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ABSTRACT

THE PRINCIPLES OF LEARNING ON MULTIPLE TASKS

Rahul Ramesh

Pratik Chaudhari

Deep networks are increasingly trained on data from multiple tasks with the goal of sharing synergistic

information across related tasks. Vision models, for example, are trained on over a billion images for tasks

like object recognition, depth prediction and semantic segmentation. With this motivation, this dissertation

studies the principles behind how to optimally train representations on multiple tasks and attempts to answer

why we are able to learn representations shared across many tasks.

In the first part of the dissertation, we develop theories for training representations on multiple tasks using

labeled or unlabeled data. We challenge the notion that a single pretrained representation is optimal for all

tasks and show that it is optimal to instead train an ensemble of models that span the space of tasks. For

labeled data, we use the lens of statistical learning theory to discuss how to: (i) split the capacity of the

learner amongst related tasks; (ii) reweigh the objectives of different tasks; (iii) handle tasks that change

over time. For unlabeled data, we: (i) develop a theory for self-supervised learning to train an ensemble of

models that span the space of tasks; (ii) show how masked autoencoders can be adapted to different tasks by

changing the scale of the noise.

The second part of this dissertation is dedicated to characterizing the nature of typical tasks, with the goal of

understanding why representation learning works. The shocking result is that many typical tasks are highly

redundant functions of the input, i.e., subspaces that vary the most and those that vary the least are both highly

predictive of the outputs. We believe that this redundancy is key to understanding why we can generalize to

many tasks, not just in machines, but also in organisms.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

1.1 Overview

Most deep networks today are trained on massive amounts of data, even if the goal is to tackle a specific

task. The training data is from many different tasks as opposed to a single task, i.e., most training today is

closer to the regime of multitask learning than traditional supervised learning. A vision model is pretrained

on billions of images and not all of this data belongs to the same distribution as the downstream task.

This shift motivates the study of algorithms designed for multitask, meta-learning and continual learning.

Although many algorithms have been developed over the last three decades (Thrun and Pratt, 1998), the key

idea most popular today is identical to the one outlined nearly three decades ago in Caruana (1997) and is

embarrassingly simple. To learn on multiple tasks, a single network is trained to minimize the empirical

risk averaged over all the training data, with the weights shared across all the tasks. By sharing the weights

across all these different tasks, the network learns a shared representation of the input.

This choice defies intuition, and yet it works incredibly well. Although learning a shared representation

improves generalization (Baxter, 1995), we do not expect it to be optimal for all tasks. For example, there

are many ways to represent a positive integer: binary, decimal, or using the Chinese remainder theorem.

Different representations are better suited for different downstream tasks. The binary representation can be

easily divided by powers of 2, and the Chinese remainder representation is convenient for multiplying two

numbers. Similarly for deep networks, we expect that a single representation shared across all tasks is not

statistically optimal for all tasks, and sharing the weights between dissimilar tasks can hurt generalization.

In practice, learning representations shared across all the tasks has proven to be surprisingly effective. Despite

its effectiveness, this dissertation challenges the notion that this is the optimal way to learn representations.

We seek to answer the following two questions: (i) What is the optimal way to train representations for many

different tasks? (ii) What do typical learnable tasks look like and why can we learn a shared representation

1



43 51 2

Figure 1.1: A single model is incapable of capturing the diversity of all the tasks and it is beneficial to split the capacity of the
learner. In this dissertation, we develop algorithms using boosting and the theory of reference priors to train on labeled data and
unlabeled data respectively.

that generalizes well to many tasks but not all of them?

1.1.1 Contributions

The first two chapters study how to train representations for multiple tasks using either labeled data or unla-

beled data. The last chapter attempts to characterize the space of machine vision tasks.

In the first chapter, we use statistical learning theory to study the problem of learning from labeled data from

multiple tasks. We formalize the notion of task competition and question the prevalent practice of training

a single large model on all the data. We show that it is optimal to instead train multiple models on different

subsets of data. We use this insight to design Model Zoo — a collection of models trained on related

subsets of the data. Model Zoo uses a variant of boosting and is a state-of-art task-incremental continual

learner. We next explore the effect of reweighing the losses of different tasks and show that the weights can

be used to mitigate task competition by controlling the extent of bias and variance. We end the first chapter by

introducing a theoretical framework called prospective learning that formalizes the problem of learning

from data where the distribution changes over time. Formally, prospective learning considers the problem

of generalizing to infinite future samples from a stochastic process using a finite number of samples from the

past. We state the conditions under which a prospective learner that minimizes the empirical risk is able to

achieve the optimal Bayes risk for a family of stochastic processes. The ideas in this chapter are rather simple,

but are used in almost every single large model deployed today, either in the form of mixture of experts or

through a complicated reweighing of different tasks during fine-tuning.

