring Random Trees (RRTs) to create iteratively
refined Kripke structures. In particular, recent versions of these algorithms such as PRM∗ and
RRT∗ [KF11b] help us ensure two important characteristics that differentiate this work from con-
temporary results, (i) probabilistic completeness, i.e., the algorithm finds a Kripke structure that
satisfies the specifications if one exists with high probability, and (ii) probabilistic asymptotic-
optimality, i.e., almost surely, the algorithm returns a continuous trajectory that not only satisfies
all specifications but also minimizes a given cost function while doing so.

1.1.2 Minimum-violation Planning

Logical specifications can be succinctly expressed using formal languages such as Linear Tem-
poral Logic (LTL) [KB06, KGFP07], Computational Tree Logic (CTL, CTL∗) [LWAB10], modal µ-
calculus [KF12a] etc. The general problem of finding optimal controllers that satisfy these speci-
fications has been studied in a number of recent works such as [DSBR11, TP06, STBR11, USDB12].
Given these specifications, if the underlying task is feasible, using methods discussed in the pre-
vious section, we can compute an asymptotically-optimal controller for a given dynamical system
that satisfies them. On the other hand, in many situations, for example when a single-lane road
is blocked, one might have to violate some specifications, e.g., “do not go into the left lane” in
order to satisfy the task, e.g., “reach a goal region”. In fact, (cf. Fig. 1.3), MIT’s DARPA Grand
Challenge team had a series of rules in their code to demarcate the left-lane as a virtual “obstacle”;
if no progress was made for 15 secs. due to a blocked right lane, the algorithm would selectively
remove these “obstacles” until a reasonable motion-plan was found. A consequence of this is that
a number of such conflicting rules and pre-specified parameters exist in the framework which
makes it very hard to design and debug. It is also hard to guarantee the performance and safety
of the overall system.

This thesis discusses a principled approach to tackle such problems. In particular, in our work,
we quantify the level of unsafety of a trajectory that breaks a subset of specifications in order to
satisfy a task. These specifications are expressed using the finite fragment of LTL, e.g., FLTL−X ,
and are converted into a weighted finite automaton such that traces of the Kripke structure on
this automaton have a weight that is exactly equal to the level of unsafety of the corresponding
trajectory. Using ideas from local model-checking and sampling-based motion-planning, we can
then construct an algorithm that identifies the trace in the Kripke structure (and effectively, the
continuous trajectory) that minimizes this level of unsafety.

Our work here can be seen in context of recent literature on control synthesis for an unsatisfi-
able set of specifications. For example, works such as [CRST08] reveal unsatisfiable fragments of
given specification, while others such as [Fai11, KFS12, KF12b] try to synthesize controllers with
minimal changes to the original specifications, e.g., by modifying the transition system. Two
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1.2 ORGANIZATION

lines of work that are closest to ideas proposed in this thesis are — [Hau12] which focuses on
finding the least set of constraints, the removal of which results in satisfaction of specifications
and [DF11, CY98] which quantify the least-violating controller according to some proposed metric
for a given transition system. Let us note that similar approaches exist for probabilistic transition
systems, e.g., [BEGL99, BGK+11].

1.1.3 Multi-agent Systems

On the other hand, consider problems such as merging into lanes on freeways, negotiating cross-
road junctions, round-abouts etc. In order to enable autonomous vehicles to reason about these
situations effectively, we have to develop algorithms for interaction of these agents with the ex-
ternal environment. This thesis takes a look at game theoretic approaches to these problems in
conjunction with concepts from model checking and sampling-based algorithms.

Differential games [Isa99,BO95] are popular models for problems such as multi-agent collision
avoidance [MBT05], path planning in adversarial environments [VBJP10] and pursuit-evasion
problems [GLL+99]. However, analytical solutions for differential games exist for only specific
problems, e.g., the “lady in the lake” game, or Linear Quadratic Regulator (LQR) games [BO95].
For problems involving more complex dynamics or other kinds of cost functions, solutions are
hard to characterize in closed form. Numerical techniques are based on converting the problem
to a finite dimensional optimization problem [Rai01] or solving the corresponding partial differ-
ential equations using shooting methods [BPG93,BCD97,BFS99,Sou99], level set methods [Set96],
viability theory [ABSP11, CQSP99] etc.

Similarly, there are few rigorous results for game theoretic controller synthesis for multi-robot
planning, e.g., [LH98]. However, a number of works solve related problems, e.g., [ZM13] solves
optimal sensor deployment while [ASF09] considers vehicle routing problems. These papers
mainly reply on centralized planning [SL02, XA08], decoupled synthesis [KZ86, SLL02] or ad-hoc
priority-based planning, e.g., [Buc89, ELP87].

This thesis proposes a formulation to compute equilibria for two-player differential games
where players try to accomplish a task specification while satisfying safety rules expressed using
temporal logic. We formulate the interaction between an autonomous agent and its environment
as a non-zero sum differential game; both the robot and the environment minimize the level of
unsafety of a trajectory with respect to safety rules expressed using LTL formulas. We describe an
algorithm to compute the open-loop Stackelberg equilibrium (OLS) of this game. We also consider
generic motion-planning tasks for multi-robot systems and devise an algorithm that converges to
the non-cooperative Nash equilibrium of the differential game in the limit. Throughout, we em-
ploy techniques from sampling-based algorithm to construct concretizations of dynamical systems
(cf. Sec. 1.1.1) and model checking techniques on these Kripke structures.

1.2 Organization

This document is organized as follows. In Chap. 1, we develop some preliminary concepts that are
used in the remainder of the thesis. We construct durational Kripke structures for efficient model
checking of dynamical systems and provide an overview of Linear Temporal Logic (LTL) along
with automata based approaches for model checking LTL. This chapter also introduces process
algebras and develops various preliminary concepts for differential games.

12



1.3 PUBLISHED RESULTS

Chap. 3 formulates the problem of “minimum-violation motion-planning” and proposes an
algorithm that minimizes the level of unsafety of a trajectory of the dynamical system with re-
spect to LTL specifications. It also provides a number of results from computational experiments
along with an implementation on an experimental full-size autonomous platform. Chap. 4 de-
velops these concepts further, but takes a different route. It considers specifications which can be
expressed using simple languages such as process algebras and finds a number of applications
related to mobility-on-demand that can be solved using these.

Chap. 5 delves into multi-agent motion-planning problems. It first formulates a two-player,
non-zero sum differential game between the robot and external agents and proposes an algorithm
that converges to the Stackelberg equilibrium asymptotically. The central theme of this chapter
is that we incorporate “minimum-violation” cost functions into game theoretic motion-planning.
The later part of his chapter uses ideas from sampling-based algorithms to look at n-player non-
cooperative Nash equilibria for generic motion-planning tasks.

Finally, we take a holistic view of urban motion-planning using formal specifications and com-
ment on future directions for research.

1.3 Published Results

Parts of this thesis have been published in the following research articles —

1. Luis I. Reyes Castro, Pratik Chaudhari, Jana Tumova, Sertac Karaman, Emilio Frazzoli, and Daniela
Rus. Incremental Sampling-based Algorithm for Minimum-violation Motion Planning. In Proc. of IEEE
International Conference on Decision and Control (CDC), 2013.

2. Valerio Varricchio, Pratik Chaudhari, and Emilio Frazzoli. Sampling-based Algorithms for Optimal
Motion Planning using Process Algebra Specifications. In Proc. of IEEE Conf. on Robotics and Automation,
2014.

3. Minghui Zhu, Michael Otte, Pratik Chaudhari, and Emilio Frazzoli. Game theoretic controller synthesis
for multi-robot motion planning Part I : Trajectory based algorithms. In Proc. of IEEE Conf. on Robotics
and Automation, 2014.

4. Pratik Chaudhari, Tichakorn Wongpiromsarn, and Emilio Frazzoli. Incremental Synthesis of Minimum-
Violation Control Strategies for Robots Interacting with External Agents. In Proc. of American Control
Conference, 2014.
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CHAPTER 2

Background Material

This chapter introduces some preliminary material on dynamical sys-
tems with differential constraints and Kripke structures which are effi-
cient data-structures to talk about temporal properties of trajectories of
dynamical systems. It also introduces formal languages such as Linear
Temporal Logic and Process Algebras and model checking algorithms for
these languages that are used in this work. Lastly, we provide some dis-
cussion on game theoretic notions of equilibria such as the Nash equilib-
rium and Stackelberg equilibrium under various information structures.

Notation: For a finite set S, denote the cardinality and the powerset of S as |S| and 2S, re-
spectively. Let S∗ be the set of all finite sequences of elements of S and for u, v ∈ S∗, denote the
concatenation of u and v as u · v. Let Sω denote the set of all infinite strings of elements of S and
given some u ∈ S∗, we denote by uω ∈ Sω, its infinite concatenation with itself.

2.1 Durational Kripke Structures for Dynamical Systems

Consider a dynamical system given by

ẋ(t) = f (x(t), u(t)), x(0) = xinit, (2.1)

where x(t) ∈ X ⊂ Rd and u(t) ∈ U ⊂ Rm with X ,U being compact sets and xinit is the initial
state. Trajectories of states and control are maps x : [0, T] → X and u : [0, T] → U respectively
for some T ∈ R≥0. We will tacitly assume in all this work that the above equation has a unique
solution for every xinit; in order to do so, we assume that f (·, ·) is Lipschitz continuous in both its
arguments and u is Lebesgue measurable.

Let Π be a finite set of “atomic propositions” and Lc : X → 2Π map each state to atomic
propositions that are true at that state. We can reason about the atomic propositions satisfied by
a trajectory of the dynamical system as follows. For a trajectory x, let D(x) = {t | Lc(x(t) 6=
lims→t− Lc(x(s)), 0 < t ≤ T} be the set of all discontinuities of Lc(x(·)). In this work, we assume
that D(x) is finite for all trajectories. This is true for various different Lcs considered here, one can
show that the set of trajectories that do not satisfy this condition has measure zero. A trajectory
x : [0, T]→ X with D(x) = {t1, . . . , tn} produces a finite timed word

wt = (`0, d0), (`1, d1), . . . , (`n, dn), where

(i) `k = Lc(x(tk)) for all 0 ≤ k ≤ n and t0 = 0, dk = tk+1 − tk and

(ii) `n = Lc(x(tn)) and dn = T − tn.

14



2.1 DURATIONAL KRIPKE STRUCTURES FOR DYNAMICAL SYSTEMS

The finite word produced by this trajectory is

w(x) = `0, `1, . . . , `n.

We are now ready to define a special type of Kripke structure that allows us to reason about all
timed words produced by a dynamical system.

Definition 2.1 (Durational Kripke structure). A durational Kripke structure is defined by a tuple
K = (S, sinit, R, Π, L, ∆), where S is a finite set of states, sinit ∈ S is the initial state, R ⊆ S× S is a
deterministic transition relation, Π is the set of atomic propositions, L : S → 2Π is a state labeling
function, and ∆ : R→ R≥0 is a function that assigns a time duration to each transition.

A trace of K is a finite sequence of states ρ = s0, s1, . . . , sn such that s0 = sinit and (sk, sk+1) ∈
R for all 0 ≤ k < n. Corresponding to it is the finite timed word that it produces, i.e., ρt =

(`0, d0), (`1, d1), . . . , (`n, dn) where (`k, dk) = (L(sk), ∆(sk, sk+1)) for all 0 ≤ k < n and (`n, dn) =

(L(sn), 0). The word produced by this trace is w(ρ) = `0, `1, . . . , `n. Note that as defined until now,
a word may have multiple consecutive `ks that are the same, e.g., the trajectory spends a lot of time
in each labeled region. Such repeated atomic propositions are not useful to us for reasoning about
temporal properties of the trajectories and hence we remove them using the destutter operator as
shown below.

Given w(ρ), let I = {i0, i1, . . . , ik} be the unique set of indices such that i0 = 0 and

`ij = `ij+1 = . . . = `ij+1−1 6= `ij+1 for all 0 ≤ j ≤ k− 1

and similarly `k = `k+1 = . . . = `n. Define the “destutter” operator to remove these repeated
consecutive elements of a word as

destutter(w(ρ)) = `i0 , `i1 , . . . , `ik−1 , `ik .

For convenience we also denote the duration of a trace by 〈ρ〉, i.e., 〈ρ〉 = ∑n
i=0 di. Let us now

define a Kripke structure that explicitly encodes the properties of the dynamical system under
consideration.

Definition 2.2 (Trace-inclusive Kripke structure). A Kripke structure K = (S, sinit, R, Π, L, ∆) is
called trace-inclusive with respect to the dynamical system in Eqn. (2.1) if

• S ⊂ X , sinit = xinit,

• for all (s1, s2) ∈ R there exists a trajectory x : [0, T] → X such that x(0) = s1 and x(T) =

s2 with T = ∆(s1, s2) and |D(x)| ≤ 1 i.e., Lc(x(·)) changes its value at most once while
transitioning from s1 to s2.

The following lemma now easily follows, it relates trajectories of the dynamical system to
traces of a trace-inclusive Kripke structure.

Lemma 2.3. For any trace ρ of a trace-inclusive Kripke structure, there exists a trajectory of the dynamical
system, say x : [0, T]→ X such that

destutter(w(ρ)) = w(x).

15



2.2 LINEAR TEMPORAL LOGIC (LTL)

2.2 Linear Temporal Logic (LTL)

We start by defining a finite automaton. For a more thorough and leisurely introduction to the
theory of computation and temporal logics, one may refer to a number of excellent texts on the
subject, e.g., [Sip12, BK+08].

Definition 2.4 (NFA). A non-deterministic finite automaton (NFA) is a tuple A = (Q, qinit, Σ, δ, F)
where Q is a finite set of states, qinit ∈ Q is the initial state, Σ is a finite set called the input alphabet,
δ ⊆ Q× Σ×Q is a non-deterministic transition relation and F ⊆ Q is a set of accepting states.

The semantics of finite automata are defined over Σ∗, in particular traces of Kripke structures.
A run ρ of a finite automaton for the input σ = σ1, σ2, . . . , σn is the sequence q0, q1, . . . , qn such that
q0 = qinit, (qk−1, σk, qk) ∈ δ for all k ≤ n. We say that the input σ is accepted if qn ∈ F and rejected
otherwise. The set of all finite strings accepted by an NFA is called its language.

If the transition relation is deterministic, i.e., each state in the automaton can transition to only
one other state, we say that A is a deterministic finite automaton (DFA). It is surprising that we do
not gain any expressive power by non-determinism in finite automata, in other words, the set of
all languages that can be expressed using NFAs — also called regular languages — is exactly the
same as the set of all languages expressed using DFAs. Consequently, any NFA can be converted
into a DFA (possibly, with exponentially many states) having the same language.

In the context of this work, NFAs will have an input alphabet of 2-tuples, consecutive elements
of the word produced by a trace of the Kripke structure will form the input alphabet. Thus, if
σ = (`k, `k+1) for some k, we have Σ = 2Π× 2Π. Using this, we can talk about NFAs which “detect
the change” in the logical properties of a trajectory. As a technicality, we will also require NFAs
to be non-blocking, i.e., for all states q ∈ Q, and σ ∈ Σ, there exists a transition (q, σ, q′) ∈ δ for
some q′ ∈ Q. Note that any blocking automaton can be trivially made non-blocking by adding
transitions to a new state qnew /∈ F.

Definition 2.5 (ω-automaton). An ω-automaton is a tuple A = (Q, qinit, Σ, δ, Acc) where the ele-
ments Q, qinit, Σ and δ are the same as an NFA and Acc is an “acceptance condition”.

