
THE HIDDEN GEOMETRY OF LEARNING

Jialin Mao

A DISSERTATION

in

Graduate Group of Applied Mathematics and Computational Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2025

Supervisor of Dissertation

Pratik Chaudhari, Assistant Professor, Electrical and Systems Engineering

Graduate Group Chairperson

Yoichiro Mori, Calabi-Simons Chair in Mathematics and Biology

Dissertation Committee

Kostas Daniilidis, Ruth Yalom Stone Professor, Computer and Information Science
James Sethna, James Gilbert White Professor of Physical Sciences (Cornell University)
René Vidal, Rachleff University Professor, Electrical and Systems Engineering

ABSTRACT

THE HIDDEN GEOMETRY OF LEARNING

Jialin Mao

Pratik Chaudhari

Deep learning has achieved remarkable success in recent years, yet it is still mysterious how they achieved

this success. The optimization problem underlying deep learning is usually highly non-convex, and the

search space consists of functions with high expressive power. However, simple local search algorithms like

stochastic gradient descent can often successfully find solutions that generalize well to unseen data.

This thesis explores the hypothesis that neural networks tend to explore a low-dimensional region of the

function space when trained on typical data. This phenomenon may explain both the success of optimization

and the generalizability. This perspective emphasizes the interplay between data and optimization dynamics

and provides a unifying framework that can be used to study different architectures and tasks.

In Chapter 2, we develop information-geometric techniques to properly define and analyze the model manifold

explored by training trajectories of deep networks. We construct a training manifold by training networks

with different configurations from different initializations and characterize its geometry using the tools

we developed. We reveal that the training process explores an effectively low-dimensional manifold. We

associate this low-dimensional manifold with the hyper-ribbon structure found in statistical physics.

In Chapter 3, we extend our techniques to the broader case of multitask learning and allow comparison of

networks initially trained on different tasks. We show that the same low dimensionality can be observed in

those scenarios as well. We also demonstrate how our methods could reveal structure in the space of multitask

learning.

In Chapter 4, we connect the hyper-ribbon structure to sloppiness in data covariance structure and the Fisher

Information Matrix of trained networks. We show that the input correlation matrix of typical classification

datasets has a “sloppy” eigenspectrum where, after a sharp initial drop, a large number of small eigenvalues

ii

are distributed uniformly over an exponentially large range. This structure is mirrored in the Hessian of a

trained network, which allows us to compute non-vacuous generalization bounds via PAC-Bayes.

In Chapter 5, we provide theoretical insights into training manifolds by analyzing the gradient descent

trajectories of linear models. We identify the key factors determining the dimensionality of the training

manifold and characterize conditions under which they are provably low-dimensional. We show how our

analysis can be extended to variants like stochastic gradient descent and kernel methods.

We conclude the thesis with a discussion on possible future directions in Chapter 6, focusing on what our

observations could imply for practical trainingg.

iii

TABLE OF CONTENTS

ABSTRACT . ii

CHAPTER 1 : Introduction . 1

1.1 Related Work . 2

1.2 Statement of Contributions . 5

CHAPTER 2 : The manifold induced by the training process of neural networks 8

2.1 Introduction . 8

2.2 Methods . 9

2.3 Results . 15

2.4 Discussion . 31

2.5 Appendix . 37

CHAPTER 3 : Low-dimensional manifold in the space of tasks 68

3.1 Introduction . 68

3.2 Methods . 70

3.3 Results . 71

3.4 Related Work and Discussion . 84

3.5 Appendix . 86

CHAPTER 4 : A potential explanation for the low-dimensionality of the training manifold 94

4.1 Introduction . 94

4.2 Background . 96

4.3 Theoretical Results . 98

4.4 Effective Dimensionality of a Deep Network . 101

4.5 Empirical Validation . 104

4.6 Related Work . 105

iv

4.7 Appendix . 107

CHAPTER 5 : An Analytical Characterization of Sloppiness in Neural Networks: Insights from

Linear Models . 126

5.1 Introduction . 126

5.2 Training manifold for linear regression . 126

5.3 Variants of the linear model . 136

5.4 Proofs . 143

CHAPTER 6 : Conclusion and Future Directions . 147

BIBLIOGRAPHY . 149

v

CHAPTER 1

INTRODUCTION

Deep neural networks have revolutionized various domains by their remarkable ability to learn complex

functions efficiently. The underlying mechanisms driving this efficiency, however, remain largely elusive.

The classical theory suggests the opposite: the highly non-convex optimization objective should be difficult

to solve, and the huge capacity of the hypothesis class should lead to severe overfitting on the training data.

However, neither of the above happens in practice; on the contrary, basic optimizers like stochastic gradient

descent (SGD) typically solve the training problem efficiently, and the solutions generalize well to test data.

There have been numerous prior studies devoted to answering these questions, proposing theories like the

loss landscape is “nice” (e.g., contains no spurious local minima), the optimization landscape is “nice” (e.g.,

almost convex and smooth) in a neighborhood near initialization, the optimization algorithms are biased

towards “simpler” solutions that generalize better (e.g., min-norm solutions, flatter minima). A more detailed

review of previous works can be found in Section 1.1.

In this thesis, we would like to focus on understanding the learning process of different networks by looking

at the “model manifold” explored during training. The concept of “model manifold” is adapted from the

statistical manifold in Information Geometry (Amari, 2016), where models are viewed as parameterized

probability distributions living on a manifold M = {p(·|θ), θ ∈ Θ}, where Θ is a set of parameters. The

learning process can then be viewed as searching on the manifold to find a minimizer of a functional, typically

a distance to a true data distribution. Information geometry has been useful in understanding the geometry

of probabilistic models (Amari, 2016), improving optimization (Amari, 1998b) and providing insights into

generalization (Dherin et al., 2021; Sun and Nielsen, 2023).

This function space perspective is attractive because it allows us to circumvent the complex nonlinear map

from the parameter space to the function space and the pathological singular geometry in the parameter

space. Moreover, this view allows us to compare very different models (in particular, models with different

architectures) as long as they are trained to perform the same set of tasks, and they allow us to emphasize the

influence of tasks on shaping the training dynamics of different networks.

1

The model manifold we study in this thesis is inspired by the formulation in (Transtrum et al., 2011b) and

can be viewed as a subset of the classical statistical manifold. We restrict the study to predictions on a finite

set of data points and the models explored during training. This finite-dimensional ambient space allows us

to conduct more global analysis of the model manifold, which is impossible to do in the infinite-dimensional

space of the classical case.

The central theme of the thesis is to reveal that the learning process of neural networks on typical tasks

possesses a low-dimensional subspace of the full function space. We provide empirical evidence and

theoretical insights demonstrating this low-dimensional structure and propose that it plays a key role in the

success of deep learning. We further hypothesize that the inherent structure of the tasks they are trained on

facilitates this low-dimensionality and hope a deeper understanding of this low-dimensionality could lead to

guiding principles for more efficient training algorithms and enhanced generalization performance.

1.1. Related Work

1.1.1. Early work on optimizing deep networks

Understanding why deep neural networks can be optimized efficiently despite their non-convex nature

has been a central question in deep learning theory. One early line of thought was to study the loss

landscape and identify conditions under which the non-convex objectives can be solved by local search

algorithms like gradient descent. For example, for the set of functions such that all local minima are also

global, and the Hessian of every saddle point has a negative eigenvalue, gradient descent can find a global

minimum (Jin et al., 2017; Du et al., 2017). Many such objectives exist in non-convex optimization, e.g.

matrix factorization, tensor decomposition, also certain forms of ReLU-activated neural networks (Ge et al.,

2015, 2018; Haeffele and Vidal, 2015; Kawaguchi and Kaelbling, 2020; Hardt and Ma, 2018). Unfortunately,

in the more general case of learning the landscape could have spurious local minima (Kawaguchi, 2016;

Safran and Shamir, 2018; Liu et al., 2019). Also, loss landscape is a rather static perspective that does not

take into consideration the effect of initialization, optimizer (Sutskever et al., 2013).

The limitation of the loss landscape perspective inspired researchers to shift to a more focused view of

the optimization problem: the trajectory-based analysis. This has been successful in revealing interesting

dynamics in deep linear networks (Saxe et al.; Arora et al., 2019a,b) but extending it to nonlinear networks

2

has proven challenging, with major difficulties lying in the analysis of the complex nonlinear map from

parameter space to the function space. Moreover, since different networks have totally different weight

spaces, networks with distinct architectures need separate treatment and cannot be compared with each

other under this framework. While dynamics in the weight space seem to be a more intuitive approach

since the gradient descent algorithm directly modifies the weights, these difficulties suggest that it may be

beneficial to bypass the parameterization map and study the trajectories directly in the function space One

of the foundational works in this direction is the Neural Tangent Kernel (NTK) theory (Jacot et al., 2018b;

Soltanolkotabi et al., 2019). The NTK approach decomposes the parameterization map and the functional

cost (which is often convex, e.g., for mean squared error or cross-entropy) and shows that under suitable

initialization and parameterization, dynamics of wide neural networks under gradient descent follow a kernel

gradient descent in the function space. This allows further results on the convergence of gradient descent for

wide neural networks in the NTK regime (Du and Zhai, 2019; Li and Liang, 2019; Arora et al., 2019c).

However, convergence results under the NTK regime require the dynamics to stay in a local region around

initialization so that the features do not change significantly (so-called lazy training) (Woodworth et al., 2020;

Chizat et al., 2019b). The lack of feature learning in the NTK regime contradicts the prevailing belief that

the success of deep learning comes from its ability to extract useful features from data, and there has been

empirical and theoretical evidence of gaps in generalizability or sample complexity between neural networks

and their corresponding kernels (Arora et al.; Wei et al., 2019; Ghorbani et al., 2019b, 2020; Damian et al.,

2022; Mei et al., 2022; Allen-Zhu et al., 2019).

There have been some recent works trying to go beyond NTK and understand the convergence in the feature

learning regime. Most of those analysis modifies the optimizer to explicitly separate the feature learning and

convergence stages in the learning process (e.g.training in multiple stages (Damian et al., 2022; Abbe et al.,

2022) or adding NTK-related regularizers (Nichani et al., 2022)) and so do not fully explain the success in

practice. The fact that NTK finds a global minimizer of the loss function and yet still lacks generalizability

also leads to the study of the implicit bias of optimization algorithm, showing that GD or SGD are biased

towards “simpler” solutions, characterized by minimum norm (Woodworth et al., 2020; Gunasekar et al.,

2018), lower-order polynomial (Abbe et al., 2023; Kalimeris et al., 2019), flatter minima (Liu et al., 2023;

3

Damian et al., 2023), maximum margin solutions (Ji and Telgarsky, 2020; Lyu and Li, 2019).

1.1.2. Model Manifold

Our work draws significant inspiration from the function space perspective used in the NTK approach. We

would like to characterize the space explored by typical training dynamics in the function space, going beyond

the neighborhood-around initialization.

We achieve this by looking at the model manifold introduced in (Transtrum et al., 2011b), where they studied

a nonlinear least squares problem given a dataset {(xi, yi)}Ni=1. A real-valued function fθ can be identified

with its outputs on these data points, corresponding to a point in RN : fθ = [fθ(x1), . . . , fθ(xN)]. As θ is

varied over a region in Rd, fθ spans a region RN that is at most d-dimensional, and the process of finding

the best fit of the least squares problem corresponds to finding a point within this region that is closest (in

Euclidean distance) to the target y = [y1, . . . , yN] ∈ RN .

For function classes that are universal approximators, the predictions on a set of distinct inputs can, in

principle, fill the entire output space. However, when we impose constraints on the parameters or inputs,

the resulting model manifold could exhibit a more interesting geometry—referred to as a hyper-ribbon

by (Transtrum et al., 2011b), where the cross-sectional widths decay exponentially across dimensions. As an

example, the model manifold of an analytic function, when evaluated on data from a bounded interval, lies

within a hyperellipsoid whose widths decay geometrically (Quinn et al., 2019b). This kind of sloppiness is

frequently seen in many multi-parameter models in biology, physics, and other domains (Transtrum et al.,

2009, 2011a). In our work, we focus on the subset of neural networks explored during the standard training

process, which naturally introduces such constraints.

Notice the model manifold is closely related to Information Geometry (Amari, 2016). For a set X , consider a

family of probability distributions on X that can be parameterized by θ: S = {pθ, θ ∈ Θ ⊂ Rd}, where

pθ ∈ P(X) := {p : X → R : p(x) ≥ 0,∀x ∈ X ,

∫
X
p(x)dx = 1},

When the map θ 7→ pθ is smooth and injective, S is a smooth manifold with local coordinates given by θ. It

can be shown (Amari, 2016) that there is a unique (up to scaling) Riemannian metric on this manifold (i.e.,

4

Fisher Information Metric) given by

gθ = ExEy∼pθ(·|x)

[
(∂θ log pθ(y|x)) (∂θ log pθ(y|x))⊤

]
.

Notice this manifold lives in the space of all probability distributions on X , which is typically infinite-

dimensional, even though the manifold is finite-dimensional. The model manifold we study is locally

isometric to the statistical model manifold equipped with the Fisher information metric (see Section 2.5.3.1),

but it lives in a finite-dimensional space because we restrict our investigations to the predictions on a finite set

of samples. We will see in Chapter 2 that the finite-dimensional nature of the ambient space fundamentally

enables us to perform complicated computations such as embeddings of high-dimensional models, geodesics

in these spaces, projections of a model onto the geodesic, distances between trajectories in the prediction

space, etc.

1.2. Statement of Contributions

In Chapter 2, we introduce the concept of model manifold and tools from information geometry to analyze

the manifold. By examining the underlying high-dimensional probabilistic models, we reveal that the training

process explores an effectively low-dimensional manifold. Networks with a wide range of architectures and

sizes, trained using different optimization methods, regularization techniques, data augmentation techniques,

and weight initializations, lie on the same manifold in the prediction space. We study the details of this

manifold to find that networks with different architectures follow distinguishable trajectories, but other factors

have a minimal influence; larger networks train along a similar manifold as that of smaller networks, just

faster; and networks initialized at very different parts of the prediction space converge to the solution along a

similar manifold.

In Chapter 3, we explore a similar phenomenon happening in other learning systems like transfer, meta,

semi-, and self-supervised learning as they learn different sets of tasks. We found that the model manifold

is, again, effectively low-dimensional. This observation suggests that different tasks may also have a very

strong shared structure, and our method is capable of uncovering it. We also study the behavior of different

representation learning algorithms and find that (a) episodic meta-learning algorithms and supervised learning

traverse different trajectories during training, but they fit similar models eventually, (b) contrastive and

5

semi-supervised learning methods traverse trajectories similar to those of supervised learning, etc.

In Chapter 4, we investigate possible explanations for the low dimensionality observed in Chapter 2. Inspired

by prior studies on “hyperribbons” (Transtrum et al., 2011b), we study the eigenspectrum of the Fisher

Information Matrix of trained networks and find they have a “sloppy” eigenspectrum, where, after a sharp

initial drop, a large number of small eigenvalues are distributed uniformly over an exponentially large range.

We show this sloppiness may be coming from the data covariance structure, which tends to be sloppy across

common tasks in vision, language, and audio. We also show that this sloppy structure allows us to compute

non-vacuous generalization bounds analytically using PAC-Bayesian theory, providing supporting evidence

to the hypothesis that the sloppiness of inputs aids generalization in deep networks.

In Chapter 5, we study the model manifold explored by running gradient descent on a linear regression

problem. We identified three factors determining the effective dimensionality of this model manifold: the

training time, data sloppiness, and the ratio of initialization and the truth. These findings corroborate the

synthetic data experiments and the conjectures proposed in the appendix of Chapter 2. We then extend the

analysis to some variants of gradient descent on linear models, including stochastic gradient descent and

kernel methods. We end the chapter with a discussion on the implications of this analysis for practice.

In Chapter 6, we discuss directions for future work.

The material presented in this thesis comes from the following papers:

1. Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James

P. Sethna, and Pratik Chaudhari. The training process of many deep networks explores the same

low-dimensional manifold. Proceedings of the National Academy of Sciences, 121(12):e2310002121,

March 2024. doi: 10.1073/pnas.2310002121.

2. Rubing Yang, Jialin Mao, and Pratik Chaudhari. Does the data induce capacity control in deep learning?

In Proc. of International Conference of Machine Learning (ICML), 2022.

3. Rahul Ramesh, Jialin Mao, Itay Griniasty, Rubing Yang, Han Kheng Teoh, Mark K. Transtrum, James

P. Sethna, and Pratik Chaudhari. A picture of the space of typical learnable tasks. In Proceedings of

6

the 40th International Conference on Machine Learning, volume 202 of ICML’23, pages 28680–28700.

JMLR.org, July 2023.

4. Jialin Mao, Itay Griniasty, Yan Sun, Edgar Dobriban, Mark K. Transtrum, James P. Sethna, and Pratik

Chaudhari. An Analytical Characterization of Sloppiness in Neural Networks: Insights from Linear

Models. In preparation.

7

CHAPTER 2

THE MANIFOLD INDUCED BY THE TRAINING PROCESS OF NEURAL NETWORKS

2.1. Introduction

In this chapter, we introduce tools for analyzing and visualizing the trajectories of neural network training in

their prediction space. The key idea is to analyze the probabilistic model underlying deep neural networks

via their representation as probabilistic models as they are trained to classify images. In Section 2.2, we

develop techniques to analyze such high-dimensional probabilistic models and embed these models into

lower-dimensional spaces for visualization.

In Section 2.3, we first show, using experimental data (with NC ∼ 106 − 108), that the training process

explores an effectively low-dimensional manifold in the prediction space. The top three dimensions in our

embedding explain 76% of the “stress” (which is a quantity used to characterize how well the embedding

preserves pairwise distances) between probability distributions of about 150,000 different models with

many different architectures, sizes, optimization methods, regularization mechanisms, data augmentation

techniques, and weight initializations. In spite of this huge diversity in configurations, the probabilistic

models underlying these networks lie on the same manifold in the prediction space. This sheds new light

upon a key open question in deep learning, namely, how can training a deep network, with many millions of

weights, on datasets with millions of samples, using a non-convex objective, be feasible?

Next, we study the details of the structure of this manifold. We find that networks with different architectures

have distinguishable trajectories in the prediction space; in contrast, details of the optimization method and

regularization technique do not change the trajectories in the prediction space much. We find that a larger

network trains along a similar manifold as that of a smaller network with a similar architecture but it makes

more progress for the same number of gradient updates.

In Section 2.4, we discuss our findings in greater detail and propose possible explanations for the observed low

dimensionality. We continue in Section 2.5 to provide additional experimental details and discuss variations

of methods presented earlier (e.g., different intensive distances, embeddings using subsets of samples) and

8

include further experiments exploring the possible explanations proposed in Section 2.4.

2.2. Methods

To aid the reader, Section 2.5.1 collects all the notation in one place.

Models as probability distributions Consider a dataset {(xn, y∗n)}Nn=1 of N samples, each of which

consists of an input xn and its corresponding ground-truth label y∗n ∈ {1, . . . , C} where C is the number of

classes. Let y = (y1, . . . , yN) ∈ {1, . . . , C}N denote any sequence of outputs. If samples in the dataset are

independent and identically distributed, then the joint probability of the predictions can be modeled as

Pw(y) =
N∏

n=1

pnw(yn) (2.2.1)

where w are the parameters of the network and we have used the shorthand pnw(yn) ≡ pw(yn |xn). The

quantity in Equation (2.2.1) is the joint likelihood of all the labels given the weights. Observe that

Pw(y) ≡ p({(xn, yn)}Nn=1 ;w)

= p(x1, . . . , xN) pw(y1, . . . , yN |x1, . . . , xN)

(a)
= p(x1, . . . , xN)

N∏
n=1

pw(yn |x1, . . . , xN)

(b)
= p(x1, . . . , xN)

N∏
n=1

pw(yn |xn)

(c)
=

(
1

N

N∑
n=1

δxn(xn)

)
N∏

n=1

pw(yn |xn)

=
N∏

n=1

pw(yn |xn).

In this calculation, we have used the assumption that (a) predictions on two samples are independent of each

other given the weights and the input samples (if we marginalize on the weights, they are certainly dependent),

(b) we are performing inductive inference, i.e., p(yn |x1, . . . , xn) = p(yn |xn), and (c) the samples are frozen

to the ones in the training set for the analysis, i.e., the distribution p(x1, . . . , xn) ≡
(

1
N

∑N
n=1 δxn(xn)

)
= 1.

So we actually do not need to use the assumption that the training samples x1, . . . , xN are independent of

each other to write down the joint likelihood that factorizes over the samples in the training set. Certainly, if

9

the training samples are independent, then this derivation also holds. Let us note that training samples being

independent of each other is one of the most common assumptions in machine learning. This assumption is

used to derive, for instance, the maximum likelihood estimator in (Bishop et al., 1995, Equation 1.61).

The probability distribution in Equation (2.2.1) is N(C − 1)-dimensional object. Any network that makes

predictions on the same set of samples—irrespective of its architecture, the optimization algorithm and

regularization techniques that were used to train it—can be analyzed as a probabilistic model in this same

N(C − 1)-dimensional space; we will refer to this space as the “prediction space”.

Measuring distances in the prediction space We first mark two special points in the prediction space that

we will refer to frequently. The true probabilistic model of the data which corresponds to ground-truth labels

is denoted by P∗ = δy∗(y) where y∗ are ground-truth labels and δ is the Kronecker delta function. We will

call this the “truth”. Similarly, we will mark a point called “ignorance”: it is a probability distribution P0

that predicts pn0 (c) = 1/C for all samples n and classes c. Given two probabilistic models Pu and Pv with

weights u and v respectively, the Bhattacharyya distance per sample between them can be derived as follows

(note that y can take a total of CN distinct values, and each yn ∈ {1, . . . , C}):

dB(Pu, Pv)
.
= − 1

N
log
∑
y

√
Pu(y)

√
Pv(y)

= − 1

N
log
∑
y

N∏
n=1

√
pnu(yn)

√
pnv (yn)

= − 1

N
log
∑
y1

· · ·
∑
yN−1

N−1∏
n=1

√
pnu(yn)

√
pnv (yn)

(∑
yN

√
pNu (yn)

√
pNv (yn)

)
...

= − 1

N
log

N∏
n=1

∑
c

√
pnu(c)

√
pnv (c)

= − 1

N

∑
n

log
∑
c

√
pnu(c)

√
pnv (c).

(2.2.2)

Calculations like the one above hold in general, the joint entropy of two independent random variables is the

sum of their individual entropy. Just like the familiar cross-entropy loss used for training deep networks is an

average over the samples, the Bhattacharyya distance is also an average over the training samples.

10

In other words, the Bhattacharyya distance between two probabilistic models can be written as the average of

the Bhattacharyya distances of their predictive distributions pnu and pnv on each input xn. We can also use

other distances to measure the discrepancy between Pu and Pv, such as the symmetrized Kullback-Leibler

divergence (Teoh et al., 2020), or the geodesic distance on the product space. But many other distances (e.g.,

the Hellinger distance dH(Pw, P∗) = 2
(
1−

∏
n

∑
c

√
pnw(c)

√
pn∗ (c)

)
) saturate quickly as the number of

dimensions of the probability distribution grows, obscuring the intrinsic low-dimensional structures we seek.

This is because two high-dimensional random vectors are orthogonal with high probability. When the number

of samples N is large, distances such as the Bhattacharyya distance are better behaved due to their logarithms.

Measuring distances between trajectories in the prediction space Consider a trajectory (u(k))k=0,...,T in

the weight space that is initialized at u(0) and records the weights after each update made by the optimization

method during training. This corresponds to a trajectory τ̃u = (Pu(k))k=0,...,T in the prediction space. We

are interested in distances between trajectories in the prediction space. Different networks (depending

upon the initialization, architecture, and the training procedure) train at different speeds and make different

amounts of progress towards P ∗ after each epoch. This makes it problematic to simply use a distance like∑
k dB(Pu(k), Pv(k)) which sums up the distances between models at each instant k. To see why, observe

that such a distance between τ̃u and τ̃v := (u(0), u(2), u(4), . . . , u(2k), u(2k + 2), . . .) which progresses

twice as fast as τ̃u, is non-zero even if the two trajectories are intrinsically the same.

To better compare trajectories, we need a notion of time that allows us to index any trajectory in prediction

space. We shall measure progress along the trajectory by the projection onto the geodesic between ignorance

and truth. Geodesics are locally length-minimizing curves in a metric space. Our trajectories evolve on the

product manifold of the individual probability distributions in Equation (2.2.1). Geodesics in this space

using the Fisher Information Metric (FIM) (Amari, 2016) are a good candidate for constructing our index.

The FIM is realized by a simple embedding. For each n, consider a vector consisting of the square-root

of the probabilities (
√
pnu(c))c=1,...,C as a point on a (C − 1)-dimensional sphere. Therefore the geodesic

connecting two probability distributions Pu and Pv is the great circle on the sphere. A point along it with

interpolation parameter α ∈ [0, 1] denoted by Pα
u,v(y) =

∏
n p

n,α
u,v (yn) satisfies (Ito and Dechant, 2020,

11

Eq. 47) √
pn,αu,v =

sin ((1− α)dnG)
sin (dnG)

√
pnu +

sin (αdnG)
sin (dnG)

√
pnv ; (2.2.3)

where dnG = cos−1
(∑

c

√
pnu(c)

√
pnv (c)

)
is one half of the great circle distance between pnu(·) and pnv (·).

Any point Pw along a trajectory can be reindexed using “progress” that is defined as

sw = argmin
α∈[0,1]

dG(Pw, P
α
0,∗), (2.2.4)

where

dG(Pu, Pv) = N−1
∑

n cos
−1
∑

c

√
pnu(c)

√
pnv (c)

is the geodesic distance on the product manifold. Note that progress sw ∈ [0, 1] and it intuitively quantifies

the motion along the trajectory by projecting onto the geodesic connecting ignorance and truth.

Remark 2.2.1. (Relationship between progress and error) Progress is related to the error but they are not the

same. Suppose we have a model P that predicts very confidently, i.e., pn(c) ∈ {0, 1} for all c ∈ {1, . . . , C}

and all samples n. The progress of this model is given by

α∗ = argmin
α∈[0,1]

dG(P, P
α
0,∗)

= (1− ϵ) cos−1

(
sin((1− α)dnG)

sin(dnG)
cos(dnG) +

sin(αdnG)
sin(dnG)

)
+ ϵ cos−1

(
sin((1− α)dnG)

sin(dnG)
cos(dnG)

)

where ϵ = N−1
∑

n 1{argmaxc p
n
w(c) ̸= y∗n} is the fraction of errors made by the model on the N samples

and dnG = cos−1(1/
√
C) if there are C classes. We can show that if ϵ < 1−1/

√
C, then the progress α∗ = 1.

This suggests that progress and error are not directly analogous to each other: models with high progress do

not necessarily have small errors. In practice, if the number of samples N is small and the number of classes

is large, then we will find instances of models with high progress and high error. This is not often the case

in our experiments for the training data, but we do see very high progress for some models on the test data

(see Figure 2.7).

To find a point’s progress we solve Equation (2.2.4) using a bisection search (Brent, 1971).

12

We would now like to convert each trajectory τ̃u = (Pu(k))k=0,...,T into a continuous curve τu = (Pu(s))s∈[0,1]

and uniformly sample them for values of s between [0, 1]. To do this, we first calculate the progress su(k)

of all checkpoints along the trajectory τ̃u using Equation (2.2.4). For any s ∈ [su(k), su(k+1)], we can now

define α = (s− su(k))/(su(k+1)− su(k)) and calculate (using Equation (2.2.3)) the geodesically-interpolated

probability distribution Pα
u(k),u(k+1) that corresponds to this progress s on the trajectory of interest τ̃u. Finally,

we define the distance between trajectories τu and τv as

dtraj(τu, τv) =

∫ 1

0
dB(Pu(s), Pv(s))ds, (2.2.5)

which compares points on the trajectories at equal progress.

Embedding predictions into a lower-dimensional space for visualization We use a technique called

intensive principal component analysis (InPCA) (Quinn et al., 2019a; Teoh et al., 2020) which is closely

related to multi-dimensional scaling (MDS (Cox and Cox, 2008)) to project the predictions of the network

into a lower-dimensional space to visually inspect their training trajectories. For m probability distributions,

consider a matrix D ∈ Rm×m with entries Duv = dB(Pu, Pv) and

W = −LDL/2 (2.2.6)

where Luv = δuv − 1/m, and W is the centered version of D. An eigen-decomposition of W = UΛU⊤

where the eigenvalues are sorted in descending order of their magnitudes |Λ00| ≥ |Λ11| ≥ . . . allows us to

compute the embedding of the m probability distributions into an m-dimensional Minkowski space with

metric signature (p,m − p) derived from the p positive eigenvalues of W as Rp,m−p ∋ X = U
√
Λ1. In

standard PCA, the embedding is always Euclidean since the eigenvalues of W are guaranteed to be non-

negative. However, InPCA can have both positive and negative eigenvalues. Coordinates corresponding

to positive eigenvalues are analogous to “space-like” components in special relativity that have a positive-

squared contribution to the distance between two points. Coordinates corresponding to negative eigenvalues
1In special relativity, the axes corresponding to negative eigenvalues are often referred to as imaginary coordinates, and the

metric signature is replaced by (x, it) ·(x, it) = x2+ i2t2 = x2−t2. However, this is not the inner product ∥(x, it)∥ = x2+t2 over
the complex numbers. We define a space where the distance between “(1, i)” and the origin vanishes and therefore its embedding is
Rp,m−p and not Cm.

13

are “time-like” components in that they have a negative contribution to the distance between two points. One

can think of the coordinates with negative eigenvalues as being imaginary axes in the embedding. Space-like

and time-like coordinates can give rise to “light-like” directions along which the distance between two

visually different points is zero.

The key property of InPCA that we exploit in this paper is that its embedding is isometric, i.e.,

∥Xu −Xv∥2 = dB(Pu, Pv) ≥ 0 (2.2.7)

for embeddings Xu, Xv ∈ Rp,m−p of two probability distributions Pu and Pv and the norm in Minkowski

space is

∥Xu −Xv∥2 =
m∑
k=1

sign(Λkk)|Xuk −Xvk|2,

see Section 2.5.3.1 for a proof. Like PCA, InPCA generates an optimal embedding of a geometrical object

with a fixed number of points, preserving long-distance structures. Such an isometric embedding is different

from the one created by methods like t-SNE (Van der Maaten and Hinton, 2008) or UMAP (McInnes et al.,

2018) which approximately preserves local pairwise distances but distorts the global geometry. All the

analysis in this paper is conducted using the full pairwise Bhattacharyya distance matrix D. In contrast with

t-SNE or UMAP, the isometric embedding in InPCA ensures that the visualization is consistent with our

conclusions (up to the fact that we only visualize the top few dimensions). For a d < m dimensional InPCA

embedding, the fraction of the centered pairwise distance matrix W that is preserved is

1−
√∑

ij(Wij−
∑d

k=1

√
ΛkkUik

√
ΛkkUkj)

2∑
ij W

2
ij

= 1−
√∑m

k=d+1 Λ
2
kk∑

i Λ
2
ii

; (2.2.8)

which is similar to the explained variance for standard PCA. Following the MDS literature, we call this

quantity “explained stress”. In this paper, we embed predictions of m ~ 103–105 models with NC ~ 106–108

using InPCA. This is very challenging computationally. Implementing InPCA—or even PCA—for such large

matrices requires a large amount of memory. We reduced the severity of this issue using Numpy’s memmap

functionality. Note that calculating only the top few eigenvectors of Equation (2.2.6) by magnitude suffices

for the purpose of visualization.

14

Adding new networks into an existing embedding Given the embedding of predictions of m networks, we

can project the prediction of a new network into the same space. Observe that we can rewrite Equation (2.2.6)

to be

Wuv = −dB(Pu, Pv)

2
+ 1

2m

∑
u′
(
dB(Pu, Pu′) + dB(Pv, Pu′)− 1

m

∑
v′ dB(Pu′ , Pv′)

)
; (2.2.9)

where u′, v′ ∈ {1, . . . ,m}. The embedding of a new probability distribution Pw into this space is Xw =∑n
u=1Ww,uUu|Λuu|−1/2; where Uu denotes the uth column of U . This is equivalent to a triangulation of

the position of the added points, such that distances and the overall geometry are preserved. Although we

do not do so in this paper, this procedure can also be used to embed a large set of points by computing the

eigen-decomposition for only a subset, e.g., as done in De Silva and Tenenbaum (2004).

Computing averages in the prediction space For our analysis, we will need to compute averages of the

predictions of probabilistic models, e.g., of the same architecture but trained from different initializations.

Depending upon what distance we use in the prediction space, there can be different ways to compute such

an average. The most natural candidate is the Bhattacharyya centroid of a set of m probability distributions

{Pi}mi=1 given by argminPw
m−1

∑
i dB(Pi, Pw) (Nielsen and Boltz, 2011). In this paper, we will need to

compute such averages thousands of times. For computational convenience, we will instead use the arithmetic

mean of the probabilities m−1
∑

u p
n
u(c) for all n, c as our average, which we have found to produce similar

results in preliminary experiments, which discusses the effect of different kinds of averaging. We have found

that the harmonic mean of an ensemble of probabilistic models performs slightly better on the test data in

comparison to their arithmetic mean, which is commonly used in machine learning.

2.3. Results
1For CIFAR-10, some configurations had models that did not get to zero train error, and in very few cases, models had 90% train

error. For ImageNet, all networks were trained with standard data augmentation techniques and they do not reach zero training error.

15

Table 2.1: Median (and 25–75 percentile on the second row) train and test error (%) of different architectures
(with number of parameters in the brackets) used in our analysis, averaged over different optimization
methods, regularization techniques and weight initializations.

CIFAR-10
Fully-Connected AllCNN Small ResNet Large ResNet ConvMixer ViT

(3.8M) (0.4M) (0.3M) (43.9M) (0.6M) (9.5M)

Train Error 1.5 0.1 0.6 0.0 0.0 0.3

(0.0, 4.4) (0.0, 0.5) (0.0, 2.3) (0.0, 0.0) (0.0, 0.0) (0.0, 18.6)

Test Error 39.7 15.4 17.6 9.6 11.7 32.7

(38.1, 41.9) (11.7, 20.3) (12.5, 21.5) (6.5, 11.2) (9.9, 16.8) (21.7, 36.2)

ImageNet
ResNet-18 ResNet-50 ViT-S

(11.6M) (25.6M) (22M)

Train Error 22.7 15.8 16.6

(22.5, 22.7) (15.8, 15.8) (15.1, 16.9)

Test Error 31.9 25.2 41.5

(31.8, 31.9) (25.1, 25.3) (41.3, 42.2)

Experimental Data 2

We trained 2,296 different configurations on the CIFAR-10 dataset (Krizhevsky, 2009) corresponding to net-

works 3 with different (a) network architectures (fully-connected, convolutional: AllCNN (Springenberg et al.,

2015), residual: Wide ResNet (Zagoruyko and Komodakis, 2016), and ConvMixer (Trockman and Kolter,

2022), self-attention-based: ViT (Dosovitskiy et al., 2020)), (b) network sizes (a small residual network

and a large residual network), (c) optimization methods (SGD, SGD with Nesterov’s acceleration and

Adam (Kingma and Ba, 2015)), (d) hyper-parameters (learning rate and batch-size), (e) regularization mech-

anisms (with and without weight-decay (Ioffe and Szegedy, 2015)), (f) data augmentation (mean-standard

deviation-based normalization, and another one where we add horizontal flips and random crops) and (g)

random initializations of weights (using 10 different random seeds). We recorded the training trajectories at

about 70 different points during training (more frequently at the beginning of training when the models train

quickly). This gave us 151,407 different models, after removing some models that did not train correctly due

to numerical overflows/underflows during gradient updates.
2Data, pre-processing scripts, and code are available at https://github.com/grasp-lyrl/low-dimensional-deepnets
3In the sequel, “network” denotes a particular configuration with a specific architecture, optimization method, regularization

technique, hyper-parameter choice, data-augmentation, and weight initialization. “Model” denotes a probability distribution along
the training trajectory of such a network.

16

https://github.com/grasp-lyrl/low-dimensional-deepnets

We also performed a smaller scale experiment on ImageNet using (a) three different architectures (a small

residual network: ResNet-18 (He et al., 2016), a larger residual network ResNet-50, and a self-attention-based

network: ViT), (b) different optimization algorithms (SGD with Nesterov’s acceleration for the residual

networks, and a variant of Adam for ViT (Heo et al., 2021)), (c) 5 random weight initializations for the

residual networks and 3 for the ViT. We recorded each training trajectory at 61 different points to obtain a

total of 792 different models for ImageNet.

Table 2.1 summarizes the train and test errors of models used in our analysis. Section 2.5.2 gives more details

of the training procedure. About 60,000 GPU hours were used to obtain and analyze the data in this paper.

The training process explores an effectively low-dimensional manifold in the prediction space

Figure 2.1a shows the first three dimensions of the InPCA embedding of the probabilistic model in Equa-

tion (2.2.1) computed over samples in the training set. Each point corresponds to one model (i.e., one

architecture, optimization algorithm, hyper-parameters, regularization, weight initialization and a particular

checkpoint along the training trajectory) and is colored by the architecture. The explained stress Equa-

tion (2.2.8) of the first three dimensions is 76% as shown in Figure 2.1b; it increases to 98% within the

first 50 dimensions. The prediction space for CIFAR-10 has 4.5 × 105 dimensions (N = 5 × 104 and

C = 10); the rank of the distance matrix in InPCA is at most 151,407. For ImageNet, all networks are

trained on the entire training set (N = 1.28× 106) but we use a subset of the training samples (N = 50, 000)

across C = 103 classes to calculate the embedding (i.e., the prediction space has 4.995× 107 dimensions).

For ImageNet, nearly 84% of the explained stress is captured by the top three components of the InPCA

embedding Figure 2.1d; this increases to 96% in the top 50 dimensions. The fact that so few dimensions

capture such a large fraction of the stress suggests that in spite of the huge diversity in the configurations

of these networks, they all explore an effectively low-dimensional manifold in the prediction space during

training.

Ignorance is marked by P0. The truth P∗ is off the edge of the plot (see Figure 2.2b). The black curve

denotes the embedding of the geodesic between P0 and P∗ calculated using Equation (2.2.3). Typical weight

initialization schemes initialize models near P0 irrespective of the configuration. Towards the end of training,

17

(a)

102

103

104
0.40

0.76

0.86

0.94

0.98

Explained
 Stress

(b) (c)

(d)

10
1

10
0

10
1

10
2

0.69

0.84

0.94
0.96
0.96

Explained
 Stress

(e)

Figure 2.1: The manifold of models along training trajectories of networks with different configurations
(architectures denoted by different colors, optimization algorithms, hyper-parameters, and regularization
mechanisms) is effectively low-dimensional for (a) CIFAR-10, and (d) ImageNet. Different configurations
train along similar trajectories but are quite different from the geodesic between ignorance P0 and truth
P∗ (not seen here). The manifold is hyper-ribbon-like (Transtrum et al., 2011b): eigenvalues of the InPCA
distance matrix Equation (2.2.6) for CIFAR-10 (b) and ImageNet (e) are spread over a large range with the
top few dimensions capturing a large fraction of the stress Equation (2.2.8) (numbers indicate explained
stress in the top 1, 3, 10, 25 and 50 dimensions). Time-like coordinates corresponding to negative InPCA
eigenvalues are red. (c): a pairwise comparison for the first three principal components, note that PC2 is
time-like (same data as (a)). In (a,d), we have drawn smooth curves denoting trajectories by hand to guide
the reader.

18

models that trained well are close to the truth P∗ in terms of the Bhattacharyya distance. Note that if the truth

P∗ has probabilities that are either zero or one (which is the case in our experiments), then the Bhattacharyya

distance is one half of the cross-entropy loss used for classification. In this large prediction space, training

trajectories of different configurations could be very diverse; on the contrary, not only do they all lie on an

effectively low-dimensional manifold but trajectories of different configurations appear remarkably similar to

each other. Sub-manifolds corresponding to each configuration seem to be rather similar; we will analyze this

quantitatively in Figure 2.6a. For now, we note that probabilistic models learned by different architectures,

training, and regularization methods, are very similar to each other—not only at the end of training when

they fit the data but also along the entire training trajectory.

All trajectories seem to take a different path than the geodesic (shortest distance) path between P0 and P∗.

However, the geodesic is also largely captured by the top few dimensions of InPCA. Along the geodesic, all

samples are trained towards the truth at the same rate, and so all models on it have zero training error. The

deviation of paths away from the geodesic may reflect the learning of easy images early and confusing ones

late, perhaps due to first-order gradient-based methods. We explore this further in Figures 2.17a and 2.17b.

The geodesic corresponds to the trajectory of natural gradient descent (Amari, 1998a), which is not a first-

order method. That the geodesic is faithfully represented in the low-dimensional embedding suggests that the

low dimensionality observed in Figure 2.1a is not a direct consequence of using gradient-based algorithms.