2
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Figure 1.2: Prospective learning assumes that every sample is drawn from its own distribution, i.e., the data is drawn from a
stochastic process. Generalization error is measured on samples seen in the future.

The second chapter embraces self-supervised learning as a way of pretraining representations for many down-

stream tasks using unlabeled data. Although most methods today train a single “foundation model” to tackle

many downstream tasks, we argue entirely fromfirst-principles theory on reference priors that one should

build an ensemble of models similar toModel Zoo. This is the first instantiation of the concept of reference

priors in machine learning, which was invented in the late 1970s. We end this chapter by showing how the

objective of masked reconstruction can be adapted to different tasks— in particular the scale of the noise can

be used to control the scale of the learned features. Our results on semi-supervised learning indicate that it is

possible to train many smaller models using just unlabeled data and still be competitive with a large model

trained on all the data.

1

Figure 1.3: Typical tasks lie on a manifold with hyper-ribbon structure, i.e., very few directions are long and most directions are
extremely thin. In other words, “typical” tasks lie close to a low-dimensional manifold.
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The last chapter makes progress towards the question of why we are able to learn useful representations for

multiple tasks. While learning theory provides answers in the asymptotic regime, the theory is far from

prescriptive and the generalization bounds often vacuous. I believe that in order to make progress towards a

prescriptive theory of representation learning, we must build theory specific to “typical” tasks, i.e., tasks that

organisms are interested in solving and tasks that machines are made to solve. An important first step towards

building this theory is to characterize the nature of typical tasks, particularly in aspects pertinent to represen-

tation learning. The two results presented in this chapter capture the phenomena that relate representation

learning and the nature of typical tasks and are not explained by any existing mathematical theories.

The first result describes the manifold of the space of tasks. We show that tasks lie on a manifold with a

hyper-ribbon structure, i.e., few directions are long and most other directions are incredibly thin. The second

result was deduced from an attempt to explain this hyper-ribbon structure of the manifold. In particular, we

find that many typical perception tasks are highly redundant functions of the input, i.e., directions that

vary the least and directions that vary the most are both non-trivially predictive of the outputs. We find this

redundancy in seen in machine vision tasks like image classification, optical flow, semantic segmentation and

in auditory perception tasks like vocalization discrimination. Redundancy is incredibly shocking and forces

us to rethink established ideas in neuroscience and our fundamental understanding of principal component

analysis. We believe that this redundancy is important for understanding why we can share representations

across lots of different tasks.
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CHAPTER 2

STATISTICAL LEARNING THEORY FOR MULTIPLE TASKS

In this chapter, we explore how to optimally train networks, particularly when some pairs of tasks are dis-

similar to each other. In this scenario, training a single network with weights shared between all tasks is

not optimal. Instead, it is optimal to train a collection of models — or a Model Zoo — where each model

is trained on a subset of related tasks. We conduct a comprehensive evaluation of Models Zoo and show

that it achieves state-of-the-art performance in a variety of settings in task-incremental continual learning.

The theory and the experimental results, despite its humble scale, force us to reconsider whether most large

models today are trained optimally.

We then study task-relatedness through the lens of statistical learning theory. We find that task relatedness is

highly nontrivial, that is, pairs of tasks can change from being similar to dissimilar depending on the number

of samples in both tasks. We attribute this phenomenon to a bias-variance trade-off and show that reweighting

the objectives of the different tasks can help us optimally use data from all tasks.

We end this chapter by defining a new theoretical framework called prospective learning to capture a broad

range of scenarios — such as continual learning, transfer learning, domain generalization — where the data

distribution changes over time. Prospective learning rejects the assumption that the data is separated into

a discrete number of tasks, where each task is a joint distribution over the inputs and outputs. Instead, we

operate under the very general assumption that the data is sampled from a stochastic process, with the goal

of generalizing to future samples, using a finite number of samples from the past. We derive the theoretical

conditions for asymptotic convergence to the Bayes risk and show that existing algorithms for retrospective

learning fail on simple prospective learning problems.
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2.1 Model Zoo: A large network vs. an ensemble of small networks

The goal of both multitask (Caruana, 1997) and task-incremental continual learning (Van de Ven et al., 2022)

is to share information between tasks to better generalize on all of them. It stands to reason that a learner

trained on dissimilar tasks deteriorates the models’ ability to generalize. In this section, we develop tech-

niques to explicitly split the capacity of the learner between related subsets of tasks, which encourages syn-

ergy between similar tasks while also avoiding competition between dissonant tasks. The contributions of

this section are as follows:

1. Theoretical analysis. We characterize when it is beneficial to train a single model on multiple tasks

and when doing so can be detrimental to learning. The key idea, that differentiates this work from

other theoretical works on multitask learning, is to assume a notion of relatedness between different

tasks. In particular, if the optimal representation for one task predicts poorly on another task, then

fitting a single model on such tasks may be worse than training each task in isolation.