The semantics of ω-automata are defined similarly as NFAs, except that they are over infinite
input words, i.e., elments of Σω. We thus need to re-define what it means for an ω-automaton
to “accept” a word, which brings us to the acceptance condition. Contrary to NFAs and DFAs, a
number of different accepting conditions give rise to ω-automata of varying power. For a Büchi
automaton (BA), Acc is “for a given set F ⊆ Q, a run ρ is accepted if it intersects F infinitely
many times”. For a generalized Büchi automaton (GBA), Acc is “given {F1, F2 . . . , Fm} ⊆ Qm, a
run ρ is accepting if it intersects each Fi infinitely many times”. In addition to this, there are a
number of other ω-automata with different accepting conditions such as Muller, Rabin, Streett
and parity automata. We note here that in the world of ω-regular languages, i.e., languages of
ω-automata, non-determinism is powerful. Non-deterministic BAs, even deterministic Rabin and
Muller automata can all be shown to express the whole set of ω-regular languages; on the other
hand deterministic BAs only express a strict subset of ω-regular languages.

We will not be using ω-automata in this work. We however motivate model-checking for
Linear Temporal Logic, which is a strict subset of ω-regular languages using these concepts.
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2.2 LINEAR TEMPORAL LOGIC (LTL)

2.2.1 Syntax and Semantics of LTL

Temporal properties can be expressed using ω-automata as we saw earlier. However, there are
more concise representations using languages that are also easy to read for humans. Proposi-
tional LTL is one such language — it appends propositional logic with temporal operators. LTL is
defined inductively and the syntax can be given by the following grammar:

φ ::= true | a | φ1 ∧ φ2 | X φ | φ1 U φ2

where a ∈ Π. Using these we can define temporal modalities like F (eventually) and G (always)
as follows:

F φ = true U φ G φ = ¬( F¬φ)

i.e., if it never happens that ¬φ is true eventually, then φ always holds, equivalently φ holds from
now on forever. The semantics of LTL can be defined as follows. Given σ = σ0σ1 . . . ∈ Σω, we
denote the (infinite) substring from element j as σ[j:] = σjσj+1 . . .. Then

σ |= true

σ |= a iff σ0 |= a

σ |= φ1 ∧ φ2 iff σ |= φ1and σ |= φ2

σ |= ¬φ iff σ0 6|= φ

σ |= X φ iff σ[1:] |= φ

σ |= φ1 U φ2 iff ∃ j ≥ 0, σ[j:] |= φ2and σ[i:] |= φ1 ∀ 0 ≤ i ≤ j

LTL can be used to succinctly express various temporal properties, for example,

• liveness: G F φ (φ holds infinitely often),

• safety: G¬φ (avoid φ),

• reactivity: G F φ1 ⇒ G F φ2 (if φ1 holds infinitely often, so must φ2) etc.

In order to verify if traces of a Kripke structure satisfy the temporal properties denoted by a
given LTL expression φ, we use automata-based model checking, i.e., the LTL expression is first
converted into an equivalent ω-regular automaton. Using algorithms discussed in Sec. 2.2.2, we
can then use simple search algorithms to verify φ. Here, we briefly discuss the conversion of
LTL to Büchi automata [VW94]. Assume that the formula is in negated normal form. We construct
the closure of φ, denoted as cl(φ), which is the set of all sub-formulas and their negations. Not
surprisingly, this forms the alphabet the Büchi. The states of the Büchi are the maximal subsets of
cl(φ), i.e., largest sets of formulas that are consistent. Roughly, for a state q ⊂ M ⊂ cl(φ) of the
GBA, there exists an accepting run of the automaton that satisfies every formula in M and does not
satisfy any formula in cl(φ) \M. The transition function is easy to construct, we just don’t have
to violate any temporal or Boolean properties of LTL while connecting two states. The accepting
states are Fψ for every sub-formula of the form ψ = φ1 U φ2 of φ. We ensure that for a run B0B1 . . .,
if ψ ∈ B0, we have that φ2 ∈ Bj for some j ≥ 0 and φ1 ∈ Bi for all i < j. The acceptance condition is
thus a GBA condition. This automaton can be easily de-generalized into an NBA using standard
algorithms [BK+08].

As an interesting aside, let us note that since deterministic Büchi automata cannot exhaust
ω-regular properties, we cannot use automata minimizing algorithms to convert NBAs to DBAs.
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2.2 LINEAR TEMPORAL LOGIC (LTL)

This is particularly important because the size of NBA constructed above is exponential in the size
of φ and the size of model checking is proportional to the size of the NBA.

Finite Linear Temporal Logic (FLTL)

We focus here on temporal properties expressed using the finite fragment of LTL. Finite LTL [MP95,
GP02] has the same syntax as LTL with the semantics defined over finite runs of the underlying
transition system. FLTL is defined using two kinds of X operators, the strong next operator, de-
noted using the usual X says that a property φ is true in the next time instant. Of course, since
FLTL deals with finite strings, there is no way this property can be true at the last instant. Hence,
we define a weak next operator, denoted as X which says that φ is true in the next instant if one
exists. This also gives rise to a corresponding weak until operator.

Let us now present the construction of NFAs from FLTL specifications. Please refer to [GP02]
for a more elaborate discussion. Because there does not exist an equivalent “generalized NFA”,
we use a slightly modified version of the LTL conversion algorithm as shown here [GPVW95]. For
a negated normal formula φ, construct a graph where each vertex v holds the following data:

• id: a unique identifier,

• incoming: the set of edges that point to v,

• new: sub-formulas which hold below v but are not yet processed,

• old: sub-formulas which hold below v that are processed,

• next: sub-formulas that have to hold for all successors of v,

• strong: a flag to signal that v cannot be the last state in a sequence.

Formula left new left next strong right new right next
µ U ν µ µ U ν 1 ν ∅
µ U ν ν µ U ν µ, ν ∅
µ ∨ ν µ ∅ ν ∅
µ ∧ ν µ, ν ∅ - -
X µ ∅ µ - -
X µ ∅ µ 1 - -

p,¬p ∅ ∅ - -

Figure 2.1: Table for branching in conversion of FLTL to NFA

The algorithm then con-
structs a graph G starting
from a vertex v, which has
incoming from a dummy
vertex init, with new =

{φ} and old, next = ∅.
Initialize an empty list called
completed nodes. Recur-
sively, for a node v not yet
in completed nodes, move
a sub-formula η from new

to old. Split v into left
and right copies according
to Tab. 2.1. old, incoming retain their values. Roughly, the strong indicates that the formulas in
next are to be upgraded from weak next to strong next.

If there are no more sub-formulas in new of v, compare v to completed nodes to check if there
is some node u that has the same old and next and add incoming of v to incoming of u, i.e., there
are multiple ways of arriving at the same u. Else, add v to completed nodes and start a new node’s
recursion with an incoming edge from v and its new is the next of v.

The states of the NFA are then all the nodes in the list of completed nodes. The initial nodes are
the ones with incoming edges from init. The transition relation is easily obtained from incoming.
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2.2 LINEAR TEMPORAL LOGIC (LTL)

To get the accept states, note that a state is an accept state iff for each sub-formula of φ of the form
µ U ν, either old contains ν or it does not contain µ U ν and its strong bit is set to false.

As an important deviation from conventional FLTL, in our work, we would like to reason
about the properties of a trajectory of a dynamical system, i.e., w(x). Thus, we do not use formulas
which involve the X operator and define FLTL−X to be FLTL without the X operator.

2.2.2 Model Checking LTL and its Variants

To motivate automata based model checking for LTL, let us first consider verification of safety
properties which are regular languages. Let us consider the complement of this set, i.e., all the
bad finite strings. It is easy to see that we need only work with the “minimal” such set, i.e.,
the smallest set of bad prefixes. Since this by assumption is a regular language, we can find an
automaton A that accepts all minimal bad prefixes. Given a Kripke structure K, the problem is
then to find whether there exists a trace of K that is accepted by A. This can be posed as simple
reachability problem on the “product automaton” defined as follows:

Definition 2.6 (Product automaton). Given a Kripke structure K = (S, sinit, R, Π, L, ∆) and a non-
blocking finite automaton A, the product automaton is a tuple P = K⊗ A = (QP, qinit,P, 2Π, δP, FP)

where

• QP = S×Q,

• qinit,P = (sinit, qinit) is the initial state,

• δP ⊆ QP × QP is non-deterministic transition relation such that (〈s, q〉 , 〈s′, q′〉) ∈ δP iff
(s, s′) ∈ R and (q, L(s′), q′) ∈ δ,

• Fp = S× F is the set of accepting states.

Checking if K is safe with respect to A is then simply an analysis of where an accept state of
P is reachable from its initial state, i.e., if the language of P is non-empty, there exists a trace of
Kripke structure which satisfies the property encoded by A and is thus not safe. Moreover, this
can be done efficiently, e.g., using depth-first search, and also provides a counter-example, i.e., the
trace of K that fails. Let us note that the complexity of this algorithm is O(nm) where n, m are the
number of states in the Kripke structure and the automaton, respectively.

Model checking ω-regular properties works in a very similar manner. We first construct the
product automaton using K and say, an NBA A and run a depth-first search. Since NBAs are
finite automata that can accept (or reject) infinite words, we however have to detect cycles while
running the search and this gives rise to “nested depth-first search” [BK+08].

Let us describe the algorithm for formulas of the form G F φ. Conceptually, if there exists
a reachable cycle in the Kripke structure containing ¬φ, this formula is not true. One way to
check for this is to compute the strongly connected components of K and check for cycles with
¬φ. We can however do this differently. First find all states that satisfy ¬φ (since they are possible
candidates of cycles), then spawn a depth-first search from each of them to check for cycles. In
fact, we can also interleave the two steps by using DFS for both of them, i.e., an outer DFS identifies
all ¬φ states and an inner nested DFS tries to find a cycle that starts and ends at that state such that
it does not contain any state of the outer DFS. The computational complexity of this algorithm
is O(nm + n |φ|) where n, m are the number of states and transitions in K respectively, and |φ|
is the size of formula φ. Moreover, it can be shown that checking any ω-regular property on a
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Kripke structure can be reduced to checking if some persistence property holds on the product
automaton.

2.3 Process Algebras

q0

q1 q2

c
d

e

a

b

Figure 2.2: An example process
graph generated for the expression
c · (a + b) + (d + e). The different traces
are, c, c.a, c.b, d, e. The last four out of these
are accepting traces.

Process Algebras (PA) are a mathematical framework
that was developed to formalize and understand the be-
havior of concurrent systems, e.g., design requirements
for software/ hardware. PA are formalized as behaviors,
which represent the output of the system; these are the
results of actions that happen at specific time instants
when their preconditions are true. In the context of
model checking, process algebra can be used to describe
a set of equivalence relations enable to formally equate a
given implementation of the system to its design specifi-
cation or establish non-trivial properties of systems in an
elegant fashion. A detailed description of the language
and such applications can be found in [Fok00].

Definition 2.7 (Basic Process Algebra (BPA)). Let A be the finite set of atomic actions. The set T

of BPA terms over A is defined inductively as:

• for all actions p ∈ A, p ∈ T;

• for all p, p′ ∈ T, p + p′, p · p′ and p ‖ p′ belong to T.

Algorithm 2.1: parse(p, q0, qa, (Q, δ))

1 ∗, p1, p2 ← split(p);
2 switch ∗ do
3 case ‘+’
4 parse(p1, q0, qa, (Q, δ)) ;
5 parse(p2, q0, qa, (Q, δ)) ;

6 case ‘·’
7 qnew ← ∅;
8 Q← Q ∪ qnew;
9 parse(p1, q0, qnew, (Q, δ));

10 parse(p2, qnew, qa, (Q, δ));

11 otherwise δ← δ ∪ (q0, p, qa) ;

The compositions p + p′, p · p′, p ‖ p′ are
called alternative, sequential and parallel com-
positions respectively. The semantics of this
definition are as follows: if p ∈ A, the pro-
cess p ∈ T executes p and terminates. The pro-
cess p + p′ executes the behavior of either p or
p′. p · p′ first executes p and then executes the
behavior of p′ after p terminates. The parallel
composition is used for concurrent processes
and executes the behavior of p, p′ simultane-
ously and terminates after both terminate. As
a convention, the sequential operator has pri-
ority over the alternative operator.

A sequence of actions, also known as a trace
is denoted by ρ. Given a process p ∈ T, we can
construct a process graph that maps the process
to a set of traces that describe its various possible behaviors.

Definition 2.8 (Process graph). A process graph for p ∈ T is a labeled transition system G(p) =
(Q, qinit, A, π, δ, F) where Q is the set of states, qinit is the initial state, A is the set of atomic actions,
π : Q → T associates each state with a term t ∈ T, δ ⊆ Q×Π× Q is a transition relation and
F ⊂ Q is the set of accepting states.
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A process p is said to evolve to a process p′ after actions a1, a2, . . . , an if there is a sequence
of states q1, q2, . . . qn+1 in G(p) such that π(q1) = p and (qi, ai, qi+1) ∈ δ for all 1 ≤ i ≤ n
with π(qn+1) = p′. We can now define the trace of a process p as a sequence of atomic actions
ρ = (a1, a2, . . . , an) for which the corresponding sequence of states q1, q2, . . . , qn+1 exists such that
(qi, ai, qi+1) ∈ δ for all 1 ≤ i ≤ n. The set of all traces of a term p is denoted by ΓG(p). Note that
we have modified the conventional definition of the process graph to include the set of accepting
states F, which contains nodes without any outgoing edges. The set of traces of p that end at a
state inside F are called accepting traces. In this context, let us define a function costG(q) to be the
length of the shortest accepting trace of q. Note that costG(q) = 0 if q ∈ F. As an example, the
process graph for c · (a + b) + (d + e) shown in Fig. 2.2 has three states with the different traces
being c, c.a, c.b, d, e. All traces except the first one are accepting traces. Given a BPA expression,
the product graph G can be constructed using a simple recursive parser as shown below.

Parse Trees for BPA

PA terms (see Def. 2.7) are composed of atomic actions and sub-terms. In Alg. 2.1 we describe a
recursive-descent parser that directly builds the process graph (see Def. 2.8) from a given process
algebra termp ∈ T by scanning the specification top-down and parsing the sub-terms encoun-
tered, while states and transitions of the output process graph are modified accordingly.

The split(p) procedure returns an operator ∗ ∈ {+, ·} and terms p1, p2 ∈ T such that p =

p1 ∗ p2. A process graph for any p ∈ T can then be generated by executing parse(p, qinit, qa, (Q, δ))

where q0, qa are the initial and final states respectively, and Q = {qinit, qa} and δ = ∅.

2.4 Differential Games

We now introduce some background in game theory for multi-agent systems that are considered
in Chap. 5. Let us first formalize a differential game between two players along with the notion of
a Stackelberg equilibrium and then discuss the general n-player Nash equilibrium [BO95].

In this thesis, we consider games between the robot (R) and multiple-external agents, the dy-
namics of all the external agents is clubbed together into a dynamical system which we the “en-
vironment” (E). We can thus pose this as a two-player differential game. If x = (xr, xe)T be the
combined state of the game, the dynamics can be written as

dx
dt

= f (x(t), ur(t), ue(t)) =
[

fr(xr(t), ur(t))
fe(xe(t), ue(t))

]
, (2.2)

for all t ∈ R≥0 where xr ∈ Xr ⊂ Rdr , ur ∈ Ur ⊂ Rmr and xe ∈ Xe ⊂ Rde , ue ∈ Ue ⊂ Rme . The
functions fr : Xr × Ur → Xr and fe : Xe × Ue → Xe are assumed to be differentiable, measurable
and Lipschitz continuous in both their arguments. Given a trajectory of the game x : [0, T] → X ,
let the corresponding trajectories of R and E be xr and xe, respectively.

Stackelberg Equilibria

Consider a game where R and E optimize the cost functions Je(x0, ur, ue), Jr(x0, ur, ue), respectively.
Let the information structure be such that R knows the cost function of E, but E does not know the
cost function of R, i.e., it has no information of the intention of R. E however knows the control law
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of player R and can take it into account while devising its strategy. Define BR to be the mapping
from a trajectory ur : [0, T]→ Ur to ue : [0, T]→ Ue such that

BR(ur) = arg min
ue

Je(x0, ur, ue).