All these observations also hold for networks trained on ImageNet. Note that in this case, the top three

eigenvalues of InPCA are all positive; we have noticed this to be the case when the number of models

embedded is small. The manifold of all trajectories is still effectively low-dimensional. Sub-manifolds

spanned by ViTs and ResNets appear different from each other while sub-manifolds of the smaller and larger

ResNet are quite similar; we will see in Figure 2.6a that architectures are the primary distinguishing factors

of different training trajectories. In this case, all three architectures are quite different from the geodesic.

Training trajectories do not end as close to truth P∗ as those of CIFAR-10; for ImageNet, the trajectories end

at a progress Equation (2.2.4) close to 0.9. This should not be surprising because typically networks trained

on ImageNet do not achieve zero training error (zero training error can be achieved but they perform very

poorly on the test data).

19

0.0 1.15
PC2

0.0

0.7

-0.8

PC
1

(a) (b)

(c) (d)

Figure 2.2: Comparison of the top two principal components of an InPCA embedding of all models on
CIFAR-10 colored by the architectures (a) (same as Figure 2.1c), train loss (b), which is two times the
Bhattacharyya distance dB(P, P∗) for classification tasks like ours, train error in (c), and by whether they
are within a Bhattacharyya distance < 0.15 from models marked A, B, and C on the geodesic in (d). These
figures are discussed in the narrative and should be studied together with Figure 2.1c.

20

Characterizing the details of the train manifold Figure 2.2a shows a pairwise comparison for the first

three principal components of InPCA (same data as that of Figure 2.1a). Qualitatively, the first principal

component, which is space-like, distinguishes models according to their distance to the truth P∗ (i.e., half of

the cross-entropy loss). The second principal component, however, is time-like because the second eigenvalue

of InPCA is negative; shown in red in Figure 2.1. The third principal component is again space-like. All

models that train well have small Bhattacharyya distances to the truth P∗ towards the end of training; they

also have small errors (zero in almost all cases). But these probabilistic models are different from each

other, and they are also different from the truth P∗. Our visualization technique is emphasizing these subtle

differences using all coordinates, including the imaginary coordinate corresponding to the negative eigenvalue.

Figure 2.2b shows the train loss of all models (colored by purple for small, yellow for large). Even if the

truth looks far away from them visually (> 4 in a Euclidean sense), models colored purple in Figure 2.2b

have small distances from the truth dB(Pw, P∗) < 0.2; incidentally their Minkowski distance to the truth in

the top three coordinates is negative.

In Figure 2.2b, the spread of points (yellow) near P0 consists of some models that have 90% error (same as

that of ignorance). There are 1500 such points, coming from 370 different trajectories (over 85% of points

are from 145 trajectories). Over half of these high error deviating networks (see Figure 2.3b) eventually

trained to zero error. These models have the same error as that of ignorance P0 but the visualization method

distinguishes them from ignorance because their probabilities are not uniform. The spread of the points in

the visualization in this case is therefore coming from differences in the probabilities. These models can

be brought back to the manifold of good training trajectories simply by training them further. Now notice

the points colored purple in Figure 2.2d. These models have a large Bhattacharyya distance (> 0.15) from

points marked A,B or C on the geodesic (which corresponds to progress of 0.01, 0.5 and 0.99 respectively).

Figure 2.2c shows that these models also have very different errors from each other. This spread of points

away from the manifold is therefore also coming from large differences in the probabilities.

Now notice the blue cluster of models (ConvMixer) in Figure 2.2a; as Figure 2.2d shows, the distance of

a bulk of these ConvMixer models to point A is small (< 0.1). And Figure 2.2c suggests that these models

have error < 10% (some also have larger errors). In this region, the spread of the points in the visualization is

21

ConvMixer Fully
Connected

ViT Small
ResNet

Large
ResNet

AllCNN0

200

400

600 sgd
sgdn
adam

(a)

5 10 15 25 50 75 100 150 >150
Epochs

0

100

200

300 sgd
sgdn
adam

(b)

Figure 2.3: Number of models P with dB(P, P∗) > 2 (that are away from the main manifold) stratified by (a)
architectures and (b) the number of epochs.

coming predominantly from the small differences in the probabilities.

Figure 2.3a studies models that are away from the manifold, with dB(P, P∗) > 2 (yellow in Figure 2.2b). For

ConvMixer and the two residual networks, a majority of these models were trained by Adam. No AllCNN

models were away from the manifold. Figure 2.3b stratifies these models by the optimization algorithm. In

early stages of training, these are networks trained with SGD or SGD with Nesterov’s acceleration with large

batch-sizes (more than 500); this accounts for about 35% of the models. Adam is primarily responsible for

models that are away from the manifold at later stages of training (about 55% of the points). We speculate

that this could be related to poorer test errors of Adam than SGD for image classification tasks.

The manifold of predictions on the test data is also effectively low-dimensional, with more significant

differences among architectures

Figure 2.4a shows the first three dimensions of the InPCA embedding of predictions on the test data using the

same networks as that of Figure 2.1a. The explained stress of the first three dimensions is still high (63%)

and it increases to 95% within the first 50 dimensions; these numbers are smaller than those for the training

data. For CIFAR-10, the prediction space has 9× 104 dimensions (N = 104 and C = 10) and for ImageNet

the prediction space has 4.995× 107 dimensions (N = 50, 000 and C = 1000). This suggests that in spite

of the vast diversity in configurations of these networks, their trajectories in the prediction space of the test

samples also lie on an effectively low-dimensional manifold.

The test manifold is broadly similar to the train manifold in Figure 2.1a. Trajectories begin near ignorance

22

(a)

103

104
0.27

0.63

0.78

0.88

0.95

Explained
 Stress

(b) (c)

(d)

10
1

10
0

10
1

10
2

0.65

0.84

0.93
0.95
0.96

Explained
 Stress

(e)

Figure 2.4: Predictions on the test data of networks with different configurations (architectures denoted
by different colors, different optimization algorithms and regularization mechanisms) on CIFAR-10 in
(a) and on ImageNet in (d) is also effectively low-dimensional. Trajectories of different architectures are
distinctive on the test data. Test manifold is also hyper-ribbon-like: eigenvalues of the InPCA distance
matrix Equation (2.2.6) for CIFAR-10 (b) and ImageNet (e) are spread over a large range and the top few
dimensions capture a large fraction of the stress Equation (2.2.8) (numbers indicate explained stress in the
top 1, 3, 10, 25 and 50 dimensions. (c) shows a pairwise comparison for the first three principal components
for CIFAR-10 models. PC1-PC2 of Figure 2.1c look quite similar to those of (c). In (a,d), we have drawn
smooth curves denoting trajectories by hand to guide the reader.

23

(dB(P, P0) < 0.6 at the start of training) but they do not always end near P∗. This is expected because

different architectures have different test loss/errors at the end of training. The Bhattacharyya distance to the

truth is one half of the test cross-entropy loss; models with poor test loss should be farther from P∗ than those

with a small test loss. Bhattacharyya distances of the end points of trajectories are as large as 0.58 for the test

manifold compared to 0.02 for the train manifold after excluding models with train error > 10%.

Trajectories of different configurations seem to be more dissimilar in Figure 2.4a than those in Figure 2.1a;

networks of different architectures have more distinctive test trajectories. We have analyzed these differences

quantitatively in Figure 2.19a. But it is remarkable that even if different architectures have quite different

trajectories, different models with the same architecture predict similarly on the test data. In other words,

all fully-connected networks make the same kind of mistakes, and all convolutional networks are correct on

generally the same samples. For fully-connected networks and ViTs, we see two different test trajectories

corresponding to the two kinds of data augmentation techniques. For convolutional architectures, there are

minor differences in test trajectories due to augmentation. This could be because we used randomly cropped

images for augmentation: convolutional networks are relatively insensitive to random crops because their

features have translational equivariance.

Section 2.5.4.2 provides a detailed analysis of the test trajectories.

Embedding probabilistic models along train and test trajectories into the same space So far, we have

analyzed train and test manifolds independently of each other. Indeed, probabilistic models Equation (2.2.1)

corresponding to train and test data belong to different sample spaces, even if the two were created from the

same underlying weights. It is however useful to visualize the two manifolds in the same space to understand

how progress towards the truth in the train space results in progress towards the truth in the test space.

We first computed InPCA coordinates using probabilistic models on train data, let us denote one such model

with weights u as Pu. We then used the procedure developed in Equation (2.2.9) to embed test models into

24

(a)

2 4 6 8 10
Dimensions

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ex
pl

ai
ne

d
Pa

irw
ise

 D
ist

an
ce

N = 50
N = 500
N = 5000
Original

(b)

Figure 2.5: (a): A joint embedding of a subset of networks on CIFAR-10 using their predictions on samples
from both the train (bold) and test (translucent) sets. (b): the explained pairwise Bhattacharyya distances
computed using Equation (2.4.2) is quite high for models on the train data after embedding them into an
InPCA embedding computed using a small number of samples (N = 5000, N = 500, and N = 50) in the
train data. Section 2.5.3.3 discusses this further.

these coordinates as follows. Let us denote by P ′
u the model on the test data for the same weights u. Calculate

W ′
uv = −dB(P

′
u, P

′
v)

2
+

1
2m

(∑
u′ dB(Pu, Pu′) + dB(Pv, Pu′)− 1

m

∑
v′ dB(Pu′ , Pv′)

)
;

(2.3.1)

for all models Pu and Pv. The first term is the distance between two test models but the second term is

computed using only train data and is the same as that of Equation (2.2.9). The embedding of a test model P ′
w

is set to be X ′
w =

∑n
u=1W

′
w,uUu|Λuu|−1/2 using the eigenvectors and eigenvalues of the train embedding.

The procedure in Equation (2.2.9) was intended to embed new models of the same set of samples into an

existing embedding. This present, somewhat peculiar, trick works when the number of train models and the

number of test models are the same (which is the case for us), and when the second term in Equation (2.3.1)

is close to its counterpart in Equation (2.2.9) (which is expected if there is self-averaging).

We first built an InPCA embedding using the train models and then used the procedure in Equation (2.3.1) to

calculate the coordinates of the test models and obtained Figure 2.5a. Observations drawn from this procedure

25

are qualitatively the same as those from Figures 2.1 and 2.4, e.g., train and test trajectories of different

architectures still lie on similar manifolds, test trajectories of AllCNN, ConvMixer and Small ResNet are

close to each other, and test trajectories of Fully-Connected and ViT architectures are far from the others. The

explained pairwise distances for the test models using the InPCA coordinates computed from the train models

are also consistent with those obtained from embedding the test models independently like Figure 2.4a; 0.52

versus 0.56 in the top 10 dimensions, respectively. This indicates that pairwise distances in the test data are

well-preserved by the InPCA coordinates constructed using pairwise distances on the train data. When two

models differ on the train data, they also differ in a similar way on the test data.

We also built a new InPCA embedding using pairwise Bhattacharyya distances in Equation (2.2.2) calculated

using only a subset of the samples. Figures 2.5b, 2.13 and 2.14 show the result of using the procedure

in Equation (2.3.1) to project the original distance matrix into the coordinates of this new InPCA. The

explained pairwise distance of the original checkpoints is consistently quite high, even when as few as

N = 50 or N = 10 samples are used to calculate the embedding out of the 50,000 and 10,000 samples for

train and test sets respectively. This suggests that our techniques for analysis of high-dimensional models can

also be used on very large datasets. For ImageNet, where C = 1000, we have also noticed that the InPCA

embedding looks similar if we first project the output probabilities into a smaller space by multiplying by a

random matrix (with columns that sum up to 1).

Architectures—not training or regularization schemes—primarily distinguish training trajectories in

the prediction space

For all networks that trained to zero error, we interpolated the checkpoints from their trajectories to get

models along the training trajectory that are equidistant in terms of their progress (Equation (2.2.4)) towards

the truth P∗. Using these interpolations, we calculated the distance between trajectories corresponding to

different configurations using Equation (2.2.5), averaged over the weight initializations. Figure 2.6a shows a

dendrogram obtained from a hierarchical clustering of these distances. Clusters identified from this analysis

primarily correspond to different architectures (row colors match those in Figures 2.1a and 2.4a). The

cluster of trajectories of networks with convolutional architectures has a diameter that is about as large as the

cluster of trajectories of fully-connected and self-attention-based networks (about 0.1 pairwise Bhattacharyya

26

sgdn
sgdn
sgdn

sgd
sgd

sgdn
sgdn

adam
adam
adam
adam
adam
adam
adam
adam
adam
adam

sgd
sgd

adam
sgdn

adam
sgd
sgd

adam
adam
sgdn
sgdn
sgdn

sgd
sgd

adam
adam
adam
adam

sgd
sgd
sgd
sgd

sgdn
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
sgdn

sgd
sgd

adam
sgdn
sgdn

sgd
sgd
sgd

adam
sgd

adam
adam
adam

sgd
sgdn
sgdn
sgdn
sgdn
sgdn

geodesic
sgdn

sgd
sgd
sgd

sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn

sgd
sgd
sgd
sgd

sgdn
sgdn
sgdn

sgd
sgd

sgdn
sgdn
sgdn

adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam

sgd
sgd
sgd
sgd
sgd
sgd

adam
adam

sgd
sgd

adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam

sgd
sgd
sgd
sgd

sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn

sgd
sgdn
sgdn

sgd
sgd

adam
adam
adam
adam
adam
adam

sgd
sgd
sgd

adam
adam
adam
adam
adam
adam

sgd
sgdn

sgd
sgdn

sgd
sgd
sgd

sgdn
sgdn
sgdn
sgdn

adam
sgdn

sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd

sgdn
sgdn

sgd
sgd

adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam

sgd
sgd

sgdn
sgdn

adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
sgdn

adam
adam
adam

1000
1000
1000
1000
1000

500
200

1000
1000

500
500
500
500
200
200
200
200
200
200
200
200
200
500
500

1000
1000

500
500
200

1000
500
200
200
200
200
200
200
500

1000
500

1000
500
500
500
500

1000
1000
1000

200
200
200
500
200
200
200
200
500
200
200
200
500
200
200
200

1000
1000
1000

500
500

1000
na

1000
500

1000
1000
1000

500
500

1000
500
500

1000
200
200
500
500
200
200
200
500
500

1000
500
200

1000
1000

500
500
200
200
200
200
200
500
500

1000
1000

200
500
200
200
500

1000
1000
1000
1000
1000

500
500
500

1000
1000

200
200
200
200
200
500
500
200
200
200
500

1000
200
500

1000
1000

500
200
500
200

1000
500
200
200
200
200
200
200
200
200
200
200
500
200
200
200
200
200
200
200
200
500
200

1000
200

1000
200
200
500
500

1000
1000
1000

500
1000
1000

500
500
500
500

1000
1000

200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200

1000
1000
1000
1000
1000
1000

500
500
500
500
500
500
500
500
500

1000
500
500

0.5
0.5
0.5
0.5
0.5

0.25
0.1

0.0025
0.0025
0.0025
0.0025

0.00125
0.00125

0.0005
0.0005

0.001
0.001

0.1
0.1

0.0005
0.1

0.001
0.25
0.25

0.005
0.005

0.25
0.25

0.1
0.5

0.25
0.0005

0.001
0.001

0.0005
0.1
0.1

0.25
0.5

0.25
0.005

0.0025
0.00125
0.00125

0.0025
0.0025
0.0025

0.005
0.0005
0.0005

0.1
0.25

0.1
0.0005

0.1
0.1

0.25
0.1
0.1

0.0005
0.25

0.0005
0.0005

0.001
0.5
0.5
0.5

0.25
0.25

0.5
na

0.5
0.25

0.5
0.5
0.5

0.25
0.25

0.5
0.25
0.25

0.5
0.1
0.1

0.25
0.25

0.1
0.1
0.1

0.25
0.25

0.5
0.25

0.1
0.005
0.005

0.0025
0.0025

0.001
0.001

0.0005
0.0005
0.0005

0.00125
0.00125

0.0025
0.0025

0.001
0.25

0.1
0.1

0.25
0.5
0.5

0.005
0.005

0.5
0.25

0.0025
0.0025
0.0025
0.0025

0.001
0.001

0.0005
0.0005
0.0005

0.00125
0.00125

0.001
0.1
0.1

0.25
0.5
0.1

0.25
0.5
0.5

0.25
0.1

0.25
0.1
0.5

0.25
0.1
0.1
0.1
0.1

0.001
0.001

0.0005
0.0005
0.0005

0.001
0.25

0.1
0.1

0.001
0.001

0.0005
0.0005
0.0005

0.001
0.25

0.1
0.5
0.1
0.5
0.1
0.1

0.25
0.25

0.5
0.5

0.005
0.25

0.5
0.5

0.25
0.25
0.25
0.25

0.5
0.5
0.1
0.1
0.1
0.1

0.001
0.001

0.0005
0.0005
0.0005

0.001
0.001

0.0005
0.0005
0.0005

0.001
0.001

0.1
0.1
0.1
0.1

0.005
0.005

0.0025
0.0025
0.0025
0.0025

0.00125
0.00125

0.0025
0.0025
0.0025
0.0025

0.00125
0.00125

0.25
0.005

0.00125
0.00125

0.0
0.001
0.001
0.001

0.0
0.001
0.001

0.0
1e-05
1e-05

0.0
1e-05

0.0
1e-05

0.0
0.0

1e-05
0.001

0.0
0.001

0.0
0.001

0.0
0.001
1e-05

0.0
0.0
0.0
0.0
0.0
0.0

1e-05
1e-05

0.0
0.0
0.0

0.001
0.001
0.001
0.001

0.0
1e-05
1e-05

0.0
0.0
0.0

1e-05
1e-05

0.0
1e-05

0.0
0.0
0.0

0.001
0.001

0.0
0.0
0.0

0.001
0.001
0.001
1e-05

0.0
0.001

0.0
0.0

0.001
0.001
0.001
0.001

na
0.001
0.001

0.0
0.001

0.0
0.0
0.0
0.0

0.001
0.001
0.001
0.001

0.0
0.0

0.001
0.001

0.0
0.0
0.0

0.001
0.001
0.001
0.001
1e-05

0.0
1e-05

0.0
1e-05

0.0
0.001
1e-05

0.0
0.0

1e-05
0.0

1e-05
0.001
0.001
0.001

0.0
0.0

0.001
0.0
0.0

1e-05
0.0
0.0

1e-05
0.0
0.0

1e-05
1e-05

0.0
0.001

0.0
1e-05

0.0
1e-05
0.001
0.001

0.0
0.001
0.001
0.001
0.001
0.001

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.001
0.0

0.001
0.0
0.0

1e-05
0.0

1e-05
0.001
0.001
0.001
0.001

0.0
1e-05

0.0
0.0

1e-05
0.001
0.001

0.0
0.0
0.0

0.001
0.001

0.0
0.001
0.001
0.001

0.0
0.0
0.0
0.0
0.0

0.001
0.0

0.001
0.001

0.0
0.001

0.0
0.001
0.001

0.0
0.001
1e-05

0.0
0.0

1e-05
0.001
0.001
0.001
0.001
1e-05

0.0
0.0

1e-05
0.001

0.0
0.0
0.0
0.0

1e-05
0.0

1e-05
0.0

1e-05
0.0

1e-05
1e-05

0.0
0.0

1e-05
1e-05

0.0
0.0

1e-05
0.0

1e-05

none
none

simple
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none
none
none
none
none
none
none
none
none
none

simple
none
none

simple
simple

na
none
none
none
none

simple
simple

none
none
none

simple
simple

none
none
none
none
none
none

simple
simple
simple

none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none
none
none
none
none
none
none
none
none
none
none
none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none

simple
simple
simple

none
none
none
none

simple
simple
simple
simple
simple

none
none
none
none
none
none
none
none
none

simple
simple
simple
simple
simple
simple
simple
simple

none
simple

none
none
none
none

simple
simple
simple
simple
simple
simple

none
none
none
none
none

simple
none
none

0.00 0.05 0.10 0.15 0.20 0.25 0.30
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc

vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
fc

convmixer
convmixer
convmixer
convmixer

geodesic
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8

wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64

allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn

wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8

wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
wr-10-4-8
wr-10-4-8

Arch Opt BS LR WD Aug

(a)

(b)

0.00 0.01 0.02 0.03
Feature Importance

Architecture

Batch Size

Optimizer

Augmentation

Weight Decay

(c)

Figure 2.6: (a): dendrogram obtained from hierarchical clustering of pairwise distances (averaged over
weight initializations) between training trajectories (computed using Equation (2.2.5)) of networks with
different configurations (X-labels correspond to architecture, optimization algorithm, batch-size, learning
rate, weight-decay coefficient and augmentation strategy). There are strong similarities in how networks
with different architectures, optimization algorithms and regularization mechanisms learn. (b): the first two
components of an InPCA embedding (without averaging over weight initializations) of train trajectories, each
point is one trajectory; explained stress of top two dimensions is 63.6%. (c): variable importance from a
permutation test (p < 10−6) using a random forest to predict pairwise distances. These three plots suggest
that architecture is the primary distinguishing factor of trajectories in the prediction space. Test trajectories
exhibit similar patterns (see Figure 2.19).

27

distance on average between models on these trajectories that have the same progress). This points to a

strong similarity in how networks with different architectures, optimization algorithms, hyper-parameters,

regularization and data augmentation techniques learn. Fully-connected and self-attention-based networks

train along different trajectories than networks with convolutional architectures. The geodesic is far from all

trajectories.

Within a cluster, say fully-connected networks (green), there are only marginal differences between different

configurations, e.g., different optimization methods, different batch-sizes, weight-decay vs. no weight decay,

augmentation vs. no augmentation. The dendrogram is created using distances between entire trajectories. So

this analysis suggests that training trajectories of most fully-connected networks are similar. This pattern

largely holds for the other architectures also. Small vs. large residual networks (orange vs. yellow respectively)

have similar training trajectories; Figure 2.8 shows that the larger network progresses faster towards P∗.

Optimization (i.e., the algorithm and the batch-size) is the second prominent distinguishing factor. Within

clusters of different architectures, networks trained with the same optimization algorithm have similar

trajectories. In particular, for convolutional architectures, trajectories of Adam are more similar to each

other than those of SGD or SGD with Nesterov’s acceleration. We do not see such a separation for non-

convolutional architectures where different optimization algorithms lead to similar trajectories (for them,

differences come from data augmentation techniques). The details of different optimization algorithms matter

little, e.g., trajectories of networks trained with different learning rate and batch-sizes are quite similar to each

other. In general, networks that use weight-decay and networks that do not use weight-decay have similar

trajectories. In general, for all architectures, networks trained with augmentation and without augmentation

have only marginally different trajectories in the prediction space.

In Figure 2.6b, we computed an InPCA embedding of the pairwise distances between trajectories corre-

sponding to different configurations (without averaging across weight initializations). This gives a qualitative

understanding of the dendrogram: clusters of InPCA are consistent with the clusters in the dendrogram. While

an InPCA embedding of the pairwise distances between models in Figure 2.1c depicts a low-dimensional

manifold, Figure 2.6b illustrates differences in how different configurations train, in particular architectures.

This is also evidence that our techniques can also be used to understand entire trajectories in the prediction

28

0.0 0.5 1.0
Training Error

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

0.0 0.5 1.0
Test Error

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

Figure 2.7: Progress of models with different configurations (color scheme is same as that of Figure 2.1a) is
strongly correlated with (a) train error (R2 = 0.95), and (b) test error (R2 = 0.88).

space. We built a random forest-based predictor of the distance between trajectories of two configurations

using their distance to the geodesic (real-valued covariate) and their configuration (categorical covariate) as

inputs. A permutation-test performed using the random forest to estimate variable importance in Figure 2.6c

confirms our discussion above: architecture is the most important distinguishing factor of these trajectories

and optimization (batch-size, training algorithm) is the next important factor.

Section 2.5.4.1 provides a more detailed analysis of the train trajectories. For all architectures, optimization

algorithms and regularization mechanisms, networks with different weight initializations train along very

similar trajectories in the prediction space. We quantify this phenomenon using “tube widths” which capture

the differences between models corresponding to different weight initializations at the same progress. Train

trajectories are close to the geodesic at early (because they begin near P0) and late parts (because they end

near P∗) of the training process. While test trajectories also begin near ignorance P0, their distance to the

geodesic is larger, and towards the end of training all test models are quite far from truth. As Section 2.5.4.2

and Figure 2.19a show, test trajectories exhibit largely consistent patterns.

29

A larger network trains along a similar manifold as that of a smaller network with a similar architecture

but makes more progress towards the truth for the same number of gradient updates

Networks with different configurations make progress towards the truth P∗ at different rates. As Figure 2.7

shows, progress is strongly correlated with both train error (R2 = 0.95) and test error (R2 = 0.88). Progress

towards the train truth and towards the test truth are also highly correlated with each other (R2 = 0.99). This

suggests that progress, which can be calculated easily using Equation (2.2.4), is a good way to judge how

close models are to both train and test truths. Note that models may not have a progress of 1 even if they have

zero training error (AllCNN trained with Adam in our case). In our work, we have used progress, which is a

geometrically natural quantity in probability space, to measure and interpolate trajectories. Figure 2.7 also

suggests that we could have used training error to interpolate checkpoints and would have obtained similar

conclusions.

On both train and test manifold, at low error, AllCNN in red and Large ResNet in yellow have markedly

different progress than other architectures (too low and too high respectively). Recall from Figure 2.1a

and Figure 2.17a that trajectories of AllCNNs are also closest to the geodesic and those of Large ResNet

are farthest. At high errors, which are typically seen at early training times, all architectures exhibit similar

progress. Different weight initializations do not result in different rates of progress. For the same batch-size,

SGD with Nesterov’s acceleration makes faster progress than SGD or Adam at very early training times but

this difference vanishes at later stages of training. In general, models trained with weight decay achieve a

lower final progress on both train and test manifolds.

We saw in Figure 2.6a that trajectories of the Large ResNet lie on the same sub-manifold as that of the Small

ResNet; see Figure 2.16 for the tube widths. The trend for the test manifold in Figure 2.19a is similar. After

the same number of gradient updates, the Large ResNet makes more progress towards the truth than the Small

ResNet on CIFAR-10 (Figure 2.8a). Figure 2.8b shows the training progress against epochs averaged over

different weight initializations for models trained on ImageNet. Again, the larger network (ResNet-50) makes

more progress compared to the smaller network (ResNet-18) when trained using an identical optimization

algorithm, learning rate schedule, batch-size and data augmentation.

30

10 1 101

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

Architecture
Small ResNet
Large ResNet
Optimizer
sgd
sgdn
adam

(a)

10
1

10
1

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

Architecture
Small ResNet
Large ResNet
ViT

(b)

Figure 2.8: A Large ResNet makes more progress towards the truth than a Small ResNet for the same number
of gradient updates on CIFAR-10 (a) and ImageNet (b), irrespective of the optimization algorithms. Since the
manifold of train and test trajectories for the two architectures are very similar (see Figures 2.1a and 2.6a),
this suggests that larger networks and smaller networks make the same kind of predictions but the larger ones
simply learn faster.

2.4. Discussion

A new insight into optimization in deep learning The central challenge in understanding why we can

train deep networks effectively stems from the fact that the likelihood pw(y |x) of an output y given an

input x is a complicated function of the parameters w. There is a large body of work that tackles this

issue, e.g., optimization and generalization in function spaces for simpler architectures (Baldi and Hornik,

1989; Liang and Rakhlin, 2020) or analytical models (Mei et al., 2019; Chizat and Bach, 2020; Jacot et al.,

2018a), analyzing representations of different layers (Shwartz-Ziv and Tishby, 2017; Achille and Soatto,

2018), properties of stochastic optimization methods (Chaudhari and Soatto, 2018) etc. This has led to some

successes, e.g., a characterization of the training dynamics and generalization for two-layer neural networks.

But there is a vast diversity of different architectures, optimization methods and regularization mechanisms

in deep learning, and it is difficult to draw general conclusions from these analyses.

We have taken a different approach in this experimental paper. We studied many different network configura-

tions to discover surprising phenomena that are not predicted by existing theory. We give two examples here.

First, the optimization process explores an effectively low-dimensional manifold in the space of predictions

31

on the train and test data, in spite of the enormous dimensionality of both the embedding space and the

weight space. This suggests that the optimization problem in deep learning might have a much smaller

computational complexity than what is suggested by existing theory. Second, there is overwhelming empirical

evidence that large networks with more parameters generalize better than smaller networks with fewer

parameters (Brown et al., 2020; Vaswani et al., 2017; Dosovitskiy et al., 2021). A large body of work has

sought to analyze this phenomenon (Belkin, 2021; Belkin et al., 2019; Bartlett et al., 2021b) and it has also

been argued that we need to rethink our understanding of generalization in machine learning (Zhang et al.,

2017a). We have found that a Large ResNet trains along the same manifold as that of a Small ResNet. It

proceeds further towards the truth in the later parts of the trajectory. In view of the effectiveness of pruning

and knowledge distillation (Frankle and Carbin, 2019; Hinton et al., 2015), this could mean that the superior

test error of large networks could be matched by smaller networks using better training methods.

There is some previous work that has argued that weight configurations along a particular training trajectory

lie on low-dimensional manifolds, e.g., using PCA (Feng and Tu, 2021), or by arguing that the mini-batch

gradient has a large overlap with the subspace spanned by the top few eigenvectors of the Hessian during

training for networks without batch-normalization (Gur-Ari et al., 2018; Ghorbani et al., 2019a; Sagun et al.,

2017). These analyses that study the low-dimensionality of trajectories in the weight space provide important

insights into the dynamics of training and foreshadow our work. But their findings are not related to the ones

we discussed here. To wit, weights of different architectures lie in totally different vector spaces. We also

checked that weights along trajectories of the same network configuration but different weight initialization

cannot be explained using few principal components, i.e., they do not lie in a low-dimensional linear subspace,

and in fact the explained variance of the top few dimensions decreases proportionally with the number of

distinct weight initializations. The mapping between the weight space and the prediction space is quite

complicated, and phenomena that occur in the former do not imply that they occur in the latter space in

general. Even if the set of models explored by the training process were to lie in a low-dimensional linear

subspace, the set of predictions of these models need not lie in a low-dimensional linear subspace. This is

because the singular vectors of the Jacobian between the prediction space and the weight space can rotate.

Conversely, if the predictions of a set of models lie on low-dimensional manifolds, this does not imply

that weights do so as well, because, for instance, there are symmetries in the the parameterization of deep

32

networks.

Computational Information Geometry Information Geometry (Amari, 2016) is a rich body of sophisti-

cated ideas, but it has been difficult to wield it computationally, especially for high-dimensional probabilistic

models like deep networks. The construction in Equation (2.2.1) is a finite-dimensional probability distribu-

tion, in contrast to the standard object in information geometry which is an infinite-dimensional probability

distribution defined over the entire domain of input data. It is this construction fundamentally that enables us

to perform complicated computations such as, embeddings of high-dimensional models, geodesics in these

spaces, projections of a model onto the geodesic, distances between trajectories in the prediction space, etc.

Analysis of high-dimensional probabilistic models is challenging due to the curse of dimensionality: most

points are orthogonal to each other in such spaces (Antognini and Sohl-Dickstein, 2018). Our visualization

techniques, that build upon InPCA and IsKL (Quinn et al., 2019a; Teoh et al., 2020), work around this issue

using multi-dimensional scaling (Cox and Cox, 2008; Saxe et al., 2019) and distances between probability

distributions that violate the triangle inequality, e.g., the Bhattacharya distance. This has some mysterious

benefits, e.g., our visualization technique can distinguish between small differences in high-dimensional

probability distributions as they approach the truth in Minkowski space (Laub and Müller, 2004). Together

with these visualization techniques, the theory developed in this paper gives new tools for the analysis of

high-dimensional probabilistic models.

Interpretation of the top three principal coordinates It is surprising that just three-dimensions can

capture 76% of the stress (for CIFAR-10) of such a large set of diverse training trajectories in Figure 2.1a.

We next offer an interpretation of this phenomenon. Our probabilistic models are an N -product of probability

distributions corresponding to points (
√
pnu(1), . . . ,

√
pnu(C)) which lie on a (C − 1)-dimensional sphere.

Training trajectories begin near ignorance P0 and end near P∗, so let us consider the straight line that joins

ignorance and truth as one basis. Tangents to a training trajectory at ignorance (e.g., when networks are

presumably learning “easy” images) and at truth (e.g., when networks are learning the most challenging

images) can be two more basis vectors. This defines a three-dimensional subspace of the 450,000-dimensional

prediction space. To represent this three-dimensional space, we can choose four probability distributions: P0,

P∗, and Ps1 , Ps2 computed by weighted averages of models with progress close to s1 and s2, respectively.

33

1 2 3 4
Dimensions

0.70

0.75

0.80

0.85

0.90

Original InPCA
InPCA onto three bases
Time-like
Space-like

Figure 2.9: The procedure in Equation (2.2.9) was used to add original models used for Figure 2.1a into an
InPCA embedding created using 4 points corresponding to three “bases” (straight line from ignorance to truth,
and tangents to the training trajectories at ignorance and truth) for three configurations, all with AllCNN
architecture. This new embedding preserves pairwise Bhattacharyya distances between the original models to
a similar degree as that of the original InPCA embedding. The two embeddings also assign the same signs to
the top few eigenvalues; for the embedding using 4 points, only the first 3 dimensions are non-trivial.

The latter two are stand-ins for the tangents to the trajectories at P0 and P∗ and they are calculated using

Ps =
1

Z

∑
P ′

exp

(
−(sP ′ − s)2

2σ2

)
P ′, (2.4.1)

where Z =
∑

P ′ exp
(
−(sP ′ − s)2/(2σ2)

)
is the normalizing factor and s′P is the progress of the model P ′.

We choose σ = 0.05 for all the experiments and experiment with different choices of s1 and s2. We can

now build an InPCA embedding using these 4 models, and using the procedure in Equation (2.2.9) (which is

equivalent to weighted-InPCA discussed in Section 2.5.3.2) we can add our original models in Figure 2.1a

into this new InPCA embedding.

Figure 2.9 shows how well these new coordinates explain pairwise Bhattacharyya distances in D ∈ Rm×m for

models of three configurations (AllCNN architectures trained with SGD, SGD with Nesterov’s acceleration

and Adam) for ten different weight initializations by calculating

1−
∑

ij|Dij−∥Xi−Xj∥2|∑
ij Dij

(2.4.2)

where Xi ∈ Rq,d−q are the d-dimensional coordinates of the embedded points; we can calculate this

34

(a) InPCA using 4 points (b) Original InPCA

2 4 6 8
Dimensions

0.45

0.55

0.65

0.75

Original InPCA
InPCA onto three bases
Time-like
Space-like

(c) Explained Pairwise Distances

Figure 2.10: All models in Figure 2.1a with Bhattacharya distance dB(P, P∗) < 2, which effectively removed
the spread of points away from the train manifold (also see Figure 2.2b), were embedded using InPCA
coordinates constructed using 4 points corresponding to three “bases” (straight line from the ignorance to
truth, and tangents to the training trajectories at ignorance and truth) in (a) and using the original InPCA
coordinates in Figure 2.1a computed using all models in (b). The top three coordinates in both (a) and (b) are
space-like. The manifold in (a) is structurally similar to that of (b), e.g., Small and Large ResNet models are
close to those of ConvMixer models, and far from fully-connected models, some ResNets and ConvMixer
models are away from the main manifold at intermediate training times. (c) shows that the explained pairwise
Bhattacharyya distances between models in the new embedding is very high, and comparable to that of the
first 8 dimensions in the original InPCA. We have drawn smooth curves denoting trajectories by hand to
guide the reader.

quantity that we call “explained pairwise distances” using both these new and the original InPCA coordinates.

Explained pairwise distances using the original InPCA embedding (which was created using all models)

and this new InPCA embedding (which was created using only the 4 points: P0, P∗ and Ps1 , Ps2 for

s1 = 1− s2 = 0.3) are both quite large—and similar to each other. The two embeddings are also consistent

as to which coordinates are time-like (dimensions in Figure 2.9 are ordered by the magnitude of eigenvalues).

We next performed the same analysis but with all models in Figure 2.1a with dB(P, P∗) < 2, which effectively

removes models that lie away from the manifold. In Figure 2.10a, we created an InPCA embedding using

4 points: ignorance P0, truth P∗ and Ps1 , Ps2 for s1 = 1 − s2 = 0.2 by computing the average over all

models P ′ in Equation (2.4.1), and projected the original probabilistic models into these new coordinates

using the procedure in Equation (2.2.9) to visualize them. We rotated the top 3 non-trivial dimensions of this

embedding to best align the embedding created using the original InPCA procedure that uses all models to

compute the embedding. This alignment was done using the Kabsh-Umeyama algorithm (Lawrence et al.,

35

2019) which finds the optimal translation, rotation and sign-flips of the coordinates to align two sets of points;

the root mean square deviation (RMSD) is 0.06. As Figure 2.10b shows, there are structural similarities in the

embedding computed using only the 4 points and the one computed using all models, e.g., Small and Large

ResNet models are close to those of ConvMixer models, and far from fully-connected models, some ResNets

and ConvMixer models are away from the main manifold at intermediate training times. Figure 2.10c shows

that the new embedding also preserves pairwise Bhattacharyya distances between the models to a similar

degree.

This exercise gives us an interpretation for the low-dimensional embedding discovered by InPCA. It may point

to a mechanistic explanation for our findings: the train and test manifolds are effectively low-dimensional

because networks with different architectures, optimization algorithms, hyper-parameter settings and regular-

ization mechanisms fit the same easy images in the dataset first and the same challenging images towards the

end of training; this phenomenon has also been studied in Hacohen et al. (2020).

Why are the train and test manifolds effectively low-dimensional? It is remarkable that trajectories of

networks with such different configurations lie on a manifold whose dimensionality is much smaller than

the embedding dimension. To explore this further, we analyzed trajectories of networks trained on synthetic

data: (a) sampled from a “sloppy” Gaussian, i.e., with eigenvalues of the covariance that are distributed

uniformly on a logarithmic scale (this structure has been noticed in many typical problems (Yang et al.,

2022; Quinn et al., 2021)), and (b) sampled from an isotropic Gaussian (non-sloppy data). We labeled

these samples using a random two-layer fully-connected teacher network and trained student networks with

different configurations to fit these labels. When students are initialized near ignorance P0, train and test

manifolds are effectively low-dimensional for both kinds of data (87% explained stress in top ten dimensions).

When students are initialized at different initial points {P (k)
0 }k=1,...,10 similar to those in Figure 2.20, train

and test manifolds are still effectively low-dimensional for both kinds of data; top ten dimensions have 85%

explained stress. But the explained stress is higher in the top few dimensions if trajectories begin from near

each other, e.g., from fewer initial points, or from ignorance. For sloppy input data, trajectories converge to

the same manifold quickly even if they begin from very different initial points. Section 2.5.5 discusses this

experiment further.

36

We therefore believe that the low-dimensionality of the manifold arises from (a) the structure of typical

datasets (Goldt et al., 2020; d’Ascoli et al., 2021; Refinetti et al., 2021), e.g., spectral properties, and (b)

the fact that typical training procedures initialize models near one specific point in the prediction space,

the ignorance P0. Along the first direction, recent work on understanding generalization (Bartlett et al.,

2020; Yang et al., 2022) has argued that deep networks, as also linear/kernel models, can interpolate without

overfitting if input data have a sloppy spectrum. Work in neuroscience (Simoncelli and Olshausen, 2001;

Field, 1994) has also argued for visual data being effectively low-dimensional. Theories in machine learn-

ing (Vapnik, 1998; Schölkopf and Smola, 2002) and information-theory (Rissanen, 1978; Balasubramanian,

1997) for model selection are based on estimates of the number of models in a hypothesis class that are

consistent with the data. In this context, our second suspect, namely initialization, suggests that even if the

size of the hypothesis space might be very large for deep networks (Dziugaite and Roy, 2017; Bartlett et al.,

2017), the subset of the hypothesis space explored by typical training algorithms might be much smaller.