2. Algorithm development. The analysis suggests that an ideal continual learner or multitask learner

benefits from splitting the capacity of the learner, between groups of synergistic tasks. Inspired by

our theory, we develop Model Zoo, a collection of models trained on different subsets of tasks. This

method is loosely inspired from AdaBoost in that it iteratively trains an ensemble of small models,

where each learner is fit on tasks that the Zoo performs poorly on. At inference time, given the task,

we average predictions from all models in the ensemble that were trained on that task.

3. Empirical results. We comprehensively evaluate Model Zoo on existing task-incremental continual

learning benchmarks. There are a wide variety in the problem settings for continual learning, e.g.,

some replay data from past tasks (like Model Zoo is designed to do), some replay only a subset of

data, some train only for one epoch in each 1 episode. We compare Model Zoo with existing meth-

ods in a number of these settings. Model Zoo obtains better accuracy than existing methods on the

evaluated benchmarks with the improvement in average per-task accuracy being as high as 30% for

Split-MiniImagenet.
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4. A critical look at continual learning. We find that even an Isolated learner, i.e., one which trains a

(small) model on tasks from each episode and does not perform any continual learning, significantly

outperforms most existing continual learning methods on the evaluated benchmark problems, e.g., by

more than 8% on some datasets. This strong performance is surprising because it is a very simple

learner that has better training/inference time, no data replay, and a comparable number of weights to

competing methods.

2.1.1 Learning a single task

In the supervised learning setting, we have access to𝑚 labeled samples {𝑥𝑖 , 𝑦𝑖}𝑚𝑖=1 from a distribution𝑃(𝑥, 𝑦)
where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. The goal is to find a hypothesis ℎ : 𝑋 ↦→ 𝑌 where ℎ ∈ 𝐻, such that it minimizes

the population risk

𝑒𝑃(ℎ) = E(𝑥,𝑦)∼𝑃[ℎ(𝑥) ≠ 𝑦].

We can select a hypothesis that minimizes the empirical risk

𝑒𝑆(ℎ) = 1
𝑚

𝑚∑
𝑖=1

1{ℎ(𝑥𝑖)≠𝑦𝑖} , (2.1)

a choice motivated by the following theorem.

Theorem 1 (Vapnik (1999)). Let 𝑃 be any probability distribution on 𝑋 × 𝑌 and let 𝑆 be 𝑚 samples from

𝑃. Let 𝐷 = VC(𝐻) be the VC-dimension of the hypothesis space. With probability at least 1 − 𝛿 over the

choice of samples 𝑆, if

𝑚 = O
(
𝐷 − log 𝛿

𝜖2

)
,

then 𝑒𝑃(ℎ) ≤ 𝑒𝑆(ℎ) + 𝜖.

This is a classic result from statistical learning theory that assumes that the samples are independent and

identically distributed. The theorem provides an upper bound for the rate at which the empirical risk of a

hypothesis uniformly converges to the population risk. The sample complexity increases with the expressivity

of the hypothesis class, captured by the VC-dimension 𝐷, and decreases with the desired gap between the

empirical risk and the population risk denoted by 𝜖.
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2.1.2 Theoretical analysis of learning from multiple tasks

Multi-task (Caruana, 1997) and continual learning (Thrun, 1998; Thrun and Mitchell, 1995), consider 𝑛

tasks denoted by �̄� := (𝑃1 , . . . , 𝑃𝑛), with the corresponding training sets denoted by �̄� := (𝑆1 , . . . , 𝑆𝑛) =
({𝑥1𝑖 , 𝑦1𝑖}𝑚𝑖=1 , · · · , {𝑥𝑛𝑖 , 𝑦𝑛𝑖}𝑚𝑖=1). In continual learning, specifically task-incremental continual learning, the

tasks arrive sequentially, and the model observes a new task after each episode (or round); After 𝑛 rounds,

the learner has access to 𝑛 tasks.

The goal of multitask learning is rather straightforward, which is to minimize the population risk averaged

across all tasks. Continual learning, on the other hand, attempts to minimize the population risk averaged

across all tasks at every episode —not just at the last episode. An ideal continual learner should demonstrate

backward transfer or improvement on past tasks with more episodes, and forward transfer or the ability to use

tasks from past episodes to improve the performance on new tasks. In this section, we analyze the population

risk averaged across all tasks, with the eventual goal of developing an algorithm for both problems.

It is beneficial to learn from multiple tasks if these tasks share a set of properties which we can use to guide

learning. The shared set of properties is known as an inductive bias (Thrun and Pratt, 1998), and is similar

to regularization, except that it is learned using data from multiple tasks. We formalize the idea of learning

an inductive bias by considering a family of hypothesis classes H.