BR(ur) is thus the best response that E can take given a control trajectory of R. The player R then
picks its best strategy u∗r such that

Jr(x0, u∗r , u∗e ) ≤ Jr(x0, u′r, BR(u′r)),

where u∗e = BR(u∗r ) for any u′r. Such a strategy, i.e., (u∗r , u∗e ), is called an open-loop Stackelberg
(OLS) equilibrium for this differential game. Necessary conditions for the existence of open-loop
Stackelberg equilibria can be characterized as shown in [CCJ72].

Nash Equilibria

Now consider a team of robots, say with indices {1, . . . , N}. Each robot is modeled as a dynamical
system governed by

xi = fi(xi(t), ui(t)), xi(0) = xi,init, (2.3)

where xi(t) ∈ Xi ⊆ Rdi and ui(t) ∈ Ui ⊂ Rmi for all t ∈ R≥0. Given trajectories {x1, x2, . . . , xn}
of all agents, where each xk : [0, Tk] → Xk, we require that xks belong to some computable set,
say feasiblek. For example, feasiblek consists of all trajectories of agent k that do not collide
with other agents and reach some goal region Xgoal,k. Let Jk(xk, uk) be the cost function that agent
k would like to minimize; here uk : [0, Tk] → Uk is the control trajectory corresponding to xk. We
can then define the celebrated Nash equilibrium for this problem as follows.

Definition 2.9 (Nash equilibrium). A set of trajectories x = {x1, x2, . . . , xn} is a Nash equilibrium
if for any 1 ≤ k ≤ n, it holds that xk is feasible and there is no feasible x′k such that Jk(x′k, u′k) <

Jk(xk, uk).

The Nash equilibrium is thus a set of strategies such that no agent can improve his cost by
unilaterally switching to some other strategy. It can be shown that such an equilibrium is not
optimal in the “social” sense. The Pareto optimal equilibrium, on the other hand, is a notion that
characterizes the socially optimal behavior.

Definition 2.10 (Social (Pareto) optimum). A set of trajectories x = {x1, x2, . . . , xn} is Pareto opti-
mum if all xks are feasible and if there does not exist a set x′ = {x′1, x′2, . . . , x′n} such that all x′ks are
feasible and Jk(x′k, u′k) < Jk(xk, uk) for all 1 ≤ k ≤ n.

In other words, Pareto optimum is such that no agent can improve its cost without increasing
the cost of some other agent, in other words, it is the social optimum if all players cooperate with
each other. Necessary conditions for existence of open-loop non-cooperative equilibria, for special
cases, e.g., LQR games, can be found in [BO95].
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CHAPTER 3

Minimum-violation Planning

This chapter discusses the problem of control synthesis for dynamical sys-
tems to fulfill a given reachability goal while satisfying a set of temporal
specifications. We focus on goals that become feasible only when a sub-
set of the specifications are violated and motivate a metric known as the
level of unsafety which quantifies this violation, for a trajectory of the
continuous dynamical system. We will use ideas from sampling-based
motion planning algorithms to incrementally construct Kripke structures.
A product automaton that captures the specifications is then used in con-
junction with the Kripke structure to compute the optimal trajectory that
minimizes the level of unsafety.

3.1 Level of Unsafety

Let A be an NFA with some associated natural number, which we call its priority v(A). We
assume here that the empty trace by convention is always accepted by A. Define the level of
unsafety as follows.

Definition 3.1 (Level of unsafety). Given a word over 2Π, w = `0, `1, . . . , `n for any index set
I = {i1, i2, . . . , ik} ⊂ {0, 1, . . . , n}, define a sub-sequence

w′ = `0, `ij−1, `ij+1, . . . , `n,

where 1 ≤ j ≤ k, i.e., w′ is obtained by erasing states from I. The level of unsafety λ(w, A) is then
defined to be

λ(w, A) = min
w′∈L(A)

〈w〉 −
〈
w′
〉

where 〈w〉 denotes the length of w and L(A) is the language of automaton A. Similarly, define the
level of unsafety of a timed word wt(x) = (`0, d0), (`1, d1), . . . , (`n, dn) produced by a trajectory of
a dynamical system to be

λ(x, A) = min
w′∈L(A)

∑
i∈I

di v(A).

This definition, with a slight abuse of notation thus measures the amount of time wt(x) violates
the specification A. For a trace ρ = s0, . . . , sn+1 of a durational Kripke structure, it thus becomes

λ(ρ, A) = min
w′∈L(A)

∑
i∈I

∆(si, si+1) v(A).

Now consider a non-empty set of rules Ψ = (Ψ1, . . . , Ψm) with each ψj ∈ Ψi given in the form
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of some NFA Aij with priority v(Aij). The ordered set Ψ and v is then formally defined to be the
set of specifications with priorities. We can now easily extend the definition of level of unsafety
from that of a single automaton to the set of safety rules as shown below.

Definition 3.2 (Level of unsafety for a set of rules). Level of unsafety with respect to a set of
specifications Ψ and priorities v is defined to be

λ(w, Ψi) = ∑
Aij∈Ψi

λ(w, Aij)

λ(w, Ψ) = [λ(w, Ψ1), . . . , λ(w, Ψm)].

λ(x, Ψ) and λ(ρ, Ψ) are defined similarly. λ(w, Ψ) as defined above is a m-tuple and we use the
lexicographic ordering to compare the level of unsafety of two words.

Thus Ψi for 1 ≤ i ≤ m are m priority classes, each with some number of specifications given
using finite automata. Def. 3.2 uses the lexicographic ordering, however as we demonstrate in
Chap. 5, we can appropriately normalize λ(w, A) and construct a scalar version of λ(w, Ψ).

3.2 Problem Formulation

We are now ready to formulate the problem of minimum-violation motion planning. Consider a
compact set X ∈ Rd and let xinit ∈ X be the initial state of the system, similarly let Xgoal ⊂ X be
some compact set called as the goal region. Given the dynamical system in Eqn. (2.1), let us define
a task specification to be “traveling from xinit to Xgoal”. The finite word produced by a trajectory
x : [0, T]→ X , w(x) = `0, `1, . . . , `n is said to satisfy the task Φ if `0 = Lc(xinit) and `n ∈ Lc(Xgoal).
Similarly, a trace of the Kripke structure K satisfies the task if the labels of the first and final states
of the trace are Lc(xinit) and Lc(Xgoal) respectively. We will assume here that this task is always
feasible without considering any specifications. The problem that we tackle in this chapter can
then be formally described as follows.

Problem 3.3 (Dynamical system form). Given a dynamical system as shown in Eqn. (2.1), a task spec-
ification Φ, a set of safety rules with priorities (Ψ, v) and some continuous, bounded function c(x) which
assigns a non-negative real cost to any trajectory, find a trajectory x∗ : [0, T]→ X such that

1. w(x∗) satisfies the task specification Φ;

2. λ(x∗, Ψ) is the minimum among all trajectories which satisfy the task;

3. c(x∗) is minimized among all trajectories that satisfy 1 and 2 above.

The solution of this problem as defined above exists if the task Φ is feasible. In this work, we
restrict ourselves to cost functions c(x) =

∫ T
0 1 dt, i.e., minimum-time cost functions. The algo-

rithm in the sequel can be easily modified for other types of cost, e.g., control and state based cost
by appropriate modification of Defs. 2.1 and 3.1. In particular, instead of a “durational” Kripke
structure, we would consider a weighted Kripke structure that also stores the cost of optimal tra-
jectory between the two states.

In order to develop an algorithm approach to Prob. 3.3, we convert it into the following prob-
lem defined on trace-inclusive durational Kripke structures. We show in Sec. 3.3.3 using Thm. 3.11
that the solutions of these two problems are the same.
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Problem 3.4 (Kripke structure form). Given a durational Kripke structure K = (S, sinit, R, Π, L, ∆)
that is trace-inclusive with respect to the dynamical system in Eqn.(2.1), a task specification Φ, a set of
safety rules (Ψ, v), find a finite trace ρ∗ = s0, s1, . . . , sn such that

1. ρ∗ satisfies Φ,

2. ρ∗ minimizes λ(ρ′, Ψ) among all other traces ρ′ of K that satisfy the task,

3. ρ∗ minimizes 〈ρ′′〉 among all traces ρ′′ that satisfy 1 and 2 above.

3.3 Algorithm and Analysis

This section describes an algorithm for finding minimum-constraint violation trajectories for a
dynamical system. We first construct a weighted automaton whose weights are chosen such that
the weight of an accepting run equals the level of unsafety of the input word. We then propose
an algorithm, based on RRT∗, to incrementally construct a product of the Kripke structure and
automata representing safety rules. Roughly, the shortest path in the product uniquely maps to a
trace of the Kripke structure that minimizes the level of unsafety. Let us note that the algorithm
returns a trajectory that satisfies all rules and minimizes the cost function if it is possible to do so.

3.3.1 Weighted Product Automaton

Given an automaton Aij ∈ Ψ, we first augment it with transitions and weights such that the result-
ing “weighted automaton”, Aij, also accepts all words w that do not satisfy Aij, but it gives them
a weight. This weight is picked in such a way that the weight of a non-accepting run is exactly
equal to the level of unsafety (cf. Def. 3.1). The objective is to combine all Aij into a single weighted
automaton AΨ that weights its input words according to safety rules Ψ with priorities v. In line
with the usual model checking procedure, we then construct the product of the Kripke structure
K with AΨ. The crucial aspect of this work is that in addition to generating K incrementally using
sampling-based methods, we can also construct the weighted product P incrementally.

We now proceed to describe each of these steps in detail and summarize the purpose of each
construction in a lemma.

Definition 3.5 (Weighted automaton). For a non-blocking NFA A = (Q, qinit, Σ, δ, F), the weighted
NFA is defined as A = (Q, qinit, Σ, δ, F, W) where δ = δ ∪ {(q, σ, q′) | q, q′ ∈ Q, σ ∈ Σ} and

W(τ) =

{
0 if τ ∈ δ

v(A) if τ ∈ δ \ δ.

Lemma 3.6. Language of A is Σ∗ and weight of its shortest accepting run w is equal to λ(w, A).

Proof. The proof of this lemma follows from Lem. 1 in [THK+13].

Definition 3.7 (Automaton AΨ). The weighted product automaton AΨ = (QΨ, qinit,Ψ, Σ, δΨ, FΨ, WΨ)

of automata Aij is defined as

• QΨ = Q1,1 . . .× . . . Q1,m1 . . .×Qn,1 . . .× . . . Qn,mn ;

• qinit,Ψ = (qinit,1,1, . . . , qinit,n,mn);

• τ = (q, σ, q′) ∈ δΨ if
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– q = (q1,1, . . . , qn,mn) and q′ = (q′1,1, . . . , q′n,mn
) and

– τij = (qij, σ, q′ij) ∈ δij for all i ∈ {1, . . . n} and j ∈ {1, . . . , mi}
– WΨ(τ) = (w1, . . . , wn) where wi = ∑mi

j=1 W ij(τij).

• FΨ = {(q1,1, . . . , qn,mn) | qi,j ∈ Fi,j, for all i ∈ {1, . . . , n}, j ∈ {1, . . . mi}}.

The following lemma is now immediate from the above definition in conjunction with Lem. 3.6.

Lemma 3.8. Language of AΨ is also Σ∗ and the weight of the shortest accepting run w is λ(w, Ψ).

Let us now defined the weighted product automaton that we will work with. It is just a NFA
with weights, expect that in our case, the symbol of the automaton is a subset of 2Π × 2Π, i.e.,
the semantics of this automaton are defined over the 2-tuples of labels of consecutive states in the
trace of the Kripke structure K; note that the labeling function L of the Kripke structure assigns an
element of 2Π to each state.

Definition 3.9 (Weighted product automaton). The weighted product automaton of K = (S, sinit, R, Π, L, ∆)
and AΨ is given by P = K⊗ AΨ = (QP, qinit,P, ΣP, δP, FP, WP) where

• QP = S×QΨ;

• qinit,P = (sinit, qinit,Ψ);

• ΣP = 2Π × 2Π;

• δP ⊆ QP × QP and τ = (〈s, q〉 , 〈s′, q′〉) ∈ δP if (s, s′) ∈ R and (q, σ, q′) ∈ δΨ where σ =

(σs, σs′) such that σs ⊆ Lc(s) and σs′ ⊆ Lc(s′);

• WP(τ) = (w1∆(s, s′), . . . , wn∆(s, s′)) where wi = WΨ(q, σ, q′);

• FP = (S ∩ Xgoal)× FΨ is the set of accepting states.

A run of the weighted product automaton is a sequence ρ = qP,0, qP,1, . . . , qP,n such that qP,n =

(sn, qn) ∈ FP, i.e., sn ∈ Xgoal and qn ∈ FΨ. The weight of the run is the component wise sum of the
weights along every transition (qP,i, qP,i+1). A useful property easily follows from the construction
of this product. As the following lemma shows, the weight of the shortest accepting run of the
weighted product automaton projects on the trace of K that minimizes the level of unsafety.

Lemma 3.10. The shortest accepting run of P, say qP,0, qP,1, . . . , qP,n, projects onto a trace of K that mini-
mizes the level of unsafety, in lexicographical ordering with respect to WP.

Proof. This proof follows from Lem. 3.8 and the following two observations:

1. Given a trace ρ = ρ0, . . . , ρn of K, the word w(ρ) is accepted by P. Moreover, the weight of the
shortest accepting run of P over w(ρ) is equal to λ(ρ, Ψ).

2. Given an accepting run of P, say qP,0, qP,1, . . . , qP,n, with qP,k = (sk, qk), the weight of the run is
λ(w(ρ), Ψ) and therefore the trace that minimizes the level of unsafety is simply s0, s1, . . . , sn.
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3.3.2 Preliminary Procedures

In this section, we incrementally construct the weighted product automaton (cf. Def. 3.9) and
maintain the trace that minimizes the level of unsafety for a set of safety rules Ψ. A few prelimi-
nary procedures of the algorithm are as follows :

1. Sampling: The sample procedure samples an independent, identically distributed state s from a
uniform distribution supported over the bounded set X .

2. Nearest neighbors: The Near procedure returns the set,

Snear(s) = {s′ | ‖s′ − s‖2 ≤ γ

(
log n

n

)1/d

; s′ ∈ S}

where n = |S| and γ is a constant given in Thm. 3.11.

The above definition of the near procedure searches for all nodes within the L2 ball around a
state s. However, while implementing this algorithm on dynamical systems with non-holonomic
constraints, most of the states returned by near(s) are not small-time reachable. Computation-
ally, it is then very useful to construct a data-structure that allows us to compute the O(log n)
states within the reachable sub-space that are closest to s according to the cost metric c(x). It
turns out that an approximation, i.e., upper and lower bounds of the reachable space can be
computed efficiently using the Ball-Box Theorem (see [KF13] for more details). For the dynam-
ics of a Dubins car considered in this paper, the size of the boxes is computed in [KF13].

3. Steering: Given two states s, s′, the Steer(s′, s) procedure computes the pair (x, T) where x :
[0, T] → X is a trajectory such that, (i) x(0) = s′, (ii) x(T) = s and, (iii) x minimizes the cost
function cost(x) = T. If a trajectory x is found return true else return false.

4. Connecting: For a state s′ ∈ Snear, if steer(s′, s) returns true, for all nodes z′ = (s′, q′) ∈ QP,
for all (z′, (s, q)) ∈ δP, the procedure connect(s′, s) adds the state z = (s, q) to the set QP, adds
(z′, z) to δP and calculates WP(z′, z). If s ∈ Xgoal and q ∈ FΨ, it adds (s, q) to FP.

5. Updating costs: The procedure update cost(s) updates the level of unsafety Ja(z) and the cost
Jt(s) from the root for a node z = (s, q) as shown in Alg. 3.2 using the sets,

Ssteer(s) = {s′ | s′ ∈ Snear(s); steer(s′, s) returns true},

Zsteer(s) = {(s′, q′) | s′ ∈ Ssteer(s); (s′, q′) ∈ QP}.