2.5. Appendix

2.5.1. Notation

Symbol Description

N Number of samples

C Number of classes

xn Input sample with index n ∈ {1, . . . , N}

yn Label assignment of sample with index n ∈ {1, . . . , N}

y∗n Ground-truth label of sample with index n ∈ {1, . . . , N}

w Weights of the deep network

y∗
Ground-truth labels for each of the N samples, y∗ =

(y∗1, . . . , y
∗
N)

y
Label assignment for each of the N samples, y ∈

{1, . . . , C}N

pnw(yn)
Probability that sample xn belongs to class yn ∈

{1, . . . , C}, pnw(yn) ≡ pw(yn |xn)

37

Pw(.)
Probabilistic model with weight w; assigns a probability to

every sequence y

P∗ Truth (P∗ = δy∗(y))

P0 Ignorance, has pn0 (c) = 1/C for all classes c and samples n

dB

Bhattacharyya distance between two probability distribu-

tions

dG

Geodesic distance (great circle distance) between two prob-

ability distributions

g(w) Fisher Information Metric (FIM) at weight configuration w

(
√
pnu(c))c=1,...,C Point on a (C − 1)-dimensional sphere

Pα
u,v

Geodesic between probability distributions Pu and Pv pa-

rameterized by α ∈ [0, 1]

T Number of recorded checkpoints

(w(k))k=0,···T A sequence of recorded checkpoints in the weight space

sw Progress of a probabilistic model Pw with weights w

α Interpolating parameter along a geodesic, α ∈ [0, 1]

τ̃w
A sequence of probabilistic models recorded during training,

also denoted by (Pw(k))k=0,···T

τw
A continuous curve in the space of probabilistic models,

also denoted by (Pw(s))s∈[0,1]

dtraj(τu, τv) Distance between trajectories τu and τv

D

Matrix (∈ Rm×m) of pairwise Bhattacharyya distances be-

tween m probabilistic models, entries of this matrix are

denoted by Dij , Duv etc. depending upon the context

W

Matrix (∈ Rm×m) of centered pairwise Bhattacharyya dis-

tances, W = −LDL/2 where Luv = δuv − 1/m performs

the centering

38

Xw

Coordinates (∈ Rp,m−p) of the InPCA embedding of a

model with weights w

1−
√∑

ij(Wij−
∑d

k=1 ΛkkUikUkj)
2∑

ij W
2
ij

Explained stress, used to estimate the fraction of the entries

of the centered pairwise distance matrix W that are pre-

served by an embedding; equivalent to explained variances

in standard PCA (up to the square root)

1−
∑

ij|Dij−∥Xi−Xj∥2|∑
ij Dij

Explained pairwise distances, used to estimate the fraction

of the entries of the pairwise Bhattacharyya distance matrix

D that are preserved by an embedding

2.5.2. Details of the experimental setup

Datasets The experimental data in this paper was obtained by training deep networks on two datasets.

• The CIFAR-10 dataset (Krizhevsky et al., 2012) has N = 50, 000 RGB images in the training set of

size 32× 32 from C = 10 different categories (airplane, automobile, bird, cat, deer, dog, frog, horse,

ship and truck). The test set has N = 10, 000 images. Both train and test sets have an equal number of

images in each category.

• The ImageNet dataset (Deng et al., 2009) has C = 1000 categories and a total of N = 1.28 × 106

RGB images of size 224 × 224 in the training dataset. Different categories have slightly different

numbers of images in the train set, but all categories have at least 1000 images. The test set consists of

N = 50, 000 images, with 50 images from each category.

Neural architectures For CIFAR-10, we used six neural architectures. These architectures were chosen

and and configurations were chosen to ensure that these networks could fit all the images in the training

dataset, i.e., achieve zero training error, for most training methods.

(i) A multi-layer perceptron with rectified linear unit (ReLU) nonlinearities (fully-connected network) with

4 hidden layers, of size [1024, 512, 256, 128] respectively.

39

(ii) An “all convolutional network” (AllCNN (Springenberg et al., 2015)) with 5 convolutional layers

followed by an average pooling layer; first three layers have 96 channels and the latter two have 144

channels.

(iii) Two different wide residual networks (Zagoruyko and Komodakis, 2016). The larger one has 16

layers and [64, 256, 1024, 4096] channels for the convolutional layers in the four blocks, and the

smaller network has 10 layers with [8, 32, 128, 512] channels for the four blocks. Both networks

have a “widening factor” of 4. We modified the implementation at https://github.com/meliketoy/wide-

resnet.pytorch.

(iv) The ConvMixer architecture (Trockman and Kolter, 2022) is a convolutional network but it uses very

large receptive fields and maintains the same size for the activations across successive layers. We did

not make any changes to the architecture from the original paper.

(v) The ViT architecture (Dosovitskiy et al., 2021) is a self-attention based network that uses a set of

disjoint patches of size 4×4 from the input images. This network does not use convolutional operations

and instead uses the so-called self-attention layer that is popularly in natural language processing. We

use a linear layer size of 512, 8 self-attention heads and 6 transformer blocks (layers). We used the

implementation from https://github.com/lucidrains/vit-pytorch.

We do not use Dropout (Srivastava et al., 2014) in any of the networks. All networks except ViT have a

batch-normalization (Ioffe and Szegedy, 2015) layer after each convolutional or fully-connected layer, except

ViT which uses layer normalization (Ba et al., 2016).

For ImageNet, we used three architectures.

(i) A smaller residual network (He et al., 2016) with 18 layers (ResNet-18). This residual network is

different from the wide residual network used for CIFAR-10, primarily in that there are fewer channels

in each block. A ResNet is architecturally similar to a wide residual network with a widening factor

of 1. We replaced each strided convolution with a convolution followed by a BlurPool layer (Zhang,

2019).

40

https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/meliketoy/wide-resnet.pytorch
https://github.com/lucidrains/vit-pytorch

(ii) A larger residual network with 50 layers (ResNet-50). This is one of the most popular networks for

training on ImageNet and widely used as a benchmark architecture in the field.

(iii) The ViT architecture which is similar to the one used for CIFAR-10 above except that the receptive

field of the first layer is larger due to the larger images in ImageNet. We trained a smaller variant of ViT

called ViT-S (with 22 million weights) which was introduced in (Touvron et al., 2021). It operates on

patches of size 16 × 16 and has 6 self-attention heads and 12 transformer blocks.

Training multiple models on ImageNet is computationally expensive. To mitigate this, we used effi-

cient data loaders, computed gradients in half-precision, and chose effective training hyper-parameters

(FFCV (Leclerc et al., 2022) for training ResNets and timm (Wightman, 2019) for training ViTs).

Training procedure For both datasets, we normalize images in the train and test sets by the channel-wise

mean and variance of the images in the training dataset. For CIFAR-10, we also augmented training images

by randomly cropping a region of size 32× 32 after padding the original image by 4 pixels on each side, and

performing horizontal flips with a probability of 0.5; our data contains models trained with and without such

data augmentation.

All the networks are initialized using the default PyTorch weight initialization as follows. For fully-connected

layers with an input dimension d, all weights and biases are sampled independently from a uniform distribution

on [−d−1/2, d−1/2]. For convolutional layers with c channels and a k × k convolutional kernel, all weights

and biases are sampled independently from a uniform distribution on [−(ck)−1/2, (ck)−1/2].

We started with 3120 different configurations, 520 for each network architecture. Some networks did not

finish training due to numerical errors during gradient updates, and we excluded them from our analysis.

Figure 2.11 shows how many of the configurations did not finish training for each network architecture.

Our data, with 2,296 different configurations, therefore contains fewer ViTs and Large ResNets than other

architectures.

For CIFAR-10, we used three different optimization methods, stochastic gradient descent (SGD), SGD

with Nesterov’s momentum (with a coefficient of 0.9) and Adam (Kingma and Ba, 2015), three different

41

AllCNN ConvMixer Fully
Connected

ViT Small
ResNet

Large
ResNet

0

100

200

300

400

500

Figure 2.11: Number of networks that did not train beyond 90% error for Adam (green), SGD (blue) and
SGD with Nesterov’s acceleration (orange). These models are not included in our analysis.

batch sizes (200, 500 and 1000) and three different values of the weight decay coefficient (ℓ2 regularization)

({0, 10−3} when training with SGD and SGD with Nesterov’s momentum, and {0, 10−5} when training with

Adam). Fully-connected networks trained on augmented data are trained for 300 epochs to achieve zero

training error, all other networks are trained for 200 epochs. One epoch corresponds to using each sample

in the training dataset exactly once to compute a gradient update (i.e., mini-batches are sampled without

replacement). As the batch-size in SGD is increased, the stochasticity of the weight updates decreases and

this makes the iterations more susceptible to converging near local minima of the loss function, and thereby

obtain poor test error. It has been noticed empirically that keeping the ratio of the learning rate to batch-size

invariant helps mitigate this deterioration of test error for large batch sizes (Goyal et al., 2017). This has

also been argued theoretically via an analysis of the equilibrium distribution of SGD (Chaudhari and Soatto,

2018). Therefore, for SGD and SGD with Nesterov’s acceleration, we fixed this ratio to 5× 10−4, i.e., for a

batch size 200, we use a learning rate of 0.1, and increase the learning rate proportionally for larger batch

sizes. For Adam, this ratio was 5× 10−6, i.e., we used a learning rate of 0.001 for a batch-size of 200. For all

experiments, we decreased the learning rate using a cosine annealing schedule over the course of training,

i.e., for all networks the learning rate decays to zero at the end of training.

Residual networks on ImageNet were trained using SGD with Nesterov’s acceleration for 40 epochs with a

batch-size of 1024. The learning rate was decreased linearly from 0.5. We used a weight decay coefficient of

5× 10−5; no weight decay was applied to parameters associated with batch-normalization. To reduce the

42

ResNet-18 ResNet-50 ResNet-101
Architecture

10
3

10
2

10
1

10
0

Bh
at

ta
ch

ar
yy

a
di

ve
rg

en
ce

 to
 ig

no
ra

nc
e

ResNet-18 ResNet-50 ResNet-101
Architecture

10
3

10
2

10
1

10
0

Figure 2.12: Bhattacharyya distance from ignorance P0 for networks at the beginning of training for standard
off-the-shelf implementations of ResNet (left). If we initialize the estimates of the mean and standard
deviation of the batch-normalization layers by doing a forward pass on a few mini-batches, then networks are
close to ignorance at the beginning of training (right).

training time, we used mixed-precision training. We also used progressive resizing, i.e., we trained on images

of size 196 × 196 for the first 34 epochs before using the full-sized images (224 × 224) for the remaining 6

epochs. We use random horizontal flips and random-resize-crops for data augmentations. For datasets with a

large number of classes such as ImageNet, it helps to use label smoothing (He et al., 2019), we used this with

the smoothing parameter set of 0.9. This amounts to training towards a slightly different truth P∗ where the

correct category has a probability of 0.9 and the remainder 0.1 is distributed uniformly across the other 999

categories (instead of them being zero).

ViT architectures are difficult to train well with SGD, especially on large datasets such as ImageNet. We

therefore trained ViTs on ImageNet using AdamP (Heo et al., 2021) with a cosine-annealed learning rate

schedule and an initial learning rate of 0.001. We trained for 200 epochs using a batch-size of 1024 and weight

decay of 0.01 without any dropout. These networks also require a more extensive set of data augmentations,

we used horizontal flips with probability 0.5, cropping the image to get a patch of the desired size at a random

location (images in ImageNet are not of the same size), and mixup regularization (Zhang et al., 2017b) which

uses mini-batches that consist of convex combinations (with a random parameter) of images and ground-truth

probability distributions.

Some ImageNet models are not initialized near ignorance P0 We noticed that some randomly initialized

models have a large Bhattacharyya distance from ignorance P0. For example, the distance between a randomly

43

initialized ResNet-50 model and ignorance is as much as 0.91 times the Bhattacharyya distance between

ignorance and truth dB(P0, P∗). We found that this is due to the batch-normalization layer (Ioffe and Szegedy,

2015) being incorrectly initialized at the beginning of training. Batch-normalization subtracts the channel-

wise mean of the activations (computed from samples in a mini-batch) and divides the result by an estimate

of the channel-wise standard deviation of the activations (computed using the samples in the mini-batch).

During training, typical deep learning libraries such as PyTorch maintain an exponentially moving average

of the mean and standard deviation of activations of mini-batches. And it is these averaged estimates that

are used to compute the output probabilities for test data. In PyTorch, the mean is initialized to zero and the

standard deviation is initialized to 1. This causes the magnitude of the activations to be very large in the final

few layers at initialization and that is why the probabilistic model is very far from ignorance at initialization,

as shown in Figure 2.12.

This phenomenon is seen in most popular off-the-shelf implementations of a ResNet, and could also be present

in other architectures. When training in a supervised learning setting, this finding of ours is only marginally

relevant because the estimates of the mean and standard deviation stabilize to reasonable values within 5–10

mini-batch updates. But there are many sub-fields of machine learning, few-shot learning (Dhillon et al.,

2020), meta-learning (Thrun and Pratt, 2012) to name some, where the number of mini-batch updates of a

trained model is a key parameter and where our finding has practical relevance. To fix this issue, we can

initialize the batch-normalization mean and variance estimates—easily—by doing a forward pass on a few

mini-batches from the training data before beginning the training. This ensures that the model starts training

from near ignorance. When we collected data from our training trajectories on ImageNet, we did not have

this fix. We therefore did not plot the first checkpoint for the ImageNet experiments in Figures 2.1d and 2.4d.

2.5.3. Addendum to Methods

2.5.3.1 InPCA creates an isometric embedding

InPCA, like standard PCA, relies on an embedding directed by the centered pairwise distances Equa-

tion (2.2.6). Observe that the centering in Equation (2.2.6) is the same as the centering performed in standard

PCA, indeed it ensures that rows and columns of the pairwise distance matrix W sum to zero. Since InPCA

involves pairwise Bhattacharyya distances, not pairwise Euclidean distances, such a centering is not trivially

44

equivalent to a translation of points in a vector space. We show next that the embedding created using InPCA

is isometric, i.e., it satisfies Equation (2.2.7). The argument developed below also holds for other embedding

techniques, e.g., the IsKL method discussed in Equation (2.5.3) that uses the symmetrized Kullback-Leibler

divergence as the distance between probability distributions.

Given a real symmetric matrix D ∈ Rm×m, we can write Dij =
∑

k UikΛkkUjk where the eigenvalues

Λkk ∈ R and columns of U are the eigenvectors. We can define an “eigen-embedding” of such a matrix:

R ∋ Xik ≡
√
|Λkk|Uik; i, k ≤ m

and a quasi inner-product ⟨a, b⟩D
.
=
∑

k sign(Λkk)akbk for a, b ∈ Rp,m−p, with metric signature (p,m− p)

derived from the p positive eigenvalues of D. The quasi inner-product of the points in an eigen-embedding of

a real symmetric matrix D allows us to reconstruct the entries of D:

Dij = ⟨Xi, Xj⟩D . (2.5.1)

Now consider a finite symmetric premetric space M = (M,D) with |M | = m points4. If D is a matrix of

pairwise distances between these points, then it has a vanishing diagonal. The embedding of −D/2 denoted

by {Xi ∈ Rp,m−p}mi=1 satisfies ⟨Xi, Xi⟩−D/2 = −Dii/2 = 0 for any i ≤ m. Now observe that the distance

between any Xi and Xj is the squared Minkowski interval between them, i.e.,

∑
k

∥Xik −Xjk∥2−D/2 = ⟨Xi −Xj , Xi −Xj⟩−D/2 = −(Dii +Djj − 2Dij)/2 = Dij . (2.5.2)

In other words, the m points in M can be isometrically embedded in a Minkowski space as the eigen-

embedding of −D/2. The centering operation using a matrix Lij = δij − 1/m which we use to compute

W = −LDL/2 ensures that

Wij =
〈
Xi −X,Xj −X

〉
−D/2

where Rp,m−p ∋ X = m−1
∑

iXi is the mean of the eigen-embedding of −D/2; in other words, the

4A premetric space satisfies two properties: that the distance between two points is non-negative, and the distance of a point
from itself is zero.

45

centered pairwise distance matrix is equal to the cross-covariance matrix in a Minkowski space.

Theorem 2.5.1. Given a finite symmetric premetric space M = (M,D) with |M | = m points, if D ∈ Rm×m

is the matrix of pairwise distances between these points, then the eigen-embedding of W = −LDL/2 where

Lij = δij − 1/m is the centering matrix, is isometric to M.

Proof. Let the eigen-embeddings of −D/2 and W be {Xi}mi=1 and {Yi}mi=1 respectively. We know that the

eigen-embedding of −D/2 is isometric to M. From Equation (2.5.1), we have that ⟨Yi, Yj⟩ = Wij and

so ⟨Yi − Yj , Yi − Yj⟩W = Wii +Wjj − 2Wij . Since the centered pairwise distance matrix is equal to the

cross-covariance matrix, we also have Wij =
〈
Xi −X,Xj −X

〉
−D/2

and therefore

⟨Yi − Yj , Yi − Yj⟩W =
〈
Xi −X,Xi −X

〉
−D/2

+
〈
Xi −X,Xj −X

〉
−D/2

− 2
〈
Xi −X,Xj −X

〉
−D/2

= ⟨Xi −Xj , Xi −Xj⟩−D/2

= Dij .

2.5.3.2 Emphasizing different models using a weighted embedding

To study the details of the model manifold, we have found it useful to emphasize certain models in the visu-

alization. There are many works (Vo et al., 2008; Gabriel and Zamir, 1979; Greenacre, 2005; Delchambre,

2015) that do similar things, e.g., those that modify the underlying objective of MDS to optimize a weighted

Euclidean distance (but this does not do a good job of preserving pairwise distances between points), or

those that learn a set of orthogonal transformations to highlight points of interest. We can also repeat models

while computing InPCA: this shifts the center of mass and,at the same time transforms the visualization

(via rotations and Lorentz boosts). It emphasizes the repeated models in the visualization. However, such a

naive approach is computationally expensive because the size of the distance matrix D increases due to these

repetitions.

We present a different approach called weighted-InPCA next. Let D ∈ Rm×m be the matrix of pairwise

Bhattacharyya distances Duv = dB(Pu, Pv) and let µu ∈ N be multiplicity of the model with weights u,

46

2 4 6 8 10
Dimensions

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ex
pl

ai
ne

d
Pa

irw
ise

 D
ist

an
ce

N = 50
N = 500
N = 5000
Original

(a) Train manifold

2 4 6 8 10
Dimensions

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ex
pl

ai
ne

d
Pa

irw
ise

 D
ist

an
ce

N = 10
N = 100
N = 1000
Original

(b) Test manifold

Figure 2.13: The explained pairwise Bhattacharyya distances (computed using Equation (2.4.2)) of the
embedding when projected onto the principal components computed using a subset of the samples in the
train and test data. Even for very small values of N , the explained pairwise distance is close to the explained
distance of the original embedding computed from all the samples.

i.e., the relative importance that we would like for it in the visualization. The normalized multiplicities are

µ̂u = µu/
∑

v′ µv′ . Weighted-InPCA is a modification of InPCA. It (a) uses a different centering matrix

Luv = δuv − µ̂u, (b) performs an eigen-decomposition of Wdiag(µ̂u), i.e., each column of W is multiplied

by µ̂u, and (c) then scales back each of the eigenvectors Ui using the expression Ui/
√
U⊤ diag(µ̂)U . This

procedure gives the same embedding as the one obtained by repeating points before calculating standard

InPCA and is also equivalent to the procedure in Equation (2.2.9) when the weights µu of the new points are

zero.

2.5.3.3 Computing pairwise distances in InPCA using only a subset of the samples gives a faithful

representation of the train and test manifolds

We computed the InPCA coordinates using a subset of the samples in the train and test sets to calculate the

pairwise Bhattacharyya distance matrix. Using the procedure in Equation (2.2.9), we then embedded the

models in the original pairwise distance matrix computed using all samples into these InPCA coordinates.

Figures 2.13 and 2.14 show that the explained pairwise distances by the top three dimensions of these new

InPCA embeddings is quite high. This suggests that our visualization methods could be used effectively, even

for large datasets with a large number of samples N , by sub-sampling the data before computing InPCA.

47

(a) Train N = 5000 (b) Train N = 500 (c) Train N = 50

(d) Test N = 1000 (e) Test N = 100 (f) Test N = 10

Figure 2.14: Projecting the original probabilistic models and pairwise Bhattacharyya distances computed
on all samples into InPCA coordinates created using a distance matrix on a subset of samples ((a-c) for
N = 5000, 500, 50 respectively for the train data and (d-f) for N = 1000, 100, 10 respectively for test
data). On the train data, even with as few as 1% of the samples, these embeddings are qualitatively similar
to the original embeddings (Figures 2.1a and 2.4a). For the test data, explained pairwise distances is low
in Figure 2.13b and manifolds are more diffuse.

48

0.0 0.5 1.0
Progress

0.000

0.005

0.010

0.015

Di
st

an
ce

 to
 m

ea
n

tra
je

ct
or

y

Figure 2.15: Towards the end of training at large values of progress, models trained with augmentation
(orange) have larger tube widths than models trained without augmentation (blue), on the train manifold. The
corresponding figure for the test manifold looks similar.

2.5.4. Addendum to Results

2.5.4.1 Further analysis of the train trajectories

Understanding the differences between the trajectories of different configurations Using the inter-

polated trajectories, for each configuration, we calculated the Euclidean mean of the probabilities of the

models corresponding to different weight initializations at the same progress. The distance of the model to

such a configuration-specific mean model gives us an understanding of the “tube width”, i.e., how different

in prediction space models with the same progress but corresponding to different weight initializations are.

Figure 2.16a shows that—for all configurations, for all values of progress—models are very close to their

respective mean model. The median tube width is about 0.05 in terms of Bhattacharyya distance throughout

training; this should be compared to the abscissae of Figure 2.6a where a cut at a distance of 0.05 separates

all configurations (except some AllCNNs, and very few fully-connected and ConvMixer architectures). The

dendrogram in Figure 2.6a averages models for the same progress; Figures 2.16a and 2.16b indicate that such

averaging is a reasonable thing to do. The test manifold in Figure 2.16b is similar, except that tube widths

increase slightly with progress. This suggests that networks with different weight initializations train along

very similar trajectories in prediction space.

49

0.0 0.2 0.4 0.6 0.8 1.0
Progress

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

 to
 m

ea
n

tra
je

ct
or

y

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Progress

0.0

0.2

0.4

0.6

0.8

Di
st

an
ce

 to
 m

ea
n

tra
je

ct
or

y

(b)

Figure 2.16: A boxplot (horizontal line denotes median, boxes denote 25 percentile, whiskers denote 1.5×
the inter-quantile (25–75 percentile) range) of the Bhattacharyya distance between a model and the Euclidean
mean of probabilities of models with the same configuration but obtained from different weight initializations
for train (a) and test (b) trajectories. There are minor differences in tube widths of different configurations
and therefore we have not distinguished them here. All tube-widths are quite small, which indicates that
training trajectories whose configurations only differ in weight initializations are tightly clustered together in
the prediction space.

One can dig deeper into the differences in models caused by weight initialization. Tube widths of different

architectures at the same progress are similar on the train manifold, but there are more pronounced differences

on the test manifold. We have found that variations coming from optimization methods and regularization do

not result in large tube widths. In general, towards the end of training, at large values of progress, models

trained with augmentation have larger tube widths than models trained without augmentation, on both train

and test manifolds (Figure 2.15). Training a deep network is a non-convex optimization problem, and as

such the solution depends upon the initialization of weights in a non-trivial way. Each point in the prediction

space corresponds to a large set of weight configurations that lead to this same prediction. Our results

therefore suggest that, even if different weight initializations could lead to different eventual weights for these

non-convex optimization problems, the probabilistic models obtained at the end of training are very similar

(they are more similar on the training data than the test data).

We next study the distances of models along the interpolated trajectories to the geodesic. On the train

50

0.0 0.5 1.0
Progress

0.0

0.1

0.2

0.3
Di

st
an

ce
 to

 g
eo

de
sic

(a)

0.0 0.5 1.0
Progress

0.0

0.5

1.0

1.5

Di
st

an
ce

 to
 g

eo
de

sic

Architecture
AllCNN
ConvMixer
Fully Connected
ViT
Small ResNet
Large ResNet
Optimizer
sgdn
adam
sgd

(b)

Figure 2.17: Bhattacharyya distance of models with different configurations to the geodesic at different
progress for train (a) and test (b) trajectories.

manifold (Figure 2.17a), all models are very close to the geodesic at the beginning (small progress) and at the

end of training (large progress). At intermediate progress, all trajectories have large distances to the geodesic;

as we discussed above this deviation away from the geodesic could be an indicator of the range of difficulties

of learning different samples. Trajectories corresponding to different architectures and optimization methods

are at different distances from the geodesic at intermediate progress. Train trajectories of AllCNN are closest

to the geodesic; there are marked differences between the three optimization algorithms in this case. But this

is not so for other architectures. For test trajectories (Figure 2.17b), the distance to the geodesic is roughly

the same, and larger that that of the train manifold, for all architectures and all values of progress. At large

progress, test trajectories of fully-connected and ViT networks are very far from the geodesic; this is also

visible in Figure 2.4.

Models initialized at very different parts of the prediction space converge to the truth along a similar

manifold

The manifold in our analysis is the set of probabilistic models explored during the training process; this is a

subset of the space of all probabilistic models (which is the simplex in [0, 1]NC and not low-dimensional).

Our manifold is a subset of the manifold of all probabilistic models that can be expressed by the network

{Pw(y) : ∀w} (which is also not expected to be low-dimensional) because the training process does not

explore all parts of the weight space. To understand why our trajectories seem to lie on effectively low-

51

(a) (b)

(c) (d)

Figure 2.18: Comparison of two principal components of an InPCA embedding using test data of all models
on CIFAR-10 colored by test loss (a), by test error (b), by whether they are within a Bhattacharyya distance <
0.3 from models marked A, B, and C on the geodesic in (c), and by whether they are within a distance 0.45
from the models marked A–E in (d). These figures should be studied together with Figure 2.4c.

52

adam
adam
sgdn
sgdn

sgd
sgd
sgd
sgd

sgdn
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam

sgd
sgd
sgd
sgd
sgd
sgd

sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn

adam
adam
adam
adam
adam
adam

sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd

adam
adam
adam
adam
adam
adam
sgdn
sgdn
sgdn

sgd
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam

sgd
sgd
sgd
sgd
sgd

sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn

sgd
sgd
sgd
sgd
sgd
sgd
sgd

sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn
sgdn

adam
sgdn

sgd
sgd

adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam

sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd
sgd

adam
adam
adam
adam
adam
adam
sgdn

adam
adam
adam
adam
adam
adam
adam
adam
sgdn

adam
adam
sgdn
sgdn
sgdn
sgdn
sgdn

geodesic
sgd
sgd
sgd

adam
adam
adam

sgd
adam
adam
adam
sgdn

sgd
sgd

adam
sgdn
sgdn

sgd
sgdn
sgdn
sgdn

sgd
sgd

adam
adam
adam
adam

sgd
sgd
sgd

adam
adam
adam
adam

sgd
sgdn

adam
adam
adam
adam
sgdn
sgdn

sgd
sgd
sgd
sgd
sgd

adam
sgdn
sgdn

sgd
sgdn
sgdn

adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
adam
sgdn

500
500
500
500
200
200
500
500

1000
1000
1000
1000

500
500

1000
1000

500
500
200
200
200
200
200
200

1000
1000
1000

500
200
200
500
200
500

1000
1000
1000

200
200
200
200
200
200
200
200
200
200
500

1000
1000

500
500
200
200
200
200
200
200
200
200
200
500
500

1000
500
500

1000
1000

200
200
200
200
200
500
500
200
200
200
500
500

1000
200
200
500
200
200
200
200
200
500
500
500

1000
1000

200
200

1000
500

1000
500
500

1000
500

1000
1000

200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200

1000
1000

500
500

1000
500
500

1000
1000
1000
1000
1000
1000
1000

500
500
500
500
500
500
500
500
500
500

1000
1000
1000
1000

500
500

1000
na

1000
200
200
200
200
200
500
200
200
200
200
500
200
200
200
200
500

1000
500
500

1000
500
200
200
200
200
200
200
500
500
500
500
500

1000
200

1000
1000
1000
1000
1000
1000
1000

500
200
200
500
200
200
500

1000
500
200
200
200
200
200
500
500
500
500

1000
1000
1000
1000

200
1000

0.00125
0.00125

0.25
0.25

0.1
0.1

0.25
0.25

0.5
0.005
0.005
0.005

0.0025
0.0025
0.0025
0.0025

0.00125
0.00125

0.0005
0.0005

0.001
0.001

0.0005
0.001
0.005

0.5
0.5

0.25
0.1
0.1

0.25
0.1

0.25
0.5
0.5
0.5
0.1
0.1

0.001
0.001
0.001

0.0005
0.0005
0.0005

0.1
0.1

0.25
0.5
0.5

0.25
0.25

0.1
0.1

0.001
0.0005
0.0005
0.0005

0.001
0.001

0.1
0.25
0.25

0.5
0.0025
0.0025
0.0025
0.0025

0.001
0.001

0.0005
0.0005
0.0005

0.00125
0.00125

0.001
0.1
0.1

0.25
0.25

0.5
0.1
0.1

0.25
0.1
0.1
0.1
0.1
0.1

0.25
0.25
0.25

0.5
0.5
0.1
0.1
0.5

0.25
0.5

0.25
0.25

0.5
0.25

0.5
0.5
0.1
0.1
0.1

0.001
0.1
0.1
0.1

0.001
0.001

0.0005
0.0005
0.0005

0.001
0.001
0.001

0.0005
0.0005
0.0005

0.1
0.1
0.5
0.5

0.25
0.25

0.5
0.25
0.25

0.5
0.005
0.005

0.0025
0.0025
0.0025
0.0025

0.25
0.0025
0.0025

0.00125
0.00125
0.00125
0.00125

0.0025
0.0025

0.25
0.005
0.005

0.5
0.5

0.25
0.25

0.5
na

0.5
0.1
0.1

0.0005
0.0005

0.001
0.25

0.0005
0.0005
0.0005

0.1
0.25

0.1
0.0005

0.1
0.1

0.25
0.5

0.25
0.25

0.5
0.25

0.0005
0.0005

0.001
0.001

0.1
0.1

0.25
0.0025

0.00125
0.00125

0.0025
0.5
0.1

0.005
0.0025
0.0025

0.005
0.5
0.5
0.5

0.25
0.1
0.1

0.25
0.0005

0.1
0.25

0.5
0.25

0.1
0.0005
0.0005

0.001
0.001

0.00125
0.00125

0.0025
0.0025
0.0025
0.0025

0.005
0.005
0.001

0.5

1e-05
0.0

0.001
0.001
0.001

0.0
0.0

0.001
0.001

0.0
1e-05
1e-05

0.0
1e-05

0.0
1e-05

0.0
1e-05

0.0
1e-05
1e-05

0.0
0.001
0.001

0.0
0.0

0.001
0.001
0.001

0.0
0.0

0.001
0.001
0.001

0.0
0.0

0.001
0.0

0.001
0.0

1e-05
1e-05

0.0
0.001

0.0
0.001

0.0
0.001

0.0
0.001

0.0
0.001

0.0
0.001
0.001
1e-05

0.0
1e-05

0.0
0.0
0.0
0.0

0.001
1e-05

0.0
0.0

1e-05
0.0

1e-05
0.001
1e-05

0.0
0.0

1e-05
0.001

0.0
0.001
0.001

0.0
0.0
0.0

0.001
0.001

0.0
0.001
0.001

0.0
0.0
0.0

0.001
0.001
0.001

0.0
0.0

0.001
0.001
0.001

0.0
0.0
0.0
0.0

0.001
0.001

0.0
0.0
0.0

0.001
0.001
0.001

0.0
0.001
1e-05

0.0
0.0

1e-05
0.001
0.001

0.0
1e-05

0.0
1e-05
0.001
0.001

0.0
0.0

0.001
0.001

0.0
0.0

0.001
0.0

0.001
0.0

1e-05
1e-05

0.0
1e-05

0.0
0.0
0.0

1e-05
1e-05

0.0
0.0

1e-05
1e-05

0.0
0.0
0.0

1e-05
0.0

0.001
0.001
0.001
0.001

na
0.0

0.001
0.0

1e-05
0.0

0.001
0.001

0.0
1e-05
0.001

0.0
0.0
0.0

0.001
0.001

0.0
0.0

0.001
0.0

0.001
0.0
0.0

1e-05
0.0

1e-05
0.0
0.0

0.001
0.001

0.0
0.0

1e-05
1e-05
0.001

0.0
0.0
0.0

1e-05
1e-05

0.0
0.001

0.0
0.0
0.0

0.001
0.001
0.001
0.001
0.001
0.001

0.0
0.0

1e-05
0.0
0.0

1e-05
0.0

1e-05
0.0

1e-05
0.0

1e-05
0.0

1e-05
0.001

0.0

none
none

simple
none
none
none
none
none

simple
simple
simple

none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none

simple
none
none
none
none
none
none
none
none
none
none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none

simple
simple
simple

none
none
none

simple
simple
simple
simple
simple
simple

none
none
none
none
none

simple
none
none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none
none
none
none
none
none

simple
simple
simple
simple

none
none
none
none
none
none
none
none

simple
simple
simple
simple
simple
simple
simple

none
none
none
none
none

simple
simple
simple

none
simple

none
simple

na
none
none
none
none
none
none
none

simple
simple
simple
simple
simple
simple

none
none
none
none

simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple
simple

none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none

0.0 0.1 0.2 0.3 0.4
wr-10-4-8
wr-10-4-8

wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64

allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn

wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8

allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn
allcnn

wr-10-4-8
wr-10-4-8

wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64
wr-16-4-64

wr-10-4-8
wr-10-4-8
wr-10-4-8

wr-16-4-64
wr-16-4-64

wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8
wr-10-4-8

convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer
convmixer

geodesic
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
vit
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc
fc

Arch Opt BS LR WD Aug

(a)

(b)

0.00 0.02 0.04
Feature Importance

Architecture

Batch Size

Optimizer

Augmentation

Weight Decay

(c)

Figure 2.19: (a): dendrogram obtained from hierarchical clustering of pairwise distances (averaged over
weight initializations) between trajectories using distances calculated on testing samples. X-labels correspond
to architecture, optimization algorithm, batch-size, learning rate, weight-decay coefficient and augmentation
strategy. Compared to the equivalent figure on training data Figure 2.6a, trajectories still form clear clusters
according to architecture, the distances between different trajectories are in general larger on test data, and
the clusters of large and small wide ResNets are less distinguishable. (b) the first two components of an
InPCA embedding (without averaging over weight initializations) of these trajectories, each point is one
trajectory; explained stress of top two dimensions is 73.7%. (c) variable importance from a permutation test
(p < 10−6) using a random forest to predict pairwise distances. These three plots suggest that for test data,
architecture is still the primary distinguishing factor of trajectories in the prediction space, and the picture of
different trajectories is very similar to those evaluated on training data, even though they appear to have a
larger difference in the InPCA embedding.

53

(a)
(b)

Figure 2.20: (a) shows the top three dimensions of an InPCA embedding of some configurations with AllCNN
architectures when networks are initialized near ignorance and trained to truth P∗ (light brown), and when
they are first trained to tasks P (k)

0 for k = 1, 2, 3 with random labels (stream of brown points heading towards
these corners) and then further trained to the truth P∗. Trajectories from random tasks join the original train
manifold before heading to truth (black curves in (a) for trajectories that begin at different random tasks and
red in (b) for trajectories corresponding to different weight initializations from the same random task). These
trajectories are very different from geodesics. We have drawn smooth curves denoting trajectories by hand to
guide the reader. Note that the trajectories that begin at corners with random labels rejoin the trajectories that
begin from near ignorance quite close to ignorance but along paths

dimensional manifolds, using CIFAR-10, we created three different tasks by randomly assigning labels to the

images, e.g., each image of a dog is labeled independently as any of the 10 possible classes. This gives us

three random initial models denoted by P
(k)
0 for k ∈ {1, 2, 3}, and we can now train networks to fit these

random labels. Both train and test manifolds of training to such random tasks are effectively low-dimensional.

This suggests that the low-dimensionality is not necessarily due to there being learnable patterns in the labels.

We next performed a second stage of training where networks were initialized to the endpoints of the

trajectories to P
(k)
0 for k ∈ {1, 2, 3} (models do not reach these points exactly during training), and trained on

54

the actual CIFAR-10 task, i.e., to the actual truth P∗. In this case, we only trained one particular configuration

(AllCNN architecture, SGD without Nesterov’s acceleration, no augmentation or weight-decay) from 10

different weight initializations chosen to be near P (k)
0 . This two-stage training procedure also results in

effectively low-dimensional train and test manifolds (Figures 2.20a and 2.21); the top three dimensions

explain more than 87% of the stress. It is interesting to note that the networks don’t just forget the wrong

labels before learning the correct ones, trajectories rejoin the original training trajectory at a variety of points

before following it to the truth.

In Figure 2.20b we show the training trajectories to (light red) and from (red) P (1)
0 , together with the geodesics

connecting P0, P∗ and P
(1)
0 . The geodesic from P

(1)
0 to the truth does not pass near ignorance P0. In fact, a

random task P
(k)
0 agrees with the truth on approximately 1/C of the samples, and the Bhattacharyya distance

of the geodesic from P
(k)
0 to the truth is at least a distance log(C)/(2C)+((C−1) log(C/2))/(2C) (≈ 0.83

for C = 10) from ignorance. As a reference, the distance between training trajectories of two different

configurations is about 0.15 in Figure 2.6a. Unlike the geodesic from P
(k)
0 , trajectories from P

(1)
0 come much

closer to ignorance; the smallest distance from P0 ranges from 0.1–0.5 for different weight initializations.

There is a large spread in the models near ignorance and trajectories with different weight initializations

join along separate paths (Figure 2.20b). After progress of 0.27 ± 0.15 (which is typically achieved within 3

epochs), most models have a distance of less than 0.15 from models that began training from ignorance P0.

This suggests a remarkable picture for the train manifold: not only do trajectories that begin near ignorance

P0 lie on it, but even if trajectories begin at very different parts of the prediction space, they still join this

manifold before heading to the truth. Conclusions on test data in Section 2.5.4.2 are similar.

2.5.4.2 Further analysis of trajectories on the test data

Dendrogram and InPCA embedding of test trajectories Figure 2.19 shows a dendrogram, similar to

the one in Figure 2.6a, obtained from hierarchical clustering of pairwise distances (averaged over weight

initializations) between trajectories using distances calculated on the test samples. Figure 2.19b shows

an InPCA embedding of the test trajectories and Figure 2.19c shows a variable importance plot using a

random-forest to predict the pairwise distances between test trajectories. The conclusions drawn from these

plots on the test data are very similar to those on the train data in Figure 2.6 discussed in the main paper.

55

Characterizing the details of the test manifold We will first study the spread of points away from the test

manifold. Consider Figure 2.18a, which shows points in the first two components colored by their distance

to truth P∗. Points colored purple have the smallest distance and the best test loss. This is corroborated

by Figure 2.18c where we took three points on the geodesic and colored models in terms of whether they are

within a Bhattacharyya distance of 0.3 from these centers. Points that are away from the test manifold at

early training times are colored yellow in Figure 2.18a; they consequently have high errors (90% in many

cases, colored yellow in Figure 2.18b). We checked that these are the same models that are far from the train

manifold near ignorance P0 (yellow in Figure 2.2b). Some (about half) of these models did not reach zero

training error, and correspondingly they also have poor test error.

In Figure 2.18a, we see that there is a large number of models that form a sliver of the manifold near truth P∗;

these are primarily ConvMixer and Large ResNet architectures. Their test errors are < 10% (see Figure 2.18b),

and their Bhattacharyya distance to the truth is < 1. In the train manifold, the spread in the visualization was

coming due to InPCA amplifying small differences in the models, all with zero error, towards the end of

training. In the test manifold, these models also have similar predictions (as seen in Figure 2.18c) but they do

not have zero error. InPCA is again identifying differences in the underlying probabilistic models.

For the same error, models on the test manifold show a large spread (see Figure 2.18b) as compared to those

on the train manifold in Figure 2.2c. In particular, different ConvMixer networks which eventually reach low

test errors predict similarly at intermediate levels of train/test error, not only on the training data but also on

the test data (blue/purple in Figure 2.18c). But fully-connected networks predict very differently from each

other at intermediate errors (error of, say 0.3–0.4 in Figure 2.18b), i.e., their spread is more pronounced on the

test manifold. This could indicate that architectures with strong inductive biases (e.g., convolutions) explore

a smaller part of the prediction space, even on the test data. It has implications for theoretical analyses of

generalization in deep learning using ideas such as algorithmic stability.

Using PC2 and PC3, in Figure 2.18d, we chose five specific endpoints, corresponding to fully-connected

and ViT networks trained with and without augmentation (B–E), and for comparison, one more endpoint

from the trajectory of ConvMixer trained with augmentation (A). We colored models in terms of whether

56

Figure 2.21: Predictions on test set of a subset of AllCNN models (the same set as in Figure 2.20) trained
from ignorance (light brown) and from three different corners (dark brown). Networks trained from corners
still seem to come close to the normally trained models mid-training, but they divert from the main manifold
and end at a higher testing error in the later part of training.

they lie within a Bhattacharyya distance < 0.45 from their closest center. Models colored purple are far from

all centers. For fully-connected and ViT networks, models having the same test error can lie in very different

parts of the test manifold. For example, for test error within 0.3–0.4 (see Figure 2.18b) some models lie

on the manifold (e.g., green in Figure 2.18c), some on one branch (e.g., one of the purple branches or the

smaller green branch in Figure 2.4c), while some others can lie on other branches (e.g., other purple branches

in Figure 2.4c).