The family of hypothesis classes is a set containing hypothesis classes denoted by 𝐻, i.e., 𝐻 ∈ H and this

family is also referred to as a hyper-bias (Baxter, 1998). For example,H can represent a set of neural network

architectures, while 𝐻 ∈ H represents the set of all weights corresponding to a particular architecture. We

use data from multiple tasks to select an inductive bias, which corresponds to selecting a hypothesis class 𝐻

from the family of hypothesis classes H.

The learner seeks 𝑛 hypotheses ℎ̄ = (ℎ1 , . . . , ℎ𝑛) where 𝐻 ∈ H and ℎ1 , · · · , ℎ𝑛 ∈ 𝐻, such that it minimizes

the average population risk

𝑒�̄�(ℎ̄) = 1
𝑛

𝑛∑
𝑖=1

𝑒𝑃𝑖 (ℎ𝑖).

Similar to the supervised learning setting, we can select a hypothesis ℎ̄ that minimizes the average empirical
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risk

𝑒�̄�(ℎ̄) = 1
𝑛

𝑛∑
𝑖=1

𝑒𝑆𝑖 (ℎ𝑖).

The VC-dimension is a commonly used notion of model capacity and is cardinality of the largest set of

samples that can be shattered by the hypothesis class. Baxter (1995) defines an analogous quantity for the

family of hypothesis classes H. The prediction set for samples �̄� is defined as

𝐻| �̄�| =



ℎ1(𝑥11) · · · ℎ1(𝑥1𝑚)
...

...
...

ℎ𝑛(𝑥𝑛1) · · · ℎ𝑛(𝑥𝑛𝑚)


: ℎ1 , · · · ℎ𝑛 ∈ 𝐻 and 𝐻 ∈ H


.

Using the prediction set, we define the VC-dimension 𝑑H(𝑛), for a family of hypothesis spaces H to be

𝑑H(𝑛) := max{𝑚 : max
�̄�

|𝐻| �̄�| | = 2𝑚𝑛} ,

which is the largest number of samples per task for which there exists some �̄� shattered by H. When 𝑛 = 1,

𝑑H(𝑛) is identical to the VC-dimension. Equipped with this definition, Baxter (2000) proves the following

theorem.

Theorem 2 (Baxter (2000, Theorem 12)). Let �̄� = (𝑃1 , · · · , 𝑃𝑛) be 𝑛 probability distributions on 𝑋×{0, 1}
and let �̄� be 𝑚 samples per task from �̄�. Assuming that H is permissible, if

𝑚 = O
(

1
𝜖2

(
𝑑𝐻(𝑛) − 1

𝑛
log d

))
,

then with probability at least 1 − 𝛿 over the choice of samples �̄�, any 𝐻 ∈ H and ℎ̄ ∈ 𝐻𝑛 satisfies 𝑒�̄�(ℎ̄) ≤
𝑒�̄�(ℎ̄) + 𝜖.

The permissibility condition (Pollard (2012)) requires that H forms a Borel-measurable subset and that any

hypothesis ℎ that maps inputs to outputs is measurable. This is a technical condition that allows us to assign

probabilities to events involving hypotheses and is almost always satisfied in practice.

Supervised learning selects a hypothesis for each task from the hypothesis space∪𝐻∈H𝐻. Multitask learning
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on the other hand selects a hypothesis class 𝐻 from H before fitting a hypothesis ℎ ∈ 𝐻 to each task. To

formally argue that multitask learning is beneficial, we will analyze the conditions under which selecting a

hypothesis class 𝐻 ∈ H, reduces the search space for the hypothesis.

More precisely, Ben-David and Borbely (2008) pointed out that

VC(∪𝐻∈H𝐻) ≥ 𝑑H(𝑛) ≥ 𝑑H(𝑛 + 1). (2.2)

From the first inequality, solving the 𝑛 tasks together cannot be worse than solving each task in isolation.

From the second inequality, the generalized VC-dimension is a non-increasing function of 𝑛. Hence, in-

creasing the number of tasks can help reduce the sample complexity of learning each task. However, it

would be fallacious to conclude that multitask learning is always beneficial for learning.

The success of multitask learning heavily relies on selecting a suitable set of hypothesis spaces H, under

which the tasks are very similar. If we pick H such that we are in the realizable setting, i.e., ∃ 𝐻∗ ∈ H and

ℎ̄∗ ∈ (𝐻∗)𝑛 such that 𝑒�̄�(ℎ̄∗) = 0, then theorem 2 guarantees that we asymptotically achieve low population

risk. If the tasks are related, then we can construct H such that 𝐻∗ ∈ H and 𝑑H(𝑛) is small, resulting in

better sample complexity. Next, we present two choices of H and conditions under which multitask learning

is beneficial.