6. Rewiring: In order to ensure asymptotic optimality, the rewire procedure recalculates the best
parent, i.e., parent(s′) for all states s′ ∈ Snear(s) as shown in Alg. 3.3. The complexity of this
procedure can be reduced by noting that s′ only needs to check if the new sample can be its
parent by comparing costs Ja, Jt, otherwise its parent remains the same.

Finally, Alg. 3.1 creates the weighted product automaton as defined in Def. 3.9 incrementally. It
also maintains the best state z∗ = (s∗, q∗) ∈ FP. The trace ρ∗ = s0, s1, . . . , sn of the Kripke structure
K that minimizes the level of unsafety and is a solution to Prob. 3.4 can then be obtained from z∗ by
following parent(s∗). Since K is trace-inclusive, the continuous-time trajectory x∗ can be obtained
by concatenating smaller trajectories. Let (xi, Ti) be the trajectory returned by steer(si, si+1) for
all states si ∈ r∗. The concatenated trajectory x∗ : [0, T] → X is such that T = ∑n−1

i=0 Ti and
xn(t + ∑i−1

k=0 Tk) = xi(t) for all i < n.
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3.3 ALGORITHM AND ANALYSIS

Algorithm 3.1: MVRRT∗

1 Input : xinit,X , ΣP, n, AΨ;
2 P← ∅; QP ← qP,init;

Ja(xinit)← 0; Jt(xinit)← 0;
3 i← 0;
4 for i ≤ n do

// Sample new state

5 s← sample;
// Connect neighbors

6 for s′ ∈ near(s) do
7 if steer(s′, s) then
8 connect(s′, s);

// Find best parent

9 parent, Ja, Jt ← update cost(s);
// Rewire neighbors

10 P, Ja, Jt ← rewire(s);

11 Pn ← (QP, qP,init, ΣP, δP, FP, WP);
12 return Pn

Algorithm 3.2: update cost(s, P)
1 for z = (s, q) ∈ QP do
2 Ja(z)← min

z′∈Zsteer
WP(z′, z) + Ja(z′);

3 Z∗ ← arg min
z′∈Zsteer

WP(z′, z) + Ja(z′);

4 Jt(s)← min
z′∈Z∗

cost(s′, s) + Jt(s′);

5 parent(z)← arg min
z′∈Z∗

cost(s′, s) + Jt(s′);

6 return parent, Ja, Jt

Algorithm 3.3: rewire(s, P)
1 for s′ ∈ Ssteer(s) do
2 if steer(s, s′) then
3 connect(s, s′);

4 Ja, Jt ← update cost(s′);

5 return P

Figure 3.1: Incremental algorithm for construction of the product automaton

3.3.3 Analysis

In this section, we analyze the convergence properties of Alg. 3.1. In particular, we prove that the
continuous-time trajectory xn given by the algorithm after n iterations converges to the solution
of Prob. 3.3 as the number of states in the durational Kripke structure Kn goes to infinity, with
probability one. A brief analysis of the computational complexity of the algorithm is also carried
out here. Due to lack of space, we only sketch the proofs.

Theorem 3.11. The probability that Alg. 3.1 returns a durational Kripke structure Kn and a trajectory of
the dynamical system xn, that converges to the solution of Prob. 3.3 in the bounded variation norm sense,
approaches one as the number of states in Kn tends to infinity, i.e.,

P
(
{ lim

n→∞
‖xn − x∗‖BV = 0}

)
= 1

Proof. (Sketch) The proof primarily follows from the asymptotic optimality of the RRT∗ algorithm
(see Theorem 34 in [KF11b]). Let x∗ : [0, T]→ X be the solution of Prob. 3.3 that satisfies the task Φ
and minimizes the level of unsafety. For a large enough n, define a finite sequence of overlapping
balls Bn = {Bn,1, . . . , Bn,m} around the optimal trajectory x∗. The radius of these balls is set to
be some fraction of γ(log n/n)1/d such that any point in s ∈ Bn,m can connect to any other point
s′ ∈ Bn,m+1 using the steer(s, s′) function. It can then be shown that each ball in Bn contains at
least one state of Kn with probability one.

In such a case, there also exists a trace ρn = s0, s1, . . . , sn of Kn such that every state si lies in
some ball Bn,m. Also, for a large enough n, the level of unsafety of ρn, λ(ρn, Ψ) is equal to the
level of unsafety of the word generated by the trajectory x∗, λ(x∗, Ψ), i.e., the algorithm returns
the trace with the minimum level of unsafety among all traces of the Kripke structure K satisfying
the task Φ. Finally, it can be shown that the trajectory xn constructing by concatenating smaller
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trajectories joining consecutive states of ρ, i.e., s0, s1, . . . converges to x∗ almost surely as n→ ∞.
In this proof, γ > 2 (2 + 1/d)1/d (µ(X )/ζd)

1/d, where µ(X ) is the Lebesgue measure of the set
X and ζd is the volume of the unit ball of dimensionality d.

The following lemma is an immediate consequence of Thm. 3.11 and the continuity of the cost
function c(x).

Lemma 3.12. The cost of the solution converges to the optimal cost, c∗ = c(x∗), as the number of samples
approaches infinity, almost surely, i.e,

P
(
{ lim

n→∞
c(xn) = c∗}

)
= 1.

Let us now comment on the computational complexity of MVRRT∗.

Lemma 3.13. The expected computational complexity of Alg. 3.1 is O(m2 log n) per iteration where n is
the number of states in the durational Kripke structure K and m is the number of states of the automaton
AΨ.

Proof. We do a rough analysis of Alg. 3.1. Note that there are an expected O(log n) samples in
a ball of radius γ(log n/n)1/d. The procedure steer is called on an expected O(log n) samples
while because the automaton AΨ is non-deterministic, the procedure connect adds at most m2

new states in the product automaton per sample. The procedure update cost requires at most
O(m2 log n) time call. The rewire procedure simply updates the parents of theO(log n) neighbor-
ing samples which take O(m2 log n) time. In total, the computational complexity of the algorithm
is O(m2 log n) per iteration.

3.4 Experiments

In this section, we consider an autonomous vehicle modeled as a Dubins car in an urban environ-
ment with road-safety rules and evaluate the performance of MVRRT∗ in a number of different
situations.

3.4.1 Setup

Consider a Dubins car, i.e., a curvature-constrained vehicle with dynamics

ẋ(t) = v cos θ(t),

ẏ(t) = v sin θ(t), (3.1)

θ̇(t) = u(t).

The state of the system is the vector [ x, y, θ]T, and the input is u(t), where |u(t)| ≤ 1 for all
t ≥ 0. The vehicle is assumed to travel at a constant speed v. As shown in [Dub57], time-optimal
trajectories for this system in an obstacle-free environment can be easily calculated.

We partition the working domainX into compact non-empty subsetsXobs which is the union of
obstacle regions, Xsw which represents the sidewalk and Xrl , Xll which are the right and left lanes,
respectively, as illustrated in Fig. 3.2. Xobs is empty if there are no obstacles.
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Figure 3.2: Partitions of the working domain X . The
transition from s1 to s2 is labeled with, for example,
{(rl, ll), (rl,¬dir), (rl, dotted)}.

Based on this partitioning, we define the set of
atomic propositions as

Π = {sw, rl, ll, dir, dotted, solid}.

A proposition p ∈ {sw, rl, ll} is true at a state
s ∈ X , if s ∈ Xp with rl, ll being mutually ex-
clusive. dir is true iff the heading of the car is
in the correct direction, i.e., if s is such that the
car heading forwards and rl is true. Atomic
propositions, dotted and solid, depict the na-
ture of lane markers. Note that obstacles are
not considered while constructing Π since we
do not desire a trajectory that goes over an obstacle. The steer procedure in Sec. 3.3.2, instead,
returns false if any state along the trajectory lies inXobs. This change does not affect the correctness
and the overall complexity of MVRRT∗.

3.4.2 Safety Rules

Given a task Φ such as finding a trajectory from xinit to the goal regionXgoal , we require the vehicle
to follow the following rules: 1. do not travel on sidewalks (sidewalk rule), 2. do not cross solid
center lines (hard lane changing), 3.a always travel in the correct direction (direction rule), 3.b do not
cross dotted center lines (soft lane changing).

We describe the rules with the following FLTL−X formulas and corresponding finite automata
in Fig. 3.3. Note that we use 2-tuples of atomic propositions from Π as the alphabet for both
formulas and the automata, to specify not only properties of individual states, but also of transi-
tions. The two components capture the atomic propositions of the starting and the ending state
respectively.

1. Sidewalk: Do not take a transition that ends in Xsw

ψ1,1 = G
∧
∗∈2Π

¬(∗, sw)

2. Hard lane change Do not cross a solid center line

ψ2,1 = G
(
¬
(
(rl, solid) ∧ (rl, ll)

)
∨
(
(ll, solid) ∧ (ll, rl)

))
3. a. Direction Do not travel in the wrong direction

ψ3,1 = G
∨
∗∈2Π

(∗, dir)

b. Soft lane change Do not cross a dotted center line

ψ3,2 = G
(
¬
(
(rl, dotted) ∧ (rl, ll)

)
∨
(
(ll, dotted) ∧ (ll, rl)

))
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q1 (`, `′)

Figure 3.3: Rule 3.b : For the sake of brevity, the transition above represents all transitions, where (i) `, `′ ⊆
2Π, such that rl ∈ ` and dotted, ll ∈ `′, or ll ∈ ` and dotted, rl ∈ `, and (ii) `, `′ ⊆ 2Π, such that rl ∈ ` and
solid, ll ∈ `′, or ll ∈ ` and solid, rl ∈ `.

The finite automata for rules 1-3 are all of the same form (see Fig. 3.3).
While it is quite natural to disobey the direction and the soft lane change rules, a solid line

should not be crossed. This gives three different priority classes

(Ψ1, Ψ2, Ψ3), v) = (({ψ1,1}, {ψ2,1}, {ψ3,1, ψ3,2}), v),

where v(ψ1,1) = v(ψ2,1) = v(ψ3,1) = 1 and v(ψ3,2) = 10. Note that costs for ψ2,1 and ψ3,2 are
incurred only once per crossing and do not depend upon the duration of the transition. Within the
third class, we put higher priority on the soft lane change rule to avoid frequent lane switching,
for instance in case two obstacles are very close to each other and it is not advantageous to come
back to the right lane for a short period of time, e.g., see Fig. 3.5.

3.4.3 Simulation Experiments

Figure 3.4: MVRRT∗ tree after 40 sec. on an example
without any safety rules. States of the Kripke struc-
ture are shown in yellow while edges are shown in
white. The shortest trajectory shown in red to the goal
region avoids obstacles but uses the sidewalk.

MVRRT∗ was implemented in C++ on a
2.2GHz processor with 4GB of RAM for the ex-
periments in this section. We present a number
of different scenarios in the same environment
to be able to quantitatively compare the perfor-
mance. In Fig. 3.5, the Dubins car starts from
the lower right hand corner while the goal re-
gion marked in green is located in the lower
left hand corner. Light gray denotes the right
and left lanes, Xrl and Xll . A sidewalk Xsw is
depicted in dark gray. The dotted center line is
denoted as a thin yellow line while solid center
lines are marked using double lines. Stationary
obstacles in this environment are shown in red.

Case 1: First, we consider a scenario with-
out any safety or road rules. The MVRRT∗ algorithm then simply aims to find the shortest
obstacle-free trajectory from the initial state to the goal region. Note that in this case, MVRRT∗

performs the same steps as the RRT∗ algorithm. The solution computed after 40 seconds has a
cost of 88.3 and is illustrated in Fig. 3.4 together with the adjoining tree.

Case 2: Next, we introduce the sidewalk rule ψ1,1 and the direction rule ψ3,1. Without any
penalty on frequent lane changing, the car goes back into the right lane after passing the first
obstacle. It has to cross the center line again in order to pass the second obstacle and reach the
goal region. Fig 3.5a depicts the solution that has a cost of 122.3 along with a level of unsafety of
46.4 for breaking ψ3,1.
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(a) (b)

Figure 3.5: Fig. 3.5a shows the solution after 60 secs. for sidewalk and direction rules. Upon introducing
the soft lane changing rule in Fig. 3.5b, the vehicle does not return to the right lane after passing the first
obstacle.

Upon introducing the rule ψ3,2, the vehicle does not go back into the right lane after passing
the first obstacle. Figure 3.5b shows this solution with a level of unsafety of 84.1 for breaking both
ψ3,1 and ψ3,2 whereas the level of unsafety in this case for the trajectory in Fig. 3.5a is 87.4.

Case 3: Fig 3.6a shows a run for the sidewalk, direction and soft lane changing rules after
60 secs. of computation time with a level of unsafety of (0, 0, 28.3). In Fig. 3.6b, with 120 secs. of
computation, the solution has a much higher cost (215.8) but a significantly lower level of unsafety
(0, 0, 1.6) because it only breaks the direction rule slightly when it turns into the lane. This thus
demonstrates the incremental and anytime nature of the algorithm. Case 4: In our last example,
we introduce hard and soft lane changing rules along with sidewalk and direction rules. After 15
secs., MVRRT∗ returns the solution shown in Fig. 3.6c, which breaks the hard lane changing rule
twice, thereby incurring a level of unsafety of (0, 2, 48.1) for the three rules. On the other hand,
after about 300 secs., the solution converges to the trajectory shown in Fig. 3.6d which breaks the
hard lane changing rule only once, this has a level of unsafety of (0, 1, 25.17).

3.4.4 Real Experiments

In this section, we present results of our implementation of MVRRT∗ on an autonomous golf-cart
shown in Fig. 3.7 as a part of an urban mobility-on-demand system in the National University of
Singapore’s campus. The golf-cart was instrumented with two SICK LMS200 laser range finders
and has drive-by-wire capability. The algorithm was implemented inside the Robot Operating
System (ROS) [QCG+09] framework.

Setup and implementation details: Traffic lanes and sidewalk regions are detected using pre-
generated lane-maps of the campus roads, while obstacles are detected using data from laser
range-finders. We use the sidewalk, direction and soft-lane changing rules for the experiments
here. For an on line implementation of MVRRT∗, we incrementally prune parts of Kripke struc-
ture that are unreachable from the current state of the golf-cart. The algorithm adds new states
in every iteration (Lines 5-10 in Alg. 3.1) until the change in the level of unsafety of the best tra-
jectory is within acceptable bounds between successive iterations. This trajectory is then passed
to the controller that can track Dubins curves. We use techniques such as branch-and-bound and
biased sampling to enable a fast real-time implementation and the golf-cart can travel at a speed
of approximately 10 kmph while executing the algorithm. Fig. 3.7 shows a snapshot of the ex-
perimental setup while Fig. 3.8 shows an instance of the golf-cart going into the incoming lane in
order to overtake a stalled car in its lane. Note that traffic in Singapore drives on the left hand
side.
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(a) (b)

(c) (d)

Figure 3.6: Fig. 3.6a and 3.6b show the solution of MVRRT∗ after 60 and 120 secs. respectively, with the
sidewalk, direction and soft lane changing rules. Note that the algorithm converges to a long trajectory
which does not break any rules. Fig. 3.6c shows a solution after 20 secs. which breaks the hard lane changing
rule twice. After 120 secs., the algorithm converges to the solution shown in Fig. 3.6d, which features only
one hard lane change and three soft lane changes.

(a) (b) (c)

Figure 3.7: Fig. 3.7a shows the Yamaha golf-cart instrumented with laser range-finders and cameras.
Fig. 3.7c shows the on line implementation of MVRRT∗ in ROS. Red particles depict the estimate of the
current position of the golf-cart using laser data (shown using colored points) and adaptive Monte-Carlo
localization on a map of a part of the NUS campus shown in Fig. 3.7b. Trajectories of the dynamical system,
that are a part of the Kripke structure are shown in white while the trajectory currently being tracked is
shown in green.