Models initialized at very different parts of the prediction space converge to the truth along a similar

manifold For the test data, there is a larger spread in how models initialized near P (k)
0 join the main

manifold, and also how their endpoints are different from endpoints of trajectories that begin near ignorance

P0 (see Figure 2.21).

2.5.4.3 Observations remain consistent with other intensive distances

We can also use other distances in place of the Bhattacharyya distance. For example, the IsKL method (Teoh et al.,

2020) uses the symmetrized Kullback-Leibler (KL) divergence to compute the distances between pairs of

57

Figure 2.22: The top three dimensions of the IsKL embedding using the train data for a subset of the models
trained on CIFAR-10 (this is the same subset as in Figure 2.5a). The IsKL embedding carries a different
kind of information than the InPCA embedding in Figures 2.1a and 2.4a. Trajectories exhibit a larger spread
towards the end of training and truth P∗ (not seen here) is at infinity. The IsKL embedding emphasizes the
differences among the trajectories towards the end of training.

points D in Equation (2.2.6)

dsKL(Pu, Pv) =
1

N

N∑
n=1

C∑
c=1

(pnu(c)− pnv (c)) log

(
pnu(c)

pnv (c)

)
. (2.5.3)

For exponential families, we can obtain an analytical formula for the IsKL embedding and in this case, the

embedding has at most twice the number of dimensions as the dimensionality of the sufficient statistic (for

CIFAR-10, this has 9× 105 dimensions). Our models Pu and Pv are vectors that lie on a sphere of radius N

(probabilities of each image sum up to 1). We could also use the geodesic distance on this sphere

√
N cos−1

N∏
n=1

C∑
c=1

√
pu(yn)

√
pv(yn);

but this has poor behavior in high dimensions because points along the trajectory jump abruptly from

ignorance to truth. This is similar to the saturation of the Hellinger distance in high dimensions that is

discussed in the main text. Since our models live on a product space of hyper-spheres (samples in the dataset

are independent of each other) we can use the geodesic distance on the product of spheres instead

dG(Pu, Pv) =
1

N

∑
n

cos−1
∑
c

√
pnu(c)

√
pnv (c). (2.5.4)

58

(a) (b) (c) (d)

Figure 2.23: The top three dimensions of an embedding obtained using standard PCA for all the networks
on CIFAR-10 using train data (a) and the test data (c). The explained variance in (b,d) for train and test
data respectively is very high but the structure of the low-dimensional manifold identified by PCA is very
different from that obtained by InPCA in Figures 2.1a and 2.4a. In particular, although this embedding is
low-dimensional it does not respect the natural metric in probability space because the second derivative of
the divergence is not the same Fisher Information Matrix as that of, say, the Bhattacharya distance.

All the above distances respect the natural Fisher Information Metric in probability space. The IsKL, InPCA

and Geodesic embeddings carry different pieces of information on the structure of the space of probability

distributions. For example, IsKL places truth P∗ infinitely far away, and it therefore stretches the last part of

the training trajectories in our experiments. This allows us to investigate the behavior of trajectories towards

the end of training in more detail (although we do not do so in this paper). We have noticed in smaller-scale

experiments that IsKL captures a slightly higher explained stress in the top three dimensions that InPCA.

The geodesic embedding maps geodesics to straight lines which may be useful to construct a simpler, more

interpretable, set of coordinates.

Embeddings using standard principal component analysis (PCA) Our data consists of probability

distributions and therefore a meaningful embedding of such data should seek to preserve distances between

probability distributions. But it is reasonable to ask how well standard dimensionality reduction and

embedding techniques, e.g., standard principal component analysis (PCA), can reveal the inherent low-

dimensional structure in the data. For this calculation, we created a matrix of pairwise distances

Duv =
1

N

∑
n

∑
c

(pnu(c)− pnv (c))
2

59

and computed the eigen-decomposition of this matrix (after centering) to get the coordinates. One should

note two important choices here: (a) the Euclidean distance between the probability distributions pnu(·) and

pnv (·) treats them as standard vectors in RC , and (b) the averaging over the samples using N−1 ensures that

Duv remains non-trivial even for a large number of samples.

We show an embedding calculated using PCA for the train and test manifolds in Figure 2.23a and Figure 2.23c

respectively. In both cases, an embedding using PCA suggests that the data lies on an effectively low-

dimensional manifold, the explained variance is quite large (91% and 86% in the first three dimensions for

train and test manifolds respectively). This is consistent with the results we have discussed using InPCA

in the main text. But because it uses an unusual distance between probability distributions, PCA distorts

the structure of the manifold as compared to InPCA. The salient differences are as follows: (a) trajectories

corresponding to different architectures are very close to each other in Figure 2.1a and Figure 2.6a but there

are marked differences in these trajectories in Figure 2.23a; (b) the geodesic is far from all trajectories in the

original data but this is not so in the PCA embedding; (c) the cloud of points that lie away from the main

manifold, which we have analyzed in Figure 2.2, is not visible in the PCA embedding. For the test manifold,

we see some similarities between Figures 2.4a and 2.23c: (a) there are multiple branches for fully-connected

and ViT networks; and (b) networks that obtain good test error (ConvMixer and Large ResNet) are closer to

the truth. There are also some differences: (a) the geodesic is far from all trajectories in the InPCA embedding

while it is close to the trajectories of the Small ResNet in the PCA embedding; (b) InPCA reveals the fact that

trajectories of AllCNN are closest to the geodesic in terms of the Bhattacharyya distance for both train and

test manifolds (Figure 2.17) but PCA does not show this.

Altogether, while we can corroborate the claim that the trajectories explore an effectively low-dimensional

manifold of predictions on both the train and test data using both methods, PCA distorts the structure of the

manifold and conclusions that one may derive from the embedding are not consistent with those derived from

analysis of the trajectories in the original high-dimensional space. Also, observe that InPCA distinguishes the

small differences between the probability distributions towards the end of training while PCA does not.

60

Divergence d(p, q) Centroid (p(1), p(2), . . .)∑
n(pn − qn)

2 ∝
∑

k p
(k)
n Arithmetic mean (AM)∑

n(
√
pn −√

qn)
2 ∝

∑
k

√
p
(k)
n Sqrt. Arithmetic mean∑

n(log pn − log qn) ∝ (
∏

k p
(k)
n)1/N Geometric mean (GM)∑

n n(p
−1
n − q−1

n) ∝ (
∑

k 1/p
(k)
n)−1 Harmonic mean (HM)

− log
(∑

n

√
pn

√
qn
)

Bhattacharyya centroid (Nielsen and Boltz, 2011)∑
n(pn − qn) log(pn/qn) AM/W (eAM/GM) Jeffrey’s centroid (Nielsen, 2013)

Table 2.3: Different divergences and their corresponding centroids. We have showed the formulae
for two N -dimensional probability distributions (pn)n=1,...,N and (qn)n=1,...,N and the centroid of a set of
distributions {p(1), p(2), . . . }. The Lambert omega function is denoted by W (·) and e is Euler’s number.

0.5 0.1 0.3
PC1

0.2

0.0

0.1

PC
2

AM
GM
HM
Sqrt AM
Bhattacharyya
Jeffrey's

(a)

0.0 0.2 0.4 0.6 0.8
Progress

0.2

0.4

0.6

0.8

Te
st

 E
rro

r

0.7
0.20

0.25

(b)

Figure 2.24: (a): the top two principal components obtained from InPCA for the train data for one particular
configuration on CIFAR-10 (AllCNN architecture, trained with SGD without augmentation or weight-decay).
We computed the arithmetic mean (AM), geometric mean (GM), harmonic mean (HM), the arithmetic mean
of the square roots of probabilities appropriately normalized (Sqrt AM), the Bhattacharya centroid and
Jeffrey’s centroid for models with the same progress. It is noticeable that different means do not always lie on
the manifold. In particular, the arithmetic mean and the harmonic mean are the farthest away visually. (b):
the test error as a function of progress for the different ways of computing the mean. The test errors are AM
(25.0%), GM (20.9%), HM (18.9%), Sqrt AM (22.8%), Bhattacharyya centroid (23.1%), Jeffrey’s centroid
(22.7%): therefore computing the harmonic mean of the probabilities of the models in the ensemble leads to
a slightly better test error than computing the arithmetic mean of their probabilities which is typically done in
machine learning.

61

0.0 0.2 0.4 0.6 0.8 1.0
Index of sorted eigenvalues / total dimension

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Ei
ge

nv
al

ue

CIFAR
Non-sloppy
Sloppy

Figure 2.25: Eigenvalues of the the input correlation matrix E[xx⊤] for 32×32 RGB images x in CIFAR-10
(blue), i.e., x ∈ R3072, non-sloppy synthetic inputs (x ∈ R200) sampled from an isotropic zero-mean Gaussian
(orange) and sloppy synthetic inputs (x ∈ R200) sampled from a Gaussian distribution with zero mean and
covariance matrix whose eigenvalues decay as λi = 50c exp(−ci) for c = 0.5 (green).

2.5.4.4 Harmonic mean of an ensemble of deep networks has a better test error

We saw previously that a small network with higher eventual test error trains along the same manifold as

that of a large network with lower eventual test error, more slowly. There is a classical technique that also

achieves better test errors, namely ensembling. We therefore investigated whether an ensemble also exhibits

higher progress towards the truth than that of the individual models that constitute the ensemble.

The standard way of building an ensemble in machine learning is to calculate the arithmetic mean of the class

probabilities; this corresponds to the ℓ2 distance in the space of probability distributions. As Table 2.3 shows,

different distances correspond to different ways of computing the centroid. We choose five other candidates:

(i) the arithmetic mean of the square roots of the probabilities, which corresponds to the centroid of the

Hellinger distance, (ii) the geometric mean, (iii) the harmonic mean, (iv) the centroid of the Bhattacharyya

distance, which can be calculated using an iterative procedure given in Nielsen and Boltz (2011), and (v)

Jeffrey’s centroid which corresponds to the symmetric KL-divergence which is known in closed-form (Nielsen,

2013). In Figure 2.24, for 30 different weight initializations, for both train and test trajectories pertaining to

one particular configuration (AllCNN architecture, trained with SGD without augmentation or weight-decay),

we show these different centroids, after the same number of mini-batch updates for each model.

62

The arithmetic mean lies noticeably outside the manifold in the visualization for both train and test manifolds.

Different centroids have different trajectories in the embedding. But the harmonic mean (green) makes the

highest progress towards the truth on the test manifold and also has the lowest test error at the end Figure 2.24b.

This suggests that ensembles that use the harmonic mean of the probabilities to compute the final model

could lead to a slightly better test error.

2.5.5. Experiments using synthetic data

Datasets We sampled N = 5000 samples for the training set and N = 1000 samples for the test set

from a d = 200 dimensional Gaussian with mean zero and a diagonal covariance Λ = diag(λ1, . . . , λd).

We experimented with two types of data: those sampled from an isotropic Gaussian (Λ = Id×d) and those

sampled from a Gaussian distribution with a covariance matrix that has eigenvalues that decay linearly on

a logarithmic scale, i.e., λi = 50ce−ci. The latter setup is the so-called sloppy dataset Yang et al. (2022);

Transtrum et al. (2011b). We can control the sloppiness of the dataset by choosing different values of c, i.e.,

larger the value of c, sharper the decay. We created a 5-class classification problem using labels from a teacher

(a fully-connected network with one hidden layer of width 50). The largest logit among the 5 logits of the

teacher is taken to be the ground-truth label. We train student networks of different architectures using these

teacher-generated labels using the cross-entropy loss. All networks were trained with batch-normalization

and without dropout.

Neural architectures and training procedure We studied the difference in training trajectories when

networks are trained on data with different sloppiness. We used two values: c = 0.001 (which is effectively

non-sloppy data) and c = 0.5 (which is sloppy data). We trained 160 different configurations: (1) fully

connected networks of one and two hidden layers (both with a width of 512), (2) training with SGD and SGD

with Nesterov’s momentum of coefficient 0.9, (3) two values of batch-size 200 and 500, (4) two values of the

weight decay coefficient {0, 10−5}, and (5) 10 different weight initializations.

Analysis Train and test manifolds are effectively low-dimensional for both sloppy and non-sloppy data.

Figure 2.26a shows how the explained stress increases in the top few dimensions of the InPCA embedding; it

reaches 99% in the first 10 dimensions of an InPCA embedding. In general, when inputs are sloppy (larger

value of c is more sloppy inputs), the explained stress is slightly lower. We speculate that this is due to the

63

0 20 40
Dimension

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Ex

pl
ai

ne
d

st
re

ss

c
0.001
0.1
0.3
0.5
0.8
1.0

(a) (b)

Figure 2.26: (a): the explained stress in the top few dimensions (X-axis) of an InPCA embedding of models
along training trajectories when input data are sampled from a Gaussian distributions with zero mean and
covariance matrix whose eigenvalues decay as λi = 50c exp(−ci) for different values of c. For all values of
c (small values indicate that inputs were sampled from a near-isotropic Gaussian and large values indicate
that input data were sampled from a Gaussian with a sloppy covariance matrix), the explained stress is high.
(b): the top three dimensions of an InPCA embedding of models along train and test trajectories for synthetic
sloppy and non-sloppy input data for two different architectures (1-hidden-layer fully-connected networks in
dark green and 2-hidden-layer fully-connected networks in light green) and multiple training configurations
for each architecture.

increased difficulty of the underlying optimization problem which makes the details of the optimization

procedure, e.g., the learning rate, important—and thereby leads to a larger spread in the models of different

configurations. The explained stress on test data is essentially the same. As the embeddings in Figure 2.26

show qualitatively, when input data is not sloppy, training trajectories show a more clear separation between

different training configurations. It is therefore important to choose the architecture (in this case) when we

fit models on non-sloppy data. On the other hand, if input data is sloppy, choosing the architecture or the

parameters of the optimization algorithm carefully is less important. We noticed that the larger spread of

the points in the InPCA embedding towards the end of training near P∗ in Figure 2.26b is coming from

models trained with SGD with Nesterov’s acceleration. A heuristic explanation of this phenomenon, using a

linear regression objective for sloppy vs. non-sloppy data, is that overshoots in the weight space caused by

momentum terms in Nesterov’s acceleration lead to more diverse trajectories if the underlying objective is

not isotropic.

64

0 20 40
Dimension

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ex

pl
ai

ne
d

st
re

ss

Corners
1
2
5
10

(a) Non-sloppy input data

0 20 40
Dimension

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ex
pl

ai
ne

d
st

re
ss

Corners
1
2
5
10

(b) Sloppy input data (c)

Figure 2.27: (a,b): the explained stress of an InPCA embedding of training trajectories that are initialized
at different parts (“corners”) of the prediction space for non-sloppy and sloppy data respectively. For each
setting we have chosen the same number of trajectories, i.e., 200 trajectories for 1 corner, 100 trajectories each
from 2 corners etc. (c): the top three dimensions of an InPCA embedding of models along train trajectories
for sloppy and non-sloppy input data; colors indicate trajectories trained from different corners P (k)

0 . For
sloppy input data, trajectories that begin at different corners quickly converge to the same manifold before
heading to the truth P∗, but there is a larger spread in the points near the truth.

We next investigated the effect of initialization. We sample weights of the fully-connected layers from a

standard Gaussian distribution without scaling down the variance like that in the default PyTorch initialization.

Due to this, the largest output probability of the network at initialization is close to 1 (as opposed to close to

0.2 for the standard initialization when there are 5 classes). Effectively, such models are near the corners of the

probability simplex. We sampled 10 such corners and 50 weight initializations using the standard initialization

for each corner; this gives 50 different probabilistic models (each, for two optimization algorithm: SGD and

SGD with Nesterov’s acceleration, and two values of weight-decay) near each of the 10 corners to begin

training from. We only used a one hidden-layer fully-connected network for training from the corners. These

networks were trained towards the truth P∗ with a fixed batch size (100) and two values of the weight decay

coefficient (0 and 10−5). For both sloppy and non-sloppy data, this gives 200 trajectories from each of the

10 corners to be used for analysis. With the number of trajectories fixed to 200, we performed an InPCA

embedding of models along trajectories starting from different corners, e.g., 200 trajectories from one corner,

100 trajectories each from two corners, 40 trajectories each from 5 corners, etc.

Again, as Figures 2.27a and 2.27b show for non-sloppy and sloppy data respectively, the explained stress of

an InPCA embedding of models along these trajectories in the top few dimensions is high. The explained

stress captured by the top three dimensions for sloppy data is higher; this is because trajectories beginning

65

0 20 40 60
Index of sorted eigenvalues (by magnitude)

10 9

10 7

10 5

10 3

10 1

101

103

Corners
1
10

Data
Sloppy
Nonsloppy

(a)

0 50 100 150 200
Index of sorted eigenvalues (by magnitude)

10 9

10 7

10 5

10 3

10 1

101

103

Corners
1
10

Data
Sloppy
Nonsloppy

(b)

Figure 2.28: (a,b): eigenvalues of the pairwise distance matrix D (see Equation (2.2.6)) of InPCA of models
trained from corners at the beginning of training and after 0.5% of the training epochs, respectively. Our goal
was to slice the tube of trajectories of networks with different weight initializations corresponding to the
same configuration and investigate the dimensionality of the constituent models in this slice. In both cases,
for both sloppy and non-sloppy input data, even if the slice is not low-dimensional the trajectories themselves
in Figure 2.27 are effectively low-dimensional.

from different corners look very similar in Figure 2.27c for such data. For non-sloppy data, even if the

explained stress is lower in the top three dimensions (the InPCA embedding in Figure 2.27c shows a clearer

separation between trajectories), the explained stress is much higher if the embedding has more dimensions.

This is indicative of the difficulty in optimization for sloppy input data (one can also see a larger spread

towards the end of training in Figure 2.27c for sloppy data).

The initial 200 probability distributions (corresponding to 50 weight initializations, 1 architecture, 2 different

optimization algorithms and 2 different values of weight-decay) do not lie on a low-dimensional manifold,

see Figure 2.28a. In fact, the 200 probability distributions corresponding to models at an intermediate

point of training (after 0.5% of the total number of epochs) also do not lie on a low-dimensional manifold,

see Figure 2.28b. So it is remarkable that in Figure 2.27, the manifold formed by 200 trajectories across 4

training configurations that begin that these initializations can be embedded into a low-dimensional space

faithfully (dynamics in the prediction space is clearly nonlinear). This is yet another evidence of the

effectiveness of InPCA at plucking out structure in high-dimensional data.

66

These experiments on synthetic data suggest that, both initialization near ignorance in the prediction space

and the spectral properties of the input data, could be the reason for the low-dimensionality of the train and

test manifolds.

67

CHAPTER 3

LOW-DIMENSIONAL MANIFOLD IN THE SPACE OF TASKS

3.1. Introduction

In Chapter 2 we have been studying training towards one vertex of the model manifold, and in our current

problem, the only vertex that is meaningful. Recent success in foundation models suggests models can

adapt to different tasks after some finetuning. We therefore wish to understand the model manifold of the

space of tasks. We adopt the techniques developed in Chapter 2 to understand the structure of the space of

learnable tasks and study different representation algorithms such as supervised, transfer, meta, semi- and

self-supervised learning. Unlike the previous scenario, in this section we will consider different tasks with

the same input domain but possibly a different output domain. We will however assume the target domain for

each task belongs to a larger unified domain.

We show in this chapter that the low-dimensionality we observed in single-task learning is also present in

multi-task learning: for Imagenet, the top 3 dimensions preserve 80.02% of the pairwise distances between

2430 models trained on different sub-tasks of Imagenet with total dimension of 107. Similar to the separation

by architecture, we also observe differences in the trajectories taken by different learning algorithms: we

observe episodic meta-learning algorithms and supervised learning traverse different trajectories in the space

of probabilistic models during training but learn similar models eventually; the trajectory of episodic meta-

learning tends to be longer. Contrastive and semi-supervised learning methods traverse similar trajectories to

that of supervised learning in the space of probabilistic models.

We also demonstrate how the techniques we developed before could help reveal interesting hidden information

in the learning procedure in multiple settings. In particular, we observe that supervised learning on one task

results in a surprising amount of progress on seemingly dissimilar tasks; progress on other tasks is larger if

the training task has diverse classes, and structure of the space of tasks indicated by our analysis is consistent

with parts of the Wordnet phylogenetic tree.

68

3.1.1. Contributions

We discuss theoretical and computational tools to study such probabilistic models in Section 3.2. Many of

these tools are developed in more detail in Mao et al. (2024). These tools are used to visualize these very

high-dimensional objects, to compute geodesics on such manifolds, to interpolate checkpoints along training

trajectories into continuous curves, and to map models trained on different tasks into a unique prediction

space. We point these technical tools to understanding the structure of the space of learnable tasks and study

different representation algorithms such as supervised, transfer, meta, semi- and self-supervised learning. We

report the following findings in Section 3.3:

(1) The manifold of probabilistic models trained on different tasks using different representation learning

methods is effectively low-dimensional. This dimensionality is very small: for Imagenet where our

probabilistic models are in 107 dimensions, the top 3 dimensions preserve 80.02% of the pairwise

distances between 2430 models trained on different sub-tasks of Imagenet.

(2) Supervised learning on one task results in a surprising amount of progress on seemingly dissimilar

tasks (informally, “progress” means that the representation learned on one can be used to make accurate

predictions on other tasks; this is defined in Equation (2.2.4)); progress on other tasks is larger if the

training task has diverse classes.

(3) Structure of the space of tasks indicated by our analysis is consistent with parts of the Wordnet phyloge-

netic tree.

(4) Episodic meta-learning algorithms and supervised learning traverse different trajectories in the space of

probabilistic models during training but learn similar models eventually; the trajectory of episodic meta-

learning for a small “way” is about 40× longer in terms of its Riemann length than that of supervised

learning.

(5) Contrastive and semi-supervised learning methods traverse similar trajectories to that of supervised

learning in the space of probabilistic models.

(6) Fine-tuning a model upon a sub-task does not change the representation much if the model was trained

69

for a large number of epochs.

We present evidence and analysis of these findings using multiple neural architectures and a large number of

different image-classification tasks created from the CIFAR-10 and Imagenet datasets.

3.2. Methods

To be able to compute Bhattacharyya distances between models trained on different tasks, we map the

last-layer representation of the trained network to a common output space by imprinting.

Mapping a model trained on one task to another task using “imprinting” In this paper, we will consider

different tasks {P k}k=1,..., with the same input domain but possibly different number of classes Ck. Given a

model P 1
w parametrized by weights w for task P 1, we are interested in evaluating its learned representation on

another task, say, P 2. Let w = (w1, w2) be the weights for the backbone and the classifier respectively. The

logits are RC1 ∋ w2
⊤φ(x;w1) corresponding to an input x and features of the penultimate layer φ(x;w1).

The network’s output pw(c |xn) for c = 1, . . . , C1 is computed using a softmax applied to the logits. If

we have learned w from one task P 1, then we can re-initialize each row of the classifier weights (w2)
′
c for

c = 1, . . . , C2 to maximize the cosine similarity with the average feature of samples from task P 2 with

ground-truth class c:

(w2)
′
c = h/ ∥h∥2 where h =

∑
{x:y∗x=c} φ(x;w1). (3.2.1)

The new network w = (w1, w2
′) can be used to make predictions on P 2. Using imprinting, we can map a

trajectory τ1w of a network being trained on P 1 to another task P 2 by mapping each point along the trajectory;

let us denote this mapped trajectory by τ1→2
w .

Remark 3.2.1 (Models with different intermediate representations can have zero Bhattacharyya distance).

Two models can have different internal representations and yet define identical probabilistic models. For

example, a representation and a rotated version of the same representation can define identical probabilistic

models if this rotation is undone before the output. The Bhattacharyya distance Equation (2.2.2) only depends

on the output probabilities and would be zero if the probabilistic models are identical. Focusing the theory

on the probabilistic model that makes the predictions as opposed to the feature space therefore allows us to

capture many symmetries in the prediction space.

70

Remark 3.2.2 (Imprinting versus training the final layer or probing). There are many ways of performing

such a mapping, e.g., one could fine-tune the weights using data from P 2, linear probing (Shi et al., 2016),

etc. The technique described above is known as “imprinting” (Hu et al., 2015; Qi et al., 2018; Dhillon et al.,

2020). In this paper, we will be mapping thousands of models across different trajectories to other tasks.

Training the final layer, or a new classifier, for all these models is cumbersome and imprinting provides

a simple way around this issue. Note that imprinting is not equivalent to training the classifier w2 (with

backbone w1 fixed) using samples from the other task but we found that imprinted weights work well in

practice (see Section 3.5.4).

How to choose an appropriate task to map different models to? Consider the training trajectory τ1u of a

model being trained on P 1 and another trajectory τ2v of a model being trained on P 2. Using Equation (3.2.1),

we can map these trajectories to the other task to get τ1→2
u and τ2→1

v . This allows us to calculate, for instance,

dtraj(τ
1→2
u , τ2v) using Equation (2.2.5) which is the distance of the trajectory of the model trained on P 1 and

then mapped to P 2 with respect to the trajectory of a model trained on task P 2. If the two learning tasks P 1

and P 2 are very different, (e.g., Animals in CIFAR-10 and Vehicles in CIFAR-10), then this distance will be

large.

Quantities like dtraj(τ
1→2
u , τ2v) or dtraj(τ

2→1
v , τ1u) are reasonable candidates to study similarities between tasks

P 1 and P 2, but they are not equal to one another. We are also interested in doing such calculations with

models trained on many different tasks, and mapping them to each other will lead to an explosion of quantities.

To circumvent this, we map to a unique task whose output space is the union of the output spaces of the

individual tasks, e.g., to study P 1 (Animals) and P 2 (Vehicles), we will map both trajectories to PU which is

all of CIFAR-10. We will use

dtraj(τ
1→U
u , τ2→U

v) (3.2.2)

as the distance between trajectories trained on P 1 and P 2.

3.3. Results

We next describe our findings using the theoretical ideas developed in the previous section. We present a

broad range of evidence and analysis using a large number of representation learning techniques, multiple

neural architectures and a large number of different image-classification tasks created from the CIFAR-10

71

and ImageNet datasets. Experiments in this paper required about 30,000 GPU-hours. Section 3.5.1 describes

the setup for these experiments in detail. One more result, Result 7: Contrastive learning methods trained on

different datasets learn similar representations, is presented in Section 3.5.3.

Remark 3.3.1. All the analysis in this paper (except Figures 3.4 and 3.5) was conducted using the test data.

All models were trained using the training data, but all mapped models, distances between trajectories,

quantitative evaluation of progress and InPCA embeddings were computed using the test dataset. The reason

for this is that we would like to study the geometry of tasks as evidenced by samples that were not a part of

training. To emphasize, we do not develop any new algorithms for learning in this paper. Therefore using

the test data to quantify relationships between tasks is reasonable; see similar motivations in Kaplun et al.

(2022) or Ilyas et al. (2022) among others. Our findings remain valid when training data is used for analysis;

this is because in most of our experiments, a representation is trained on one task but makes predictions on a

completely new task after mapping.

Result 1: The manifold of models trained on different tasks, and using different representation learning

methods, is effectively low-dimensional We trained multiple models on 6 different sub-tasks of ImageNet

(from 5 random initializations each) to study the dimensionality of the manifold of probabilistic models

along the training trajectories (100 points equidistant in progress Equation (2.2.4)) after mapping all models

to all ImageNet classes (∼ 108 dimensions). We use the explained stress (defined in Equation (2.2.8)), to

measure if the distances are preserved by the first k dimensions of the embedding of the models. The first

3 dimensions of InPCA (Figure 3.1a) preserve 80.02% of the explained stress (Figure 3.1b shows more

dimensions). This is therefore a remarkably low-dimensional manifold. It is not exactly low-dimensional

because the explained stress is not 100%, but it is an effectively low-dimensional manifold. This also indicates

that the individual manifolds of models trained on one task are low-dimensional, even if they start from

different random initializations in the weight space. Such low-dimensional manifolds are seen in all our

experiments, irrespective of the specific method used for representation learning, namely, supervised, transfer

(fine-tuning), meta, semi-supervised and contrastive learning.

Remark 3.3.2 (A detailed description of how we plot trajectories of representations). We provide a non-

72

Imagenet

Random 333 classes

Dogs

Vertebrates

Instrumentality

Random labels

P0

P*

(a)

(b)
(c)

Figure 3.1: (a) Visualization of training trajectories of models trained on 6 tasks from ImageNet. Each
point is one network, bold lines connect points along the average trajectory of each task (across 5 random
weight initializations). Trajectories move towards the truth P∗, which corresponds to the ground-truth labels.
Training on one task makes a remarkable amount of progress on unseen, seemingly dissimilar, classes.
Trajectories of models trained on a random set of 333 classes are similar to those of the entire ImageNet.
Some classes (Instrumentality) are closer to this trajectory while others such as Vertebrates and Dogs are
farther away. Dogs is a semantic subset of Vertebrates; it splits at the beginning but seems to eventually reach
a similar representation as one of the intermediate points of Vertebrates.
(b) Percentage explained stress Equation (2.2.8) captured by subspace spanned by the top k InPCA eigenvec-
tors.
(c) Validation accuracy on different tasks vs. epochs.

mathematical description of how the theory in Section 3.2 was used to draw Figure 3.1a below. We train 5

different networks (random seeds for initialization) for each of the 6 tasks, and record 61 model checkpoints

73

(b)(a)

Figure 3.2: (a) Progress made by each model on classes seen during training (left half, lighter shade) and on
novel classes (right half, darker shade). We compute tcw which is the progress tw of images restricted to a
single class c. This quantity tcw measures the quality of the representation for class c. Violin plots denote
the distribution of tcw indicate that we make more progress on classes seen during training. If the model
sees a larger diversity of classes (like with random 333 classes), more progress is made on the novel classes.
Surprisingly, even if we train on just the “Dogs", we make some progress on novel classes.
(b) Progress tw Equation (2.2.4) on the Y-axis against the number of epochs of training on the X-axis. The
progress tw increases with more epochs of training—all models make non-trivial progress towards the truth
P∗ (tw = 1). Even if we train on only Dogs (118 classes) we make progress on the entire ImageNet.

during training; this gives 1830 checkpoints for this experiment. We re-index all checkpoints to calculate

their progress using Equations (2.2.3) and (2.2.4). We then interpolate between each consecutive pair of the

61 checkpoints along each trajectory using Equation (2.2.3). The training trajectory can now be sampled

at any progress tw ∈ [0, 1]. We next calculate the “average trajectory” of the 5 networks (random seeds) of

each task by averaging the output probabilities in Equation (2.2.1) at a fixed value of tw; 100 different values

of tw spread uniformly between [0, 1] are chosen. These 100 points along the average trajectory of each

of the 6 tasks are also embedded together with the 1830 checkpoints (i.e., m = 2430 in Equation (2.2.6)).

Figure 3.1a plots the top three dimensions obtained from InPCA. To clarify, the explained stress of the top

2430 dimensions would be exactly 100%.

Result 2: Supervised learning on one task results in a surprising amount of progress on seemingly

dissimilar tasks. Progress on other tasks is larger if the training task has diverse classes. We studied

74

the progress tw Equation (2.2.4) made by models (Figure 3.2b) trained on tasks from Result 1. Training on

the task “Dogs” makes non-trivial progress on other tasks, even seemingly dissimilar ones like “Instruments”

which contains vehicles, devices and clothing. In fact, it makes a remarkable amount of progress on the entire

ImageNet, about 63.38% of the progress of a model trained directly on ImageNet. Progress is larger for

larger phyla of ImageNet (Vertebrates and Instruments). But what is surprising is that if we train on a random

subset of 333 classes (a third of ImageNet), then the progress on the entire ImageNet is very large (92%).

This points to a strong shared structure among classes even for large datasets such as ImageNet. Note that

this does not mean that tasks such as Vertebrates and Instruments are similar to each other. Even if training

trajectories are similar for a while, they do bifurcate eventually and the final models are indeed different

(see Figure 3.3b and Remark 3.3.3 on how to interpret it).

In Figure 3.2a, we studied the projections of models trained on one task onto the geodesics of unseen classes

calculated using Equation (2.2.3) evaluated at the progress tw Equation (2.2.4)). We find that a model trained

on the entire ImageNet makes uneven progress on the various classes (but about 80% progress across them,

progress is highly correlated with test error of different classes). Models trained on the 6 individual tasks

also make progress on other unseen classes. As before, training on Instruments, Vertebrates, Dogs makes

smaller progress on unseen classes compared to training on a random subset of 333 classes. This is geometric

evidence that the more diverse the training dataset, the better the generalization to unseen classes/tasks; this

phenomenon has been widely noticed and utilized to train models on multiple tasks, as we discuss further in

Result 4.

Result 3: The structure of the space of tasks indicated by our visualization technique is consistent

with parts of the Wordnet phylogenetic tree. To obtain a more fine-grained characterization of how the

geometry in the space of learnable tasks reflects the semantics of these tasks, we selected two particular phyla

of ImageNet (Animals, Artifacts) and created sub-tasks using classes that belong to these phyla (Figure 3.3a).

Trajectories of models trained on Instruments and Conveyance are closer together than those of Animals.

Within the Animals phylum, trajectories of Vertebrates (Dog, Reptile, Bird) are closer together than those of

Invertebrates (Figure 3.3b for quantitative metrics). Effectively, we can recover a part of the phylogenetic tree

of Wordnet using our training trajectories. We speculate that this may point to some shared structure between

75

Figure 3.3: (a) Trajectories of models trained on different phyla of Wordnet (inset). The model manifold is
again effectively low-dimensional (78.72% explained stress in 3 dimensions).
(b) We analyze the trajectories in Figure 3.3(a) and obtain a quantitative description of how trajectories
of different tasks diverge from each other during training; the procedure is explained in in Remark 3.3.3.
The plot depicts the Bhattacharyya distance between the mean trajectories (over random initializations) on
different tasks, and the mean trajectory of Conveyance. This distance is normalized by the average of the
tube radii (maximum distance of one of the 5 trajectories from the mean, computed at each progress) of
the two trajectories. Such quantities allow us to make precise statements about the differences between
representations and show some very surprising conclusions. Trajectories of tasks that are nearby in Wordnet
are also nearby in terms of their learned representations. Further, trajectories of ImageNet (pink) are closer to
Conveyance (as expected), but those of Vertebrates (red) are equally far away for more than 60% (tw ≈ 0.25)
of the progress. In other words, training on Vertebrates (reptiles, dog, bird) makes a remarkable progress on
Conveyance (cars, planes).

visual features of images and natural language-based semantics of the corresponding categories which was

used to create Wordnet (Miller, 1998) of the corresponding categories. Such alignment with a natural notion

of relatedness also demonstrates the soundness and effectiveness of our technical machinery.

Remark 3.3.3 (Building a precise and quantitative characterization of trajectories of representations). The

precise way to understand statements like those in Result 3 is using the quantitative analysis reported

in Figure 3.3b and Figure 3.10. To expand upon the caption, the X-axis of the plot is progress. For multiple

models (5 random seeds) trained on two tasks (say Conveyance and Dogs), we have calculated the mean

(across random seeds) of the interpolated trajectories at different progress. At each specific progress, we

76

have plotted the distance between the mean model trained on Conveyance (say task 1) and Dogs (say task 2)

divided by the average tube radii (which is the maximum of the distance of the model corresponding to one

seed from the mean):

2dB(τ
1→U
mean , τ2→U

mean)/
∑

k=1,2maxa[dB(τ
k→U
a , τk→U

mean)].

The is a measure of how far away the trajectories of these two models are. If it is less than 1, then the “tubes”

corresponding to models trained on tasks 1 and task 2 intersect.

Let us emphasize that we have performed such analyses for all experiments in this paper (see Figure 3.10);

while the InPCA embedding gives an easy-to-understand visual description of these results for high-

dimensional probabilistic models, the information geometric techniques developed in this paper enable

us to make these descriptions precise and quantitative. We also include a similar step-by-step guide on how

to interpret Figure 3.8b in Section 3.5.3.

Result 4: Episodic meta-learning algorithms traverse very different trajectories during training

but they fit a similar model eventually. Meta-learning methods build a representation which can be

adapted to a new task (Thrun and Pratt, 2012). We studied a common variant, the so-called episodic training

methods (Bengio et al., 1992), in the context of few-shot learning methods (Vinyals et al., 2016). In these

methods, each mini-batch consists of samples from Cw out of C classes (called “way”) split into two parts: a

“support set” Ds of s samples/class (called “shot”), and a “query set” Dq of q samples/class. Typical methods,

say prototypical networks of Snell et al. (2017b), implement a clustering loss on features of the query samples

using averaged features of the support samples φc = s−1
∑

{x∈Ds,y∗(x)=c} φ(x;w1) for all c = 1, . . . , Cw

as the cluster centroids. If features φ lie on an ℓ2 ball of radius 1, then doing so is akin to maximizing the

cosine similarity between cluster centroids and features of query samples. The same clustering loss with the

learned backbone w1 is used to predict on unseen classes (using “few” support samples to compute centroids)

at test time.

To understand the representations learned by episodic meta-learning methods, we compared trajectories of

episodic meta-learning to the trajectory taken by supervised learning in Figure 3.4. Supervised learning uses

the cross-entropy loss over all the C classes while episodic meta-learning optimizes a loss that considers

77

Supervised

Episodic 2-way

Episodic 5-way

P0

P*

2-way task
5-way task
7-way task
CIFAR10

P0

P*

(a) (b)

Figure 3.4: (a) Training trajectories for supervised learning (black), 2-way (pink) and 5-way episodic meta-
learning (purple). Trajectories of 5-way meta-learning are very similar to those of supervised learning and
eventually reach very similar models and high test accuracy. In contrast, 2-way meta-learning has a much
longer trajectory (about 40× longer in Riemann length than black) and does not reach a good test accuracy
(on all 10 CIFAR-10 classes). Representations are similar during early parts of training even if these are quite
different learning mechanisms.
(b) Trajectories of 2-way (blue), 5-way (green), 7-way (yellow) tasks trained using cross-entropy loss
compared to supervised learning (red). For large “way”, trajectories are similar to supervised learning but
they quickly deviate from the red trajectories for small ways.

all k-way classification tasks (where k is typically smaller than C), its objective differs from that used for

supervised learning. Since the two objectives are different, it comes as a surprise that both arrive at the same

solution; see Figure 3.4a,b and Figure 3.9 for distances between trajectories. But the Riemann trajectory

length of episodic training is about 40× longer than that of supervised learning. It is worth noting that

the explained stress is only 40.96% in Figure 3.4a because of larger fluctuations for episodic learning in

other directions. Therefore, episodic meta-learning has a qualitatively different training trajectory in the

prediction space than supervised learning. The implications of this are consistent with recent literature

which has noticed that the performance of few-shot learning methods using supervised learning (followed by

fine-tuning) is comparable to, or better than, episodic meta-learning (Dhillon et al., 2020; Kolesnikov et al.,

78

2020; Fakoor et al., 2020). Indeed, a supervised learned representation also minimizes the clustering loss.

(a) (b)

Figure 3.5: (a) Average distance between two k-way meta-learning trajectories decreases with k, this is a
geometric evidence of the variance of predictions of learned representations.
(b) Training with a small way leads to models that predict poorly on test data (large distances from truth).
These embeddings were calculated using the training dataset. The rationale being that we wanted to show
how different meta-learning and supervised learning are during training.

In order to understand why few-shot accuracy of episodic training is better with a large way (Gidaris and Komodakis,

2018), we trained models on different 2-way 5-way and 7-way tasks using the cross-entropy loss (Figure 3.4b).

We find that the radius of the tube that encapsulates the models of 2-way tasks around their mean trajectory is

very large, almost as large as the total length of the trajectory, i.e., different models trained with a small way

tasks traverse very different trajectories. Tube radius decreases as the way increases (Figure 3.5a). Further,

the distance of models from the truth P∗ (which is close to the end point of the supervised learning model) is

higher for a small way (Figure 3.5b). This is geometric evidence of the widely used empirical practice of

using a large way in episodic meta-learning. Observe in Figure 3.5b that as the way increases, the trajectory

becomes more and more similar to that of supervised learning. See Figure 3.10 for a quantitative analysis of

these trajectories.