Shared representation model. In this setup, all tasks learn a shared representation 𝑓 ∈ 𝐹 and task-specific

layers �̄� = (𝑔1 , · · · , 𝑔𝑛) ∈ 𝐺𝑛 . The set of hypothesis spaces H considered here is

H = {𝐻 : ∃ 𝑓 ∈ 𝐹 such that 𝐻 = 𝐺 � 𝑓 } ,

where 𝑓 : 𝑋 ↦→ 𝑉 is a representation of the inputs and 𝑔 : 𝑉 ↦→ 𝑌 is a classification layer.

This hypothesis is arguably the most commonly used choice in multitask learning today and outperforms a

variety of architectures proposed over the last decade (Kurin et al., 2022). In particular, 𝑓 ∈ 𝐹 contains most

of the weights while 𝑔 ∈ 𝐺 is usually just a linear layer. For this set of hypothesis spaces, Baxter (1995)

proves the following theorem.
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Theorem 3 (Baxter (1995)). Let 𝐹 and 𝐺 be families of functions and let 𝐶(𝜖, 𝐴) denote the size of the

smallest 𝜖-cover of 𝐴. Let �̄� denote 𝑛 probability distributions on 𝑋 × 𝑌, and �̄�, 𝑚 samples per task from

�̄�. For any 𝐺 � 𝑓 ∈ H and ℎ̄ ∈ 𝐺𝑛 × 𝑓 , if

𝑚 ≥ O
(
log (𝐶(𝜖, 𝐺)) + 1

𝑛

[
log

(
𝐶𝑒𝐺 (𝜖, 𝐹)

) − log 𝛿
] )

then 𝑒�̄�(ℎ̄) ≤ 𝑒�̄�(ℎ̄) + 𝜖 with probability of at least 1 − 𝛿 over draws of �̄�.

Sharing the representation layer 𝐹 results in an 𝑛-fold reduction in sample complexity provided that the

model capacity of the task-specific layer is small, i.e. 𝐶(𝜖, 𝐺) � 𝐶𝑒𝐺 (𝜖, 𝐹). Theorem 3 guarantees that the

average empirical risk converges to the average population risk at a rate of O(𝑛−1/2). However, it does not

guarantee that the empirical risk of all tasks converge to the population risk at the same rate of convergence;

This guarantee requires a stronger assumption on the relatedness of tasks.

F-related tasks. We consider a setup where the inputs of different tasks are simple transformations of each

other. A set of tasks �̄� are 𝐹-related if for any 𝑃, 𝑃′ ∈ �̄�

𝑃′ = 𝑓 [𝑃]

for some 𝑓 ∈ 𝐹.

Let 𝐻[∼ 𝑓 ] denote a hypothesis space such that for any ℎ, ℎ′ ∈ 𝐻[∼ 𝑓 ], there exists 𝑓 ∈ 𝐹 such that ℎ′ = ℎ � 𝑓 .

We consider the set of hypothesis spaces

H = {𝐻[∼ 𝑓 ]}.

Ben-David and Borbely (2008) consider a hypothesis class 𝐻 such that 𝐹 acts as a group over it. In this case,

each equivalence class defines a single hypothesis class 𝐻[∼ 𝑓 ] ∈ H.

We can use the following two-step algorithm to compute the optimal hypothesis (Ben-David and Borbely,

2008): (1) Find the best hypothesis class 𝐻[∼ 𝑓 ] ∈ H to fit all tasks in �̄�. (2) Find a hypothesis ℎ𝑖 ∈ 𝐻[∼ 𝑓 ] for

every 𝑃𝑖 . The first step learns the inductive bias while the second step exploits the learned bias. We present

a sample complexity bound for this algorithm below.
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Theorem 4 (Ben-David and Borbely (2008)). Let �̄� denote 𝑛 tasks and �̄� denote 𝑚 samples per task drawn

from �̄�. Let 𝑑max = max𝐻[∼ 𝑓 ] VC(𝐻[∼ 𝑓 ]) and ℎ̄𝐴 be the output of the two-step algorithm. If

|𝑆1| ≥ O
(

1
𝜖2

(
2𝑑𝑚𝑎𝑥 log 𝜖−1 − log 𝛿

) )
and

𝑚 ≥ O
(

1
𝜖2

(
2𝑑H log 𝜖−1 − 1

𝑛
log 𝛿

))
then 𝑒𝑃1(ℎ̄𝐴1 ) ≤ 𝑒𝑆1(ℎ̄𝐴1 ) + 𝜖 with a probability of at least 1 − 𝛿 over draws of �̄�.