33



3.4 EXPERIMENTS

(a) (b)

(c) (d)

Figure 3.8: The autonomous golf-cart comes back into the correct lane after overtaking a stalled vehicle in
spite of the road curving to the right. Note that the optimal trajectory without road-safety rules would cut
through the incoming lane to reach the goal region.
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CHAPTER 4

Process Algebra Specifications

This chapter investigates specifications using process algebras for com-
plex task specifications for autonomous vehicles. It constructs incremen-
tal Kripke structures using ideas from the previous chapter and uses
model checking methods based on the process graph of the task speci-
fications to construct trajectories that satisfy the specifications. Through-
out, we motivate the approach using tasks such as charging of an electric
car at a busy charging station and scheduling pick-ups and drop-offs for
capacity constrained mobility-on-demand.

Languages such as Linear Temporal Logic (LTL), Computational Tree Logic (CTL) and de-
terministic µ-calculus are powerful ways to specify task specifications. With greater expressive-
ness however comes greater complexity, e.g., checking LTL formulas is PSPACE-complete [Sch02]
while model checking deterministic µ-calculus belongs to NP ∩ co-NP [Eme97]. In this chapter,
we focus on languages which forgo expressive power but in turn allow for efficient model check-
ing algorithms. As an example, note [KGFP07], which restricts specifications to reactive temporal
logic to obtain polynomial complexity of translation into automata as opposed to doubly expo-
nential complexity of the full LTL. We use process algebra specifications [Bae05, Fok00] which,
although not as expressive as LTL or µ-calculus, are still enough to specify a number of tasks of
practical interest. In fact, expressing general specifications in these languages requires that the
underlying Kripke structure is a graph, whereas in our work we can converge to optimality even
with a tree structure.

Our work is similar to problems considered in [KRKF09, DKCB11]; we however focus on con-
tinuous dynamical systems with differential constraints and show that our algorithm converges
to the optimal solution in the limit. Another line of literature poses these problems using mixed-
integer linear programs (e.g., [ED05,KF08]). These methods are however restricted to linearizable
dynamics and discrete time; also the number of integer constraints grows quickly with the num-
ber of obstacles. Sampling-based approaches to abstract the continuous dynamics help us alleviate
these issues while still maintaining computational efficiency.

The rest of the chapter is structured as follows: first, we formulate the problem using specifica-
tions from process algebras (note the similarities here with Sec. 3.2 in Chap. 3). The algorithm then
follows the usual model checking program, i.e., it constructs the product automaton incrementally
and computes the trace of the product that uniquely maps onto a trajectory of the dynamical sys-
tem. Next, we provide results of simulation experiments on examples motivated by autonomous
vehicles operating in an urban mobility-on-demand scenario viz., charging at a busy charging
station and picking up and dropping off passengers at various locations.
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4.1 PROBLEM FORMULATION

4.1 Problem Formulation

This section describes our approach and motivates the algorithm in Sec. 4.2. Roughly, to com-
pute a trajectory that satisfies a specification p ∈ T, we construct the product of a trace-inclusive
Kripke structure K and the process graph G(p). This product is constructed in such a way that
accepting traces of the product graph can be mapped to accepting traces of the process graph. A
lexicographical cost function shown in Sec. 4.2 then enables us to identify a single trace that min-
imizes the cost and satisfies the process algebra specification at the same time. We first define the
problem using the continuous-time dynamical system as shown below.

Problem 4.1. Given a dynamical system modeled by Eqn. 2.1 and a process algebra term p, find a trajectory
x∗ : [0, T] → X such that, (i) x∗ starts at the initial state, i.e., (i) x∗(0) = x0, (ii) x∗ satisfies the task
specification p, i.e., destutter(ρ(x∗)) is an accepting trace of G(p), and (iii) x∗ minimizes the cost function
c(·) among all trajectories that satisfy (i) and (ii).

We again consider cost functions c(x) =
∫ T

0 1 dt, i.e., time optimal cost functions. However, the
problem formulation is general and can incorporate other kinds of costs such as minimum effort
by changing the following definition slightly.

Definition 4.2 (Weighted product graph). Given a Kripke structure K = (S, sinit, R, Π, L, ∆) and a
process graph G(p) = (Q, q0, A, π, δ, F) for a process p, the product graph is a labeled transition
system defined as the tuple P = (QP, qinit,P, AP, πP, δP, FP, WP) where:

• QP = S×Q is the set of states;

• qinit,P = (sinit, qinit) is the initial state;

• AP = S× S× A is the set of atomic actions;

• πP((s, q)) = π(q) for all (s, q) ∈ QP;

• (q′1, a′, q′2) ∈ δP iff (s1, s2) ∈ R, and either q1 = q2 or (q1, a, q2) ∈ δ with a ∈ L(s2);

• FP = S× F is the set of accepting states;

• WP(q′1, q′2) = ∆(s1, s2) is a weighing function.

where q′i = (si, qi) and a′ = (s1, s2, a).

We use P = K⊕ G(p) to denote the product of a Kripke structure K and a process graph G(p).
Let us note how traces of the product graph are related to traces of the process graph. Given a
ρ′ = {a′1, a′2, . . . , a′n} ∈ ΓP, where a′i = (si,1, si,2, ai), if z1, z2, . . . , zn+1 are the corresponding states
in P, where zi = (si, qi), the projection on the Kripke structure is αK(ρ

′) = s1,1, s2,1, . . . , sn+1,1 and
the projection on the process graph is αG(ρ

′) = q1, q2, . . . , qn+1. The following lemma then follows
easily.

Lemma 4.3. An accepting trace of the product uniquely maps on to an accepting trace of G(p).

Proof. Every accepting trace ρ′ of P is such that the corresponding sequence of states, q′1, q′2, . . . , q′n+1
ends with q′n+1 ∈ FP. But since FP = S × F, q′n+1 = (sn+1, qn+1) is such that qn+1 ∈ F as well.
Also, since a transition in the product graph (q′1, a′, q′2) ∈ δP if and only if (s1, s2) ∈ R and either
a ∈ Lc(s2) with (q1, a, q2) ∈ δ or q1 = q2, we have that its projection on the process graph, i.e.,
αG(ρ

′) = q1, . . . , qn+1 is also unique.
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Figure 4.1: Conceptually, the product graph is the Cartesian product of the process graph with the Kripke
structure and can be visualized using layers. Given a term, e.g., (A+ B) ·C, and the Kripke structure shown
using green lines, the optimal trace in the product graph goes to either region A or region B on the same
layer and then travels downwards to reach region C, whichever minimizes the cost.

Problem 4.4. Given a trace-inclusive Kripke structure K = (S, sinit, R, Π, L, ∆) and a process p, find a
trace ρ∗ of the product graph P = K⊕ G(p) such that,

1. αK(ρ
∗) = s1s2 . . . sn is such that s1 = sinit;

2. destutter(αG(ρ
∗)) is an accepting trace of G(p);

3. ρ∗ minimizes cost(ρ′) among all traces satisfying 1, 2.

Algorithm 4.1: PARRT∗

1 Input : n, X , xinit, G(p);
2 z0 ← (sinit, qinit), QP ← {z0};
3 cost(z0)← (costG(q0), 0);
4 i← 0;
5 for i ≤ n do
6 s← sample;
7 for z′ ∈ near(s) do
8 for q ∈ Q do
9 z← (s, q), (s′, q′)← z′;

10 x, u, T ← steer(z′, z);
11 QP ← QP ∪ {z}, δP ← δP ∪ {(z′, z)};
12 WP(z′, z)← T;
13 if q ∈ F then
14 FP ← FP ∪ {z};
15 c← calculate cost(z′, z);
16 if c < cost(z) then
17 parent(z)← z′, cost(z)← c;

18 rewire(s);

19 Pn ← (QP, qP,init, δP, FP, WP);
20 return Pn
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4.2 Algorithm

In this section, we describe the algorithm used to construct the product graph in Def. 4.2. This al-
gorithm is very similar to Alg. 3.1 in Chap. 3 with superficial changes. Instead of using a weighted
product automaton, we use an ordered tuple of the length of the shortest accepting trace from a
node and the weighing function of the product graph as costs in this algorithm. Please refer to
Sec. 3.3.2 for the procedures sample, steer, near and rewire. We describe the procedure to com-
pute the cost here which differs from the update cost procedure in Alg. 3.1.

Calculate Cost: Let the nodes of the process graph be denoted by z = (s, q) and z′ = (s′, q′).
Each node maintains a 2-tuple cost(z) = (costG(q), costK(s)) which is an ordered tuple of the
minimum number of steps that q takes to reach an accepting state in G and the cost of reaching a
state s in the Kripke structure. Given z′, z, the calculate cost procedure returns the cost, cost(z),
of reaching z through z′. costK(z′, z) is the cost returned by steer(z′, z), i.e., WP(z′, z), and hence
costK(z) = costK(z′)+costK(z′, z). Note that costG(z) can be calculated from the process graph.
We use the lexicographical ordering to compare cost tuples.

Alg. 4.1 also maintains the state z∗ = (s∗, p∗) in the product with the least cost. Let the trace
constructed by following parent(z∗) backwards be z0, z1, z2, . . . , zm where z0 = (sinit, q0) and zm =

z∗ with ρ∗ being the corresponding trace in ΓP. The projection αK(ρ
∗) = s0, s1, s2, . . . , sm gives the

trace on the Kripke structure. Since K is trace-inclusive, we can construct a continuous trajectory
of the dynamical system after n iterations of Alg. 4.1, say xn by concatenating the outputs of the
steer procedure between si, si+1. The following analysis shows that this trajectory converges to
the optimal solution of Prob. 4.1.

Theorem 4.5. As the number of states in the Kripke structure tends to infinity, xn converges to x∗ in the
bounded variation norm sense, almost surely, i.e.,

P
(
{ lim

n→∞
‖xn − x∗‖BV = 0}

)
= 1.

The proof of the above theorem is very similar to that of Thm. 3.11 and is hence omitted.
Roughly, it can be shown that for a large enough n, the Kripke structure is such that it contains
states in the neighborhood of the optimal trajectory x∗. This neighborhood is a function of the
k log n nearest neighbors of the set Snear considered in the near procedure. Instead of covering the
optimal trajectory x∗ with an overlapping sequence of balls of radius ρ(log n/n)1/d, we cover it
with an overlapping sequence of scaled boxes from the Ball-Box Theorem which also have volume
O(log n/n). The result then follows by noticing that a transition in the Kripke structure exists for
any two states lying in adjacent boxes, i.e., there exists a trace of the Kripke structure around the
optimal trajectory x∗. It can be shown that the continuous trajectory constructed from this trace
converges to the optimal trajectory almost surely [KF11b].

Computational Complexity

The computational complexity of Alg. 4.1 is similar to Alg. 3.1 in Chap. 3. For a process algebra
expression p of length m, the size of process graph can be upper bounded by m. Therefore, at
most O(m2 log n) states are added to the product graph in lines 11-14 and the total computational
complexity in expectation can then be shown to be O(m2 log n) per iteration.
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4.3 Experiments

4.3.1 Local Planner

Consider an autonomous electric vehicle that needs to charge at a charging station. In the event
that the charging station is already occupied, the vehicle waits in an empty parking spot and
proceeds to charge once the charging station becomes free. This behavior, which we call local
planner is a direct application of Alg. 4.1 and is discussed in detail in this section. All examples
in the following two sections were implemented in C++ using the Robot Operating System (ROS)
platform [QCG+09] on a computer with a 2.0 GHz processor and 4 GB of RAM.

Similar to Chap. 3, we model the autonomous car as a Dubins vehicle with the dynamics

ẋ(t) = v cos θ(t), ẏ(t) = v sin θ(t), θ̇(t) = u, (4.1)

where the state of the vehicle is [x, y, θ]T while the control input is the turning rate, u with |u(t)| ≤
1 for all times t > 0. The velocity v is taken to be a constant. Time optimal trajectories for this
dynamics can be easily calculated using Dubins curves [Dub57]. In particular, a trajectory between
two states that minimizes time is a concatenation of curves from the set {L, C, R}, where L, R
denote turning left and right at maximum turning rate, respectively, while C denotes u = 0.

Fig. 4.3a shows the experimental scenario of a charging station inside a parking lot. The station
is labeled s1 while parking lots are labeled w1, w2, . . . , w4. The charging specification can then be
written as

Φc = s1 + (w1 + w2 + w3 + w4) · s1, (4.2)

which express the task “either directly go to charging station” or “first go to one of the parking
spots and then go to the charging station”.

q0

q2

q1

s1

w1 w2 w3 w4

s1

Figure 4.2: Process graph for s1 + (w1 + w2 + w3 +
w4) · s1.

The problem domain X is split into disjoint
sets Xobs, X f ree. In case of multiple obstacles,
Xobs is the union of all states x ∈ X that lie
inside obstacles while X f ree = X \Xobs. We de-
fine a region Xai for each atomic action ai in the
set A = {a1, a2 . . . , an}. A state x ∈ Xai ⊂ X if
taking an action ai from any other state x′ re-
sults in x. Regions corresponding to atomic ac-
tions {w1, w2, w3, w4, s1} are shown in Fig. 4.3b.
We modify the steer procedure to return false
if the trajectory passes through Xobs. Note that
this does not affect the convergence properties
of Alg. 4.1.

Fig. 4.3b shows a situation when the charging station is immediately available; the electric
car therefore directly heads towards s1 using the optimal trajectory shown in blue. Note that
branches in Kripke structure also lead to the empty parking lots, but they are not preferred. On the
other hand, when the station is occupied as shown in Fig. 4.3c, the Kripke structure only contains
feasible trajectories that take the car into the parking lots. The cost tuple of these trajectories that
end in the parking lot is (1, ∗) since they are all one step away from reaching the accepting state s1

in the process graph (see Fig. 4.2). As soon as the charging station becomes available, the algorithm
obtains a trajectory that reaches the accepting state as shown in Fig. 4.3d. This example was run
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(a) Charging domain (b) Station available immediately

(c) Station occupied (d) Station freed

Figure 4.3: Charging specification

on line and a first solution was computed in 0.8 sec.

4.3.2 Route Planner

Algorithm 4.2: permute(s, k)

1 if capacity(s) ≤ κ and is ordered(s) then
2 Φ← ∅;
3 for k ≤ i ≤ 2n do
4 swap(sk, si);
5 Φ← Φ + (sk · (permute(s, k + 1)));
6 swap(sk, si);

7 return Φ;

In this section, we provide another applica-
tion, a route planner, which receives requests
for pick-up and drop-off from a number of lo-
cations at the same time. The autonomous ve-
hicle schedules these tasks using a process al-
gebra specification which ensures that all re-
quests are served optimally. We consider cases
when these requests can be satisfied simulta-
neously, i.e., passengers share the autonomous
car during transit. The autonomous vehicle
can also include a charging maneuver in addi-
tion to these pick-ups and drop-offs. We assume that a passenger is not dropped off at a location
that is not her destination.

We first discuss an algorithm to automatically construct process algebra specifications for n
pick-ups {p1, p2, . . . , pn} and drop-offs {d1, d2, . . . , dn}. Given a capacity κ, we require that (i) for
any subsequence, the difference in the number of pick-ups and number of drop-offs is never larger
than κ and, (ii) the index of pi, which we denote by pi itself, is always smaller than the index of di,
i.e., pi < di for all 1 ≤ i ≤ n. Valid traces for the n request problem are simply all permutations of
the set {p1, . . . , pn, d1, . . . , dn} that satisfy these two conditions.
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S

T

(a)

S

T

(b)

Figure 4.4: Kripke structure for the route planner: Fig. 4.4a shows the optimal trajectory from S to T in
red, while the green trajectory follows road rules. Fig. 4.4b shows how the generated Kripke structure
incorporates these rules.