Result 5: Contrastive and semi-supervised learning methods traverse trajectories similar to those of

supervised learning. Contrastive learning (Becker and Hinton, 1992) learns representations without using

ground-truth labels (Gutmann and Hyvärinen, 2010; Chen et al., 2020a). It has been extremely effective for

79

0.0 0.2 0.4 0.6
Progress (tw)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
or

m
al

iz
ed

 d
is

ta
nc

e
be

tw
ee

n
m

ea
n

tra
je

ct
or

ie
s

Distance from Supervised

SimCLR
Barlow-Twins
FixMatch

Figure 3.6: We consider 4 methods for training on CIFAR10: supervised learning, SimCLR (Chen et al.,
2020a), Barlow-twins (Zbontar et al., 2021) and Fixmatch (Sohn et al., 2020). Fixmatch has access to 2500
labeled samples and 47500 unlabeled samples. SimCLR and Barlow-twins use 50,000 unlabeled samples for
training.
(a) We plot the trajectories for supervised, semi-supervised and contrastive learning. The trajectory of
semi-supervised learning (Fixmatch) eventually resembles supervised learning in comparison to contrastive
learning methods. All methods result in remarkably similar trajectories although some of these methods are
trained using only unlabeled data.
(b) Normalized distance of trajectories corresponding to contrastive and semi-supervised learning to the
trajectory of supervised learning. Semi-supervised learning (Fixmatch) deviates considerably from the other
methods at the beginning. We speculate that this is because the trajectory of Fixmatch is influenced by the
2500 labeled samples. As, training progresses, Fixmatch becomes increasingly similar to supervised learning
as evidenced by the dip in the blue line for larger values of progress (tw).

self-supervised learning (Doersch and Zisserman, 2017; Kolesnikov et al., 2019), e.g., prediction accuracy

with 1–10% labeled data is close to that of supervised learning using all data (Chen et al., 2020b). Semi-

supervised methods (Berthelot et al., 2019; Sohn et al., 2020) learn representations when ground-truth labels

are available for only a small fraction of the data (0.1–1%). These methods achieve a prediction accuracy

within 5% of the accuracy achieved through supervised learning. We compared representations learned

using contrastive and semi-supervised learning with those from supervised learning to understand why these

methods are so effective.

Consider a task P and a set of augmentations G (e.g., cropping, resizing, blurring, color/contrast/brightness

80

distortion etc.). Given inputs (say images) x from P , contrastive learning forces the representation φ(g(x);w1)

and φ(g′(x);w1) (shortened to φ(g(x)) below) of the same input for two different augmentations g, g′ to be

similar. And forces it to be different from representations of other augmented inputs x′ (Zbontar et al., 2021;

Bachman et al., 2019; Dosovitskiy et al., 2014). Semi-supervised learning methods have access to both la-

beled inputs xl and unlabeled inputs xu. More recent methods are usually trained to fit the labeled inputs using

the cross-entropy loss while enforcing consistent predictions across all augmentations (Tarvainen and Valpola,

2017; Berthelot et al., 2019) for any unlabeled input.

We compare the representations of semi-supervised (Fixmatch (Sohn et al., 2020)), contrastive (SimCLR (Chen et al.,

2020a), Barlow-twins (Zbontar et al., 2021)) and supervised learning in Figure 3.6. All three trajectories

are similar to the trajectory of supervised learning. We find that the trajectory of semi-supervised learning

deviates from the supervised learning trajectory initially, but the two are very similar for larger values of

progress (tw). This points to a remarkable ability of semi and self-supervised learning methods to learn

representations that are similar to those of supervised learning; it is not just that the accuracy of these methods

is similar, they also learn similar probabilistic models.

Result 6: Fine-tuning a pre-trained model on a sub-task does not change the representation much. To

understand how models train on multiple tasks, we selected two binary classification sub-tasks of CIFAR-10

(Airplane vs. Automobile, and Bird vs. Cat).

We selected models at different stages of standard supervised learning on CIFAR-10 (i.e., using 10-way

output and softmax cross-entropy loss) and fine-tuned each of these models on two sub-tasks (the entire

network is fine-tuned without freezing the backbone). As Figure 3.7 shows, models that were fine-tuned from

earlier parts of the trajectory travel a large distance and move away from trajectories of the supervised learned

CIFAR-10 models. As we fine-tune later and later models, the distance traveled away from the trajectory

is smaller and smaller, i.e., changes in the representation are smaller. For a fully-trained CIFAR-10 model

which interpolates the training data, the distance traveled by fine-tuning is very small (the points are almost

indistinguishable in the picture); this is because both P 1 and P 2 are subsets of CIFAR-10.

Algorithms for transfer learning train on a source task before fine-tuning the model on the target task. If

two tasks share a large part of their training trajectory, then we may start the fine-tuning from many shared

81

intermediate points—there are many such points. If the chosen point is farther along in terms of progress then

the efficiency resulting from using the source task is higher because the trajectory required to fit the target

task is shorter; such trajectories were used in (Gao and Chaudhari, 2021) to define a distance between tasks.

As we saw in Result 2, trajectories of different tasks bifurcate after a shared part. The resultant deviation less

for related tasks and more for dissimilar tasks (Figure 3.7a, Figure 3.1a,c). Therefore it is difficult to know a

priori from which point one should start the fine-tuning from without knowing the manifold of the target task.

In particular, our geometric picture indicates that fine-tuning from a fully-trained model can be detrimental to

the accuracy on the target task. This has been noticed in a number of places in the transfer learning literature,

e.g., Li et al. (2020), and has also been studied theoretically (Gao and Chaudhari, 2020).

Supervised Learning

Fine-tune task0 - epoch 0

Fine-tune task0 - epoch 2

Fine-tune task0 - epoch 5

Fine-tune task0 - epoch 100

Fine-tune task1 - epoch 0

Fine-tune task1 - epoch 2

Fine-tune task1 - epoch 5

Fine-tune task1 - epoch 100

P0

P*

P1
*(ta)

P1
*(tc)

P2
*(tb)

(a) (b)

Figure 3.7: (a) Fine-tuning trajectories on Airplane vs. Automobile, and Bird vs. Cat sub-tasks of CIFAR-10
(warm and cold hues) pre-trained from different points along the trajectory of supervised learning. If the
pretrained model has progressed further towards the truth P∗, then fine-tuning it on a sub-task does not
change the representation much. The final trajectory (fine-tuning from epoch 100) is indistinguishable from
P∗. (b) Bhattacharyya distance between the mean trajectories normalized by the average of the tube radii
(like Figure 3.3b). models (say, fine-tuned after epoch 5 on task 1) go backwards in terms of progress, i.e.,
they unlearn the pre-trained representation in order to fit the new task. This occurs as early as epoch 1 here. It
suggests that learning occurs extremely rapidly at the beginning and determines the efficiency of fine-tuning.
Some curves here are not visible because they are overlapping heavily.

Result 7: Contrastive learning methods trained on different datasets learn similar representations

We compared representations learned using contrastive learning with those from supervised learning to

understand some aspects of why the former are so effective.

We used SimCLR (Chen et al., 2020a) to perform contrastive learning on images from four sets of classes

82

(airplane-automobile, bird-cat, ship-truck and all of CIFAR-10). We compared the learned representation to

that from supervised learning on two tasks (airplane-automobile and all of CIFAR-10) in Figure 3.8. Models

trained using contrastive learning on two-class datasets learn very different representations from models

trained on the same task but using supervised learning. Models trained using contrastive learning on different

datasets learning similar representations (trajectories of all three two-class datasets are very close to each

other). This is reasonable because contrastive learning does not use any information from the labels. It is

surprising however that the trajectory of models from contrastive learning on these two-class datasets is

similar to trajectories of models from contrastive learning on the entire CIFAR-10.

Let us elaborate upon this a bit more. We have color-matched the lines in Figure 3.8b with those in Figure 3.8a.

The black curve is the trajectory of supervised learning on the entire CIFAR-10; red is the trajectory of

SimCLR trained on the entire CIFAR-10. Figure 3.8b compares the distances of trajectories in Figure 3.8a

from the red one “contrastive”; this is why there is no red trajectory in Figure 3.8b.

• The first thing to note here is that the black and red trajectories are quite close to each other; the black

line in Figure 3.8b is only about 20 times far away from red as compared to their corresponding tube

radii.

• Next observe that the trajectory of SimCLR on Task 1 (light blue), SimCLR on Task 2 (green) and

SimCLR on Task 3 (yellow) are very similar to each other; this is seen in both Figure 3.8a and

in Figure 3.8b.

• Third, they are closer to SimCLR on all of CIFAR-10 than any supervised learning trajectories (this

is seen in Figure 3.8b because their curves are below everyone else). Thus, contrastive learning on

datasets with different classes learns similar representations.

• The learned representation of two-class SimCLR models is similar to the one obtained using data from

all classes (red) (in this experiment this occurs up to about tw = 0.4 progress) but they do not go all the

way to the truth (i.e., the end point of black line). This shows the benefit of having data from many

classes during contrastive learning.

83

Also see Figure 3.10 for distances computed with respect to other trajectories which can be used to further

investigate these claims.

Supervised - CIFAR10

Supervised - Task 1

SimCLR - Task 1

SimCLR - Task 2

SimCLR - Task 3

SimCLR - CIFAR10

P0

P*

(a) (b)

Figure 3.8: (a) Trajectories of contrastive learning (SimCLR) on 3 datasets (two classes each) and entire
CIFAR-10 compared to those of supervised learning. SimCLR on entire CIFAR-10 learns a similar represen-
tation as that of the supervised learned model P∗ (which fits the training data perfectly). SimCLR trajectories
are close to each other even if different datasets were used to train them. It may seem from the embedding
that SimCLR trajectories are similar to that supervised learning, which would be very surprising because the
former does not use any labels, but see below.
(b) Bhattacharyya distance between the mean trajectories of all models and the mean trajectory of SimCLR
on all CIFAR-10. This distance is normalized by the average of the tube radii (like Figure 3.7b). SimCLR
trajectories of two-class datasets are indeed very close to each other (mean distance is ∼ 5× more than their
tube radii for about 45% of the way (tw ≈ 0.2)). This plot indicates that two-class SimCLR trajectory (light
blue) is close to SimCLR on all of CIFAR-10. But two-class supervised learning trajectory (darker blue) is
much farther away from SimCLR on all of CIFAR-10.

3.4. Related Work and Discussion

Understanding the space of learnable tasks A large body of work has sought to characterize relationships

between tasks, e.g., domain specific methods (Zamir et al., 2018; Cui et al., 2018; Pennington et al., 2014),

learning theoretic work (Baxter, 2000; Maurer, 2006; Ben-David et al., 2010; Ramesh and Chaudhari, 2022;

Tripuraneni et al., 2020; Hanneke and Kpotufe, 2020; Caruana, 1997), random matrix models (Wei et al.,

2022), neural tangent kernel models (Malladi et al., 2022) and information-theoretic analyses (Jaakkola and Haussler,

1999; Achille et al., 2019a,b). Broadly speaking, this work has focused on understanding the accuracy of a

model on a new task when it is trained upon a related task, e.g., relationships between tasks are characterized

using the excess risk of a hypothesis. Our methods also allow us to say things like “task P 1 is far from P 2 as

84

compared to P 3”. But they can go further. We can glean a global picture of the geometric structure in the

space of tasks and quantify statements such as “the divergence between P 1 and P 2 eventually is more than

that of P 1 and P 3, but representations learned on these tasks are similar for 30% of the way”.

There is strong structure in typical inputs, e.g., recent work on understanding generalization (Yang et al.,

2022; Bartlett et al., 2020) as well as older work such as Simoncelli and Olshausen (2001); Field (1994);

Marr (2010) has argued that visual data is effectively low-dimensional. Our works suggests that tasks also

share a low-dimensional structure. Just like the effective low-dimensionality of inputs enables generalization

on one task, effective low-dimensionality of the manifold of models trained on different tasks could perhaps

explain generalization to new tasks.

Relationships between tasks in neuroscience Our results are conceptually close to those on organization

and representation of semantic knowledge (Mandler and McDonough, 1993). Such work has primarily used

simple theoretical models, e.g., linear dynamics of Saxe et al. (2019) (who also use MDS). Our tools are very

general and paint a similar picture of ontologies of complex tasks. Concept formalization and specialization

over age (Vosniadou and Brewer, 1992) also resembles our experiment in how fine-tuning models trained for

longer periods changes the representation marginally. Our broad goals are similar to those of Sorscher et al.

(2021) but our techniques are very different.

Information Geometry has a rich body of sophisticated ideas (Amari, 2016), but it has been difficult to

wield it computationally, especially for high-dimensional models like deep networks. Our model in Equa-

tion (2.2.1) is a finite-dimensional probability distribution, in contrast to the standard object in information

geometry which is an infinite-dimensional probability distribution defined over the entire domain. This

enables us to compute embeddings of manifolds, geodesics, projections etc. We are not aware of similar

constructions in the literature.

Visualizing training trajectories of deep networks InPCA is a variant of multi-dimensional scaling

(MDS, see Cox and Cox (2008)), with the difference being that InPCA retains the negative eigenval-

ues which preserves pairwise distances (Quinn et al., 2019a). A large number of works have investi-

gated trajectories of deep networks and the energy landscape during or after training using dimension-

ality reduction techniques (Horoi et al., 2021; Li et al., 2018; Huang et al., 2020). Gur-Ari et al. (2018);

85

Antognini and Sohl-Dickstein (2018) studied the dimensionality of training trajectories. The key distinc-

tion here with respect to this body of work is that we study the prediction space, not the weight space.

While the weight space has symmetries (Freeman and Bruna, 2017; Garipov et al., 2018) and nontrivial

dynamics (Tanaka and Kunin, 2021; Chaudhari and Soatto, 2018), the prediction space, i.e,. [0, 1]N×C ∋

{pw(c |xi)}, completely characterizes the output of a probabilistic model. In comparison, the loss or the error

which are typically used to reason about relationships between tasks, are coarse summaries of the predictions.

Any two models, irrespective of their architecture, training methodology, or even the task that they were

trained on, can be studied rigorously using our techniques.

3.5. Appendix

3.5.1. Details of the experimental setup

Data

We performed experiments using two datasets.

1. CIFAR10 (Krizhevsky, 2009) has 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse,

ship, truck) with RGB images of size 32×32, and

2. ImageNet (Deng et al., 2009) has 1000 classes each with about 1000 RGB images of size 224×224.

ImageNet classes are derived from the leaves of the Wordnet hierarchy (Miller, 1998) which is visualized

by Bostock (2018). We use this hierarchy to create tasks using different subsets of ImageNet; We use all

classes under a node to create a task. The tasks that we consider are: Dogs, Vertebrates, Invertebrates,

Instrumentality, Reptile and Birds. We also consider a task with 333 randomly selected classes and unlike

other tasks, it spans many different phyla of ImageNet.

Architectures We use a Wide-Resnet (Zagoruyko and Komodakis, 2016) architecture for supervised learn-

ing experiments on CIFAR-10 (WRN-16-4 with depth 16 and widening factor of 4) and a Resnet-18 (He et al.,

2016) to train a model using SimCLR. All experiments on ImageNet use the Resnet-50 architecture.

All convolutional layers are initialized using the Kaiming-Normal initialization. For the Wide-Resnet, the

final pooling layer is replaced with an adaptive pooling layer in order to handle input images of different

86

sizes.

We make three modifications to these architectures.

1. We remove the bias from the final classification layer; this helps keep the logits of the different tasks

on a similar scale.

2. In the experiments for Result 3 (episodic meta-learning) and Result 6 (fine-tuning), we replace batch

normalization with layer norm in the Wide-Resnet. This is because we found in preliminary experiments

that batch-normalization parameters make training meta-learning models very sensitive to choices of

hyper-parameters (e.g., the support or query shot), and that the learned representations of new tasks

were quite different in terms of their predictions (and thereby the Bhattacharyya distance) but all the

difference was coming from modifications to the BN parameters.

3. In the Resnet-50, we replace the pooling layers with BlurPool (Zhang, 2019). The bias parameter in

batch normalization is set to zero with the affine scaling term set to one.

Training procedure All models are trained in mixed-precision (32-bit weights, 16-bit gradients) using

stochastic gradient descent (SGD) with Nesterov’s acceleration with momentum coefficient set to 0.9 and

cosine annealing of the learning rate schedule. Batch-normalization parameters are excluded from weight

decay.

CIFAR10 datasets use padding (4 pixels) with random cropping to an image of size 28×28 or 32×32

respectively for data augmentation. CIFAR10 images additionally have random left/right flips for data

augmentation. Images are finally normalized to have mean 0.5 and standard deviation 0.25.

Supervised learning models (including fine-tuning) for CIFAR10 are trained for 100 epochs with a batch-size

of 64 and weight decay of 10−5 using the Wide-Resnet.

Episodic meta-learners are trained using a Wide-Resnet and with the prototypical loss (Snell et al., 2017a).

For the 2-way meta-learner, each episode contains 20 query samples and 10 support samples. For the 5-way

meta-learner, each episode contains 50 query samples and 10 support samples. We found (Result 4) to hold

across different choices of these hyper-parameters in small-scale experiments. Models are trained for around

87

750 epochs and the episodic learner is about 5 times slower to train with respect to wall-clock time.

We train models using SimCLR on CIFAR10 and on tasks created from CIFAR10. For the augmentations, we

use random horizontal flips, random grayscale, random resized crop and color jitter. Models are trained for

200 epochs for 2-way classification problems and for 500 epochs when trained on the entirety of CIFAR10

with the Adam optimizer and an initial learning rate of 0.001.

3.5.1.1 Experiments on ImageNet

We make use of FFCV (Leclerc et al., 2022). which is a data-loading library that replaces the pytorch

Dataloader. FFCV reduces the training time on ImageNet to a few hours, which allows us to train 100s of

models on ImageNet, or on tasks created from it. Our implementation of ImageNet training builds on the

FFCV repository 5.

ImageNet models are trained for 40 epochs with progressive resizing – the image size is increased from 160

to 224 between the epochs 29 and 34. Models are trained on 4 GPUs with a batch-size of 512. The training

uses two types of augmentations – random-resized crop and random horizontal flips. Additionally, we use

label smoothing with the smoothing parameter set to 0.1.

3.5.2. Implementing InPCA in very high dimensions

We calculate an InPCA embedding of models along multiple trajectories, e.g., a typical experiment has

about 25 trajectories (multiple random seeds, tasks, or representation learning methods) and about 50

models (checkpoints) along each trajectory. Each model is a very high-dimensional object (with di-

mensionality NC where N ∼ 105 and C ∼ 10-103). Even if the matrix D in Equation (2.2.6) is

relatively manageable with n ∼ 1250, each entry of D is dB(Pu, Pv) and therefore requires ∼ 108

operations to compute. Implementing InPCA—or even PCA—for such large matrices requires a large

amount of RAM. We reduced the severity of this issue to an extent using Numpy’s memmap functionality

https://numpy.org/doc/stable/reference/generated/numpy.memmap.html. Also note that calculating only the

top few eigenvectors of Equation (2.2.6) suffices to visualize the models, we do not need to calculate all.

The formula Equation (2.2.2) is an effective summary of the discrepancies between how the predictions
5https://github.com/libffcv/ffcv-imagenet/tree/main

88

https://numpy.org/doc/stable/reference/generated/numpy.memmap.html
https://github.com/libffcv/ffcv-imagenet/tree/main

made by two probabilistic models differ; even small differences in two models, e.g., even if both Pu and

Pv make mistakes on exactly the same input samples, if pnu(c) is slightly different than pnv (c) for even one

of n or c, the divergence is non-zero. InPCA is capable of capturing the differences between two such

models Equation (2.2.6). However, when the number of classes is extremely large, the number of terms in

the summation is prohibitively large and analyzing the discrepancies or calculating the embedding becomes

rather difficult.

We also developed a method to work around this issue. We can use a random stochastic matrix (whose

columns sum up to 1) to project the outputs for each sample {pnu(c)}c=1,...,C into a smaller space before

calculating Equation (2.2.2). This amounts to pretending as if the model predicts not the actual classes but a

random linear combination of the classes (even if the model is trained on the actual classes). This is a practical

trick that is necessary only when we are embedding a very large number of very high-dimensional probabilistic

models. We checked in our Imagenet experiments that using this trick gives the same embeddings.

In this paper, we did not need to use this projection trick. However, we found that this tricks makes

it computationally faster to compute the embeddings and we have seen it to work well in practice. We

have shared the code for this procedure, since it allows other people to reproduce the results using fewer

computational resources.

3.5.3. Additional Result

3.5.4. Imprinting as an alternative to training the final layer

Consider a total of C classes. We would like to find weights {wc}Cc=1 that maximize the log-probability of

the samples, under the constraint that for all c ∈ C, the norm of the weights ||wc|| is 1. Let φ(x) denote a

internal representation of sample x. The log-probability

∑
x:yx=c

log p(y = c |x) =
∑

x:yx=c

wc · φ(x)−
∑

x:yx=c

log

 C∑
j=c

exp (wc · φ(x))

 , (3.5.1)

is proportional to the inner-product wc ·
∑

x:yx=c φ(x). Maximizing just this term under the norm constraint,

we get the imprinted weights
∑

i ϕ(x
c
i)/||

∑
i ϕ(x

c
i)|| as the solution. Deriving an analytical expression for

89

0.0 0.5 1.0

0

20

40

60
Supervised Learning

0.0 0.5 1.0

0

20

40

Meta-learning 5-way

0.0 0.5 1.0

0

20

40

60
Meta-learning 2-way

Supervised Learning
Meta-learning 5-way
Meta-learning 2-way

Progress (tw)

N
or

m
al

iz
ed

 d
is

ta
nc

e
be

tw
ee

n
tra

je
ct

or
ie

s

Figure 3.9: Distance between trajectories of supervised and meta-learning at different values of
progress. Distances between the average trajectories of different algorithms (e.g., 2-way episodic learning
and supervised learning, and 5-way episodic learning and supervised learning in the leftmost panel) are
normalized by the average of the radii of the tubes corresponding to each trajectory. We find that trajectories
of 2-way meta-learning deviate significantly from those of supervised learning for a large fraction of the
trajectory. On the other hand, 5-way meta-learning is similar to the supervised learning trajectory for almost
the entirety of the trajectory.

the optimal value of {wc}nc
i=1 is difficult and hence we use the imprinted weights as an approximate solution.

In our experiments, we found that the imprinted weights achieve an accuracy close to the optimal weights

while being significantly easier to compute.

3.5.5. Invariant transformations of the internal representation

The internal representations are invariant to orthogonal transformations provided that we use imprinting to

define a probabilistic model. This is because the internal representations define the same probabilistic model

ever after an orthogonal transformation. Consider two internal representation ϕ and U · ϕ where U is an

orthogonal matrix. We note that the probabilistic model for U · ϕ after imprinting is

log p2(y = c |xi) =
U ·
∑

yx=c ϕ(x)

||U ·
∑

yx=c ϕ(x)||
· (U · ϕ(xi))− log

(
C∑
c=1

exp

(
U ·
∑

yx=c ϕ(x)

||U ·
∑

yx=c ϕ(x)||
· (U · ϕ(xi))

))

=

∑
yx=c ϕ(x)

||
∑

yx=c ϕ(x)||
· ϕ(xi)− log

(
C∑
c=1

exp

(∑
yx=c ϕ(x)

||
∑

yx=c ϕ(x)||
· ϕ(xi)

))
.

The probabilistic model for the representation U · ϕ is identical to the probabilistic model for representation

ϕ since norms and angles are preserved under orthogonal transformations. Hence the Bhattacharyya distance

90

0.00 0.25 0.50 0.75

10

20
Task 0+1

0.0 0.2 0.4
0

50

100

Task 0 - Epoch 0

0.45 0.50

0

2

4

1e7 Task 0 - Epoch 1

0.50 0.55

0

1

2

3
1e7 Task 0 - Epoch 2

0.60 0.65

0

1

2

3
1e7 Task 0 - Epoch 5

0.68 0.70 0.72
0

10

20

Task 0 - Epoch 10

0.05 0.00 0.05

0.05

0.00

0.05
Task 0 - Epoch 100

0.0 0.1 0.2 0.3

0

50

100

150

Task 1 - Epoch 0

0.3 0.4 0.5

0

2

4

1e7 Task 1 - Epoch 1

0.4 0.5

0

1

2

3
1e7 Task 1 - Epoch 2

0.50 0.55 0.60 0.65

0

2

4

1e7 Task 1 - Epoch 5

0.65 0.70

0

1

2
1e7 Task 1 - Epoch 10

Task 0+1
Task 0 - Epoch 0
Task 0 - Epoch 1
Task 0 - Epoch 2
Task 0 - Epoch 5
Task 0 - Epoch 10
Task 0 - Epoch 100
Task 1 - Epoch 0
Task 1 - Epoch 1
Task 1 - Epoch 2
Task 1 - Epoch 5
Task 1 - Epoch 10
Task 1 - Epoch 100

Progress (tw)

N
or

m
al

iz
ed

 d
is

ta
nc

e
be

tw
ee

n
m

ea
n

tra
je

ct
or

ie
s

(a)

0.0 0.2 0.4
0

5

10

15 Distance from Bird

0.0 0.2 0.4
0

5

10

15 Distance from Conveyance

0.0 0.2 0.4
0

5

10

15 Distance from Dog

0.0 0.2 0.4
0

5

10

15 Distance from Instrumentality

0.0 0.2 0.4
0

5

10

15 Distance from Invertebrate

0.0 0.2 0.4
0

5

10

15 Distance from Imagenet

0.0 0.2 0.4
0

5

10

15 Distance from Reptile

0.0 0.2 0.4
0

5

10

15 Distance from Vertebrates Bird
Conveyance
Dog
Instrumentality
Invertebrate
Imagenet
Reptile
Vertebrates

Progress (tw)

N
or

m
al

iz
ed

 d
is

ta
nc

e
be

tw
ee

n
m

ea
n

tra
je

ct
or

ie
s

(b)

0.0 0.2 0.4 0.6
0

5

10

15

20

25
Supervised - CIFAR10

0.0 0.1 0.2
0

5

10

15

20

25
Supervised - Task 1

0.0 0.1 0.2
0

5

10

15

20

25
Supervised - Task 2

0.0 0.1 0.2
0

5

10

15

20

25
Supervised - Task 3

0.0 0.2 0.4 0.6
0

5

10

15

20

25
Contrastive - CIFAR 10

0.0 0.2 0.4
0

5

10

15

20

25
Contrastive - Task 1

0.0 0.2 0.4
0

5

10

15

20

25
Contrastive - Task 2

0.0 0.2 0.4
0

5

10

15

20

25
Contrastive - Task 3

Supervised - CIFAR10
Supervised - Task 3
Supervised - Task 1
Supervised - Task 2
Contrastive - Task 3
Contrastive - Task 1
Contrastive - Task 2
Contrastive - CIFAR 10

Progress (tw)

N
or

m
al

iz
ed

 d
is

ta
nc

e
be

tw
ee

n
m

ea
n

tra
je

ct
or

ie
s

(c)

Figure 3.10: This figure shows the extended version of the distances between trajectories of probabilistic
models; two of them are identical to the ones in Figure 3.7b and Figure 3.8b.

91

between ϕ and U · ϕ is zero.

The imprinting procedure can be thought of as removing information from the representation that is not

relevant to prediction on a task. While this is true for all datasets in general, there could exist some additional

structure in the data that results in more invariances (e.g., more than invariances to orthogonal transformations

O(n)).

3.5.6. Calculating mean trajectories

We defined the distance between two trajectories to be dtraj(τ
1→U
u , τ2→U

v), i.e., the integral of the Bhat-

tacharyya distance between the trajectories after mapping them to the same task and re-indexing them using

the geodesic. Say we wish to compare a model trained on two tasks from CIFAR-10: Cats vs. Dogs and

Airplane vs. Truck. We initialize multiple models for each of these two supervised learning problems (and we

do so for every experiment in this paper) and train these 10 models. We can now calculate the mean trajectory

of models on a task

argmin
τ1µ

1

K

K∑
k=1

dtraj(τ
1
uk
, τ1µ).

This optimization problem is very challenging because the variable is a trajectory of probabilistic models in

a high-dimensional space. Even if we were to split this minimization and do it independently across time,

this is still difficult because the solution is the so-called Bhattacharyya centroid on the product manifold

defined in Equation (2.2.1) and cannot be computed in closed form. See (Nielsen and Boltz, 2011) for

an iterative formula. We therefore simply take the arithmetic mean of the probability distributions, i.e.,

Pµ(t) = 1
K

∑K
k=1 Pwi(t). This is similar to ensembling. We use the radius of the tube around the mean

trajectory, i.e.,

ru = max
k

dtraj(τ
1
uk
, τ1µ)

to normalize distances (more precisely, we normalize using the average of the radii of the two trajectories

being compared). Note that this radius depends upon time (and is computed after mapping and reindexing

the trajectories). If the distance between the means of two sets of trajectories is smaller than their individual

average radii, then the tubes around the means intersect each other. In such cases, one can say that the

representations learned (at that time point) are not distinguishable. We next show all distances between

92

reindexed points along the trajectories discussed in Figures 3.1, 3.7 and 3.8. Note that each curve gives the

integrands in Equation (2.2.5), not the integral.

93

CHAPTER 4

A POTENTIAL EXPLANATION FOR THE LOW-DIMENSIONALITY OF THE TRAINING

MANIFOLD

4.1. Introduction

It is remarkable that trajectories of networks with such different configurations lie on a manifold whose

dimensionality is much smaller than the embedding dimension, and the natural next question is to ask what

leads to these low-dimensional dynamics. To address this question, we draw inspiration from earlier work

studying the hyperribbon structure. In Transtrum et al. (2011b), the authors observed that the geodesic

cross-sectional widths in the data space (corresponding to the width of a hyperribbon) is well approximated

by the square root of eigenvalues of the Fisher Information Matrix (FIM), a local quantity measuring how

much the prediction changes with respect to changes in parameter space. It is a nontrivial observation relating

the global geometry of the network to local geometry, and it leads us to think whether such a correspondence

exists in our model manifold as well.

In this chapter, we investigate this hypothesis and show the FIM of trained networks indeed have a fast-

decaying eigenspectrum similar to the hyperribbon structure in the training manifold established in Chapter 2.

In Figure 4.1, we show that this “sloppy” eigenspectrum, characterized by a few large eigenvalues and a large

number of small eigenvalues that are distributed uniformly across an exponentially large range, is presented

in the activations of different layers, Jacobian of logits with respect to the weights, gradients of the loss with

respect to the activations, as also the Hessian and the FIM. In Section 4.3, we prove theoretical results relating

this sloppiness to the sloppiness of data covariance structure, which is prevalent in various real-world data.

We continue in Section 4.2.1 to show this sloppiness in the eigenspectrum of Hessian of trained models can

be used to prove a generalization bound using PAC-Bayes theory.

In conclusion, this chapter explores the data sloppiness as a possible cause of the low-dimensional training

manifold we observed, providing empirical and theiretical evidence and connect to previous works.

94

0 500 1000 1500 2000 2500 3000
Index of sorted eigenvalues

10
7

10
5

10
3

10
1

10
1

10
3

E
ig

en
va

lu
e

Data
Fisher Information Matrix
Hessian
FIM init
FIM mid
Logit Jacobian
Activations
Activation gradient

0 100 200 300 400 500
Index of sorted eigenvalues

10
5

10
3

10
1

10
1

10
3

10
5

E
ig

en
va

lu
e

Data_0.001
FIM_0.001 (begin)
FIM_0.001 (end)
Hessian_0.001 (end)
Data_0.1
FIM_0.1 (begin)
FIM_0.1 (end)
Hessian_0.1 (end)

0.0 0.1 0.2 0.3 0.4 0.5
Sloppy factor (c)

0.1

0.2

0.3

0.4

0.5

0.6
V

al
id

at
io

n
er

ro
r

T (100), S (10)
T (100), S (500)
T (20), S (10)
T (20), S (500)

Figure 4.1: Top: Eigenspectra of the correlations of the inputs, activations and activation gradients, logit
Jacobians and the FIM, Hessian at the end of training; for FIM we also calculate the spectra at initialization
and middle of training. All eigenspectra are scaled by the largest eigenvalue of the input correlations
(activation gradients are scaled up by 1012). Eigenspectra corresponding to activations/activation gradients of
all layers of the network, and logit Jacobians of all logits are very similar (see Section 4.7.4). Eigenspectra of
these quantities are also qualitatively the same at initialization, at the middle of training (see Section 4.7.4.2
Figure 4.10). This plot is drawn for a wide residual network with 10 layers on CIFAR-10 (WRN-10-
8 Zagoruyko and Komodakis (2016)), eigenspectra of other networks/datasets are qualitatively the same
(see Figure 4.4 and Section 4.7.4).
Bottom Left: Eigenspectra of the input correlation matix, FIM and Hessian at begining and end of training
for sloppy factor (slope of the sloppy eigenvalue decay) c = 10−3 (orange) and c = 10−1 (green). If inputs
are not sloppy (small c) then even if there is a sharp drop after the top few eigenvalues (around 100 for orange
lines), the eigenspectrum is flat. In comparison, the FIM/Hessian decay by about 3 orders of magnitude for
c = 0.1. The details of the experiments can be found at Section 4.7.1.
Bottom Right: Validation error of a student (S) network on synthetic datasets of different sloppiness (X-axis)
labeled by a teacher network (T). Numbers in brackets indicate number of hidden neurons in two-layer
teachers/students. All students in this plot interpolate the training data perfectly. For non-sloppy inputs,
interpolation leads to poor generalization, whereas interpolation is not detrimental to generalization for sloppy
inputs. As the number of student neurons increases, fixed the teacher’s size and the sloppiness factor, the
validation error is better. Fixed teacher size, say 20, if inputs are sloppier (sloppy factor of 0.5 vs. 0.1) then
we can generalize—roughly equally well—even if the student is smaller (10 vs. 500).

95

4.2. Background

Consider a dataset Dn = {(xi, yi)}ni=1 with n samples, xi ∈ X ⊂ Rd and yi ∈ Y = {1, . . . ,m}. We

assume that this dataset is drawn from a joint distribution D on X × Y . A classifier hw : X 7→ [0, 1]m

parameterized by weights w ∈ Rp belongs to a hypothesis space {hw : w ∈ Rp}; this classifier maps inputs

x ∈ X to m-dimensional categorical distributions pw(y |x) ∈ [0, 1]m. Let Q be a distribution on hypotheses,

which is implicitly a measure on Rp. We define

(a) training error of a hypothesis ê(hw, Dn) =
1
n

∑n
i=1 1{yi ̸= argmaxy(pw(y |xi))};

(b) population error e(hw) = EDn∼Dn [ê(hw, Dn)];

(c) training loss is ĕ(hw, Dn) = − 1
n log(2)

∑n
i=1 log pw(yi |xi);

(d) empirical error and loss of the distribution Q of hypotheses ê(Q,Dn) = Ew∼Q [ê(hw, Dn)] and

ĕ(Q,Dn) = Ew∼Q [ĕ(hw, Dn)], respectively;

(e) population error of distribution Q given by e(Q) = EDn∼Dn [ê(Q,Dn)]; and

(f) population loss is ĕ(Q) = EDn∼Dn [ĕ(Q,Dn)].

Hessian and Fisher Information Matrix (FIM) The Hessian H ∈ Rp×p is the second derivative of the

empirical loss with respect to the weights w, i.e., Hij = ∂i∂j ĕ(hw, Dn). The Fisher Information Matrix

(FIM) F ∈ Rp×p has entries

Fij =
1

n

n∑
k=1

m∑
y=1

pw(y |xk)∂i log pw(y |xk)∂j log pw(y |xk).

It is important to note the expectation over the outputs y. The empirical FIM is an approximation of the

FIM where one sets y = yk. Both the Hessian and FIM are large matrices and it is difficult to compute

them for modern deep networks. Therefore some of our experiments use a Kronecker-factor approximation

(Martens and Grosse, 2016) of a block diagonal Hessian and FIM where cross-terms ∂i∂j across different

layers of a deep network are set to zero.

96

4.2.1. PAC-Bayes Generalization Bounds

The PAC-Bayesian framework developed in Langford and Seeger (2001); McAllester (1999) allows us to

estimate the population error of a randomized hypothesis with distribution Q using its empirical error and its

Kullback-Leibler (KL) divergence with respect to some prior distribution P . For any δ > 0, with probability

at least 1− δ over draws of the dataset Dn, we have

kl(ê(Q,Dn), e(Q)) ≤ KL(Q,P) + log(n/δ)

(n− 1)
, (4.2.1)

where KL(Q,P) =
∫

dQ(w) log(dQ/dP)(w). We will also define a KL divergence between two Bernoulli

random variables with parameters b, a as kl(b, a) = b log(b/a) + (1 − b) log((1 − b)/(1 − a)). The right

hand-side of this inequality can be minimized to compute a distribution Q that has a small generalization

error (Langford and Caruana, 2002; Dziugaite and Roy, 2017). Typically, we pick a simple form for distri-

butions Q and P , say Gaussian. We can also have hyper-parameters for the prior P , say the scale ϵ of the

covariance of P and search over this scale while optimizing the bound. See Section 4.7.2 for details.

4.2.2. Data-dependent PAC-Bayes Priors

The posterior Q in Equation (4.2.1) may depend upon the training samples Dn, e.g., it could be the distribution

on the weight space induced by a randomized training algorithm like stochastic gradient descent (SGD). The

prior P can depend upon the data distribution D, but not the samples Dn themselves. Although it is common

to use priors that do not depend upon the data at all, it is has been increasingly noticed that data-distribution

dependent priors may provide tighter bounds (Dziugaite and Roy, 2018). To gain intuition, recall that in the

expression for the KL-divergence between two Gaussians Q = N(w,Σq) and P = N(w0,Σp), we have a

term of the form (w−w0)
⊤Σ−1

p (w−w0) that depends upon the distance between trained weights w and the

initialization w0. Priors P that do not depend upon the data may therefore incur a large KL-term.

FIM and Hessian-dependent priors We can pick a prior using a subset of the training samples (Ambroladze et al.,

2007), e.g., we can center the Gaussian prior on weights trained on this subset, to obtain a better PAC-Bayes

bound—the theory allows this. Doing so leads to a worse denominator in Equation (4.2.1), although this

may be mitigated by a smaller numerator. Parrado-Hernández et al. (2012) also define expectation-priors,

97

i.e., where we choose a prior that depends on the data distribution and, in practice, evaluate this prior using

samples in the training dataset in lieu of the distribution. For example, PAC-Bayes theory allows both picking

the prior covariance Σp to be Σp ∝ Fw0 and Σp ∝ H̃w0 where H̃ is the Gauss-Newton approximation of the

Hessian. But while we may use all the samples to compute the FIM, we should compute the Hessian on a

separate subset of the data.

4.3. Theoretical Results

We prove how sloppiness in the Hessian and the FIM is related to sloppiness of the correlations of the

activations (Section 4.3.1) and the inputs (Section 4.3.2). We then exploit sloppiness to compute PAC-Bayes

generalization bounds (Section 4.3.3) and develop an expression for the effective dimensionality of a deep

network (Section 4.4.1). All proofs are provided in Section 4.7.3. The theory in this section applies for

general deep networks; we will remark when restrictions are in place.

4.3.1. Sloppy Input Correlation Matrix Leads to a Sloppy FIM and Hessian

Consider a deep network with L layers with weights w = (w0, w1, . . . , wL). Activations of the kth layer are

given by hk = σ(wk−1hk−1), and we set h0 ≡ x. The non-linearity σ acts element-wise upon its argument

and we assume that it has a bounded derivative |σ′(x)| ≤ a with σ(x) = 0 in which case |σ(x)| ≤ a |x|;

ReLU, leaky ReLUs and tanh satisfy this assumption. Preactivations (before nonlinearities) will be denoted

by uk = wk−1hk−1 for k = 1, · · · , L+ 1, and for clarity, we use a special notation z ≡ uL+1 to denote the

logits of the network. The dimensionality of these quantities is hk ∈ Rdk , wk ∈ Rdk+1×dk and wL ∈ Rm×dL .

The linear map represented by wk can model both fully-connected layers and convolutional layers. For the

sake of exposition, we set all the bias terms to zero.

Theorem 4.3.1 (Trace of the FIM and Hessian are bounded by that of the input correlation matrix). For

any weights, the trace of the FIM Fw and the Gauss-Newton approximation of the Hessian H̃w are both

upper-bounded by

2ma2Ltr
(
E[xx⊤]

) L∏
j=0

∥∥wj
∥∥2
2

 L∑
j=0

∥∥wj
∥∥−2

2

 . (4.3.1)

The Gauss-Newton approximation which neglects the so-called H terms of the Hessian (Papyan, 2019)

is good towards the end of training when the logits have a small entropy. For the FIM, the above bound

98

is remarkable however, it indicates that the trace of FIM is controlled by that the input correlations and

multiplicative terms that depend upon the ℓ2 norm of the weights.

We can also go beyond the trace and control the entire eigenspectrum. But this is difficult to do in general

because both FIM and Hessian are a result of multiple nonlinear operations on the inputs. We therefore bound

the eigenvalues of a block-diagonal approximation of the FIM in terms of the eigenvalues of the activations.

Lemma 4.3.2 (Block-diagonal approximation of the FIM is sloppy if the activations are sloppy). Let

spec(A) denote the eigenvalues (λ1(A), . . . , λp(A)) of a matrix A in descending order. For a constant c, let

spec(A) ⪯ c spec(B) denote that λi(A) ≤ cλi(B) for all i ≤ p. For any logit zi, for all layers k ≤ L, we

have

spec
(
E
[

dzi
dwk

dzi
dwk

⊤])
⪯ a2(L−k)

L∏
j=k+1

∥∥wj
∥∥2
2

spec(Idk+1
)⊗ spec

(
E
[
hkhk

⊤])
,

(4.3.2)

with
∏L

j=L+1 ∥wj∥22 ≡ 1. A similar result also holds for the sum of logits
∑m

i=1 zi as in Lemma 4.3.2

(see Corollary 4.7.7). The proof of this lemma also shows that a block-diagonal approximation of the

Gauss-Newton approximation of the Hessian is sloppy if the activations are sloppy.