Under this stronger notion of task relatedness, Ben-David and Borbely (2008) are able to upper bound the

population risk of each individual task as opposed to the average population risk over all tasks like in theo-

rem 3). The improvement in sample complexity depends on the size of the family of transformations 𝐹 since

it affects the size of the hypothesis class 𝐻[∼ 𝑓 ] (captured by 𝑑max). If we have access to data from many tasks,

finding the inductive bias 𝐻[∼ 𝑓 ] requires few samples from each task. In particular, when (1) 𝐹 is of finite

index (2) 𝑛 ≥ 𝐷 log 𝑛 (3) 𝐷 � log |𝐹| ,. then 𝑑max ≤ 𝑑H(𝑛) � 𝐷, i.e., we achieve a large reduction in

sample complexity as a result of multitask learning.

The above analysis assumes that all tasks are either 𝐹-related or share a low-dimensional representation.

However, empirically, many datasets deteriorate in performance when all tasks are forced to share a sin-

gle representation (Standley et al., 2020; Fifty et al., 2021; Ramesh and Chaudhari, 2022; Jain et al., 2023;

Xie et al., 2023a), i.e., tasks can be dissimilar under the shared representation model. In the next section, we

explicitly consider a model of task-relatedness to derive conditions under which training a shared represen-

tation using all the tasks isn’t always optimal.

2.1.3 Task competition

Consider the set of hypothesis classes for the shared representation model, i.e., all tasks learn a shared rep-

resentation 𝑓 ∈ 𝐹 and a hypothesis is fit to all tasks from the hypothesis class 𝐻 𝑓 = {𝑔 ◦ 𝑓 | 𝑔 ∈ 𝐺}. We
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define

𝑒𝑃( 𝑓 ) = inf
𝑔∈𝐺 𝑒𝑃(𝑔 ◦ 𝑓 ),

to be the infimum of the risk achievable by a particular representation. Sharing the representation 𝑓 across

all the tasks can sometimes be detrimental to generalization. To theoretically characterize this scenario, we

consider the following notion of task-relatedness inspired by the definition in Hanneke and Kpotufe (2019).

Definition 1. Let 𝐹 be a compact space of functions and let ℰ𝑃( 𝑓 ) = 𝑒𝑃( 𝑓 ) − inf 𝑓 ∈𝐹 𝑒𝑃( 𝑓 ) denote the excess

risk of representation 𝑓 ∈ 𝐹. Two tasks 𝑃𝑖 and 𝑃𝑗 are 𝜌𝑖 𝑗-related if

ℰ𝑃𝑗 ( 𝑓 , 𝑓 ∗𝑖 ) ≤ 𝑐 ℰ1/𝜌𝑖 𝑗
𝑃𝑖

( 𝑓 ), for all 𝑓 ∈ 𝐹. (2.3)

where 𝑓 ∗𝑖 = argmin 𝑓 ∈𝐹 𝑒𝑃𝑖 ( 𝑓 ) and ℰ𝑃𝑗 ( 𝑓 , 𝑓 ∗𝑖 ) = ℰ𝑃𝑗 ( 𝑓 ) − ℰ𝑃𝑗 ( 𝑓 ∗𝑖 )

Hanneke and Kpotufe (2019) refer to 𝜌 as the transfer exponent. Unlike Hanneke and Kpotufe (2019), we

define relatedness with respect to the family of representations 𝐹 as opposed to the hypothesis class. Two

tasks are closely related if 𝜌 ∈ [0,∞] is small. For most pairs of tasks, we expect 𝜌 ≥ 1; If 𝜌 < 1, then task

𝑃𝑗 has better convergence rates when using samples from 𝑃𝑖 as opposed to samples from 𝑃𝑗 . The definition

of the transfer exponent does not assume that two tasks 𝑃𝑖 and 𝑃𝑗 are equally useful to each other; 𝜌𝑖 𝑗 and

𝜌 𝑗𝑖 can assume different values.

The transfer exponent determines how the generalization error on one task controls the generalization of

another task. If a representation achieves a low generalization error on task 𝑃𝑖 , then the same representation

is also guaranteed to achieve a small generalization error on task 𝑃𝑗 provided that 𝜌𝑖 𝑗 is small. This definition

is closely related to the inequality between tasks developed by Crammer et al. (2008) in the realizable setting,

since it closely resembles a triangle inequality, i.e.,

𝑒𝑃𝑗 ( 𝑓 ) ≤ 𝑒𝑃𝑖 ( 𝑓 ) + 𝑒𝑃𝑗 ( 𝑓 ∗𝑖 ),

We prove the following theorem that connects our notion of task-relatedness to the generalization error.