Listing all permutations with the alternative operator will however give a PA term with a large
number of sub-terms. The process graph for such an expression is not computationally efficient
for Alg. 4.1 since it has a large branching factor, roughly O(eO(n log n)), with all nodes at a depth of
one. We instead use a recursive algorithm that finds all permutations which satisfy constraints (i)
and (ii) and also automatically finds an efficient compression for the specification. For a sequence
s, we denote the ith element by si. Note that both (i) and (ii) can be efficiently checked by one
traversal along the sequence.

The algorithm starts with s = p1.d1.p2.d2 . . . .pn.dn. The procedure capacity calculates the
capacity of the vehicle required for the current sequence s while the procedure is ordered checks
constraint (ii). Alg. 4.2 depicts a procedure to recursively compute a process algebra term for n
pick-ups and drop-offs which can be obtained by executing permute(s, 1).

Examples

The experiments in this section are performed on a pre-generated map of a part of the National
University of Singapore’s campus. We manually construct a Kripke structure on the map in such
a way that road-lanes and directions of one-way roads are incorporated by including the appro-
priate directed edges in the Kripke structure. We have written a Flash based utility where the user
can easily generate such a Kripke structure given a road map, as shown in Fig. 4.4. Note again
that traffic in Singapore drives on left side of the road.

Case 1: Fig. 4.5 shows the optimal plan with two pick-up and drop-off requests. The process
algebra specification for this task with a capacity, κ = 2, is

Φ2 = p1.(d1.p2.d2 + p2.(d1.d2 + d2.d1))p2.(d2.p1.d1 + p1.(d1.d2 + d2.d1)). (4.3)

Based on the locations of p1, p2, d1 and d2, the algorithm returns a trajectory that satisfies the task
p1.p2.d1.d2. It therefore outputs a trajectory where p2 shares the car with p1 while the vehicle drops
off p1 at her destination d1.

Case 2: We now incorporate the charging specification for pick-ups and drop-offs. Con-
sider m charging locations, c1, c2, . . . , cm, we can again find permutations of the extended set
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Figure 4.5: Two requests: The autonomous vehicle first picks up p1, shown using the green trajectory. p2
shares the car with p1 while the vehicle goes to destination d1. The vehicle then proceeds to d2 to drop-off
p2. Note that all trajectories satisfy rules of the road.

(a) (b)

Figure 4.6: Two requests with charging : Fig. 4.6a shows the trajectory generated for Φ2,c. Fig. 4.6b shows
randomly sampled states of the Kripke structure in order to avoid obstacles.

{p1, . . . , pn, d1, . . . , dn, c1, . . . , cm} such that, (i) and (ii) are true from Case 1, and, (iii) vehicle charges
only when it is empty. The third condition can be checked by ensuring that before every ci in the
current string s, there are equal number of pick-ups and drop-offs, i.e., the vehicle is empty. This is
checked by a procedure charging constraint which is executed along with is ordered on Line
1 of Alg. 4.2 and returns true if (iii) is satisfied. Each node in the product graph stores the battery
level b(z) and the cost as a 3-tuple, i.e., cost(z) = (costB(z), costP(z), costK(z)) where costP

and costK are the same as the calculate cost procedure in Sec. 4.2. If z = (s, q) is a charging
station, costB(z) = 0 while it is max{bmin − b(z), 0} otherwise. bmin is some minimum battery
threshold and b(z) decreases linearly with the distance traveled since the last charging station.

Fig. 4.6 shows an example with two pick-up and drop-off requests and one charging station.
The specification for this problem is

Φ2,c = p1.(d1.(ε + Φc).p2.d2 + p2.(d1.d2 + d2.d1).(ε + Φc))+

p2.(d2.(ε + Φc).p1.d1 + p1.(d1.d2 + d2.d1).(ε + Φc)).

where we denote the empty atomic action by ε. Note that we have replaced c1 by the charging
specification Φc from Eqn. (4.2). This enables behaviors similar to those shown in Fig. 4.3 in case
the charging station is occupied. Locations of p1, p2, d1, d2 are same as Case 1 along with a charging
station. When the vehicle starts with a depleted battery, as opposed to Case 1, it picks up p1 but
directly drives to d1 to drop her off. After swapping batteries at c1, it picks up p2 and goes to d2.
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CHAPTER 5

Multi-agent Systems

This chapter focuses on control synthesis for robots interacting with exter-
nal agents and formulates game theoretic approaches for them. This prob-
lem is modeled as a non-zero sum differential game where agents ful-
fill their respective task specifications while satisfying a set of LTL safety
rules. We also consider generic multi-robot motion planning problems
and decoupled task specifications. The problems are formulated as an
open-loop non-cooperative differential game. In both these approaches,
we utilize ideas from sampling-based algorithms and model checking to
converge to well-defined game theoretic notions of equilibria that enable
various behaviors.

As autonomous agents transition from experimental projects into viable means of urban trans-
portation, they increasingly have to share infrastructure with other drivers, both human and
autonomous. It is then imperative to ensure that they interact with human-driven vehicles ac-
cording to the rules of driving and safety on the road. Behaviors such as merging into busy
lanes or handling stop-signs at cross-roads, which are typically enforced using right-of-way or
even communication, are easy for human drivers but are arguably much harder for autonomous
agents [BWF+13].

This chapter discusses a formulation to compute equilibria for two-player differential games
where players try to accomplish a task specification while satisfying safety rules expressed using
temporal logic. It builds upon the concepts develop in Chap. 3 and formulate the interaction
between an autonomous agent and its environment as a non-zero sum differential game; both the
robot and the environment minimize the level of unsafety of a trajectory with respect to safety rules
expressed using LTL formulas. We abstract a continuous-time dynamical system with differential
constraints into finite Kripke structures and employ model checking techniques to quantify the
level of unsafety. We describe an algorithm to compute the open-loop Stackelberg equilibrium
(OLS) of the differential game on these Kripke structures. It can be shown that the algorithm
converges to the OLS as the number of samples in the Kripke structure goes to infinity.

In a related direction, we also consider the problem of multi-robot motion planning with de-
coupled task specifications and model it as a non-cooperative game. In these approaches, we
look for the non-cooperative Nash equilibrium that characterizes the stable solutions among in-
herently self-interested players where none can benefit from unilateral deviations. Again, using
ideas from sampling-based motion planning algorithms, we will be able to construct efficient data
structures on which we can compute the Nash equilibrium iteratively. In order words, each robot
sequentially updates its response based on the current solution in such a way that it fulfills the
task specification. We will show the resulting “iterative better response” algorithm converges to
the open-loop non-cooperative Nash equilibrium in the limit.
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5.1 Problem Formulation

This section formalizes the problem considered in this paper and models it as a nonzero-sum
differential game between two players, the robot (R) and the environment (E). Both R and E
minimize their respective cost functions while satisfying their task specifications. In the sequel,
for clarity of presentation, we assume that the dynamics of both players is the same. Also, atomic
propositions, Π, and safety rules Ψ, are same for both players. The formulation is however general
and also applies to cases where players with different dynamics minimize cost for different sets of
safety rules.

We consider the task specification defined as “traveling from an initial state to a final goal
set without colliding with any obstacles or other agent”. In this context, define compact sets
Xr,obs,Xr,G ⊂ Xr and Xe,obs,Xr,G ⊂ Xe. A trajectory of the game in Eqn. (2.1) x, can be projected to
obtain trajectories xr, xe of players R, E respectively. xr is said to satisfy the task specification Φr

if for some Tr ∈ R≥0; xr(0) = xr,0, xr(Tr) ∈ Xr,G, xr(t) /∈ Xr,obs and ‖xr(t)− xe(t)‖2 > c for all
t ∈ [0, Tr] for a fixed constant c. Similarly, xe is said to satisfy Φe if for some Te ∈ R≥0; xe(0) = xe,0,
xe(Te) ∈ Xe,G, xe(t) /∈ Xe,obs and ‖xr(t)− xe(t)‖2 > c for all t ∈ [0, Te].

5.1.1 Normalized Level of Unsafety

The level of unsafety for a set of safety rules in Def. 3.1 is a cost tuple and is compared using
the lexicographical ordering. For convenience, we normalize it and convert it into a scalar cost
function λ(w, Ψ) by setting v(Aij) = 2−i. Specifically, define

λ(w, A) =

{
1− exp(−λ(w, A)) if λ(w, A) < ∞

1 otherwise;

for any word w and λ(w, Ψ) = ∑n
i=0 ∑j λ(w, Aij) with v(Aij) = 2−i. It is easy to see that given

two words w1, w2 and a set of safety rules Ψ = {Aij} such that λ(w1, Ψ) ≤ λ(w2, Ψ), we also have
λ(w1, Ψ) ≤ λ(w2, Ψ).

Let us now define a continuous version of the level of unsafety. For a continuous trajectory
x : [0, T] → X , if D(x) = {t1, t2, . . . , tn}, then the minimizing index set in Def. 3.1 for w(x), say
I∗ = {ti1 , . . . , tik}, is a subset of D(x). The cost of violating a rule A is

λc(x, A) =
k

∑
j=1

∫ tij+1

tij

v(A) dt ,
∫ T

0
gA(x(t))dt, (5.1)

where the cost function gA(x) is defined as,

gA(x(t)) =

{
v(A) if t ∈ [tij , tij+1) for some tij ∈ I∗

0 else.

gA(x(·)) is differentiable everywhere except on I∗. We now construct the normalized continuous
level of safety, call it λc(x, Ψ), in a similar fashion as λ(w, Ψ). Note that for a trace-inclusive Kripke
structure, we have λc(x, Ψ) = λ(ρ, Ψ) for any trace ρ and its corresponding trajectory x.
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5.1.2 Problem Statement

Sec. 5.1.1 motivates the form of cost functions for the robot and the environment. For task specifi-
cations Φr, Φe, and a set of safety rules, Ψ = {Ψ1, . . . , Ψn}, define the cost function of R as

Jr(x0, ur, ue) = λc(xr, Ψ) + 2−(n+1) Tr, (5.2)

where Tr = inf {t : xr(t) ∈ Xr,G} and ur : [0, Tr] → Ur. Similarly, let Te = inf {t : xe(t) ∈ Xe,G} and
ue : [0, Te]→ Ue. Define the cost function of E to be

Je(x0, ur, ue) = λc(xe, Ψ) + 2−(n+1) Te. (5.3)

Note that Jr is really the normalized, scalar form of the lexicographic cost tuple

(λc(xr, Ψ1), . . . , λc(xr, Ψn), Tr),

i.e., players first minimize the level of unsafety of the trajectory with respect to safety rules and
then prioritize reaching the goal set as quickly as possible.

Problem 5.1. Given task specifications Φr, Φe, a set of prioritized safety rules Ψ, for dynamics described
by Eqn. (2.1), find a control strategy, u∗r : [0, Tr]→ Ur where Tr = inf {t : xr(t) ∈ Xr,G}, such that:

1. Trajectories xr, xe satisfy tasks Φr, Φe respectively, and

2. Among all trajectories xr, xe respectively, that satisfy 1, (u∗r , u∗e ), where u∗e = BR(u∗r ), is the open-loop
Stackelberg equilibrium of the differential game with cost functions Jr, Je, respectively.

Note that the necessary conditions for the OLS equilibrium are obtained by minimization of
the Hamiltonian if the dynamics and running cost are differentiable [CCJ72]. In our case, even
though we are guaranteed that f ∈ C1, the running cost, shown in Eqn. (5.1), is discontinuous.
We can however still characterize the OLS equilibrium using viscosity solutions to optimal control
problems with discontinuous running cost.

Theorem 5.2 (Thm. 4.1 in [Sor00]). Consider a dynamical system given by ẋ(t) = f (x(t), u(t)) with
x(0) = x0 where f : Rd ×Rm → Rd belongs to C1 and u(·) belongs to the class of relaxed controls, i.e.,

u ∈ Urelax = {u(·) : u : R≥0 → P(U ) measurable}

where P(U ) is the set of Radon measures over the compact set U ⊂ Rm. For cost functionals of the form,
J(x, t) =

∫ t
0 g(x(s)) ds where g(x(s)) is bounded but possibility discontinuous on a set of measure zero,

there exists a unique viscosity solution if the dynamics is small time locally controllable.

Thm. 5.2 can be used to show that the solution of Prob. 5.1 is unique if the dynamical system
in Eqn. (2.1) is small-time locally controllable and if the initial conditions x0 and the goal regions
Xr,G,Xe,G are such that optimal trajectories spend only a measure zero time at the discontinuities
of the labeling function Lc. Let us also note that under the above assumptions, cost functions in
Eqn. (5.2) and Eqn. (5.3) are continuous in a neighborhood of the optimal trajectory.
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5.2 Stackelberg Games: Algorithm and Analysis

This section describes an algorithm to incrementally construct the product automaton (see Def. 3.9
in Sec. 3.3.1). Ideas from sampling-based motion-planning algorithms are used to construct Kripke
structures for R and E, say Kr and Ke, resp. Safety rules with priorities, expressed as finite au-
tomata are used to first construct their weighted product, i.e, AΨ = (QΨ, q0,Ψ, Σ, δΨ, FΨ, WΨ) (see
Sec. 3.5). We then construct the weighted product automata, call them Pr, Pe, for players R, E, re-
spectively. For convenience, let α ∈ {r, e}. Conceptually, these product automata are used to com-
pute traces corresponding to the Stackelberg equilibrium incrementally. The algorithm however
maintains two product automata Pα, f and Pα,b for each player α, i.e., Pα = Pα, f ∪ Pα,b. This enables
some computational benefits and helps us quickly compute best responses and corresponding
costs.

Let QPα, f and QPα,b be the set of states of Pα, f and Pα,b, resp. QPα, f is initialized with z0,α =

(s0,α, q0,Ψ) while QPα,b is initialized with zg,α = (sg,α, qg,α) for some sg,α ∈ Xα,G and qg,α ∈ FΨ. Each
sampled vertex zα is added to both QPα, f and QPα,b ; however, transitions are made towards zα, i.e.,
(∗, zα) in δPα, f while they are made away from zα, i.e., (zα, ∗) in δPα,b . Each vertex maintains two
costs, Jd

α, f and Jd
α,b, where Jd

α, f is the least weight of a trace reaching zα from z0,α while Jd
α,b is the

least weight of a trace from zα to zg,α in QPα,b . Let Jd
α(zα) = Jd

α, f (zα) + Jd
α,b(zα). The preliminary

procedures below are written for Pα, f , they are analogous for Pα,b.

5.2.1 Procedures

1. Sampling: The sampling procedure sample : N → Xα returns independent, identically dis-
tributed samples from a distribution supported over Xα \ Xα,obs.

2. Steer: Given two samples z1 = (s1, q1) and z2 = (s2, q2) in Pα, f , the steer procedure returns the
minimum cost of going from z1 to z2.

It computes a time T ∈ R≥0 and trajectories xα : [0, T] → Xα, uα : [0, T] → Uα, such that, xα, uα

satisfy the dynamics ẋα = fα(xα, uα) with x(0) = s1, x(T) = s2 and xα is trace-inclusive and
minimizes the cost function Jα(s1, uα, ·). It returns Jd

α, f (z1, z2) = Jα(s1, uα, ·) and returns false if
such a trajectory is infeasible or if (q1, q2) /∈ δΨ. Examples of how the steer procedure can be
constructed for certain dynamics can be found, for example, in [CL07, Dub57].

3. Near vertices: For a state s ∈ Xα, let Xα,near(s) ⊂ Xα ∩ Kα consist of the closest k log n (k > 2)
samples according to the cost metric Jα used in the steer procedure. It is thus a subset of the
reachable space of the dynamical system and can be computed efficiently using the Ball-Box
Theorem (see [KF13] for details). The near procedure returns:

near(s) =
{
(s′, q) : s′ ∈ Xα,near(s), (s′, q) ∈ QPα, f

}
.

4. Connect: Given a vertex z = (s, q), the connect procedure computes a vertex zp such that

zp = arg min
z′∈near(s)

Jd
α, f (z

′) + steer(z′, z).