This lemma indicates that the eigenspectrum of the block-diagonal approximation of the FIM (concatenation

of the eigenspectra of different blocks) is controlled by the eigenspectrum of the activation correlations of

different layers. Our experiments show that activations of all layers (except the logits) of a trained deep

network are sloppy.

4.3.2. Special Cases Where Sloppy Inputs Lead to Sloppy Activations and Thereby Sloppy FIM and

Hessian

Although our experiments show that activations are sloppy if the inputs are, it seems rather difficult to prove

in general. We therefore discuss two special cases where this holds. The first case is for a kernel machine

with an inner product kernel while the second case assumes that the width of the network goes to infinity and

weights remain bounded in ℓ2 norm.

Remark 4.3.3 (Eigenspectrum of inner product kernel is controlled by that of its inputs). Let xi ∈ Rd for

99

i ≤ n be iid random vectors. Karoui (2010a, Theorem 2.1) shows that the Gram matrix of an inner product

kernel Mi,j = f
(
x⊤
i xj

d

)
for some function f can be approximated by

K =

(
f(0) + f ′′(0)

tr(Σ2
d)

2d2

)
11⊤ + f(0)

XX⊤

d
+ vdIn

where vd = f

(
tr(Σd)

d

)
− f(0)− f ′(0)

tr(Σd)

d
.

More precisely ∥M −K∥2 → 0 in probability when d, n → ∞ for a fixed ratio d/n. Note that vd is small

when tr(Σd)
d is small. Hence, we can see that the eigenspectrum of K, and thereby M , is controlled directly

by that of XX⊤.

Note that this argument cannot directly be used for a deep network because correlations of activations in the

network are not an inner product kernel. But this indicates that even for such a kernel machine, sloppiness of

the inputs leads to sloppiness of the FIM.

Remark 4.3.4 (Infinitely wide network with bounded weight norm). If the ℓ2 norm of the weights is bounded,

we show in Lemma 4.7.2 that

tr
(
E
[
hkhk

⊤]) ≤ a2
∥∥∥wk−1

∥∥∥2
2

tr
(
E
[
hk−1hk−1⊤

])
.

If we iterate upon this inequality down to the last layer to trE[xx⊤] on the right hand-side (which is a constant).

If the width of the kth layer goes to infinity, for the trace to be summable, we have that the eigenvalues of

E[hkhk⊤] decay faster than O(1/i).

4.3.3. Analytical Bound on Generalization

Consider a deep network trained to minimize the loss ĕ(hw, Dn). Assume that w is a local minimum

of the objective and thus the Hessian Hw is positive semi-definite. We can write Hw as its orthonormal

decomposition Hw = UwΛwU
⊤
w where Λw = diag(λ1, . . . , λp) with eigenvalues λ1,≥ · · · ≥ λp ≥ 0

arranged in descending order. Consider a Gaussian posterior Q = N(µq,Σq) with the mean µq = w fixed.

We would like to compute the best Σq that gives a tight PAC-Bayes bound.

We use a loose version of the bound e(Q) ≤ L(Σq) := ĕ(Q,Dn) + KL(Q,P)/(2(n− 1)) to simplify the

100

analytical calculation and show in Section 4.7.2.2 that

Σq = Uw(Λ̄w)
−1U⊤

w , (4.3.3)

where λ̄i = 2(n− 1)λi + ϵ ∀i ≤ p. (4.3.4)

This posterior gives a non-vacuous bound on the generalization error (as explained in Section 4.4.2) and to

our knowledge, this is the only analytical bound that is non-vacuous and does not use weight compression

(e.g., Zhou et al. (2018)). For example, the bound for a fully-connected network on MNIST with one hidden

layer of 600 neurons is 0.32 while the test error e(Q) is ≈ 0.089. For comparison, Dziugaite and Roy (2017)

numerically optimize Equation (4.2.1) to get a bound of 0.161.

Remark 4.3.5 (PAC-Bayes posterior is more spread out along sloppy eigenvectors). In Equation (4.3.4),

we can think of the scaled prior inverse variance ϵ/(2(n − 1)) as a threshold beyond which the sloppy

eigenvalues of the Hessian λi are small enough and the loss changes so little that the optimal PAC-Bayes

posterior in Equation (4.2.1) focuses on accurately capturing the prior’s covariance to obtain a small KL-term.

For eigenvalues above this threshold, e.g., the stiff eigenvalues, the optimal posterior has to ensure that the

empirical loss is not large.

4.4. Effective Dimensionality of a Deep Network

4.4.1. Definition of Effective Dimensionality

Motivated by Remark 4.3.5, we define the effective dimensionality for a deep network at weights w as the

number of eigenvalues of the Hessian Hw with magnitude at least ϵ/(2(n− 1)), i.e.,

p(n, ϵ) =
∑p

i=1 1
{
|λi(Hw)| ≥ ϵ

2(n−1)

}
. (4.4.1)

Section 4.7.2.3 gives the calculation for why this is a good definition of the dimensionality. It indicates that

the threshold ϵ/(2(n− 1)) can be thought of as the “elbow” in the eigenspectra in Figure 4.1 (top), which

separates the stiff eigenvalues which decrease quickly and the sloppy eigenvalues. This gives an easy way to

compute the effective dimensionality, e.g., for the purposes of model selection.

101

0 2429 10000 20000
Index of sorted eigenvalues

10
6

10
4

10
2

10
0

E
ig

en
va

lu
e

Hessian
Decay in sloppy directions
p(n,)

Figure 4.2: For two layer fully connected network (FC-600-2), we calculated the eigenspectrum (blue) of
Kronecker-factored approximation of the Hessian at the mean of the posterior Q. The dimensionality p(n, ϵ)
(green) was calculated using the ϵ obtained by the same procedure. The red line shows the linear decay of
sloppy eigenvalues (slope is 0.0004). The green line is close to the elbow and effectively splits the stiff and
sloppy eigenvalues.

102

Remark 4.4.1 (Why does the effective dimensionality depend on ϵ?). Our definition in Equation (4.4.1)

may seem unusual because ϵ is a user-chosen parameter but this is only an artifact of PAC-Bayes theory.

As ϵ → 0, the effective dimensionality converges to the number of weights p, but for non-zero values of

ϵ, where the PAC-Bayes theory effectively restricts its predictions to a subset of the hypothesis space, this

expression coupled with the analytical calculation in Equation (4.3.4) may provide a useful way to perform

model selection.

Remark 4.4.2 (Why does the effective dimensionality depend on n?). The fact that p(n, ϵ) depends upon

n is reminiscent of the Bayesian Information Criterion (BIC) where the the model complexity term scales

with log n (Schwarz et al., 1978). The dependence on n in our cases also arises for similar reasons, from a

balance between the training error ê(Q,Dn) and the KL-term in Equation (4.2.1). As n → ∞, we see that

p(n, ϵ) → p. This is because for inputs with sloppy dimensions the model needs to capture all the dimensions

to predict accurately.

4.4.2. Definition of Sloppiness

We next build upon Section 4.4.1 to define sloppiness.

Definition 4.4.3 (Strength factor and sloppy factor). Let λi(A) denote eigenvalues of a positive semi-definite

matrix A ∈ Rp×p in descending order λ1 ≥ · · · ≥ λp. The strength factor for a model with effective

dimensionality p(n, ϵ) at a local minimum w (where Hw is positive semi-definite) is defined to be

s(n, ϵ) =
∑p(n,ϵ)

i=1 1 + log
(
2(n−1)λi(Hw)

ϵ + 1
)
. (4.4.2)

The strength factor characterizes the stiff eigenvalues of the eigenspectrum. For a matrix A, the sloppy factor

for such a model at index r is defined to be

c(A, r) = sup{c′ ≥ 0 : λi(A) ≤ λr(A)e−c′(i−r)∀i ≥ r ≥ 1} (4.4.3)

This definition implicitly means that the small eigenvalues beyond λr(A) are uniformly distributed across an

exponentially large range (λr, λp) if c(A, r) > 0. We will be primarily interested in setting the index r to

be simply p(n, ϵ). Note that sloppiness is a phenomenon pertaining to the non-zero eigenvalues of a matrix

103

and is relevant even if the matrix is singular, e.g., the FIM loses rank for non-identifiable models like deep

networks (Amari et al., 2002).

How do the strength and sloppy factor affect generalization? Let us simplify notation to write the

sloppy factor as c(n, ϵ) ≡ c(Hw, p(n, ϵ)). Under the assumption that the c(n, ϵ) is non-negative, when the

training error ĕ(hw, Dn) is close to zero, we show in Section 4.7.2 a loose version of PAC-Bayes bound

ĕ(Q,Dn) + KL(Q,P)/(2(n− 1)) (this was also used in Method 1 in Section 4.3.3) is

s(n, ϵ) + 2/c(n, ϵ) + ϵ ∥w − w0∥22
4(n− 1)

. (4.4.4)

Thus, the strength and sloppy factor together determine the generalization performance. If the Hessian Hw

is sloppy, then the effective dimensionality p(n, ϵ) is small. This ensures that both s(n, ϵ) and 1/c(n, ϵ)

are small compare to n. The third term ϵ ∥w − w0∥2 comes from the the fact that the mean of P and

Q are different. It is typically not large compared to n. For example, for a two-layer fully-connected

network on MINST, p(n, ϵ) = 2429, s(n, ϵ) = 6810, 1/c(n, ϵ) = 2545, and ϵ ∥w − w0∥2 = 8526, with

n = 55000, ϵ = 101.3). For comparison, if we have an isotropic Hessian λi ≡ λ, either s(n, ϵ) or 1/c(n, ϵ)

will be O(p) and p is about 0.8 million.

This suggests that even if the hypothesis class of deep networks is very large, sloppiness of Hw, which

is inherited from sloppiness of the input data, restricts the set of hypotheses that the trained model

belongs to, the three quantities that we have defined here p(n, ϵ), s(n, e) and c(n, ϵ) together help understand

this phenomenon.

4.5. Empirical Validation

We use fully-connected networks (of varying widths, and up to two hidden layers), convolutional networks

(LeNet, ALL-CNN of Springenberg et al. (2015) and wide residual network of Zagoruyko and Komodakis

(2016)) of varying sizes on MNIST (LeCun et al., 1990) and CIFAR-10 (Krizhevsky, 2009) for empirical

validation of our theoretical results. See Section 4.7.1 for further details.

To be able to work with Hessian/FIM of large networks, in some cases, e.g., Figure 4.1 we compute fewer

eigenvalues, but compute them exactly without any approximations.

104

Section 4.7.4.1 shows the eigenspectra of the Hessian, FIM and correlations of the activations, logit Jacobians

and activation gradients for two and three-layer fully-connected networks on MNIST and All-CNN and a

wide residual network on CIFAR-10. The eigenspectra are qualitatively the same as those in Figure 4.1 so we

do not repeat them in the main text. Figure 4.3 studies how eigenspectra of FIM and Hessian compare to their

KFAC approximations.

0 500 1000 1500 2000
Index of sorted eigenvalues

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

E
ig

en
va

lu
e

FIM
Hessian
Gauss Newton (KFAC)

0 100 200 300 400 500
Index of sorted Eigenvalues

0.25

0.30

0.35

0.40

0.45

0.50

0.55

O
ve

rla
p

FIM-Hessian
Gauss Newton (KFAC)-Hessian

Figure 4.3: (Left) Eigenspectra of FIM, Hessian and a KFAC approximation of the Gauss-Newton
matrix for a two-layer fully-connected network on MNIST. Even if FIM’s eigenvalues are quite different,
its eigenvectors have a large inner product with those of the Hessian (right), much larger than a random vector.
KFAC is a good approximation for the eigenvalues of the Hessian but eigenvectors computed from KFAC are
quite different from those of the Hessian. This also shows that eigenvectors of the FIM have a strong overlap
with those of the Hessian.

4.6. Related Work

Sloppy models in physics and biology Our work is inspired by Brown et al. (2004); Gutenkunst et al. (2007)

who noticed that regression models fitted to systems biology data have few stiff parameters that determine

the outcome and a large number of sloppy parameters which only weakly determine the outcome. These

authors have developed an elaborate geometric understanding of this phenomenon, see Transtrum et al.

(2011b) and references therein. While sloppiness is thought to be a universal property of parametric

models (Waterfall et al., 2006), the mechanism that causes models to be sloppy has not been studied yet. This

work has also exclusively focused on the under-parameterized regime. We connect the sloppiness of a deep

105

network to the sloppiness of inputs and show that if the inputs are sloppy, then key quantities pertaining to

the model, e.g., activations, FIM and Hessian etc., are also sloppy.

Hessian and the FIM of deep networks have been studied to understand the local geometry of the en-

ergy landscape and the behavior of SGD, see Hochreiter and Schmidhuber (1997); Chaudhari et al. (2017);

Fort and Ganguli (2019), among others. FIM has been used to study optimization (Amari, 1998a; Martens and Grosse,

2016; Karakida et al., 2019), gradient diversity (Yin et al., 2018; Chaudhari and Soatto, 2018), and gener-

alization (Achille et al., 2019c). A number of these works have pointed out that the Hessian and the FIM

have spiky/large eigenvalues (Papyan, 2019) along with a bulk of near-zero eigenvalues (Papyan, 2018;

Pennington and Bahri), and that this indicates that the energy landscape, or the prediction space, is locally

flat. We focus on the decay pattern of the eigenspectra of these matrices and discover that it mirrors the decay

pattern of the inputs for typical datasets. We see a strong overlap of the stiff subspace of the Hessian/FIM

at initialization with that at the end of training; this is consistent with the analysis in Gur-Ari et al. (2018);

Chizat et al. (2019a).

Generalization PAC-Bayes bounds for deep networks have been obtained using the methods of Langford and Caruana

(2002) by Dziugaite and Roy (2017); Dziugaite (2020); Zhou et al. (2018). While analytical generalization

bounds are often vacuous (Bartlett et al., 2017, 2021a; Neyshabur et al., 2017), we show that if we exploit

the sloppiness of the Hessian, then we can obtain non-vacuous analytical bounds. We show that the pos-

terior computed by the method of Dziugaite and Roy (2017) aligns well with sloppy eigenvalues of the

Hessian/FIM. We build upon this work and show the benefits of sloppiness by providing data-distribution

dependent PAC-Bayes bounds (also see Dziugaite and Roy (2018)).

Bartlett et al. (2020) show that a minimum norm interpolating solution of over-parameterized linear regression

can predict accurately if the data matrix has a long tail of small eigenvalues. Our notion of effective

dimensionality is also seen in their calculationsloppy: roughly speaking, larger our sloppiness factor c

in Definition 4.4.3, better the excess risk in their linear regression, which is consistent with Figure 4.1 (bottom

right). Liang and Rakhlin (2018) show similar results on the minimum-norm interpolating solution for kernel

regression.

106

4.7. Appendix

4.7.1. Details of the experimental setup

Data We use the MNIST dataset for experiments on fully-connected networks and LeNet. We setup a

binary classification problem (we map {0,1,2,3,4} to label 0 and {5,6,7,8,9} to label 1). We use 55000

samples from the training set to train the model and to optimize the PAC-Bayes bound. We set aside 5000

samples for calculating the FIM, which is used in Method 4 of PAC-Bayes bound optimization. Strictly

speaking, it is not required to do so because a prior that depends upon the FIM is an expectation-prior (as

discussed in Parrado-Hernández et al. (2012)) but we set aside these samples to compare in a systematic

manner to existing methods in the literature that use 55,000 samples. Test error of all models is estimated

using the validation set of MNIST. We use the CIFAR-10 dataset for experiments using two architectures, an

All-CNN network and a wide residual network. For CIFAR-10, we use 50, 000 samples for training and 10,

000 samples for estimating the test error. No data augmentation is performed for MNIST, for CIFAR-10 we

randomly flip images (left to right) with probability 0.5 and select random crops of size 32×32 after adding a

padding of 4 pixels on the width and height.

Architectures For experiments on MNIST, we use LeNet-5 (this is a network with two convolutional layers

of 20 and 50 channels respectively, both of 5×5 kernel size, and a fully-connected layer with 500 hidden

neurons) and fully-connected net with one or two layers and 600 or 1200 neurons on each layer. The latter

are denoted as FC-600-1, or FC-1200-2 in our experimental section. For CIFAR-10, we use ALL-CNN (in

order to reduce the number of weights, we reduced the number of channels in the first set of blocks to 64, and

in the second set of blocks to 128; this is down from 96 and 192 respectively in the original network) and

wide residual net with depth 10 and a widening factor of 8. In the latter case, in order to reduce the number

of weights which makes computing Hessian amenable, we reduce the number of channels in each block of

the WRN to [4, 32, 64, 128], down from [16, 128, 256, 512] for a widen factor of 8.

Training procedure We train for 30 epochs on MNIST and for 100 epochs on CIFAR-10. The batch-size is

fixed to 500 for both datasets. For all experiments with train with Adam and reduce the learning rate using a

cosine annealing schedule starting from an initial learning rate of 10−3 and ending at a learning rate of 10−5.

107

Atypical problems For atypical problems in, we constructed a training set of 50,000 samples and a

validation set of 10,000 samples. Inputs xi ∈ R200 were generated from distribution N(0,Λ) where

Λ = (λ1, ..., λ200). We set λi = b exp(−ci) where and b/c = 50; fixing the ratio b/c to be a constant keeps

the trace of the data correlation matrix to be about the same for different values of c. Labels were generated

by yi = argmaxy∈[m] p
t
w(y|xi), where ptw is the teacher network randomly initialized with one hidden layer

and ten output classes. We train fully-connected networks on these synthetic datasets for 50 epochs; Adam is

used with a batch-size of 500 and a cosine learning rate schedule with learning rate that ranges from 10−3 to

10−5.

We constructed datasets of Gaussian inputs of varying degrees of sloppiness by selecting decay patterns for

the eigenvalues of a diagonal data correlation matrix. For n−1 diag(XX⊤) = Λ where Λ = (λ1, . . . , λd)

are eigenvalues in descending order, we set λi = b exp(−ci) where b, c are constants. The trace of this

correlation matrix is roughly b/c which we keep constant for different datasets. Larger the value of the

“sloppy factor” c, more sharp the decay for the eigenspectrum of the data matrix. We randomly initialize a two

layer fully-connected neural network with 10 output classes (called the teacher) and use it to label a dataset of

such inputs. Note that since the teacher’s weights in the first layer multiply the inputs, the correlation matrix

of the first layer activations is non-diagonal and we are not being unduly restrictive in picking a diagonal data

correlation matrix. We then fit student networks (fully-connected networks with two layers) on this data until

they interpolate on the training dataset. Our goal is to study (i) how the various quantities discussed in this

paper, e.g., the Hessian, FIM, activations, activation gradients, logit Jacobians , depend upon the sloppiness

of the data matrix; (ii) whether the student can interpolate on sloppy datasets without over fitting. Figure 4.1

shows the results of the experiment.

4.7.2. Calculation of the effective dimensionality of a deep network

4.7.2.1 PAC-Bayes bounds

Theorem 4.7.1 (PAC-Bayes generalization bound McAllester (1999); Langford and Seeger (2001)). For

every δ > 0, n ∈ N, distribution D on Rk ×{0, 1}m, and distribution P on H, with probability at least 1− δ

108

over Dn ∼ Dn, for all distributions Q on H,

kl(ê(Q,Dn), e(Q)) ≤
KL(Q,P) + log n

δ

n− 1

We have the following lower-bound from Pinksker’s inequality on the KL-divergence between two Bernoulli

random variablesloppy:

2(q − p)2 ≤ kl(q, p).

We can invert this inequality to get

kl−1(q, p) ≤ q +
√
p/2.

When this is substituted into the above PAC-Bayes bound Equation (4.2.1), we have

e(Q) ≤ ê(Q) +

√
KL(Q,P) + log(nδ)

2(n− 1)
.

Since

1

{
yi ̸= argmax

y
(pw(y |xi))

}
≤ − 1

log 2
log pw(yi|xi)

we also have

ê(Q) ≤ ĕ(Q).

Now set ϵ = c exp(j/b), for j ∈ N and for a fixed b, c ≥ 0, by the calculations in Section 4.7.3.1, we see that

e(Q) ≤ ĕ(Q) +

√
KL(Q,P) + 2 log(b log c

ϵ) + log(π
2n
6δ)

2(n− 1)
,

holds with probability 1− δ.

109

4.7.2.2 Calculation for the closed form expression for eigenvalues of the inverse posterior covariance

in Equation (4.3.4)

The KL-divergence between two multivariate Gaussians Q = N(µq,Σq), P = N(µp,Σp) be two multivariate

Gaussians is

KL(Q,P) =
1

2

(
tr(Σ−1

p Σq)− p+ (µp − µq)
⊤Σ−1

p (µp − µq) + log(
detΣp

detΣq
)

)
. (4.7.1)

In order to compute the inverse posterior covariance that minimizes the right-hand side of the PAC-Bayes

bound, we would like to solve the problem

minimize L(Σq) := ĕ(Q,Dn) +
KL(Q,P)

2(n− 1)

such that Q = N(w,Σq)

and Σq ⪰ 0.

Observe that

ĕ(hw′ , Dn) = ĕ(hw, Dn) +
1

2

〈
w′ − w,Hw(w

′ − w)
〉
.

P = N(w0, ϵ
−1I).

For Pw = N(w, ϵ−1I), we have

KL(Q,P) = KL(Q,Pw) +
ϵ

2
∥w − w0∥2

Hence,

L(Σq) =

∫
Q(w′)ĕ(hw′ , Dn)dw′ +

1

2(n− 1)

∫
Q(w′) log

Q(w′)

Pw(w′)
dw′ +

ϵ

4(n− 1)
∥w − w0∥2

=
1

2(n− 1)

∫ (
− log exp(−2(n− 1)ĕ(w′, Dn)) + log

Q(w′)

Pw(w′)

)
Q(w′)dw′ +

ϵ

4(n− 1)
∥w − w0∥2

=
1

2(n− 1)

∫ (
log

Q(w′)

exp(−2(n− 1)ĕ(w′, Dn))Pw(w′)/Z
− logZ

)
Q(w′)dw′ +

ϵ

4(n− 1)
∥w − w0∥2

=
1

2(n− 1)
(KL(Q,B)− logZ) +

ϵ

4(n− 1)
∥w − w0∥2 ,

110

where we have defined

B(w′) = exp(−2(n− 1)ĕ(w′, Dn))Pw(w
′)/Z, and

Z =

∫
exp(−2(n− 1)ĕ(w′, Dn))Pw(w

′)dw′.

We can now see that L(Σq) attains a minimum when

Q = B ∝ exp(−2(n− 1)ĕ(w′, Dn))Pw(w
′) (4.7.2)

or Σ−1
q = 2(n− 1)Hw + ϵ I , in other words,

Σq = Uw(Λ̄w)
−1U⊤

w ,

where

λ̄i = 2(n− 1)λi + ϵ ∀i ≤ p.

4.7.2.3 Calculation for Equation (4.4.4)

Recall that the effective dimensionality of a model at a local minimum w is the number of eigenvalues of the

Hessian with magnitude at least ϵ
2(n−1) , i.e.,

p(n, ϵ) =

p∑
i=1

1

{
|λi| ≥

ϵ

2(n− 1)

}
,

The strength of the model at w is

s(n, ϵ) =

p(n,ϵ)∑
i=1

1 + log

(
2(n− 1)λi

ϵ
+ 1

)
.

We assume that c(Hw, p(n, ϵ)) > 0. i.e., denote c(Hw, p(n, ϵ)) as c(n, ϵ)

λi ≤
ϵ

2(n− 1)
exp(−c(n, ϵ)(i− p(n, ϵ)))

111

We can also assume a weaker version of this decay pattern,

p∑
i=p(n,ϵ)+1

λi =
ϵ

2(n− 1)c(n, ϵ)
.

We approximate the training objective in the neighborhood of w as

ĕ(hw′ , Dn) = ĕ(hw, Dn) +
1

2

〈
w′ − w,Hw(w

′ − w)
〉
.

and we assume that the model at w is a interpolation solution. In Section 4.3.3, for the posterior Q = N(w,Σq)

that maximizes the loose version of the PAC-Bayes bound Equation (4.2.1), where

Σq = UwΛ̄
−1
w Uw

⊤,

λ̄i = 2(n− 1)λi + ϵ.

We can now calculate

ĕ(Q,Dn)− ĕ(hw, Dn) =
1

2

p∑
i=1

λi

λ̄i

≤ p(n, ϵ) + 1/c(n, ϵ)

4(n− 1)
, and

KL(Q,P)

2(n− 1)
=

1

4(n− 1)

(
ϵ ∥w − w0∥2 − p+

p∑
i=1

log
λ̄i

ϵ
+

ϵ

λ̄i

)

≤ 1

4(n− 1)

ϵ ∥w − w0∥2 +
p(n,ϵ)∑
i=1

log

(
2(n− 1)λi

ϵ
+ 1

)
+

p∑
i=p(n,ϵ)+1

2(n− 1)λi

ϵ


≤ 1

4(n− 1)

ϵ ∥w − w0∥2 +
p(n,ϵ)∑
i=1

log

(
2(n− 1)λi

ϵ
+ 1

)
+

1

c(n, ϵ)

 , hence

ĕ(Q,Dn) +
KL(Q,P)

2(n− 1)
≤ s(n, ϵ) + 2/c(n, ϵ) + ϵ ∥w − w0∥2

4(n− 1)
.

For the KL-term, in the first inequality we have used the fact that log(1 + x) ≤ x to split the first summation

into two parts; in the second inequality we have used the assumption that the eigenspectrum is sloppy to sum

the series from i = p(n, ϵ) + 1; the latter is also used in the inequality for the gap in the loss.

112

4.7.3. Proofs of Lemmas in Section 4.3.1

We use E to denote the expectation over inputs x. The following lemmas holds for all distribution of x.

In particular, we can choose the distribution of x to be the point mass distribution on the dataset Dn, i.e.

x ∼ 1
n

∑n
i=1 δxi , in this case, E

[
xx⊤

]
= 1

nXX⊤ ∈ Rd×d is the input corelation matrix.

The following lemma bounds the trace of the activation correlations and the norm of the gradient of each

logit with respect to the activations.

Lemma 4.7.2 (Bounding the trace of the correlations of activations and norm of activation gradients). We

have

tr
(
E
[
hkhk

⊤
])

≤ a2
∥∥wk−1

∥∥2
2

tr
(
E
[
hk−1hk−1⊤

])
, (4.7.3)

and ∥∥∥∥ dzi
dhk

∥∥∥∥
2

≤ a

∥∥∥∥ dzi
dhk+1

∥∥∥∥
2

∥∥∥wk
∥∥∥
2
. (4.7.4)

Proof of Lemma 4.7.2. For the first inequality in Equation (4.7.3), observe that

tr
(
E
[
hkhk

⊤]) ≤
dk∑
j=1

E
[
σ(ukj)

2
]

≤ a2
dk∑
j=1

E
[
(ukj)

2
]

= a2tr
(
E
[
ukuk

⊤])
= a2tr

(
E
[(

wk−1hk−1
)(

wk−1hk−1⊤
)])

= a2tr
(
wk−1E

[
hk−1hk−1⊤

]
wk−1⊤

)
≤ a2

∥∥∥wk−1
∥∥∥2
2

tr
(
E
[
hk−1hk−1⊤

])
.

113

For the second inequality in Equation (4.7.4), observe that

dzi
dhk

=
dzi

duk+1
wk

= a

(
dzi

dhk+1
1uk+1≥0

)
wk

⇒
∥∥∥∥ dzi

dhk

∥∥∥∥
2

≤ a

∥∥∥∥ dzi
dhk+1

∥∥∥∥
2

∥∥∥wk
∥∥∥
2
.

where 1cond is a vector of 1s at elements where the condition is true.

The above inequalities can be used in Lemma 4.7.3 to bound the trace of the gradient correlation of any logit

zi with respect to weights of a layer wk.

Lemma 4.7.3 (Bounding the trace of the correlation sum-of-logit Jacobian). For logit zi, i = 1, ...,m

tr
(
E
[

dzi
dwk

dzi
dwk

⊤])
≤ a2Ltr

(
E
[
xx⊤

]) L∏
j=0,j ̸=k

∥∥wj
∥∥2
2
. (4.7.5)

for k = 0, ..., L. As a result,

tr
(
E
[

dzi
dw

dzi
dw

⊤])
≤ a2Ltr

(
E
[
xx⊤

]) L∏
j=0

∥∥wj
∥∥2
2

 L∑
j=0

1

∥wj∥22

 .

114

Proof of Lemma 4.7.3. The proof follows via an application of Lemma 4.7.2. For k = 0, 1, ..., L− 1,

tr
(
E
[

dzi
dwk

dzi
dwk

⊤])
= tr

(
E
[

dzi
duk+1

dzi
duk+1

⊤
⊗ hkhk

⊤
])

= E
[

tr
(

dzi
duk+1

dzi
duk+1

⊤)
tr
(
hkhk

⊤)]
≤ a2

∥∥∥∥ dzi
dhk+1

∥∥∥∥2
2

tr
(
E
[
hkhk

⊤])
≤ a2

∥∥∥∥ dzi
dhL

∥∥∥∥2
2

 L−1∏
j=k+1

∥∥wj
∥∥2
2

 a2(L−k−1)

a2k
k−1∏
j=0

∥∥wj
∥∥2
2

tr
(
E
[
xx⊤

])

≤ a2Ltr
(
E
[
xx⊤

]) L∏
j=0,j ̸=k

∥∥wj
∥∥2
2
.

The third line comes from the fact that the matrix dzi
duk+1

dzi
duk+1

⊤
is rank one and its trace is the same as 2-norm.

The last inequality comes from the fact that
∥∥wL

i

∥∥
2
≤
∥∥wL

∥∥
2
. For k = L,

tr
(
E
[

dzi
dwL

dzi
dwL

⊤])
= tr

(
E
[

dzi
dwL

i

dzi
dwL

i

⊤])
= tr

(
E
[
hLhL

⊤])
≤ a2Ltr

(
E
[
xx⊤

]) L−1∏
j=0

∥∥wj
∥∥2
2
.

Proof of Theorem 4.3.1. We first calculate an inequality for the Fisher Information Matrix (FIM)

F = E

 m∑
y=1

pw(y |x)(∂w log pw(y |x))(∂w log pw(y |x))⊤


= E

∂wz
 m∑
y=1

pw(y |x)
d log pw(y |x)

dz
d log pw(y |x)

dz

⊤
 ∂wz

⊤



115

For an output distribution pw(y |x) obtained using the softmax operator on the logits zy

py ≡ pw(y |x) =
ezy∑
y′ e

zy′

we have
dz

d log
pw(y |x) = ey − p

where ey is the one-hot vector of the class y and p = [p1, ..., pm].

m∑
y=1

pw(y |x)
d log pw(y |x)

dz
d log pw(y |x)

dz

⊤
⪯

m∑
y=1

pw(y |x)
∥∥∥∥d log pw(y |x)

dz

∥∥∥∥2
2

I

= (1− ∥p∥22)I

⪯ I

Hence we have

F ⪯ E
[
(∂wz) (∂wz)

⊤
]
.

In the case of the Hessian for the cross-entropy loss we make a similar calculation following the calculation

of Fort and Ganguli (2019). For the calculation of Hessian, the expectation E denotes the expectation with

respect to inputs and labels in the training set. We write

(log 2)H ≈ E
[
(∂wz)∇2

z(− log pw(y |x)) (∂wz)⊤
]

= E
[
(∂wz)

(
diag(p)− pp⊤

)
(∂wz)

⊤
]

⪯ E
[
(∂wz) (diag(p)) (∂wz)

⊤
]

⪯ E
[
(∂wz) (∂wz)

⊤
]
.

In the above calculation, we have kept only the so-called G-term of the Hessian and neglected an additional

H-term.

E

[
m∑
i=1

(yi − pi)
∂2zi

∂wα∂wβ

]

which is typically small in practice for a well-trained network because the terms 1 − pi are close to zero

116

for all logits (Papyan, 2019; Sagun et al., 2016)(E[
∑m

i=1 |yi − pi| is 5.32× 10−8 for FC-600-2 on MNIST).

Hence, both tr (F) and (log 2)tr (H) can be bounded by

tr (F) , (log 2)tr (H) ≤
m∑
i=1

E
[

dzi
dw

dzi
dw

⊤]
≤ ma2Ltr

(
E
[
xx⊤

]) L∏
j=0

∥∥wj
∥∥2
2

 L∑
j=0

1

∥wj∥22

 . (4.7.6)

Notice that the log 2 factor in front of tr(H) comes from the rescaling factor in the definition of ĕ(hw, Dn).

Remark 4.7.4. The G-term is always positive semi-definite since the output distribution p ∈ RC is always

convex on the logits z ∈ RC , i.e.,
(
− log

(
ezy∑
y′e

zy′

))C

y=1

is convex in z.

Remark 4.7.5. Empirically, the trace of FIM and Hessian at the end of training (Figure 4.3) is usually much

smaller than the trace of correlation matrix of logit Jacobians (Figure 4.5). In this case, the prediction of the

bound in Equation (4.7.6) seems very loose. However from the above calculation, we also know that

tr(F) ≤ (1− ∥p∥22) tr

(
m∑
i=1

E
[

dzi
dw

dzi
dw

⊤])
,

tr(H) ≤ tr
(
E
[
(∂wz)

(
diag(p)− pp⊤

)
(∂wz)

⊤
])

.

For trained network that predicts accurately, we usually get the probabilities p that are very close to one-hot

vectors of the correct classes. In this case, both 1− ∥p∥22 and diag(p)− pp⊤ are close to zero. This explains

why in our experiments the trace of F and H at the end of training are much smaller than that of logit

Jacobians.

Proof of Lemma 4.3.2. The proof depends upon Weyl’s inequality to control the eigenvalues of the sum of

Hermitian matrices. It states that for Hermitian matrices A,B,C ∈ Rp×p, if C = A+B, then

λi+j−1(C) ≤ λi(A) + λj(B), λp−i−j(C) ≥ λp−i(A) + λp−j(B) (4.7.7)

for all 1 ≤ i, j ≤ p. In particular if B ⪰ 0, then λi(C) ≥ λi(A) for all i ≤ p.

117

We can now write,

E
[

dzi
dwk

dzi
dwk

⊤]
= E

[(
dzi

dhk+1
⊙ dhk+1

duk+1

)(
dzi

dhk+1
⊙ dhk+1

duk+1

)⊤

⊗ hkhk
⊤
]

⪯ E

[
a2
∥∥∥∥ dzi

dhk+1

∥∥∥∥2 Idk+1
⊗ hkhk

⊤
]

= a2
∥∥∥∥ dzi

dhk+1

∥∥∥∥2 Idk+1
⊗ E

[
hkhk

⊤]
= a2(L−k)

 L∏
j=k+1

||wj ||2
 Idk+1

⊗ E
[
hkhk

⊤]

Hence, by Equation (4.7.7)

spec
(
E
[

dzi
dwk

dzi
dwk

⊤])
⪯ spec

a2(L−k)
L∏

j=k+1

||wj ||2Idk+1
⊗ E

[
hkhk

⊤]
so we have

spec
(
E
[

dzi
dwk

dzi
dwk

⊤])
⪯ a2(L−k)

L∏
j=k+1

||wj ||2spec
(
Idk+1

)
⊗ spec(E

[
hkhk

⊤]
)

Remark 4.7.6 (Modification using sloppiness of activation gradients). Figure 4.1 shows that the slope of

decay of FIM and the activations are essentially the same. However, in Equation (4.3.2) if spec
(
E
[
hkhk

⊤
])

decays as O(exp(−ci)), the decay of spec
(
E
[

dzi
dwk

dzi
dwk

⊤])
is O(exp(−ci/dk+1)). This is a loose bound,

especially when dk+1 is large, e.g., the spectrum could decay much more faster. But note that if we can write

a KFAC-approximation

E
[

dzi
dwk

dzi
dwk

⊤]
≈ E

[
dzi

duk+1

dzi
duk+1

⊤]
⊗ E

[
hkhk

⊤]
.

then we obtain a stronger decay for the logit gradient when dk+1 is large, if we assume that the activations

gradients are sloppy. If spec
(
E
[

dzi
duk+1

dzi
duk+1

⊤])
decays as exp−c1i and spec

(
E
[
hkhk

⊤
])

decays as

118

exp−c2j, then the (i+ j)2th largest eigenvalue of E
[

dzi
dwk

dzi
dwk

⊤]
is smaller than exp(−min{c1, c2}(i+ j)),

hence the kth largest eigenvalue of E
[

dzi
dwk

dzi
dwk

⊤]
is smaller than exp(−min{c1, c2}

√
k). Hence, the decay

rate of spec
(
E
[

dzi
dwk

dzi
dwk

⊤])
is O

(
exp(−min{c1, c2}

√
k)
)

.

Corollary 4.7.7. Denote the FIM and Hessian with respect to the kth layer F (wk), H(wk) respectively, then

we have,

spec (F (wk)) , spec (H(wk)) ⪯ 2ma2(L−k)
L∏

j=k+1

∥∥wj
∥∥2
2

spec(Idk+1
)⊗ spec

(
E
[
hkhk

⊤])
.

As in Lemma 4.3.2,
∏L

j=L=1

∥∥wj
∥∥2
2
= 1.

Proof. From Lemma 4.7.3 we know that

F (wk), H(wk) ⪯ 2E
[
(∂wk

z)(∂wk
z)⊤
]

Let s =
∑m

i=1 zi be the sum of logits, then we have

F (wk), H(wk) ⪯ 2E

[(
ds

dwk

)(
ds

dwk

)⊤
]

⪯ 2ma2(L−k)
L∏

j=k+1

∥∥wj
∥∥2
2

spec(Idk+1
)⊗ spec

(
E
[
hkhk

⊤])

The second inequality comes from a similar calculation as in Lemma 4.3.2 for network with one added layer

where hL+1 = uL+1 = z, uL+2 = wL+1hL+1, and wL+1 = [1, ..., 1], ∥wL+1∥22 = m.

4.7.3.1 Optimizing parameters of the prior in the PAC-Bayes bound

The prior should be fixed before looking at the training set, but for all methods above, we optimize the scale

of the prior. We do this by adding an additional penalty in the KL term. Assume that ai for i = 1, . . . ,m′

are the number of parameters in the prior that we can select, we choose ai = (1/ci) exp(−ji/bi) for ji ∈ N.

We reindex ji as a single index k = (
∑

i j
i)m

′
, then if the PAC-Bayes bound for each index k is designed

to hold with probability at least 1 − 6δ
π2k2

, then by union bound, it will hold uniformly for all k ∈ N with

119

probability at least 1− δ. For a bound that holds with probability 1− δ′, the penalty we should add is log n
δ′ ,

hence, using the relation

ai = (1/ci) exp(ji/bi), δ′ =
6δ

π2k2
, k = (

∑
i

ji)m
′

we add the penalty

φ(a1, ..., am
′
) = 2m′ log(

∑
i

bi log(c
iai)) + log

π2n

6δ

Similarly, for any positive or negative integer ji, we can set k = (
∑

i 2|j|i)m
′

to get the penalty

φ(a1, ..., am
′
) = 2m′ log(2

∑
i

∣∣bi log(ciai)∣∣) + log
π2n

6δ

4.7.4. Further experimental studies

4.7.4.1 Additional results on the sloppiness of different architectures and datasets

MNIST in spite of its lower dimensionality has roughly the same range of eigenvalues but it has a very small

threshold r in Definition 4.4.3 which indicates that data has a lower number of effective dimensions than

CIFAR-10. The FIM (empirical FIM is essentially the same line) shows a very strong decay for MNIST; since

the trace of the FIM has been used as an indicator of the information stored in the weights (Achille et al.,

2018), this indicates that the weights have to store very little information to predict MNIST well. The Hessian

and FIM have very different eigenvalues for MNIST but as Figure 4.3 indicates the two matrices have a larger

overlap in their top eigenvectors. Eigenspectra of other networks on MNIST are similar to Figure 4.4 while

those of CIFAR-10 are similar to Figure 4.1.