Theorem 5 (Task Competition). Let �̄� denote 𝑛 tasks and �̄� denote 𝑚 samples per task drawn from �̄�. Let
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tasks 𝑃𝑖 and 𝑃𝑗 be 𝜌𝑖 𝑗-related according to definition 1. We arrange the tasks in increasing order of 𝜌𝑖1; This

order is 𝑃(1) , 𝑃(2) , · · · , 𝑃(𝑛) and the corresponding transfer exponents are 𝜌(1) ≤ 𝜌(2) ≤ · · · , 𝜌(𝑛). Consider

a hypothesis ℎ̄𝑘 = (𝑔1 ◦ 𝑓 , · · · , ℎ𝑘 ◦ 𝑓 ) fit on 𝑘 ≤ 𝑛 tasks. Let ℎ̂𝑘 be a hypothesis that minimizes the average

empirical risk on the first 𝑘 ≤ 𝑛 tasks trained using the shared representation model. With probability at

least 1 − 𝛿 over draws of �̄�, the generalization error on task 𝑃1 is bounded by

ℰ𝑃1( 𝑓 ) ≤ 1
𝑘

∑𝑘
𝑖=1 ℰ𝑃1( 𝑓 ∗(𝑖)) + 𝑐

𝑘

(
𝑒�̄�(ℎ𝑘) + 𝑐′

√
logC(𝜖1 ,𝑒𝐺)

𝑚 + logC𝑒𝐺 (𝜖2 ,𝐹)−log 𝛿

𝑘𝑚

)1/𝜌max

, (2.4)

where 𝜌max(𝑘) = max
{
𝜌(1) , . . . , 𝜌(𝑘)

}
, C(·, 𝜖) is an 𝜖-cover and 𝑐, 𝑐′ are constants.

Proof of theorem 5. Using the notion of task relatedness in definition 1

𝑐 ℰ1/𝜌𝑖1
𝑃𝑖

( 𝑓 ) ≥ ℰ𝑃1( 𝑓 , 𝑓 ∗𝑖 ) = ℰ𝑃1( 𝑓 ) − ℰ𝑃1( 𝑓 ∗(𝑖)),

for any 𝑖 , 𝑗 ≤ 𝑛 and 𝑓 ∈ 𝐹. For convenience we denote 𝜌(𝑖) = 𝜌𝑖1. Summing the above equation over

𝑖 ∈ {1, . . . , 𝑘} and dividing by 𝑘, we get

ℰ𝑃1( 𝑓 ) ≤ 1
𝑘

𝑘∑
𝑖=1

ℰ𝑃1( 𝑓 ∗(𝑖)) +
𝑐
𝑘

𝑘∑
𝑖=1

ℰ1/𝜌(𝑖)
𝑃(𝑖) ( 𝑓 ).

The first term measures the dissimilarity between task 1 and all the other tasks, and is the excess risk on 𝑃1

when using 𝑓 ∗𝑖 to make predictions. We bound the second term on the right-hand side to prove theorem 5.

Let �̄� = 1/𝑘∑𝑘
𝑖=1 𝑃(𝑖). We have

1
𝑘

𝑘∑
𝑖=1

ℰ1/𝜌(𝑖)
𝑃(𝑖) ( 𝑓 ) ≤ 1

𝑘

𝑘∑
𝑖=1

ℰ1/𝜌max
𝑃𝑖

( 𝑓 ) = 1
𝑘

𝑘∑
𝑖=1

(
𝑒𝑃𝑖 ( 𝑓 ) − 𝑒𝑃𝑖 ( 𝑓 ∗𝑖 )

)1/𝜌max

≤ 1
𝑘

𝑘∑
𝑖=1

𝑒1/𝜌max
𝑃𝑖

( 𝑓 ) ≤ 𝑒1/𝜌max

�̄�
( 𝑓 ).

where the final step involves Jensen’s inequality. This is average population risk when all tasks use the

representation 𝑓 . We can bound 𝑒�̄�( 𝑓 ) using sample complexity bounds for multitask learning (Baxter, 1995),

which extend the results from Haussler (1992). The key idea is to define a cover over the family of hypothesis
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spaces, which requires the family to satisfy permissibility (Pollard, 2012). Using the sample complexity

bound from Baxter (1995, Theorem 1), the population risk of a hypothesis ℎ𝑘 = (𝑔1 ◦ 𝑓 , · · · , ℎ𝑘 ◦ 𝑓 ) trained
on 𝑘 tasks is bounded by

𝑒�̄�( 𝑓 ) ≤ 𝑒�̄�(ℎ𝑘) ≤ 𝑒�̄�(ℎ𝑘) + 𝑐′
√

logC(𝜖1 , 𝑒G)
𝑚

+ logC𝑒G (𝜖2 ,ℱ ) − log 𝛿

𝑘𝑚

with probability 1 − 𝛿. Putting these inequalities together,

ℰ𝑃1( 𝑓 ) ≤ 1
𝑘

𝑘∑
𝑖=1

ℰ𝑃1( 𝑓 ∗(𝑖)) +
𝑐
𝑘

𝑘∑
𝑖=1

ℰ1/𝜌(𝑖)
𝑃𝑖

( 𝑓 )

≤ 1
𝑘

𝑘∑
𝑖=1

ℰ𝑃1( 𝑓 ∗(𝑖)) +
𝑐
𝑘

(
𝑒�̄�(ℎ𝑘) + 𝑐′

√
logC(𝜖1 , 𝑒G)

𝑚
+ logC𝑒G (𝜖2 ,ℱ ) − log 𝛿

𝑘𝑚

)1/𝜌max

.