It updates the transition function as δPα, f = δPα, f \
{
(∗, z)} ∪ {(zp, z)

}
, i.e., it removes all transi-

tions to z and adds the one that minimizes the cost of z. The weighing function is updated to
be WPα, f (zp, z) = steer(zp, z).
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Algorithm 5.1: extendα

1 s← sample;
2 Z, Zrewire ← ∅;
3 foreach q ∈ QΨ do
4 z← (s, q);
5 foreach z′ ∈ near(s) do
6 if steer(z′, z) then
7 Z ← Z ∪ z;

8 foreach z ∈ Z do
9 QPα, f ← QPα, f ∪ {z};

10 QPα,b ← QPα,b ∪ {z};
11 connect(z);
12 if s ∈ Xα,G and q ∈ FΨ then
13 FPα, f ← FPα, f ∪ {z};
14 updateα(z);
15 Zrewire ← Zrewire ∪ rewire(z);
16 return Z, Zrewire

Algorithm 5.2: construct product

1 foreach α ∈ {r, e} do
2 QPα, f ← {z0,α};
3 QPα,b ← {zg,α};
4 δPα ← ∅;

5 for i ≤ n do
6 Zr, Zr,rewire ← extendr;
7 Ze, Ze,rewire ← extende;
8 update best response queue(Ze,rewire);
9 z∗r ← update best vertex;

10 delete collisions(trace(z∗r ));

11 return z∗r , Pr, Pe

Figure 5.1

5. Update: Given z ∈ QPα, f , the updateα procedure updates the cost as, Jd
α, f (z) = Jd

α, f (zp) +

steer(zp, z) for (zp, z) ∈ δPα, f .

6. Descendants descendentsα(zα) are all vertices in QPα, f that are reachable from zα. ancestorsα(zα)

in QPα,b are defined similarly.

7. Rewiring For a vertex z = (s, q), if Jd
α, f (z

′) > Jd
α, f (z) + steer(z, z′) for some z′ in the set near(s),

the rewire procedure executes the connect procedure on z′. For every such z′, which requires
rewiring, we call updateα for all z′′ ∈ descendentsα(z′). Let Zrewire be the set of all the vertices
which are rewired.

8. Compute trace: For zα ∈ QPα, f , the procedure trace returns ρα which is the unique trace from
z0,α to zα in Pα, f concatenated with the unique trace from zα in Pα,b to zg,α. Since the Kripke
structures are trace-inclusive, we can also construct the continuous trajectory traj(ρα) from ρα

using the steer procedure.

9. Calculate best response: Given zr ∈ QPr, f as input, the procedure best response returns a vertex
BR(zr) ∈ QPe, f such that trace(BR(zr)) is the best response of E if R executes trace(zr). We
maintain a priority queue for the set {Jd

e (ze) : ze ∈ QPe, f }, this enables us to search for the best
response of any given zr ∈ QPr, f efficiently.

10. Update best response: For every vertex ze that is rewired, the cost, Jd
e, f (z

′
e) changes for all z′e ∈

descendentse(ze) (and Jd
e,b changes for all ancestorse(ze)). The new costs, Jd

α are computed
using the update best response queue procedure.

11. Update best vertex The algorithm incrementally maintains the best vertex z∗r in QPr, f that mini-
mizes the cost of R. For a newly sampled vertex zr ∈ QPr, f , if R executes ρr = trace(zr) and
E executes ρe = trace(BR(zr)), this procedure evaluates the cost, i.e, Jr(z0,r, ρr, ρe) and updates
the best vertex z∗r if the trajectories do not collide.
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12. Delete collisions Given a trace ρr, this procedure removes all vertices ze from QPe, f and their de-
scendants whose trajectories collide with traj(ρr) and then calls the update best response queue

procedure.

The tuple (ρ∗Pr
, ρ∗Pe

), where ρ∗Pr
= trace(z∗r ) and ρ∗Pe

= trace(BR(z∗r )) is therefore the open-loop
Stackelberg equilibrium for the game played on discrete product automata. The projections of
these traces onto individual Kripke structure are ρ∗r , ρ∗e respectively. Trajectories x∗r = traj(ρ∗r )
and x∗e = traj(ρ∗e ) then are the continuous-time trajectories returned by the algorithm. Alg. 5.2
presents the complete procedure for computing (ρ∗Pr

, ρ∗Pe
).

5.2.2 Analysis

This section provides an analysis of the algorithm presented in Sec. 5.2. We first show how the two
product automata differ. Roughly, the automaton Pr = Pr, f ∪ Pr,b of player R is such that Jd

α, f for
every vertex is the best cost from z0,r. On the other hand, the automaton Pe = Pe, f ∪ Pe,b of player
E consists of best responses and hence the cost of a vertex ze ∈ Pe can be larger than its optimal
cost, i.e., without considering the trajectory of R. We omit most proofs in the interest of space.
Technical arguments presented in this section are similar to those in [KF11b, KF11a, CCT+13].

Asymptotic optimality and Probabilistic completeness

Theorem 5.3 (Asymptotic optimality of Pr). For any vertex zr = (sr, qr) of QPr , let xr : [0, T] → Xr

be the optimal trajectory that minimizes Jr such that xr(0) = x0,r and xr(T) = sr. Then the cost Jd
r, f (zr)

in Alg. 5.2 converges to Jr(xr) in the limit almost surely, i.e.,

P
(
{ lim

n→∞
Jd
r, f (zr) = Jr(xr)}

)
= 1.

The above theorem is an application of asymptotic optimality of the RRT∗ algorithm [KF11b].
As a particular instance of the above theorem, the best vertex z∗r returned by Alg. 5.2 also has the
optimal cost. On the other hand, the continuity of the cost function Jr translates to E’s Kripke
structure as follows.

Lemma 5.4. For ze = (se, qe) ∈ QPe if xe : [0, T] → Xe is the optimal trajectory that minimizes Je such
that xe(0) = x0,e and xe(T) = se, then the cost Jd

e, f (ze) is at least as much as Je(xe) almost surely, i.e.,

P
(
{ lim

n→∞
Jd
e, f (ze) ≥ Je(xe)}

)
= 1.

The proof of this is an immediate consequence of the fact that the delete collisions proce-
dure removes transitions from Pe that collide with the current best trajectory of R. It thus contains
fewer transitions than the optimal RRT∗ tree.

Alg. 5.2 inherits probabilistic completeness from the RRT∗ algorithm (see Thm. 23 in [KF11a]),
i.e., it returns trajectories x∗r,n and x∗e,n such that they converge to the open-loop Stackelberg equilib-
rium of Prob. 5.1, with probability one, as the number of samples approaches infinity. In addition
to this, we can also show the nature of convergence as follows.

Theorem 5.5. The trajectories returned by Alg. 5.2 after n iterations, x∗r,n and x∗e,n, converge to the solution
of Prob. 5.1 in the bounded variation norm sense, P

(
{limn→∞‖x∗r,n − x∗r ‖BV = 0}

)
= 1 and similarly for

x∗e,n.
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Proof. The proof of this theorem is very similar to that of Thm. 16 in [CCT+13] and is hence omit-
ted. Roughly, since the Stackelberg equilibrium exists and is unique from Thm. 5.2, we can show
that there exists traces ρr of Kr and ρe of Ke, that lie in the neighborhood of x∗r and x∗e . The corre-
sponding continuous trajectory then satisfies the claim.

Now, it easily follows that the cost of the trajectories returned by the algorithm converges to
the optimal cost.

Corollary 5.6 (Asymptotic optimality). The costs, Jr(x∗r,n) and Je(x∗r,e) converge to the optimal costs in
the limit with probability one, i.e., P

(
{limn→∞ Jr(x∗r,n) = Jr(x∗r )}

)
= 1, and similarly for x∗e,n.

Let us briefly discuss the computational complexity of Alg. 5.2. If m is the number of states in
AΨ, near(s) returns O(m log n) vertices in expectation. The complexity of running connect these
vertices is O(m2 log2 n). The rewire procedure considers an O(m log n) neighbors and updates
the cost of their descendants. It can be shown that the complexity of such an update isO(m2 log2 n)
in expectation. Similarly, we see that the update best response queue procedure also updates
O(m2 log2 n) vertices in QPe, f . The complexity of update best vertex isO(m log n) if we maintain
a priority queue of vertices in QPr, f with their best responses.

It can be shown that the delete collisions procedure deletes descendants of nodes in an area
that scales as O(log n/n). Also, the height of a random node in the random Kripke structure con-
centrates around its expectation which isO((n2/ log n)1/d) [FSS11]. Thus, the delete collisions

procedure removes only a small number of descendants beyond this height; the number of nodes
deleted per iteration in fact goes to zero in the limit as n→ ∞.

The total expected amortized complexity of Alg. 5.2 is therefore O(m2 log2 n) per iteration.

5.3 Non-cooperative Games

Let us now consider general n-player non-cooperative Nash equilibria. In this section, we will
only consider generic motion-planning tasks without any temporal specifications. We construct
algorithms that converge to the n-player non-cooperative Nash equilibrium and the Pareto opti-
mum using ideas from sampling-based motion planning algorithms. Note that these algorithms
can be easily modified to incorporate temporal specifications such as safety and eventually reach-
ing a goal region, as shown in [ZOCF14a, ZOCF14b].

5.3.1 Problem Setup

As considered in Sec. 2.4, we consider a team of robots, say [N] = {1, . . . , N}, with individual
dynamics governed by

xi = fi(xi(t), ui(t)), xi(0) = xi,0,

where xi(t) ∈ Xi ⊆ Rdi and ui(t) ∈ Ui ⊂ Rmi for all t ∈ R≥0. Given trajectories {x1, x2, . . . , xn}
of all agents where each xk belongs to some computable set, say feasiblek, we compute the Nash
equilibrium of the game when each player minimizes a cost function Jk(xk, uk). For example,
feasiblek consists of all trajectories of agent k that do not collide with other agents and reach
some goal region Xgoal,k.
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5.3.2 Algorithm Overview

Let us define some preliminary procedures that will be used to construct the algorithm. Most
procedures are borrowed from Rapidly-exploring Random Graphs [KF11b] and are similar to the
ones in Sec. 3.3.2 and Sec. 4.2. Let Gi

k be the Kripke structure maintained by an agent k at iteration
i; note that we can think of the Kripke structure as just a finite transition system if we do not have
temporal specifications, as this exposition assumes.

The sample, steer and near procedures are the same as previous chapters. Let us elaborate on
the new ones below.

1. The extend basic procedure calls the steer procedure on all vertices returned by the near

procedure, i.e., all nodes within a distanceO((log n/n)1/d) try to steer towards the new sample
zk,new. An edge is added to Gi

k if it returns true.

2. The better response procedure works as follows. Let ρ =
{

ρi
1, . . . , ρi

N
}

be the trajectories of
all the agents according to their respective Kripke structures Gi

k. We understand that if Vi
k ∩

Xk,goal = ∅ for some agent k, ρk is the trivial trajectory that ends as xk,init and has zero duration
Tr.

The better response procedure on an agent k then considers all the trajectories R =
{

ρi
1, . . . , ρi

N
}
\{

ρi
k

}
and finds a trajectory that belongs to the set of feasible trajectories for agent k, e.g.,

does not collide against any trajectory from R and reaches the goal region Xk,goal . Note that
better response for agent k at iteration i considers the updated trajectories of agents [N] at
iteration i as well. By convention, if better response is yet to be called on an agent k′ > k for
iteration i, we set ρi

k′ = ρi−1
k′ .

As shown in Alg. 5.4, this procedure can be implemented naively, i.e., by constructing the set
of all feasible trajectories on Gi

k and picking the one that minimizes the cost function Jk(·, ·)
from among them. Let us note that this can be improved significantly. Specifically, each agent
k maintains the set R constructed in Alg. 5.4 and uses this set in the extend basic procedure
to find the feasible paths directly. The better response procedure then becomes similar to the
update cost procedure in Alg. 3.2.

5.3.3 Analysis

Roughly speaking, Alg. 5.3 consists of multiple “rounds”. In each round i, agents [N] take turns
to update their Kripke structures Gi

k and construct a trajectory ρi
k that does not conflict with the

best trajectory of other agents. In this section, we analyze the convergence properties of Alg. 5.3.

Remark 5.7. Note that instead of constructing a Kripke structure that is a tree as done in all previ-
ous chapters, we construct a directed graph here. This is due to the fact that the tree constructed
in Alg. 3.1 for example, has a “rewiring” update which can lead to Gi−1

k not being a sub-graph of
Gi

k. This property is crucial for convergence to the Nash equilibrium as we show in the analysis
below.

Also, the Kripke structure Gi
k has no notion of “rewiring”, i.e., we only draw transitions from

vertices in Vi−1
k to the new sample. This ensures that Gi

k does not include any directed cycles. It is
similar to the auxiliary graph constructed in Thm. 38 of [KF11b].
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Algorithm 5.3: iNash
1 for k ≤ N do
2 Vk ← xk,init;
3 Ek ← ∅;
4 G0

k ← (Vk, Ek);

5 i← 0;
6 while i < n do
7 for k ≤ N do
8 zk,new ← sample;
9 Gi

k ← extend basic(Gi−1
k , zk,new)

10 for k ≤ N do
11 ρi

k ← better response(Gi
k);

12 i← i + 1;

Algorithm 5.4: better response

1 R←
{

ρi
1, . . . , ρi

k−1, ρi
k+1, . . . , ρi

N

}
;

2 R f easible ← ∅;

3 for ρk ∈ all simple paths(Gi
k) do

4 if is collision free(ρk, R) and
ρk ∈ feasiblek then

5 R f easible ← {ρk}

6 ρ∗k ← arg min
{
cost(ρk) | ρk ∈ R f easible

}
;

7 return ρ∗k

Figure 5.2: iNash algorithm

Remark 5.8 (Some notation). With some abuse of notation, we define the Nash equilibrium and
Pareto optimum for traces of Kripke structures Gi

k for k ≤ N using the same notation as Def. 2.9
and 2.10. Let RNE, RSO be the set of Nash equilibria and Pareto optima, respectively. We also
assume in the following analysis that RSO 6= ∅; in other words, the problem where the combined
state is [x1(t), . . . , xN(t)] and the goal region is Xgoal =

⊕Xk,goal is feasible. Denote by RNE, the
complement of RNE, i.e., all traces or trajectories that do not belong to RNE.

Note that for a trace ρ, we will refer to x, u as the state and control trajectory generated by
appending the steer function outputs. In the following proofs, if ρ is used with a sub-script and
super-script, the corresponding state and control trajectories are denoted by the same sub-script
and super-script.

Also, with some more abuse of notation, we denote the cost of the game by J(ρ), i.e., J(ρ) =⊕
k Jk(xk, uk) where ρ = {ρ1, . . . , ρN}. For convenience, we let Rk = feasiblek and R−k =⊕
k′ 6=k feasiblek′ . Similarly, let ρi =

{
ρi

1, . . . , ρi
N
}

, i.e., the set of traces for every agent at itera-
tion i. ρi

−k = ρi \ ρi
k.

Lemma 5.9 (Nash equilibrium exists). It holds that RSO ⊆ RNE and RNE is non-empty.

Proof. Assume R = RSO ∩ RNE 6= ∅. Pick some ρ = {ρ1, . . . , ρN} ∈ R. Since ρ /∈ RNE, there exists
some agent k and some state and control trajectory x′k, u′k such that Jk(x′k, u′k) < Jk(xk, uk).

But note that a new solution ρ′ =
{

ρ1, . . . , ρ′k, . . . , ρN
}

is such that all the agents have feasible
trajectories and the total cost, i.e., J(ρ′) < J(ρ), which contradicts the assumption that ρ ∈ RSO.
Therefore RSO ⊆ RNE. Since RSO is non-empty by assumption, RNE is non-empty as well.

Before we go further, let us introduce the concepts of weak feasibility and strong feasibility.