In Figure 4.5, we compare the correlation matrices of logit Jacobian for different logits, which shows that the

eigenspectra for different logits are similar. In Figure 4.6 and Figure 4.7 we compare the correlation matrices

of activations and their gradients. From the figures, we can see that the eigenspectra are similar for different

layers, which shows that the sloppiness is preserved as we getting into higher layers of neural network. In

4.8 and 4.9 we ploted the eigenspectra for different networks. The similarity of eigenspectra of matrices

120

0 200 400 600 800 1000
Index of sorted eigenvalues

10
15

10
13

10
11

10
9

10
7

10
5

10
3

10
1

10
1

E
ig

en
 v

al
ue

Data
FIM
Empirical FIM
Hessian
Logit jacobian
Activation
Activation gradient

Figure 4.4: Eigenspectra for a two-layer fully-connected network on MNIST. The eigenspectra are qualita-
tively the same as those of Figure 4.1, e.g., there is a sharp drop at the beginning and a long, linear tail of small
eigenvalues follows. Slopes of the eigenspectra of activations, activation gradients, Jacobians and Hessian
mirror those of the data. In contrast to Figure 4.1, the slope of the FIM is quite different here. The Empirical
FIM and FIM overlaps with each other since the model is trained to nearly perfect train and validation error.

calculated on same dataset but different architectures strongly indicates that the sloppiness of Hessian, FIM,

correlations of logit Jacobians, activations and gradients of activations are all inherited from the sloppiness of

the data set.

0 200 400 600 800 1000
Index of sorted eigenvalues

10
0

10
1

10
2

E
ig

en
va

lu
e

0th Logit Jacobian
1th Logit Jacobian

0 200 400 600 800 1000
Index of sorted eigenvalues

10
0

10
1

10
2

10
3

10
4

E
ig

en
va

lu
e

0th Logit Jacobian
1th Logit Jacobian
2th Logit Jacobian
3th Logit Jacobian
4th Logit Jacobian
5th Logit Jacobian
6th Logit Jacobian
7th Logit Jacobian
8th Logit Jacobian
9th Logit Jacobian

Figure 4.5: Eigenspectra of the correlation matrices of Jacobian of logits for FC-600-2 on MNIST (Left) and
wide residual net on CIFAR-10 (Right). The eigenspectra are similar for different logits.

121

0 200 400 600
Index of sorted eigenvalues

10
2

10
1

10
0

10
1

E
ig

en
va

lu
e

Layer 0 activation
Layer 1 activation

0 200 400 600
Index of sorted eigenvalues

10
1

10
2

10
3

E
ig

en
va

lu
e

Layer 2 activation
Layer 3 activation

Figure 4.6: Eigenspectra of the correlation matrices of activations of different layers for FC-600-2 on MNIST
(Left) and wide residual net on CIFAR-10 (Right). For different layers, the eigenspectra are similar.

0 200 400 600
Index of sorted eigenvalues

10
19

10
17

10
15

10
13

10
11

10
9

E
ig

en
va

lu
e

Layer 0 activation gradient
Layer 1 activation gradient

0 200 400 600
Index of sorted eigenvalues

10
11

10
10

10
9

10
8

E
ig

en
va

lu
e

Layer 2 activation gradient
Layer 3 activation gradient

Figure 4.7: Eigenspectra of the correlation matrices of gradients with respect to the activations of different
layers for FC-600-2 on MNIST (Left) and wide residual net on CIFAR-10 (Right). For different layers, the
eigenspectra are qualitatively similar, and as we move into higher layers of neural networks, the eigenvalues
becomes smaller for gradient of activations.

122

0 500 1000 1500 2000 2500 3000
Index of sorted eigenvalues

10
7

10
5

10
3

10
1

10
1

10
3

E
ig

en
va

lu
e

Data
FIM
Empirical FIM
Hessian
Logit Jacobian
Activation
Activation gradient

Figure 4.8: Eigenspectra for ALL-CNN on CIFAR-10. The eigenspectra are qualitatively the same as those
of Figure 4.1 for a wide residual network on CIFAR-10.

0 200 400 600 800 1000
Index of sorted eigenvalues

10
15

10
12

10
9

10
6

10
3

10
0

10
3

E
ig

en
 v

al
ue

Data
FIM
Empirical FIM
Hessian
Logit jacobian
Activation
Activation gradient

Figure 4.9: Eigenspectra for FC-1200-1 on MNIST. The eigenspectra are qualitatively the same as those
of Figure 4.4 for FC-600-2 on MNIST.

123

4.7.4.2 Eigenspectra at the middle of training

Figure 4.10 shows the eigenspectra for FIM and Hessian of a wide residual net on CIFAR-10 during training,

which shows that the eigenspectra are qualitatively the same throughout training.

0 500 1000 1500 2000 2500 3000
Index of sorted eigenvalues

10
7

10
5

10
3

10
1

E
ig

en
va

lu
e

Epoch 0
Epoch 20
Epoch 40
Epoch 60
Epoch 80
Epoch 100

0 200 400 600 800
Index of sorted eigenvalues

10
4

10
3

10
2

10
1

E
ig

en
va

lu
e

Epoch 0
Epoch 30
Epoch 60
Epoch 100

Figure 4.10: (Left) Eigenspectra for FIM of WRN on CIFAR-10 throughout training. The eigenspectrum for
epoch 0 are scaled up by 103 to bring it to this scale. (Right) Eigenspectra for Hessian of WRN on CIFAR-10
throughout training. We take the absolute value of the eigenvalues. The eigenspectra are qualitatively the
same.

4.7.4.3 Eigenspectrum at the end of training for data sets with random labels

Figure 4.11 shows the eigenspectra of empirical FIM at the end of training, in which the eigenspectra is

less sloppy for data sets with random labels, and the top eigenvalues increases as we increase the fraction

of random labels. This shows that even if we have the same input data set, the sloppiness and the top few

eigenvectors can still be affected by the task. The eigenspectra becomes less sloppy and has larger head when

the the model is used to learn more difficult tasks (more random labels).

124

0 200 400 600 800 1000
Index of sorted eigenvalues

10
11

10
9

10
7

10
5

10
3

10
1

10
1

E
ig

en
va

lu
e

0 10

10
1

10
0

Fraction = 0.0, Gap = 0.014
Fraction = 0.2, Gap = 0.077
Fraction = 0.4, Gap = 0.167
Fraction = 0.6, Gap = 0.263

Figure 4.11: Eigenspectra at the end of training for data sets with random labels. The plots shows
the eigenspectra of empirical FIM at the end of training. The experiment is done on MNIST using fully
connected net FC-600-2. The label "Fraction=a" indicates the data set with random label of fraction a. The
inset plot shows the top 15 eigenvalues. The line for Fraction=0.0 are scaled up by 107. The plots shows
that the FIM at the end of training is less sloppy for data sets with random labels, and the top eigenvalues
increases as we increase the fraction of random labels.

125

CHAPTER 5

AN ANALYTICAL CHARACTERIZATION OF SLOPPINESS IN NEURAL NETWORKS:

INSIGHTS FROM LINEAR MODELS

5.1. Introduction

Combining the analysis in Section 2.5.5 and Chapter 4, we hypothesize that the following factors could be

contributing to the low-dimensionality we observed in the training manifold (i) typical datasets have a sloppy

eigenspectrum, possibly leading to a sloppy Fisher Information Matrix (FIM) (ii) the FIM eigenspace is not

changing significantly during training, making the FIM eigenspectrum a good approximation of the widths

of the model manifold and (iii) typical training procedures initialize models near one specific point in the

prediction space, the ignorance P0. To understand whether these conditions can result in hyperribbon-like

structure, we study the training manifold of linear models, where the FIM is just the data covariance matrix

and is invariant during training.

This chapter is organized as follows: In Section 5.2 we constrain the geometry of linear uni-variate regression

trained with gradient descent through the lens of principal component analysis (PCA). We provide an

analytical expression of the PCA matrix of the training trajectories and provides bounds on the decay

of eigenvalues for each term in the expression. We then identify the three key factors determining the

dimensionality of the training manifold: the training time, data sloppiness, and initialization variance relative

to the truth. We study the scenarios under which the training manifold of linear networks is low-dimensional

with a phase diagram in Figure 5.3. In Section 5.3 we extend our analysis to the training of kernel machines,

stochastic gradient descent in linear models, and deep linear models.

5.2. Training manifold for linear regression

Consider a dataset {(x′i, yi)}
n
i=1 that consists of inputs x′i ∈ Rd−1 and outputs yi ∈ R. We will focus on the

case with a scalar output in this paper for clarity of exposition, all results hold for multi-dimensional output.

Let xi ≡ [x′i, 1] denote the input with a constant appended to it and consider a linear model yi = w⊤xi with

126

w ∈ Rd trained to minimize

C(w) =
1

2n

n∑
i=1

ri(w)
2. (5.2.1)

Here the residuals ri(w) = ŷi − yi for i ∈ {1, . . . , n} denote the difference between the predictions and

targets yi ∈ R. We will assume that the targets corresponds to unknown true weights w∗ ∈ Rd. Discrete-time

gradient descent to minimize this objective updates with a step-size (learning rate) α can be written as

wt+1 = wt − α ∂wC(wt), starting from some w0 ∈ Rd for all t = 1, 2, We denote the n-dimensional

vector of residuals computed at weights wt by rt ≡ [r1(wt), . . . , rn(wt)]
⊤ ∈ Rn. This vector of residuals rt

evolves as the weights are updated by gradient descent:

rt+1 = (I − αK)rt = (I − αK)t+1r0, (5.2.2)

where I ∈ Rn×n is the identity and K ∈ Rn×n is a symmetric positive semi-definite matrix with entries

Kij = x⊤i xj/n for i, j ∈ {1, . . . , n}. The matrix K = XX⊤/n where the ith row of X ∈ Rn×d contains

the input datum xi. It is the input-correlation matrix, or the neural tangent kernel (NTK (Jacot et al., 2018a))

for a linear model. Let the ith largest eigenvalue of K be denoted by λK
i ≥ 0 . The shorthand

Kd ≡ I − αK,

will be useful to simplify our expressions. It is the first-order approximation of exp(−αK). We make three

assumptions in our analysis.

(i) Input data and ground-truth targets: We will assume that the input data are sloppy, i.e.,

λK
i = exp(−(i− 1)c),

for some c > 0 for all i = 1, . . . , n, with c ≫ 1/n. We will also assume that the unknown true weights

w∗ are a random variable with zero mean and isotropic variance (σ∗)
2I ∈ Rd. This will indirectly be

an assumption on the norm of the targets yi.

(ii) Model: The model is over-parameterized, i.e., the number of samples is smaller than the dimensionality

127

of the input data n < d. Weights w are under-determined if n < d and therefore there is an infinite set

of solutions that achieve C(w) = 0. Therefore we effectively assume that rank(K) = n for a positive

definite K. This assumption is not unduly restrictive. Our analysis can also be conducted in the image

space of K if K is rank deficient.

(iii) Training method: For a large part of the analysis we will be interested in training methods that

resemble gradient descent, or its variants. We will assume that the step-size α < 1/λK
1 . This is a

standard assumption used in the analysis of gradient descent algorithms (Bottou, 2012). It ensures that

∥I − αK∥2 < 1 and therefore ∥rt∥2 → 0 monotonically as t → ∞.

5.2.1. Principal component analysis of the training manifold

Consider N randomly initialized models with weights {w(i)
0 }Ni=1 sampled from a probability distribution

supported on Rd with zero mean and an isotropic variance, i.e., E[w0] = 0 and E[w0w
⊤
0] = σ2

wI . The initial

residual vectors satisfy

E
[
r
(i)
0

]
= −y, E

[
r
(i)
0 r

(j)
0

⊤
]
= δijσ

2
wK + yy⊤,

for all i, j ∈ {1, . . . , N} where y = [y1, . . . , yn]
⊤ ∈ Rn is the vector of targets and δij = 1{i=j} is the

delta function. The prediction space Rn has Euclidean geometry. We can therefore capture the geometry

of the training manifold, which is a subset of Rn, using principal component analysis (PCA) of points on

trajectories {r(i)t }T−1, N
t=0, i=1. The covariance matrix corresponding to PCA is

P (N,T) =
1

NT

∑
i,t

(r
(i)
t − r̄)(r

(i)
t − r̄)⊤,

=
1

N

(
N∑
i=1

1

T

T−1∑
t=0

r
(i)
t r

(i)
t

⊤
)

− r̄ r̄⊤,

(5.2.3)

where the mean residual is r̄ ≡ r̄(N,T) = 1
NT

∑N
i=1

∑T−1
t=0 r

(i)
t . The mean residual evolves according to the

equation r̄(N,T) = KT r̄(N, 0) with

KT ≡ 1

T

T−1∑
t=0

Kt
d =

1

αT
K−1(I −KT

d). (5.2.4)

128

As the number of random initializations N goes to infinity, we can separate the PCA matrix P into two

components,

P (T) = lim
N→∞

P (N,T)

=
1

T

T−1∑
t=0

Kt
d(σ

2
wK + yy⊤)Kt

d︸ ︷︷ ︸
P1(T)≡Pσw

1 (T)+P y
1 (T)

−KT yy
⊤KT︸ ︷︷ ︸

P2(T)

. (5.2.5)

For any two positive semi-definite matrices A,B ∈ Rn×n, Weyl’s inequality says that

λA
i + λB

n ≤ λA+B
i ≤ λA

i + λB
1 , (5.2.6)

for eigenvalues λi ordered in decreasing order of their magnitude. The second term P2(T) in Equation (5.2.5)

is an outer product of y with itself and has a single non-vanishing eigenvalue λP2 = ∥KT y∥2. Therefore,

eigenvalues of P (T) are sandwiched by the eigenvalues of P1(T):

max
(
λP1
i+1, λ

P1
i − λP2

)
≤ λP

i ≤ λP1
i . (5.2.7)

From Equation (5.2.4),

∥KT ∥2 ≤
1− (1− αλK

1)T

αTλK
n

≤ 1

αTλK
n

. (5.2.8)

This suggests that λP2 = O(1/T), and the approximation becomes tighter for long training times. To

characterize the geometry of the training manifold, it suffices to focus on the eigenspectrum of P1(T).

5.2.2. The geometry of the training manifold

The goal of this section will be to characterize the geometry of the training manifold, i.e., eigenvalues of the

PCA matrix P (T) in Equation (5.2.5). We will analyze its three components:

P (T) = −P2(T) + P σw
1 (T) + P y

1 (T)︸ ︷︷ ︸
=P1(T)

.

The first term P2(T) has unit rank, the second term P σw
1 (T) depends on the variance of initial weights σ2

w,

and the third term P y
1 (T) again depends on the targets y, but it is not unit rank. To simplify the notation, we

129

will denote their eigenvalues by λP2 , λσw
i and λy

i , respectively, for all i = 1, . . . , n. We can write P1(T) as

follows:

TP1(T) = σ2
w

T−1∑
t=0

Kt
dKKt

d︸ ︷︷ ︸
TPσw

1 (T)

+
T−1∑
t=0

Kt
dyy

⊤Kt
d︸ ︷︷ ︸

TP y
1 (T)

, (5.2.9)

Contributions to the eigenspectrum coming from weight initialization. Note that Kd = I−αK commutes

with K. We can therefore write P σw
1 (T) to be the geometric sum

P σw
1 (T) = σ2

w

T−1∑
t=0

K2t
d K =

σ2
w

α
(I +Kd)

−1(I −K2T
d),

and calculate its eigenvalues explicitly as

λσw
i =

σ2
w

α

(
1− (1− αλK

i)2T

2− αλK
i

)
.

Due to the inequality 1− (1− x)a ≤ min{1, ax}, which holds for |x| < 1 and a ≥ 1, under assumption (iii),

the eigenvalue λσw
i is bounded above by

λσw
i ≤ σ2

w

α

(
min{1, 2TαλK

i }
2− αλK

i

)
. (5.2.10)

Figure 5.1 uses Equation (5.2.10) to explain how eigenvalues λσw
i of different indices i depend upon the

training duration T and the sloppy eigenspectrum of the input correlation matrix K. From Equation (5.2.9), it

is immediate that if the initialization variance σ2
w is small (relative to σ2

∗ which controls ∥y∥), the contribution

of P σw
1 (T) to the dimensionality of the hyper-ribbon is small for all times T . For all times T , the head of the

eigenspectrum P σw
1 decays rather quickly. For small times T , eigenvalues in the tail of P σw

1 are quite small.

The implication of this is that, everything else (i.e., P y
1) being the same, models trained for long times have a

higher-dimensional hyper-ribbon due to the variations caused by the initialization of weights. For short times,

the hyper-ribbon has a smaller dimensionality.

130

0 10 20 30 40 50
Index i

0.0

0.2

0.4

0.6

0.8

1.0

i

T =

T = 0

Figure 5.1: Contributions to the eigenspectrum of the PCA matrix coming from weight initialization
computed using the bound in Equation (5.2.10) (dotted) and numerical computation of the corre-
sponding term in Equation (5.2.9) (bold) with σ2

w = 1, α = 1 and c = 0.5. For very large training
times T ≫ λK

1 /λK
n , the eigenvalue λσw

i corresponds to the minimum in the numerator being 1 for any i.
This means that λσw

i decays to ∼ σ2
w/2α as the index i increases, at a rate determined by the decay of λK

i .
From Equation (5.2.10), for T ≪ λK

1 /λK
n and i < ln(2Tα)/c, the minimum in the numerator is 1. This

gives λσw
i ≤ σ2

w/(2α− α2λK
i). This decays at the same rate as the previous case. For larger values of i, the

minimum comes from the other term in the numerator, and therefore λσw
i decays to much smaller values

∼ 1
(2/λK

n −α)
. This is the lower envelope of the curves above. The limit T → 0 corresponds to the eigenvalues

of σ2
wK and therefore reflects the sloppy decay in the input correlation matrix.

Contributions to the eigenspectrum coming from the targets. The second term corresponding to P y
1 (T)

in Equation (5.2.9) resembles the so-called reachability Gramian in systems theory. It is well-known that

P = limT→∞ P y
1 (T) is the unique solution to the discrete algebraic Lyapunov equation (DATTA, 2004)

KdPK⊤
d − P + yy⊤ = 0.

In systems theory, this concept is used for model reduction, i.e., to identify a low-dimensional dynamical

system that captures time-varying data from a larger system. The rate of decay of the singular values of the

reachability Gramian characterizes the quality of this approximation. Singular values of the Gramian decay

quickly (Penzl, 2000; Antoulas, 2005; Townsend and Wilber, 2018; Beckermann and Townsend, 2016) when

Kd has some nice properties (e.g., normal, well-conditioned), and yy⊤ is approximately low rank. This is

precisely the setting of our paper. To study P y
1 (T), which is a finite sum, we write it as the difference between

131

two Gramians:

TP y
1 (T) =

∞∑
t=0

Kt
dyy

⊤Kt
d −

∞∑
t=0

Kt
d

(
KT

d yy
⊤KT

d

)
Kt

d

=
∞∑
t=0

Kt
d

(
yy⊤ −KT

d yy
⊤KT

d

)
Kt

d.

The following lemma shows that the eigenspectrum of P y
1 (T) decays quickly.

Lemma 5.2.1. We have
λy
1+2i

λy
1

≤ 4ρ−2i

(1 + ρ−4i)2
< 4ρ−2i,

where

ρ = exp

(
π2

2 ln
(
8λK

1 /λK
n − 4

)) .

For the input correlation matrix K = US2U⊤ with λK
i = e−c(i−1) like we have assumed, Lemma 5.2.1 is

non-vacuous when cn > ln 4 which ensures that ρ > 1. We should also note that the largest eigenvalue of K̃d

is bounded away from zero, i.e., a > 0. The following lemma now gives a lower bound on the eigenvalue λy
1.

Lemma 5.2.2. If we denote λ̃i =
∑T−1

t=0 (1− αλK
i)2t, then

∥y∥2 ≤ λy
1 ≤ λ̃n ∥y∥2 ,

where the norm of targets concentrates around the value

∥y∥2 ≈ σ2
∗

n∑
i=1

λK
i . (5.2.11)

Notice that λ̃i = λσw
i /(σ2

wλ
K
i).

Lemma 5.2.1 suggests that the decay of the eigenspectrum of P y
1 is exp(−iπ2/nc). In contrast to the decay

of P σw
1 , this rate is independent of the training time T . The rate of decay of P y

1 is comparable to that of P σw
1

for small indices i. Both are proportional to exp(−ia) for a constant a that depends on c and n. Suppose

now that σ2
w is small relative to σ2

∗ . Since λy
1 ≥ ∥y∥2 = σ2

∗tr(K), the head of the eigenspectrum of P y
1

can be much taller than that of P σw
1 . Even if the decay of the two is similar. In other words, the head of

132

0 100 101 102

Index i
10 5

10 4

10 3

10 2

10 1

i

P(T)
P1(T)
P w

1 (T)
Py

1(T)
P2(T)

Figure 5.2: The tail of the eigenspectrum of P1(T) is well-approximated by the contribution coming
from the weight initializations P σw

1 (T), while the head is well approximated by the contribution coming
from the targets P y

1 (T). These eigenvalues were computed for d = 100 dimensional data with slope c = 0.2
for the eigenvalues of the input correlation matrix, after fitting n = 50 samples for T = 50 iterations with
initialization variance σ2

w = 0.1 and variance of the ground-truth weights being σ2
∗ = 2.

eigenspectrum of P1(T) = P σw
1 (T) + P y

1 (T) is determined by P y
1 and the tail is determined by P σw

1 .

It might seem counter-intuitive that sloppier data, i.e., large c, leads to a slower decay in the eigenspectrum of

P y
1 . But notice in Figure 5.1 that the threshold upon the index i after which the eigenspectrum of P σw

1 (T)

decreases quickly is i∗ < ln(2Tα)/c. This threshold scales as 1/c. Therefore, if one trains for small times T ,

the eigenspectrum of the sum P1(T) = P σw
1 (T) +P y

1 (T) still decays after i∗, essentially dominated by P σw
1 .

In other words, for the same T , sloppier the data, smaller the threshold i∗ after which the eigenspectrum of

P1(T) decays. We should note that although Lemma 5.2.1 does show that the eigenspectrum of P y
1 decays,

it is a somewhat loose upper bound. In our experiments, the decay of the eigenspectrum is typically about

twice as fast.

Combining the two parts to obtain the eigenspectrum of P1(T). The following lemma combines the

technical development in the previous two subsections.

133

Lemma 5.2.3. The eigenvalues of TP1(T) in Equation (5.2.9) satisfy

λP1
i

λP1
1

≤ min

{
1, 4ρ−(i−1) +

σ2
w

α ∥y∥2

}
if i ≤ 2k∗,

≤ 4ρ−(k∗−1) +
σ2
w

α ∥y∥2
min{1, 2αTλK

i−k∗+1} else.

for all i = 1, . . . , n, where k∗ = min
{
ln
(
2Tα
2c

)
, n2
}

.

0.
01

0.
11

0.
21

0.
31

0.
41

Slope c

100000

15556

2420

376

58

Tr
ai

ni
ng

 ti
m

e
T

(a) σ∗/σw = 4.38

0.
01

0.
11

0.
21

0.
31

0.
41

Slope c

(b) σ∗/σw = 1.32

0.
01

0.
11

0.
21

0.
31

0.
41

Slope c

0

10

20

30

40

50

(c) σ∗/σw = 0.33

(d) Transitions between phases of the hyper-
ribbon

0.01 0.11 0.21 0.31 0.41
Slope c

100000

15556

2420

376

58

Tr
ai

ni
ng

 ti
m

e
T

3.6

4.2

4.8

4.8

5.4

5.
4

6.0

6.0
6.67.2

7.8

8.4

9.0

9.6

(e) k∗ = 3 dimensions

0.01 0.11 0.21 0.31 0.41
Slope c

0.81.2
1.6

2.0

2.4

2.8
3.2

3.6

4.
0

4.
0

4.4

4.8

(f) k∗ = 10 dimensions

Figure 5.3: A phase diagram for linear regression that describes the number of dimensions in the
hyper-ribbon, i.e., the number of dimensions required to capture 95% of the variance of the points on
the training manifold. This is studied with respect to three parameters: (i) the training time T , (ii) slope c,
and (iii) the relative magnitude of weight initialization σ∗/σw. (a-c) show a heat-map of the dimensionality of
the hyper-ribbon for different training times T and slopes c for three different regimes of weight initialization.
(d) is a three dimensional plot that depicts the boundaries of the different phases, defined by the dimensionality
of the hyper-ribbon (3 dimensions in black, 10 in pink and 30 in orange). (e-f) show contours for different
values of σ∗/σw for three and ten- dimensional hyper-ribbons, respectively. See the narrative for an elaborate
discussion.

134

Figure 5.3 summarizes the development of this section using a phase diagram that describes the geometry of

the hyper-ribbon in terms of the relevant parameters, the training time T , the slope c and the relative magnitude

of the weight initialization σ∗/σw. Consider Figure 5.3 (a). For small initialization variance σ∗/σw ≫ 1, the

hyper-ribbon is very low-dimensional for most training times T and slope c. The eigenspectrum is dominated

by P y
1 in this case and its fast decay allows for lower-dimensional hyper-ribbons. There appears to be a

straight line (log T ∝ c) along which the dimensionality is larger, due to relative magnitudes of P σw
1 and P y

1

in Equation (5.2.9). The latter results in a higher-dimensionality for small c and small T , while the former is

the cause of higher-dimensionality at larger c and large T . If the initialization variance is small, short training

times do not fit the data well. For large c, this causes the hyper-ribbon to be low-dimensional (roughly,

because the condition number of optimization is large and different models end up being rather similar).

For small c, this is evident as a higher-dimensional hyper-ribbon (roughly, because models are initialized in

different subspaces of the data). For longer training times T , different models fit the data very well when c is

small (again, because of the condition number). This is evident as a low-dimensional hyper-ribbon above the

straight line. The majority of experiments in Mao et al. (2024) lie in this regime.

Next consider Figure 5.3 (b-c). As the initialization variance increases, the apparent straight line log T ∝ c

that distinguishes low-dimensional hyper-ribbons from higher-dimensional ones, is still present. The upper-

left region is increasingly higher-dimensional. For small slope c the hyper-ribbon is high-dimensional for

all training times T . Because, models are initialized in very different subspaces of the data, and this is true

for all three plots, except that it becomes more apparent as σ∗/σw decreases. For large c, for small times,

the hyper-ribbon may be low-dimensional but we need much longer times to fit this data well. (Mao et al.,

2024, Fig. 10, S.10, S.16) showed that when neural networks are initialized very far away from the true data

distribution, the hyper-ribbon is not low-dimensional. The dimensionality increases when data is not sloppy.

These experiments of theirs lie in regimes Figure 5.3 (b-c).

Next consider Figure 5.3 (d) A three dimensional plot that depicts the boundaries of the different phases,

defined by the dimensionality of the hyper-ribbon (3 dimensions in black, 10 in pink and 30 in orange). Some

broad trends are apparent in the 3D plot, e.g., (i) large σ∗/σw leads to a low-dimensional hyper-ribbon, (ii)

the geometry of the hyper-ribbon is very sensitive to other parameters when the slope c is small. As one goes

135

from small T , large slope c and large σ∗/σw, to large times, small slope and small σ∗/σw, the dimensionality

of the hyper-ribbon increases. The other panels in this figure are obtained by projecting this phase diagram

upon different axes.

Figure 5.3 (e-f) show contours for different values of σ∗/σw for three and ten- dimensional hyper-ribbons,

respectively. Focus on the contour marked 4.8, the two left and right wings of this contour together lead

to a slice of Figure 5.3 (a) at a fixed dimension of three. Figure 5.3 (e) indicates that there is a contiguous

region in (T, c, σ∗/σw)-space with σ∗/σw ⪆ 9 where the hyper-ribbon has fewer than three dimensions. In

Figure 5.3 (f) such contiguous regions occur at small values of σ∗/σw.

Altogether, Figure 5.3 (d-f) shed light on thumb-rules for identifying the complexity of models that would

be required to fit data in these different regimes. Given a dataset (a proxy for its complexity would be c), a

training recipe (a proxy of which would be σ∗/σw) and training budget (a proxy of which would be T), the

boundary of the phase diagram indicates the smallest model that one needs to achieve a good fit. For example,

if our regime lies below the orange surface, we need to fit a model with a larger number of parameters.

5.3. Variants of the linear model

We next extend our analysis to a few more general settings.

Stochastic Gradient Descent (SGD). Let us now consider stochastic gradient descent for the linear predictive

model. In this case, the weights w ∈ Rd are updated, not using the gradient on the entire objective as before

wt+1 = wt − α∂wC(wt), but instead as

wt+1 = wt −
α

2b
∂w

{
b∑

i=1

r2ωi
(wt)

}
.

where the random variable ωi is uniformly distributed on {1, . . . , n} and the batch-size is b. We can model

SGD as gradient descent perturbed by state-dependent Langevin noise

wt+1 = wt − α∂wC(wt) + (α/
√
b)ξt, (5.3.1)

136

0 20 40
Index i

10 4

10 3

10 2

10 1

100

P 1 i
/

P 1 1

c=0.15
c=0.25

Figure 5.4: Comparison of the bound in Lemma 5.2.3 with eigenvalues of P1(T) computed directly
from Equation (5.2.9) for different values of sloppy decay rate c. The proof of Lemma 5.2.3 works by
computing the ideal point to apply Weyl’s inequality. This enables us to separately calculate the decay in
the head of the eigenspectrum and the tail, for both small and large training times T in spite of the fact that
different parts of P1(T) in Equation (5.2.9) dominate in different regimes.

0 20 40
Index i

10 1

100

101

i(P
(N

,T
))

T = 10
T = 50
T = 100
T = 200
T = 500

Figure 5.5: The eigenspectrum of P (N,T) for different training times T from numerical experiments
on linear models with d = 100 dimensional data with n = 50 training samples, slope c = 0.1, initialization
variance σ2

w = 1 and learning rate α = 1/λK
1 . As training time T increases, the eigenvalues in the tail

increase in magnitude, this is because P σw
1 (T). See Figure 5.1. This also causes an increase in the largest

eigenvalue in the head, due to the diminishing magnitude of P2(T) in Equation (5.2.8).

137

where ξt ∼ N(0, D) where D = X⊤X/n − x̄⊤x̄ with x̄ = n−1
∑n

i=1 xi is the covariance matrix of the

inputs (Chaudhari and Soatto, 2018). Under this dynamics of the weights, the residuals evolve as

rt+1 = (I − αK)rt + (α/
√
b)Xξt.

The PCA matrix P (N,T) as the number of random initializations N goes to infinity becomes

P (T) =
1

T

T−1∑
t=0

E
[
rtr

⊤
t

]
−KT yy

⊤KT ,

where KT is the same matrix as in Equation (5.2.5). Notice here the randomness of rt comes from both

random initialization and noise from Langevin dynamics, and we are taking expectation with both sources of

randomness, assuming they are independent. We now have

E
[
rt+1r

⊤
t+1

]
= KdE

[
rtr

⊤
t

]
K⊤

d + 2(α/
√
b)KdE [rt]E [ξt]X

⊤

+ (α2/b)XE
[
ξtξ

⊤
t

]
X⊤

= KdE
[
rtr

⊤
t

]
K⊤

d + (α2/b)XX⊤XX⊤

= KdE
[
rtr

⊤
t

]
Kd + (α2/b)K2,

where we recall that Kd = I − αK.

If we define Pξ = (α2/b)
∑∞

t=0K
t
dK

2Kt
d, then Pξ solves the Lyapunov equation KdPξK

⊤
d − Pξ +

(α2/b)K2 = 0, and it can be checked by induction that

T−1∑
t=0

E
[
rtr

⊤
t

]
= TPξ +

T−1∑
t=0

Kt
d

(
E
[
r0r

⊤
0

]
− Pξ

)
Kt

d

=
T−1∑
t=0

Kt
d

(
σ2
wK + yy⊤

)
Kt

d + TPξ −
T−1∑
t=0

Kt
dPξK

t
d,

138

which has two additional terms compared to Equation (5.2.5). Notice that Kd commutes with K2 so Pξ has

the explicit expression

Pξ = (α2/b)(I −K2
d)

−1K2 = (α/b)(2I − αK)−1K.

Since Pξ commutes with Kd, we can simplify

T−1∑
t=0

Kt
dPξK

t
d = (α/b)

T−1∑
t=0

K2t
d (2I − αK)−1K

= (1/b)(2I − αK)−2(I −K2T
d)

For αλK
i < 1 the ith eigenvalue of the above matrix is ≃ TλK

i /(2b). In Lemma 5.2.3, the upper bound on

the eigenvalues of P1(T) for i ≤ 2k∗ is perturbed by largest eigenvalue of the two additional terms. This

is at most the largest eigenvalue of Pξ, which is simply λ1(Pξ) = (α/b)(λK
1 /(2 − αλK

1)) ≤ α/b for our

setting where λK
1 = 1 and α < 1 (which ensures the convergence of the infinite sum in Pξ). In other words

in Lemma 5.2.3, we will have,

λP1
i

λP1
1

≤ min

{
1, 4ρ−(i−1) +

1

∥y∥2

(
σ2
w

α
+

α

b

)}

for i ≤ 2k∗. This indicates an interesting relationship between the variance of weight initialization σ2
w, the

learning rate α and the batch-size b. Suppose we wish to keep the volume of the ensemble of trajectories,

as measured by the volume of the hyper-ribbon in residual space, the same. This is a reasonable because

it indicates the propensity to identify good fits within the ensemble. Suppose we are in the regime where

α ∝ b, which is very common while training neural networks. If we pick a batch-size that is twice as large,

the first term σ2
w/α shrinks by a factor of two. To compensate—to keep the decay rate and effectively the

dimensionality of the hyper-ribbon the same—we must pick a weight initialization variance that is twice as

large.

Kernel machines. Consider predictions given by ŷi = f(xi) where the predictor f is not linear, but it

belongs to a class of functions F with some regularity properties. A classical example of such a class of

139

functions is called reproducing kernel Hilbert space (RKHS) which is a Hilbert space with the “reproducing

kernel property”. This property states that for any input datum x, there exists a function φx ∈ F such that the

evaluation of f ∈ F at the input x can be written as an inner product f(x) = ⟨f, φx⟩F =
∫
f(x′)φx(x

′)dx′.

The function

k(x, x′) = ⟨φx, φx′⟩F ≥ 0

is called the reproducing kernel. Gradient descent in RKHS (Yao et al., 2007) to minimize the objective

in Equation (5.2.1) corresponds to updates of the form

∀x : ft+1(x) = ft(x)−
α

n

n∑
i=1

(ft(xi)− yi) k(xi, x).

Notice that the residuals ri = ft(xi) − yi for all i = 1, . . . , n follow linear dynamics, same as those

in Equation (5.2.2), namely, rt+1 = (I−αK)rt except that we now have Kij = k(xi, xj)/n for any i, j. This

matrix is called the Gram matrix and it is positive semi-definite by Mercer’s theorem (Schölkopf and Smola,

2002). In other words, all our development in the previous section holds for trajectories of kernel machines

initialized from different initial conditions.

If the input correlation matrix is sloppy, then the Gram matrix is sloppy. This is easiest to see if x

comes from a high dimensional distribution, i.e., d → ∞ as n → ∞ with a fixed d/n. Results in

random matrix theory (Karoui, 2010b) state that the Gram matrix K can be well-approximated by the

sample covariance matrix in such cases. And therefore, kernel machines are rather similar to linear

models. If inputs x are drawn from a distribution with density p(x) supported on Rd, as n → ∞,

the k-th eigenvalue of the Gram matrix K converges to the k-the eigenvalue of the integral operator

T [φ](x) =
∫
k(x, x′)φ(x′)p(x′)dx′ (Koltchinskii and Giné, 2000). The eigenspectrum of such integral

operators has been studied, e.g., if p(x) is Gaussian and k(x, x′) ∝ exp(−∥x− x′∥2 /d) is highly local, then

eigenvalues of the Gram matrix K decay exponentially (Zhu et al., 1998). For translation invariant kernels,

the decay is related to how quickly p(x) goes to zero with increasing ∥x∥ and to the Fourier transform of the

kernel k (Widom, 1963). In other words, the Gram matrix K can also be sloppy even if the input correlation

matrix is not.

140

Let us now consider the space of training trajectories corresponding to different kernel models. Let

{K(m)}Mm=1 be M different kernel machines with trajectories in the residual space defined by r
(i,m)
t+1 =

(I − αK(m))t+1r
(i,m)
0 for the ith initialization. This suggests that we should study the covariance matrix

P (N,M, T) =
1

NMT

∑
i,m,t

(
r
(i,m)
t − r̄

)(
r
(i,m)
t − r̄

)⊤
,

where the mean r̄ = 1
MNT

∑
i,m,t r

(i,m)
t . Taking N → ∞ as before, we get

P (M,T) ≡ 1

M

M∑
m=1

P
(m)
1 (T)− P2(M,T),

where P2(M,T) = KT,Myy⊤KT,M with

KT,M =
1

MT

M∑
m=1

T−1∑
t=0

K
(m)
d

t
.

The above equation is the analog of Equation (5.2.5). Similar to our previous analysis, P2(M,T) has a

single eigenvalue that vanishes for large T . We can thus obtain a result that is rather similar to the one

in Lemma 5.2.3 with appropriate substitutions ρ → ρ(m) and λK
i → λK(m)

i , assuming different kernels have

different slopes c(m) but the same largest eigenvalue, i.e., the same learning rate α. Now by Weyl’s inequality,

λM(i−1)+1

(
M∑

m=1

P
(m)
1 (T)

)
≤

M∑
m=1

λi

(
P

(m)
1 (T)

)

and the fact that λ1(
∑

m Pm
1) ≥ M ∥y∥2, the right-hand side of the per-kernel version of Lemma 5.2.3 can

be summed up over m. Altogether, the eigenvalues of TP1(M,T) ≡ TP1 satisfy

λP1
i

λP1
1

≤ min
{
1,

4

M

∑
m

ρ(m)−⌊ i−1
M

⌋
+

σ2
w

α ∥y∥2
}

(5.3.2)

if i ≤ 2k∗ and otherwise we have

λP1
i

λP1
1

≤ 1

M

∑
m

4ρ(m)−(k∗−1)
+

σ2
w min{1, 2αTλK(m)

⌊ i−1
M

⌋−k∗+2
}

α ∥y∥2


141

for all i = 1, . . . , n, where k∗ = minm ln(2Tα)/(2c(m)). This is a loose upper bound, because it uses

the floor ⌊ i−1
M ⌋ in the exponent of ρ(m). But due to the averaging over m, if different kernels have similar

condition numbers, i.e., similar ρ(m), then the decay rate of eigenvalues λP1
i is shallower by a factor of M .

But they do decay, and we should expect the hyper-ribbon to be low-dimensional. For the second expression

when i > 2k∗, the second term (coming from P σw
1) dominates the eigenspectrum. It has become worse due

to the presence of λK(m)

⌊ i−1
M

⌋−k∗+2
. But we can see that it still indicates a decay in the eigenspectrum at large i.

This narrative gives intuition into the experiments of Mao et al. (2024) which are discussed in Section 5.1,

where the training manifold for different neural architectures was computed to find that the explained variance

of the top few dimensions was quite high. Our discussion suggests that this can arise only if the “effective

kernels” of all those networks have Gram matrices that decay quickly. If some of them do not decay quickly,

then the explained variance would be rather low.

Weight Decay The least squares objective Equation (5.2.1) is often “regularized” to be C(w) + λ
2 ∥w∥

2
2

to obtain a fit where the weights have a small ℓ2-norm. This is important in situations when the model is

over-parameterized, i.e., n < d, where there may be multiple solutions to the non-regularized problem. The

residual dynamics can be seen to be rt+1 = (I − αKλ)rt where Kλ = XX⊤ + λIn×n. All our calculations

in Section 5.2 hold with K replaced by Kλ, i.e., with each λKλ
i = λK

i + λ.

Deep linear networks One can also study a two-layer linear model ŷn = u⊤vxi where v ∈ Rp×d and

u ∈ Rp and minimize the squared residuals C(u, v) = 1/2
∑

i ri(u, v)
2 where ri = u⊤vxi − yi. This is no

longer a convex optimization, but it is, of course, simply a reparameterization of the original problem with

uv = w⊤. Gradient descent updates for both variables can be written as

ut+1 = ut − α
∑
i

rivtxi,

vt+1 = vt − α
∑
i

riux
⊤
i .

Up to first order in the step-size α, the residuals evolve as

rt+1 = rt − αK(u, v) rt. (5.3.3)

142

where K(u, v)ij = x⊤i (v
⊤v + u⊤u)xj . This dynamics is no longer linear because the kernel K depends

upon the parameters u, v. Unlike linear models or kernel machines, the dynamics of deep linear networks

follows a nonlinear trajectory in the prediction space, even if the deep linear network can be re-parameterized

using w⊤ ≡ u⊤v and seen to be just linear (Tarmoun et al., 2021). If we use the so-called balanced

initialization (Fukumizu, 1998; Saad and Solla, 1995; Saxe et al., 2014) v0v⊤0 = u0u
⊤
0 then

d
dt

(
vtv

⊤
t

)
=

d
dt

(
utu

⊤
t

)
,

for all times t. In other words, the kernel K(u, v) ≡ K is invariant for balanced initializations. This holds

approximately even for discrete-time updates to the weights. Similar considerations apply for multi-layer

linear networks where successive layers of the network are initialized to be balanced (Arora et al., 2018).