Definition 5.10 (Weak feasibility). Given Rk, a set of traces ρ−k, the set of weakly feasible traces,
denoted as weak feasiblek(ρ−k) ⊂ Rk, consists of all traces ρk s.t. there exists a sequence (ρi

k)i≥0

with each ρi
k ∈ Rk and a sequence δi → 0 such that

1. ρi
k → ρk;
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2. B(xi
k, δi) ∈ X f ree;

3. ‖xk(t)− xk′(t)‖ ≥ C + δi for all k′ 6= k for all t.

Here C is a fixed given constant (akin to the size of the agents), xi
k is the trajectory obtained by

appending the states on the trace ρi
k using the steer function and B(x, δ) is a ball of size δ around

the trajectory x.
Informally, weak infeasibility ensures that we can converge to two trajectories for agents k, k′

such that the limiting trajectories never collide.

Definition 5.11 (Strong feasibility). The set of strongly feasible traces, which we denote as
strong feasiblek(ρ−k) ⊂ Rk differs from weak feasibility in only the third condition. We assume
that there exists some δ > 0 such that ‖xk(t)− xk′(t)‖ ≥ C + δ, for all k′ 6= k for all t. It follows
easily that

strong feasiblek(ρ−k) ⊂ weak feasiblek(ρ−k) ⊂ feasiblek.

Lemma 5.12. For any agent k, ρk ∈ weak feasiblek(R−k) and ε > 0, there exists an iteration i(k) such
that for all i > i(k), there exists a trace ρ̂k ∈ Rk such that ‖Jk(x̂k, ûk)− Jk(xk, uk)‖ ≤ ε.

Proof. Recall that Gi
k constructed in Alg. 5.3 is the auxiliary graph Gn constructed in the proof of

Thm. 38 in [KF11b]. The proof of this lemma follows along the same lines; we also use the fact that
Jk(·, ·) is continuous.

Lemma 5.13. Assume that the sequence (ρi
k) for i ≥ 0 converges to some ρk for all k ≤ N. Recall that

ρ = (ρ1, . . . , ρN). Then there exists a time n such that for each ρk ∈ strong feasiblek(ρ−k), we have
ρk ∈ strong feasiblek(ρ

i
−k) for all i > n, i.e., once a trace becomes strongly feasible, it remains so.

Proof. Since (ρi
k) converges to ρk, for all k, there is an i(k) s.t., ‖xi

k(t)− xk(t)‖ ≤ δ/2 for all i > i(k)
and t. Note that since ρk ∈ strong feasiblek(ρ−k), by definition, there is a some converging
sequence (ρl

k)→ ρk that satisfies Def. 5.11. Thus,

‖xl
k(t)− xk′(t)‖ > C + δ ⇒ ‖xi

k(t)− xk′(t)‖ > C + δ/2 ∀ k′ 6= k

by the triangle inequality. Thus we conclude that ρk ∈ strong feasiblek(ρ
i
−k) for all i > n where

n = max i(k).

Let us now prove asymptotic optimality of Alg. 5.3. Let R̂ be the set of limit points of sequences
of the form (ρi

1, . . . , ρi
N) for i ≥ 0.

Theorem 5.14. Any limit point in R̂ is a Nash equilibrium.

Proof. For a limit point of ρi = (ρi
1, . . . , ρi

N) there exists a sub-sequence κk = κ1
k , . . . , κn

k . . . such that
ρi

k → ρ∗k for i ∈ κk. Let the limit point be denoted as ρ∗ and let κ = ∩ κk. Without loss of generality,
“rename” κ to Z≥0 and consider the resulting sub-sequence below. Pick any ε > 0 and using
Lem. 5.12, beyond some i > n, for any ρ̂k

i ∈ weak feasiblek(ρ∗−k) there is a ρ̃i
k ∈ feasiblek(ρ∗−k)

such that
Jk(x̃i

k, ũi
k) ≤ Jk(x̂i

k, ûi
k) + ε.

But since ρi
k is the best response by agent k at iteration i, there cannot not exist any ρ̃i

k ∈ feasible(ρ∗−k)

such that
Jk(x∗k , u∗k ) ≥ Jk(x̃∗k , ũ∗k ).
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Together, this gives that there does not exist a ρ̂k
i ∈ weak feasiblek(ρ∗−k) for i > n with

Jk(x∗k , u∗k ) ≥ Jk(x̂i
k, ûi

k) + ε.

Now use the fact that strong feasiblek ⊂ weak feasiblek ⊂ feasiblek along with Lem. 5.13
to observe that there is an n′ > n such that there does not exist any ρk ∈ strong feasiblek(ρ

∗
−k)

and i > n′ such that
Jk(xi

k, ui
k) ≥ Jk(xk, uk) + ε.

Take the limit on i to get that there is no ρk ∈ strong feasiblek(ρ
∗
−k) with

Jk(x∗k , u∗k ) ≥ Jk(xk, uk) + ε.

This inequality is true for any ε > 0. It therefore implies that any ρ∗ ∈ R̂ is a Nash equilibrium.

Theorem 5.15 (Nash equilibrium: Asymptotic optimality). For any ρ = {ρ1, . . . , ρN} ∈ R̂, the cost
Jk(xk, uk) converges to some limit ck ≥ 0 for all k ≤ N.

Proof. Let us first note that after a few iterations, all agents generate non-trivial traces (i.e., of
duration strictly greater than zero), indeed the probability of this not happening goes to zero
exponentially quickly. We therefore assume in the sequel that this is the case.

Consider agent k at iteration i. We have Gi−1
k ⊆ Gi

k and ρi
k ∈ feasiblek which implies

Jk(xi
k, ui

k) ≤ Jk(xi−1
k , ui−1

k ).

Hence the costs form a non-increasing sequence that is lower bounded by zero and thus Jk(xi
k, ui

k)

converges to some limit, say ck, so long as ρi
k converges to some limit point.

Note that Alg. 5.3 is probabilistically complete from Lem. 5.9, i.e., the algorithm converges to
a solution in RNE with probability one as the number of samples in Gk goes to infinity for all k.
Also, note that each agent only transmits its trajectories to other agents at most twice per iteration,
i.e., the communication complexity is simply O(2N) (this is reduced to O(N) if agents cache
trajectories of other agents).

5.3.4 Pareto optimum solution

An algorithm to compute the social optimum is simple. We construct the product of the dynamics
of each agent in Eqn. 2.3, call the new state

⊕
k xk. The algorithm then samples the product graph⊕

k Gk at every iteration and uses the standard RRT∗ algorithm on this combined system. By virtue
of Thm. 36 in [KF11b], this approach immediately converges to the Pareto optimum defined in
Def. 2.10. Using an analysis similar to Thm. 5.14 we get the following theorem.

Theorem 5.16 (Pareto optimum: Asymptotic optimality). Any limit point in R̂ of the product dy-
namics is a social optimum.

5.4 Experiments

This section presents simulation experiments motivated from urban autonomous driving for Alg. 5.2.
Please refer [ZOCF14a] for experiments on Alg. 5.3.
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5.4.1 Setup

Consider a Dubins vehicle with control on acceleration as a model for the dynamics of both the
robot and the environment with the dynamics given by

ẋ(t) = v(t) cos(θ(t)),

ẏ(t) = v(t) sin(θ(t)),

v̇(t) = u1(t),

θ̇(t) = v(t) u2(t),

where the state is (x, y, v, θ) with bounds on acceleration, i.e., |u1(t)| ≤ 1 and turning rate, i.e.,
|v(t) u2(t)| ≤ c. Following a similar analysis as given in [CL07], we can see that time optimal
paths between two states (x1, y1, v1, θ1) and (x2, y2, v2, θ2) for the dynamics given above can be
split into two cases, (i) constrained by the shortest length Dubins curve, and, (ii) constrained by
change in velocity. As an approximation, we only consider the first case here, i.e., the steer

procedure returns an infinite cost if the increment in velocity is larger than what can be achieved
along the shortest length Dubins curve. Note that this does not affect the completeness guarantees
of Sec. 5.2.2. Also note that Dubins curves for any pair (x1, y1, θ1) and (x2, y2, θ2) are composed of
straight lines and maximum turning rate segments and can be computed efficiently [Dub57].

Safety rules used in these examples are the same as the safety rules in Sec. 3.4.2. We however
add an additional rule which is motivated by the fact that drivers on road do not like to slow
down for others. We include a rule which encourages drivers to maintain the speed above Vnom.

ψ3 = G¬(true, slow)

The priorities are set as v(ψ1) = 1 for the sidewalk rule, v(ψ2,1) = v(ψ2,2) = 2 for the
direction and lane changing rules and v(ψ3) = 3 for the speed rule.

5.4.2 Examples

In Figs. 5.3 and 5.4, the Kripke structure maintained by R is shown in white while the Kripke
structure maintained by E, i.e., Ke is shown in black. The current trajectory for R returned by
Alg. 5.2 is plotted in red while the best response to this trajectory is plotted using green. Stationary
obstacles are shown in red, while Xsw is shown in black. Right and left lanes are demarcated using
yellow lines. Goal regions for both players, Xr,G,Xe,G are shown in red and green respectively.
Both players start with the same initial velocity Vnom.

Case 1: We first consider a scenario with both R and E at a cross-road junction to demonstrate
the incremental nature of the algorithm. Fig. 5.3a shows the Kripke structures and the solution
after 400 samples. It returns paths with cost 2.4231 for R which is close to optimal, but in order to
satisfy the task specification without colliding with R, player E breaks the slow driving rule and
incurs a cost of 6.819. Fig. 5.3b shows this path after 1000 samples.

Case 2: In this example, we consider a single-lane road with an obstacle in the lane of R.
Fig. 5.4a shows the algorithm after 500 samples where the environment cannot find any trajectory
that reaches its goal without colliding with the trajectory that R would like to execute. With
additional computation time, as shown in Fig. 5.4b, E obtains a trajectory that has a cost of 3.65
without breaking any safety rules. On the other hand, R incurs a penalty for breaking the lane
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5.4 EXPERIMENTS

(a) (b)

Figure 5.3: Fig. 5.3a sub-optimal trajectories with sparse Kripke structures. As shown in Fig. 5.3b, with
more samples, the algorithm converges to a trajectory for E that has a much smaller cost. Both cars are
drawn at the same instant in time.

changing rule and obtains a best cost of 13.95.

(a)

(b)

(c)

Figure 5.4: Fig. 5.4a shows the Kripke structures when player E which starts at the root of the black tree
does not have any trajectory to reach the goal region. The algorithm converges to the trajectories shown in
Fig. 5.4b. On the other hand, as shown in Fig. 5.4c, if E starts closer to the obstacle, it is forced to obey the
Stackelberg equilibrium and has to slow down to let R cross the obstacle.

Case 3: Consider a modification of Case 2 where E starts slightly closer to the obstacle. In
Fig. 5.4c, R now forces the Stackelberg equilibrium upon E and by still choosing the same tra-
jectory. In order to avoid a collision, i.e., generate a valid best response that still satisfies the task
specification, E slows down and incurs a cost for breaking rule ψ3 to let R cross across the obstacle.
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CHAPTER 6

Conclusions and Future Directions

This thesis introduced a collection of problems in the area of planning and control of autonomous
agents using formal specifications. It identified a number of scenarios that are typical in urban
autonomous driving, such as obeying traffic regulations which might make the underlying task
infeasible, interacting with other drivers, merging on highways, negotiating cross-roads etc. The
central idea pursued in this thesis is that low-level control synthesis needs to be integrated with
high-level decision making to enable efficient, optimal and complete algorithms. We looked at
three major ideas that develop this concept further.

The first part of the thesis uses ideas from sampling-based motion-planning algorithms to
construct sequences of Kripke structures that are good approximations of the continuous-time
dynamics. These Kripke structures also encode information about the temporal properties of con-
tinuous trajectories and can hence be used efficiently in model checking style algorithms. Specifi-
cally, we also ensured that a trace of the Kripke structure uniquely maps to the optimal trajectory
that connects the two states and thus the temporal properties of the trajectory are encoded in the
change in the atomic propositions across that transition in the Kripke structure.

The second part of the thesis considered task specifications that are infeasible to begin with
and become feasible only if a few specifications, also known as “safety rules”, are violated. These
specifications were expressed using the finite fragment of Linear Temporal Logic which lent us a
large number of automata-based model checking techniques for efficient verification of the spec-
ifications. We defined the “level of unsafety” as a metric to quantify the violation of the safety
rules and used sampling-based techniques to construct trajectories of the dynamical system that
minimize the level of unsafety while still satisfying the task specifications. In a related direction,
we also considered languages such as process algebras that can be used to encode simple task
specifications such as charging an electric vehicle, or pick-up and drop-off problems for mobility-
on-demand. In addition to providing a number of theoretical guarantees such as asymptotic op-
timality and probabilistic completeness, the anytime nature of these algorithms make them ex-
tremely amenable to real-time implementations. We discussed results from both computational
experiments and implementations on an autonomous platform.

The third part of the thesis delves into multi-agent control synthesis under temporal specifi-
cations. We modeled the interaction between various agents performing their tasks in a shared
domain as a differential game between the agent and the environment. Using ideas from model
checking and sampling-based algorithms, we devised algorithms that converge to established
game theoretic notions of equilibria such as Stackelberg and non-cooperative Nash equilibria. It
was shown using a number of examples that these equilibria also display “rational”, i.e., human-
like behaviors while driving on busy roads.

There are a number of future directions that one can explore which are motivated by the prob-
lems considered in this thesis.
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• Stochastic agents: This area is the prime reason why it is unlikely that we will see large-scale
deployment of autonomous urban navigation systems in the near future. A self-driving car
has to interact with an enormous number of un-modeled scenarios, the problems consid-
ered in this thesis form only a small subset of those. Situations such as a busy pedestrian
cross-walk, small lanes, where pedestrians and vehicles share the road together etc. are ex-
tremely hard to model. Roughly, in addition to preserving the notion that these disturbances
are stochastic, we would like to impose certain “common-sense restrictions” upon their be-
haviors so that the autonomous agents are not entirely conservative. There is a growing
literature on incorporating stochastic agents in planning using temporal verifications, see
for example [WUB+13, WF12, CKSW13].

• Multi-agent control: Excursions along the game theoretic approaches considered in this thesis
lead to a variety of problems in multi-agent control synthesis, which although tangential to
the problem of autonomous urban driving, are still exciting problems in robotics. For exam-
ple, consider [KDB11, USD+13, CDSB12] demonstrates a top-down approach, i.e., it decom-
poses a given LTL specification into local specifications for various agents. Along similar
lines, a number of recent works bottom-up synthesis, e.g., [GD13]. These problems are of
particular importance, for example, in verification and synthesis of embedded controllers
in a large autonomous system. Efficiently checking sub-systems for partial satisfaction of
specifications is useful if one can provide guarantees upon the performance of the larger
inter-connected system, e.g., [Sti95].

One might also consider general task specifications where groups of robots might interact
in a co-operative way to complete sub-tasks and then again become self-interested for the
remainder of the task using logics such as Alternating Time Logic [AHK02].

• Human-in-the-loop verification: On long journeys through the Australian outback, truck drivers
regularly suffer from fatigue and boredom. Even if the roads are fairly straight, it is seen that
most accidents start as long oscillations induced by drowsiness, which grow in amplitude
until the vehicle goes out of control. Can an autonomous agent detect these — fairly minor,
even benign — deviations from “standard” behavior? Tacking these problems requires that
we have fairly good models of “human behavior”. Instead of being merely stochastic, as is
popular in contemporary literature, these models can be thought of as another agent trying
to accomplish an aligned task, i.e., the interaction between the autonomous vehicle and the
driver is a cooperative game.

There are also a number of related issues in this area such as feedback loops between an
autonomous agent enforcing certain specifications and the human driver trying to enforce
contradictory behaviors. In such scenarios, we need to design algorithms for autonomous
agents that relinquish control to the human driver.
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