In some learning scenarios, gradient descent on a nonlinear objective function gives an almost linear trajectory

in the function space (Chizat et al., 2019b). Some works describe a learning scenarios that can be decomposed

into two parts, a first part that learns features and a second part that is equivalent to regression using the learnt

features (Atanasov et al., 2022; Jacot et al., 2022).

5.4. Proofs

Proof of Lemma 5.2.1. We will denote TP y
1 (T) as P in this proof for clearer exposition. We know that P

solves the discrete algebraic Lyapunov equation

KdPK⊤
d − P +

(
yy⊤ −KT

d yy
⊤KT

d

)
= 0.

See (Antoulas, 2005, Chapter 4.3.3), such a P also solves the continuous Lyapunov equation K̃dP +PK̃d
⊤
+

BB⊤ = 0 with

K̃d = (Kd + I)−1(Kd − I),

BB⊤ = 2(Kd + I)−1(yy⊤ −KT
d yy

⊤KT
d)(Kd + I)−1.

Notice that K̃d is normal and has a bounded spectrum:

σ(Kd) ⊆ [−b,−a],

143

with 0 < a < b < ∞. Notice that BB⊤ has a rank of at most 2. From (Beckermann and Townsend, 2016,

Theorem 2.1 and Corollary 3.2) we can conclude that

λP
1+2i ≤ 4ρ−2iλP

1 , with ρ = exp

(
π2

2 log(4b/a)

)
.

Notice that λK̃d
i = − αλK

i

2−αλK
i

, so with our assumption (iii) which states that α < 1/λK
1 , we have

b

a
=

λK
1

λK
n

(2− αλK
n)

(2− αλK
1)

≤ 2λK
1

λK
n

− 1.

Proof of Lemma 5.2.2. The lower bound is obtained by seeing that

λy
1 ≥ max

t
λ1(K

t
dyy

⊤Kt
d) ≥ ∥y∥2 ,

and the upper bound is given by

λy
1 ≤

∑
t

λ1(K
t
dyy

⊤Kt
d) = λ̃n ∥y∥2 .

Since the true weights w∗ are drawn from an isotropic normal distribution with covariance σ2
∗I , the norm

of the targets concentrates around the trace of the data correlation matrix σ2
∗
∑n

i=1 λ
K
i . Indeed, ∥y∥2 =

(V ⊤w∗)⊤S2(V ⊤w∗), where V and S, are given by the singular value decomposition (SVD) of the data

matrix X = USV ⊤. Since entries of V ⊤w∗ are independent random variables, ∥y∥2 is concentrated around

the above value by the Hanson-Wright inequality

P
(
|∥y∥2 − σ2

∗tr(K)| > t
)
≤ 2 exp

[
−amin

(
t2

σ4
∗tr(K)

,
t

σ2
∗

)]

where a > 0 is a constant independent of t,K and σ∗.

Proof of Lemma 5.2.3. To keep the notation clear, in the proof we will refer to P σw
1 (T) and P y

1 (T) as P σw

and P y respectively.

144

Small times. Notice that if T <
λK
1

2λK
n

, then 2Tα < α
λK
1

λK
n

< ec(n−1) < ecn. In this case we have

k∗ = ln(2Tα)
2c < n

2 , so we can obtain the following upper bound on λP1
i by Weyl’s inequality:

λP1
i ≤


λy
i + λσw

1 for i ≤ 2k∗

λy
k∗ + λσw

i−k∗+1 for i > 2k∗.

For i ≤ 2k∗, we have

λP1
i

λP1
1

≤
λP1
i

λy
1

≤ 4ρ−(i−1) +
λσw
1

λy
1

≤ 4ρ−(i−1) +
σ2
w min{1, 2TαλK

1 }
α ∥y∥2

where we have used λP1
1 ≥ λy

1 since P σw is positive definite. Note that under assumptions (i-ii), λK
1 = 1 and

α < 1, therefore we do not need the minimum in the second term. For i > 2k∗, we have

λP1
i

λP1
1

≤
λσw
i−k∗+1

λy
1

+ 4ρ−(k∗−1)

≤
σ2
w min{1, 2αTλK

i−k∗+1}
α ∥y∥2

+ 4ρ−(k∗−1)

where we have used Equation (5.2.10) and assumption (ii).

Large times. For T ≥ λK
1

2λK
n

, we can choose the splitting point for Weyl’s inequality to be n/2. We now have

λP1
i

λP1
1

≤
λσw

i−n/2+1

λy
1

+
λy
n/2

λy
1

≤
λσw

i−n/2+1

λy
1

+ 4ρ−(n/2−1).

If T ≥ λK
1

2αλK
n

, then 2TαλK
i > 1 for all i ≥ 1, so by Equation (5.2.10)

λσw

i−n/2+1 ≤
σ2
w

2α− α2λK
i−n/2+1

and

λσw

i−n/2+1

λy
1

≤ σ2
w

α ∥y∥2
1

(2− αλK
i−n/2+1)

≤ σ2
w

α ∥y∥2
.

145

For λ1(K)
2λn(K) ≤ T < λ1(K)

2αλn(K) , we may still use the split at k∗ = n/4 in the above calculation, and take the

minimum of the above two bounds for i > n/2.

146

CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

In conclusion, this thesis investigates the model manifold explored by standard training of neural network

training and observes that it lives in a surprisingly low-dimensional subspace, resembling the hyper-ribbon

structure observed in many physics and biology models Transtrum (2011). In contrast to classical approaches

in Information Geometry Amari (2016), which focus on infinite-dimensional statistical manifolds, our

approach adopts a finite-dimensional view of models, allowing a more detailed understanding of the global

geometry of the model manifold.

While we provide some preliminary hypotheses and analysis to understand this low-dimensionality, many

open questions remain. For instance, does the low dimensionality provide practical implications that can be

used to improve actual learning processes?

One possible direction is to understand whether the low dimensionality can serve as a compressed represen-

tation of a network. To facilitate that, we would need to define a notion of “basis” in the space of model

prediction. We propose here two possible approaches to look for such a basis, in the function space and the

data space respectively.

First, we explore the idea of using trained models as candidates for the bases. Concretely, suppose we have

a given set of data points {xi}Ni=1, and {fj}Mj=1 a set of functions we are interested in (fj is a probability

distribution supported on {xi}, for classification problem it can be thought of as a vector in a probability

simplex). We would like to find a set of functions {gi}Ki=1 such that there exists {wj}Mj=1, wj ∈ ∆K (the

K-dimensional simplex) with dB(fj1 , fj2) ≈ dB(
∑

iwj1igi,
∑

j wj2igi). In other words, we want to find a

set of model bases such that existing models fall into the convex hull of existing models. Notice this problem

always has the trivial solution that takes {gi} ≡ {fj}, and the hope is that there exists a solution set with

cardinality K ≪ M due to the low-dimensionality observed in our experiments.

In Mao et al. (2024), we attempted to understand the InPCA coordinates by constructing a 3-dimensional

subspace using the following directions: the straight line that joins ignorance and truth, tangents to a training

147

trajectory at ignorance and at truth. This new embedding preserves pairwise Bhattacharyya distances between

the original models to a similar degree as that of the original InPCA embedding. We speculated that these

vectors represent learning easy samples, hard samples, and the general direction from ignorance to truth.

It would be interesting to know what the basis models we found using this method represent. The initial

tangents are related to the NTK. Finding this basis might provide insights into what is missing from the NTK

characterization of the dynamics.

Another possible approach follows the observation that the native coordinates of our manifold correspond to

model outputs on a fixed set of data points on which we evaluate our models. The fact that the model manifold

has a hyper-ribbon structure suggests that the coordinates are entangled, i.e., model outputs on different

samples are highly correlated. We would like to construct a basis for the model manifold by finding another

set of “datapoints” so that the model outputs on those samples have a more direct correspondence to the

coordinates of the model manifold. Notice that for a set of K samples, the model manifold, according to our

definition, is naturally K-dimensional (for simplicity, consider scalar output functions for now). Intuitively,

we want to find {xi}Ki=1 such that the model predictions on those samples given by {fj(xi)} best preserves

the pairwise distances of the original models. We hope this set of samples provides insight into understanding

the structure of data space and could possibly speed up training on new samples.

148

BIBLIOGRAPHY

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: A necessary
and nearly sufficient condition for SGD learning of sparse functions on two-layer neural networks. In
Proceedings of Thirty Fifth Conference on Learning Theory, pages 4782–4887. PMLR, June 2022.

Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks: leap
complexity and saddle-to-saddle dynamics. (arXiv:2302.11055), August 2023. URL http://arxiv.org/abs/
2302.11055. arXiv:2302.11055 [cs, stat].

Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep representations.
The Journal of Machine Learning Research, 19(1):1947–1980, 2018.

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep networks. In
International Conference on Learning Representations, 2018.

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C
Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning. In Proceedings
of the IEEE International Conference on Computer Vision, pages 6430–6439, 2019a.

Alessandro Achille, Glen Mbeng, and Stefano Soatto. Dynamics and Reachability of Learning Tasks.
arXiv:1810.02440 [cs, stat], May 2019b.

Alessandro Achille, Giovanni Paolini, and Stefano Soatto. Where is the information in a deep neural network?
arXiv preprint arXiv:1905.12213, 2019c.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A Convergence Theory for Deep Learning via Over-
Parameterization. arXiv:1811.03962 [cs, math, stat], June 2019.

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998a.

Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Computation, 10(2):251–276,
February 1998b. ISSN 0899-7667. doi: 10.1162/089976698300017746.

Shun-ichi Amari. Information Geometry and Its Applications, volume 194 of Applied Mathematical Sciences.
Tokyo, 2016.

Shun-ichi Amari, Hyeyoung Park, and Tomoko Ozeki. Geometrical singularities in the neuromanifold of
multilayer perceptrons. Advances in neural information processing systems, 1:343–350, 2002.

Amiran Ambroladze, Emilio Parrado-Hernández, and John Shawe-Taylor. Tighter pac-bayes bounds. Ad-
vances in neural information processing systems, 19:9, 2007.

Joseph Antognini and Jascha Sohl-Dickstein. PCA of high dimensional random walks with comparison to
neural network training. Advances in Neural Information Processing Systems, 31, 2018.

149

http://arxiv.org/abs/2302.11055
http://arxiv.org/abs/2302.11055

Athanasios C. Antoulas. Approximation of Large-Scale Dynamical Systems. Society for Industrial and
Applied Mathematics, January 2005. ISBN 978-0-89871-529-3. doi: 10.1137/1.9780898718713. URL
http://epubs.siam.org/doi/book/10.1137/1.9780898718713.

Sanjeev Arora, Simon S Du, Wei Hu, and Zhiyuan Li. On Exact Computation with an Infinitely Wide Neural
Net.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient descent for
deep linear neural networks. arXiv preprint arXiv:1810.02281, 2018.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient descent for
deep linear neural networks. (arXiv:1810.02281), October 2019a. doi: 10.48550/arXiv.1810.02281. URL
http://arxiv.org/abs/1810.02281. arXiv:1810.02281 [cs, stat].

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix factorization.
(arXiv:1905.13655), October 2019b. doi: 10.48550/arXiv.1905.13655. URL http://arxiv.org/abs/1905.
13655. arXiv:1905.13655 [cs, stat].

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-Grained Analysis of Optimization
and Generalization for Overparameterized Two-Layer Neural Networks. In International Conference on
Machine Learning, pages 322–332, May 2019c.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural Networks as Kernel Learners: The
Silent Alignment Effect. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uz5uw6gM0m.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. arXiv:1607.06450 [cs,
stat], July 2016.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing mutual
information across views. Advances in neural information processing systems, 32, 2019.

Vijay Balasubramanian. Statistical Inference, Occam’s Razor, and Statistical Mechanics on the Space
of Probability Distributions. Neural Computation, 9(2):349–368, February 1997. ISSN 0899-7667,
1530-888X.

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples without
local minima. Neural Networks, 2:53–58, 1989.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems, pages 6240–6249, 2017.

Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear regression.
Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020.

150

http://epubs.siam.org/doi/book/10.1137/1.9780898718713
http://arxiv.org/abs/1810.02281
http://arxiv.org/abs/1905.13655
http://arxiv.org/abs/1905.13655
https://openreview.net/forum?id=uz5uw6gM0m
https://openreview.net/forum?id=uz5uw6gM0m

Peter L Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: A statistical viewpoint. arXiv
preprint arXiv:2103.09177, 2021a.

Peter L. Bartlett, Andrea Montanari, and Alexander Rakhlin. Deep learning: A statistical viewpoint. Acta
Numerica, 30:87–201, 2021b.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:149–198,
2000.

Suzanna Becker and Geoffrey E Hinton. Self-organizing neural network that discovers surfaces in random-dot
stereograms. Nature, 355(6356):161–163, 1992.

Bernhard Beckermann and Alex Townsend. On the singular values of matrices with displacement structure.
(arXiv:1609.09494), September 2016. URL http://arxiv.org/abs/1609.09494. arXiv:1609.09494 [math].

Mikhail Belkin. Fit without fear: Remarkable mathematical phenomena of deep learning through the prism
of interpolation. arXiv preprint arXiv:2105.14368, 2021.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice
and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):
15849–15854, 2019.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175, 2010.

Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gecsei. On the optimization of a synaptic learning
rule. In Preprints Conf. Optimality in Artificial and Biological Neural Networks, pages 6–8, 1992.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A Raffel.
MixMatch: A holistic approach to semi-supervised learning. Advances in Neural Information Processing
Systems, 32, 2019.

Christopher M Bishop et al. Neural Networks for Pattern Recognition. 1995.

Mike Bostock. Imagenet hierarchy. https://observablehq.com/@mbostock/imagenet-hierarchy, 2018.

L. Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, pages 421–436. 2012.

Richard P. Brent. An algorithm with guaranteed convergence for finding a zero of a function. The computer
journal, 14(4):422–425, 1971.

Kevin S Brown, Colin C Hill, Guillermo A Calero, Christopher R Myers, Kelvin H Lee, James P Sethna,
and Richard A Cerione. The statistical mechanics of complex signaling networks: Nerve growth factor
signaling. Physical biology, 1(3):184, 2004.

151

http://arxiv.org/abs/1609.09494
https://observablehq.com/@mbostock/imagenet-hierarchy

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Pratik Chaudhari and Stefano Soatto. Stochastic gradient descent performs variational inference, converges
to limit cycles for deep networks. In Proc. of International Conference of Learning and Representations
(ICLR), 2018.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs, Jennifer
Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-SGD: Biasing gradient descent into wide valleys.
In Proc. of International Conference of Learning and Representations (ICLR), 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International Conference on Machine Learning, pages 1597–1607,
2020a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big self-
supervised models are strong semi-supervised learners. Advances in Neural Information Processing
Systems, 33:22243–22255, 2020b.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks trained
with the logistic loss. arXiv preprint arXiv:2002.04486, 2020.

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. Advances
in Neural Information Processing Systems, 32:2937–2947, 2019a.

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On Lazy Training in Differentiable Programming. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 2937–2947. Curran Associates, Inc., 2019b.

Michael AA Cox and Trevor F Cox. Multidimensional scaling. In Handbook of Data Visualization, pages
315–347. 2008.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained categorization
and domain-specific transfer learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4109–4118, 2018.

Alex Damian, Eshaan Nichani, and Jason D. Lee. Self-stabilization: The implicit bias of gradient descent
at the edge of stability. (arXiv:2209.15594), April 2023. doi: 10.48550/arXiv.2209.15594. URL http:
//arxiv.org/abs/2209.15594. arXiv:2209.15594 [cs, math, stat].

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural Networks can Learn Representations
with Gradient Descent. In Proceedings of Thirty Fifth Conference on Learning Theory, pages 5413–5452.

152

http://arxiv.org/abs/2209.15594
http://arxiv.org/abs/2209.15594

PMLR, June 2022.

Stéphane d’Ascoli, Marylou Gabrié, Levent Sagun, and Giulio Biroli. On the interplay between data structure
and loss function in classification problems. Advances in Neural Information Processing Systems, 34:
8506–8517, 2021.

BISWA NATH DATTA. Chapter 8 - numerical solutions and conditioning of lyapunov and sylvester
equations. In BISWA NATH DATTA, editor, Numerical Methods for Linear Control Systems, pages
245–303. Academic Press, San Diego, 2004.

Vin De Silva and Joshua B Tenenbaum. Sparse multidimensional scaling using landmark points. Technical
report, Technical Report, Stanford University, 2004.

Ludovic Delchambre. Weighted principal component analysis: a weighted covariance eigendecomposition
approach. Monthly Notices of the Royal Astronomical Society, 446(4):3545–3555, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255,
2009.

Benoit Dherin, Michael Munn, and David G. T. Barrett. The Geometric Occam’s Razor Implicit in Deep
Learning. arXiv:2111.15090 [cs, stat], November 2021.

Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for few-shot
image classification. In Proc. of International Conference of Learning and Representations (ICLR), 2020.

Carl Doersch and Andrew Zisserman. Multi-task self-supervised visual learning. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2051–2060, 2017.

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative
unsupervised feature learning with convolutional neural networks. Advances in neural information
processing systems, 27, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2021.

Simon S Du and Xiyu Zhai. Gradient Descent Provably Optimizes Over-Parameterized Neural Networks.
page 19, 2019.

153

Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos. Gradient Descent
Can Take Exponential Time to Escape Saddle Points. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Gintare Karolina Dziugaite. Revisiting Generalization for Deep Learning: PAC-Bayes, Flat Minima, and
Generative Models. PhD thesis, University of Cambridge, 2020.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing Nonvacuous Generalization Bounds for Deep
(Stochastic) Neural Networks with Many More Parameters than Training Data. In Proc. of the Conference
on Uncertainty in Artificial Intelligence (UAI), 2017.

Gintare Karolina Dziugaite and Daniel M Roy. Data-dependent PAC-Bayes priors via differential privacy.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pages
8440–8450, 2018.

Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, and Alexander J Smola. Meta-Q-Learning. In Proc. of
International Conference of Learning and Representations (ICLR), 2020.

Yu Feng and Yuhai Tu. The inverse variance–flatness relation in stochastic gradient descent is critical for
finding flat minima. Proceedings of the National Academy of Sciences, 118(9):e2015617118, Mar 2021.
doi: 10.1073/pnas.2015617118.

David J Field. What is the goal of sensory coding? Neural computation, 6(4):559–601, 1994.

Stanislav Fort and Surya Ganguli. Emergent properties of the local geometry of neural loss landscapes.
arXiv:1910.05929 [cs, stat], October 2019.

Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural
Networks. arXiv:1803.03635 [cs], March 2019.

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization. In ICLR,
2017.

Kenji Fukumizu. Effect of batch learning in multilayer neural networks. Gen, 1(04):1E–03, 1998.

K Ruben Gabriel and Shmuel Zamir. Lower rank approximation of matrices by least squares with any choice
of weights. Technometrics, 21(4):489–498, 1979.

Yansong Gao and Pratik Chaudhari. A free-energy principle for representation learning. In Proc. of
International Conference of Machine Learning (ICML), 2020.

Yansong Gao and Pratik Chaudhari. An information-geometric distance on the space of tasks. In Proc. of
International Conference of Machine Learning (ICML), 2021.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon Wilson. Loss

154

surfaces, mode connectivity, and fast ensembling of dnns. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pages 8803–8812, 2018.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points: Online stochastic gradient
for tensor decomposition. In Journal of Machine Learning Research, volume 40. Microtome Publishing,
2015.

Rong Ge, Jason D. Lee, and Tengyu Ma. Learning One-hidden-layer Neural Networks with Landscape
Design. In International Conference on Learning Representations, February 2018.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization via
hessian eigenvalue density. In Proceedings of the 36th International Conference on Machine Learning,
2019a.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Limitations of Lazy Training
of Two-layers Neural Network. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019b.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When Do Neural Networks
Outperform Kernel Methods? arXiv:2006.13409 [cs, math, stat], June 2020.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4367–4375, 2018.

Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. Modeling the influence of data
structure on learning in neural networks: The hidden manifold model. Physical Review X, 10(4):041044,
2020.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training ImageNet in 1 hour.
arXiv:1706.02677, 2017.

Michael Greenacre. Weighted metric multidimensional scaling. In New Developments in Classification and
Data Analysis: Proceedings of the Meeting of the Classification and Data Analysis Group (CLADAG) of
the Italian Statistical Society, University of Bologna, September 22–24, 2003, pages 141–149. Springer,
2005.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms of
optimization geometry. In International Conference on Machine Learning, page 1832–1841, July 2018.
URL http://proceedings.mlr.press/v80/gunasekar18a.html.

Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace.
(arXiv:1812.04754), December 2018. URL http://arxiv.org/abs/1812.04754. arXiv:1812.04754 [cs,
stat].

155

http://proceedings.mlr.press/v80/gunasekar18a.html
http://arxiv.org/abs/1812.04754

Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient Descent Happens in a Tiny Subspace.
arXiv:1812.04754 [cs, stat], December 2018.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv preprint
arXiv:1812.04754, 2018.

Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey, Kevin S Brown, Christopher R Myers, and James P
Sethna. Universally sloppy parameter sensitivities in systems biology models. PLoS Computational
Biology, 3(10):e189, 2007.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 297–304. JMLR Workshop and Conference Proceedings, 2010.

Guy Hacohen, Leshem Choshen, and Daphna Weinshall. Let’s agree to agree: Neural networks share
classification order on real datasets. In International Conference on Machine Learning, pages 3950–3960,
2020.

Benjamin D. Haeffele and Rene Vidal. Global Optimality in Tensor Factorization, Deep Learning, and
Beyond. arXiv:1506.07540 [cs, stat], June 2015.

Steve Hanneke and Samory Kpotufe. A no-free-lunch theorem for multitask learning. arXiv preprint
arXiv:2006.15785, 2020.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. (arXiv:1611.04231), July 2018. doi:
10.48550/arXiv.1611.04231. URL http://arxiv.org/abs/1611.04231. arXiv:1611.04231 [cs, stat].

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of tricks for image
classification with convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 558–567, 2019.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Gyuwan Kim, Youngjung
Uh, and Jung-Woo Ha. Adamp: Slowing down the slowdown for momentum optimizers on scale-invariant
weights. In International Conference on Learning Representations (ICLR), 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. NIPS Deep
Learning and Representation Learning Workshop, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

Stefan Horoi, Jessie Huang, Guy Wolf, and Smita Krishnaswamy. Visualizing high-dimensional trajectories
on the loss-landscape of ANNs. arXiv preprint arXiv:2102.00485, 2021.

156

http://arxiv.org/abs/1611.04231

Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Deep transfer metric learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 325–333, 2015.

W Ronny Huang, Zeyad Emam, Micah Goldblum, Liam Fowl, Justin K Terry, Furong Huang, and Tom
Goldstein. Understanding generalization through visualizations. 2020.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Datamodels:
Predicting predictions from training data. arXiv preprint arXiv:2202.00622, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pages 448–456, 2015.

Sosuke Ito and Andreas Dechant. Stochastic time evolution, information geometry, and the Cramér-Rao
bound. Physical Review X, 10(2):021056, 2020.

Tommi Jaakkola and David Haussler. Exploiting generative models in discriminative classifiers. In Advances
in Neural Information Processing Systems, pages 487–493, 1999.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in Neural Information Processing Systems 31, pages 8571–8580. 2018a.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and Generalization
in Neural Networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 8571–8580. Curran
Associates, Inc., 2018b.

Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel. Saddle-to-Saddle Dynamics
in Deep Linear Networks: Small Initialization Training, Symmetry, and Sparsity, January 2022.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. arXiv:2006.06657
[cs, math, stat], June 2020.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to Escape Saddle
Points Efficiently. arXiv:1703.00887 [cs, math, stat], March 2017.

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Benjamin Edelman, Tristan Yang, Boaz Barak, and
Haofeng Zhang. Sgd on neural networks learns functions of increasing complexity. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, page 3496–3506. Curran Associates, Inc., 2019. URL http://papers.
nips.cc/paper/8609-sgd-on-neural-networks-learns-functions-of-increasing-complexity.pdf. tex.ids: nakki-
ranSGDNeuralNetworks2019 arXiv: 1905.11604.

Gal Kaplun, Nikhil Ghosh, Saurabh Garg, Boaz Barak, and Preetum Nakkiran. Deconstructing distributions:
A pointwise framework of learning. arXiv preprint arXiv:2202.09931, 2022.

157

http://papers.nips.cc/paper/8609-sgd-on-neural-networks-learns-functions-of-increasing-complexity.pdf
http://papers.nips.cc/paper/8609-sgd-on-neural-networks-learns-functions-of-increasing-complexity.pdf

Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal Statistics of Fisher Information in Deep
Neural Networks: Mean Field Approach. arXiv:1806.01316 [cond-mat, stat], October 2019.

Noureddine El Karoui. The spectrum of kernel random matrices. Annals of Statistics, 38:1–50, 2010a.

Noureddine El Karoui. The spectrum of kernel random matrices. The Annals of Statistics, 38(1), Feb 2010b.
ISSN 0090-5364. doi: 10.1214/08-AOS648. URL http://arxiv.org/abs/1001.0492. arXiv: 1001.0492.

K. Kawaguchi. Deep learning without poor local minima. In NIPS, 2016.

Kenji Kawaguchi and Leslie Pack Kaelbling. Elimination of all bad local minima in deep learn-
ing. arXiv:1901.00279 [cs, math, stat], January 2020. URL http://arxiv.org/abs/1901.00279. arXiv:
1901.00279.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
for Learning Representations, 2015.

Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-supervised visual representation
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
1920–1929, 2019.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big Transfer (BiT): General Visual Representation Learning. arXiv:1912.11370 [cs], May 2020.

Vladimir Koltchinskii and Evarist Giné. Random matrix approximation of spectra of integral operators.
Bernoulli, 6(1):113–167, 2000.

A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. PhD thesis, Computer Science,
University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.

John Langford and Rich Caruana. (Not) bounding the true error. Advances in Neural Information Processing
Systems, 2:809–816, 2002.

John Langford and Matthias Seeger. Bounds for averaging classifiers. 2001.

Julian Laub and Klaus-Robert Müller. Feature discovery in non-metric pairwise data. The Journal of Machine
Learning Research, 5:801–818, 2004.

Jim Lawrence, Javier Bernal, and Christoph Witzgall. A purely algebraic justification of the Kabsch-Umeyama
algorithm. Journal of research of the National Institute of Standards and Technology, 124:1, 2019.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Aleksander Madry.

158

http://arxiv.org/abs/1001.0492
http://arxiv.org/abs/1901.00279

ffcv. https://github.com/libffcv/ffcv/, 2022. commit xxxxxxx.

Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne E Hubbard,
and Lawrence D Jackel. Handwritten digit recognition with a back-propagation network. In Advances in
Neural Information Processing Systems, pages 396–404, 1990.

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets. In ICLR,
2018.

Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran, Rahul Bhotika, and Stefano
Soatto. Rethinking the hyper-parameters for fine-tuning. In Proc. of International Conference of Learning
and Representations (ICLR), 2020.

Yuanzhi Li and Yingyu Liang. Learning Overparameterized Neural Networks via Stochastic Gradient Descent
on Structured Data. arXiv:1808.01204 [cs, stat], August 2019.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel "ridgeless" regression can generalize. CoRR,
abs/1808.00387, 2018. URL http://arxiv.org/abs/1808.00387.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can generalize. The
Annals of Statistics, 48(3):1329–1347, 2020.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better downstream:
Implicit bias matters for language models. In Proceedings of the 40th International Conference on Machine
Learning, page 22188–22214. PMLR, July 2023. URL https://proceedings.mlr.press/v202/liu23ao.html.

Shengchao Liu, Dimitris Papailiopoulos, and Dimitris Achlioptas. Bad global minima exist and sgd can reach
them. arXiv:1906.02613 [cs, stat], June 2019. URL http://arxiv.org/abs/1906.02613. arXiv: 1906.02613.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. September
2019. URL https://openreview.net/forum?id=SJeLIgBKPS.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based view of
language model fine-tuning. arXiv preprint arXiv:2210.05643, 2022.

Jean M Mandler and Laraine McDonough. Concept formation in infancy. Cognitive development, 8(3):
291–318, 1993.

Jialin Mao, Itay Griniasty, Han Kheng Teoh, Rahul Ramesh, Rubing Yang, Mark K. Transtrum, James P.
Sethna, and Pratik Chaudhari. The training process of many deep networks explores the same low-
dimensional manifold. Proceedings of the National Academy of Sciences, 121(12):e2310002121, March
2024. doi: 10.1073/pnas.2310002121.

David Marr. Vision: A Computational Investigation into the Human Representation and Processing of Visual
Information. 2010.

159

https://github.com/libffcv/ffcv/
http://arxiv.org/abs/1808.00387
https://proceedings.mlr.press/v202/liu23ao.html
http://arxiv.org/abs/1906.02613
https://openreview.net/forum?id=SJeLIgBKPS

James Martens and Roger Grosse. Optimizing Neural Networks with Kronecker-factored Approximate
Curvature. arXiv:1503.05671 [cs, stat], May 2016.

Andreas Maurer. Bounds for linear multi-task learning. The Journal of Machine Learning Research, 7:
117–139, 2006.

David A McAllester. PAC-Bayesian model averaging. In Proceedings of the Twelfth Annual Conference on
Computational Learning Theory, pages 164–170, 1999.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. UMAP: Uniform manifold approxima-
tion and projection. Journal of Open Source Software, 3(29):861, 2018.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural networks:
Dimension-free bounds and kernel limit. In Conference on Learning Theory, pages 2388–2464, 2019.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of random feature and kernel
methods: Hypercontractivity and kernel matrix concentration. Applied and Computational Harmonic
Analysis, 59:3–84, July 2022. ISSN 1063-5203. doi: 10.1016/j.acha.2021.12.003.

George A Miller. WordNet: An Electronic Lexical Database. 1998.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring Generalization
in Deep Learning. arXiv:1706.08947 [cs], July 2017.

Eshaan Nichani, Yu Bai, and Jason D. Lee. Identifying good directions to escape the ntk regime and
efficiently learn low-degree plus sparse polynomials. October 2022. URL https://openreview.net/forum?
id=052QkenIdSI.

Frank Nielsen. Jeffreys centroids: A closed-form expression for positive histograms and a guaranteed tight
approximation for frequency histograms. IEEE Signal Processing Letters, 20(7):657–660, 2013.

Frank Nielsen and Sylvain Boltz. The burbea-rao and bhattacharyya centroids. IEEE Transactions on
Information Theory, 57(8):5455–5466, 2011.

Vardan Papyan. The full spectrum of deepnet hessians at scale: Dynamics with sgd training and sample size.
arXiv preprint arXiv:1811.07062, 2018.

Vardan Papyan. Measurements of three-level hierarchical structure in the outliers in the spectrum of deepnet
hessians. arXiv preprint arXiv:1901.08244, 2019.

Emilio Parrado-Hernández, Amiran Ambroladze, John Shawe-Taylor, and Shiliang Sun. PAC-Bayes bounds
with data dependent priors. The Journal of Machine Learning Research, 13(1):3507–3531, 2012.

Jeffrey Pennington and Yasaman Bahri. Geometry of Neural Network Loss Surfaces via Random Matrix
Theory. page 9.

160

https://openreview.net/forum?id=052QkenIdSI
https://openreview.net/forum?id=052QkenIdSI

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, 2014.

Thilo Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations: The symmetric case. Systems &
Control Letters, 40(2):139–144, June 2000. ISSN 0167-6911. doi: 10.1016/S0167-6911(00)00010-4.

Hang Qi, Matthew Brown, and David G Lowe. Low-shot learning with imprinted weights. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5822–5830, 2018.

Katherine N Quinn, Colin B Clement, Francesco De Bernardis, Michael D Niemack, and James P Sethna.
Visualizing probabilistic models and data with intensive principal component analysis. Proceedings of the
National Academy of Sciences, 116(28):13762–13767, 2019a.

Katherine N. Quinn, Heather Wilber, Alex Townsend, and James P. Sethna. Chebyshev approximation and
the global geometry of model predictions. Physical Review Letters, 122(15):158302, April 2019b. doi:
10.1103/PhysRevLett.122.158302.

Katherine N. Quinn, Michael C. Abbott, Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna.
Information geometry for multiparameter models: New perspectives on the origin of simplicity. page
arXiv:2111.07176, 2021.

Rahul Ramesh and Pratik Chaudhari. Model Zoo: A Growing "Brain" That Learns Continually. In Proc. of
International Conference of Learning and Representations (ICLR), 2022.

Maria Refinetti, Sebastian Goldt, Florent Krzakala, and Lenka Zdeborová. Classifying high-dimensional
gaussian mixtures: Where kernel methods fail and neural networks succeed. In International Conference
on Machine Learning, pages 8936–8947, 2021.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

D. Saad and S. A. Solla. Exact solution for on-line learning in multilayer neural networks. Physical Review
Letters, 74(21):4337, 1995.

Itay Safran and Ohad Shamir. Spurious Local Minima are Common in Two-Layer ReLU Neural Networks.
In Proceedings of the 35th International Conference on Machine Learning, pages 4433–4441. PMLR, July
2018.

Levent Sagun, Leon Bottou, and Yann LeCun. Singularity of the hessian in deep learning. arXiv:1611:07476,
2016.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity and
beyond. (arXiv:1611.07476), October 2017. doi: 10.48550/arXiv.1611.07476. URL http://arxiv.org/abs/
1611.07476. arXiv:1611.07476 [cs].

161

http://arxiv.org/abs/1611.07476
http://arxiv.org/abs/1611.07476

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. page 22.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv:1312.6120 [cond-mat, q-bio, stat], February 2014.

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic development
in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):11537–11546, 2019.

Bernhard Schölkopf and Alexander J Smola. Learning with Kernels. 2002.

Gideon Schwarz et al. Estimating the dimension of a model. Annals of statistics, 6(2):461–464, 1978.

Xing Shi, Inkit Padhi, and Kevin Knight. Does string-based neural MT learn source syntax? In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1526–1534, 2016.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the Black Box of Deep Neural Networks via Information.
arXiv:1703.00810 [cs], April 2017.

Eero P Simoncelli and Bruno A Olshausen. Natural image statistics and neural representation. Annual review
of neuroscience, 24(1):1193–1216, 2001.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, pages 4080–4090, 2017a.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In Advances in
Neural Information Processing Systems, pages 4077–4087, 2017b.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Dogus
Cubuk, Alexey Kurakin, and Chun-Liang Li. FixMatch: Simplifying semi-supervised learning with
consistency and confidence. Advances in Neural Information Processing Systems, 33, 2020.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D. Lee. Theoretical Insights Into the Optimization
Landscape of Over-Parameterized Shallow Neural Networks. IEEE Transactions on Information Theory,
65(2):742–769, February 2019. ISSN 0018-9448, 1557-9654. doi: 10.1109/TIT.2018.2854560.

Ben Sorscher, Surya Ganguli, and Haim Sompolinsky. The geometry of concept learning. bioRxiv : the
preprint server for biology, 2021.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for Simplicity:
The All Convolutional Net. arXiv:1412.6806 [cs], April 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. JMLR, 15(1):1929–1958, 2014.

162

Ke Sun and Frank Nielsen. A Geometric Modeling of Occam’s Razor in Deep Learning, December 2023.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and
momentum in deep learning. In Proceedings of the 30th International Conference on Machine Learning,
page 1139–1147. PMLR, May 2013. URL https://proceedings.mlr.press/v28/sutskever13.html.

Hidenori Tanaka and Daniel Kunin. Noether’s learning dynamics: The role of kinetic symmetry breaking in
deep learning. arXiv preprint arXiv:2105.02716, 2021.

Salma Tarmoun, Guilherme Franca, Benjamin D. Haeffele, and Rene Vidal. Understanding the dynamics of
gradient flow in overparameterized linear models. In Proceedings of the 38th International Conference on
Machine Learning, page 10153–10161. PMLR, July 2021.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Han Kheng Teoh, Katherine N. Quinn, Jaron Kent-Dobias, Colin B. Clement, Qingyang Xu, and James P.
Sethna. Visualizing probabilistic models in Minkowski space with intensive symmetrized Kullback-Leibler
embedding. Physical Review Research, 2(3):033221, August 2020. ISSN 2643-1564.

Sebastian Thrun and Lorien Pratt. Learning to Learn. 2012.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International conference on
machine learning, pages 10347–10357. PMLR, 2021.

Alex Townsend and Heather Wilber. On the singular values of matrices with high displacement rank. Linear
Algebra and its Applications, 548:19–41, July 2018.

M. K. Transtrum, B. B. Machta, and J. P. Sethna. Why are nonlinear fits so challenging? September 2009.

Mark Transtrum. Information Geometry For Nonlinear Least-Squares Data Fitting And Calculation Of The
Superconducting Superheating Field. PhD thesis, Cornell University, August 2011.

Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna. Geometry of nonlinear least squares with
applications to sloppy models and optimization. Physical Review E, 83(3):036701, Mar 2011a. doi:
10.1103/PhysRevE.83.036701.

Mark K. Transtrum, Benjamin B. Machta, and James P. Sethna. The geometry of nonlinear least squares with
applications to sloppy models and optimization. Physical Review E, 83(3):036701, March 2011b. ISSN
1539-3755, 1550-2376.

Nilesh Tripuraneni, Chi Jin, and Michael I Jordan. Provable meta-learning of linear representations. arXiv
preprint arXiv:2002.11684, 2020.

163

https://proceedings.mlr.press/v28/sutskever13.html

Asher Trockman and J Zico Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792, 2022.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine learning
research, 9(11), 2008.

Vladimir Vapnik. Statistical Learning Theory. 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. In Advances in Neural Information Processing Systems, pages 3630–3638, 2016.

Nhat Vo, Duc Vo, SungYoung Lee, and Subhash Challa. Weighted nonmetric MDS for sensor localization.
In 2008 International Conference on Advanced Technologies for Communications, pages 391–394. IEEE,
2008.

Stella Vosniadou and William F Brewer. Mental models of the earth: A study of conceptual change in
childhood. Cognitive psychology, 24(4):535–585, 1992.

Joshua J. Waterfall, Fergal P. Casey, Ryan N. Gutenkunst, Kevin S. Brown, Christopher R. Myers, Piet W.
Brouwer, Veit Elser, and James P. Sethna. Sloppy-Model Universality Class and the Vandermonde Matrix.
Physical Review Letters, 97(15):150601, October 2006. doi: 10.1103/PhysRevLett.97.150601.

Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict how
real-world neural representations generalize. arXiv preprint arXiv:2203.06176, 2022.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization Matters: Generalization and Optimization
of Neural Nets v.s. their Induced Kernel. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle
Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages
9712–9724. Curran Associates, Inc., 2019.

Harold Widom. Asymptotic behavior of the eigenvalues of certain integral equations. Transactions of the
American Mathematical Society, 109(2):278–295, 1963.

Ross Wightman. Pytorch image models. https://github.com/rwightman/pytorch-image-models, 2019.

Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel
Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Proceedings of Thirty
Third Conference on Learning Theory, page 3635–3673. PMLR, July 2020. URL https://proceedings.mlr.
press/v125/woodworth20a.html.

Rubing Yang, Jialin Mao, and Pratik Chaudhari. Does the data induce capacity control in deep learning? In
Proc. of International Conference of Machine Learning (ICML), 2022.

164

https://github.com/rwightman/pytorch-image-models
https://proceedings.mlr.press/v125/woodworth20a.html
https://proceedings.mlr.press/v125/woodworth20a.html

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315, 2007.

Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ramchandran, and Peter Bartlett.
Gradient diversity: A key ingredient for scalable distributed learning. In International Conference on
Artificial Intelligence and Statistics, pages 1998–2007, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision Conference
2016, 2016.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio Savarese.
Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3712–3722, 2018.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning
via redundancy reduction. In International Conference on Machine Learning, pages 12310–12320, 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. In International Conference on Learning Representations
(ICLR), 2017a.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017b.

Richard Zhang. Making convolutional networks shift-invariant again. In International conference on machine
learning, pages 7324–7334. PMLR, 2019.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz. Non-vacuous generalization
bounds at the ImageNet scale: A PAC-Bayesian compression approach. In International Conference on
Learning Representations, 2018.

Huaiyu Zhu, Christopher K I Williams, Richard Rohwer, and Michal Morciniec. Gaussian regression and
optimal finite dimensional linear models. 1998.

165

	ABSTRACT
	Introduction
	Related Work
	Statement of Contributions

	The manifold induced by the training process of neural networks
	Introduction
	Methods
	Results
	Discussion
	Appendix

	Low-dimensional manifold in the space of tasks
	Introduction
	Methods
	Results
	Related Work and Discussion
	Appendix

	A potential explanation for the low-dimensionality of the training manifold
	Introduction
	Background
	Theoretical Results
	Effective Dimensionality of a Deep Network
	Empirical Validation
	Related Work
	Appendix

	 An Analytical Characterization of Sloppiness in Neural Networks: Insights from Linear Models
	Introduction
	Training manifold for linear regression
	Variants of the linear model
	Proofs

	Conclusion and Future Directions
	BIBLIOGRAPHY