□

Theorem 5 bounds the generalization error of every task when trained with 𝑘 ≤ 𝑛 of the most related tasks.

The upper bound has two terms: the first term represents competition between the tasks and the second

represents the synergy between them. The first term growswith the number of tasks 𝑘, since we add dissimilar

tasks (with large 𝜌(𝑖)). The second term decreases by a factor of 𝑘−1/2 and captures the statistical benefit of

sharing weights between tasks. However, 𝜌𝑚𝑎𝑥(𝑘) increases with 𝑘, indicating that the samples become more

inefficient as we add more tasks.

One would be tempted to overcome task competition by increasing the size of the hypothesis class. A larger

hypothesis classmakes it easier to find a representation 𝑓 ∗𝑖 that achieves low error on tasks𝑃𝑖 and𝑃1. However,

increasing the size of the hypothesis class also worsens the sample complexity of learning, indicating that

there is no free lunch. If we have a finite number of samples, then splitting the capacity of the learner between

related tasks is statistically optimal, particularly when tasks are dissimilar.

Figure 2.1 empirically validates our theoretical predictions on task competition. A multitask learner trained

on more tasks does not lead to better accuracies on all the tasks. Most continual learning methods train a

single network shared across the tasks, which forces us to accommodate dissimilar tasks. However, fig. 2.1
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Figure 2.1: Competition between tasks can be non-trivial. We train multitask learners and track the accuracy (Y-axis) as we
increasing the number of tasks used for training (X-axis) In this plot, we track the accuracy on 9 5-way classification tasks from
Split-CIFAR100. A single row tracks the accuracy of a single task as we increase the number of tasks used to train the learner.
Each column is a different multitask learner trained from scratch – there is no continual learning performed here. Consider the
row corresponding to ”Large Carnivores”: an increasing number of tasks do not monotonically improve the performance on ”Large
Carnivores” and the accuracy drops when we include tasks #13 and #20 to the multi-task learner. Hence, there is non-trivial
competition between different tasks in a dataset created from CIFAR-100 and mitigating the same is key to building better multitask
and continual learners.

highlights that not all tasks are beneficial to each other. This makes continual learning challenging, since we

do not have access to synergistic tasks available in the future.

Theorem 5 can be thought of as a “no free lunch theorem”. It indicates that one should not always expect

improved excess risk by combining data from different tasks. The three key takeaways from this result are:

(1) the generalization error of a task is minimized when we train it alongside 𝑘 ≤ 𝑛 most related tasks.

(2) the most related subset of tasks is different for every task. (3) the optimal choice of 𝑘 balances the first

and second terms in eq. (2.4). The optimal value of 𝑘 is large if the tasks are similar, and small if they are

dissimilar.

2.1.4 An algorithm for training Model Zoos

In the previous section, we developed theory that shows that dissimilar tasks compete for model capacity,

when forced to learn a shared representation. To generalize to one of the tasks, theorem 5 tells us that it is

optimal to train on a subset of the 𝑘-most related tasks. To generalize to all the tasks, we can train multiple

models on different subsets of tasks, effectively splitting the capacity of the learner. Model Zoo is a simple

method that instantiates this idea.
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Let us assume that tasks 𝑃1 , . . . , 𝑃𝑛 are shown sequentially to the continual learner. We assume that all

tasks have the same input domain 𝑋 but may have different output domains 𝑌1 , . . . , 𝑌𝑛 . At each “episode”

𝑘, Model Zoo is designed to train using the current task 𝑃𝑘 and a subset of the past tasks. For example, at

episode 𝑘 = 2, we train a model with a feature generator ℎ and task-specific classifiers to obtain models

𝑔1 ◦ ℎ : 𝑋 ↦→ 𝑌1 and 𝑔2 ◦ ℎ : 𝑋 ↦→ 𝑌2. This model can classify inputs from both tasks and outputs a

probability vector 𝑝𝑔𝑖◦ℎ(𝑦 | 𝑥), ∀𝑦 ∈ 𝑌𝑖 depending on the task. We assume that the identity of the task is

known at the test time.

Model 1

Model 2

Model 3

P3 P4

P6

P5

P1

P2
43 51 2

Figure 2.2: A single model is incapable of capturing the diversity of all tasks and it is beneficial to split the capacity of the learner.
Ideally, we train models on synergistic tasks only; For the figure on the left, this would correspond to training Model 1 for 𝑃1 using
𝑃3 , 𝑃6, Model 2 for 𝑃2 using 𝑃1 and Model 3 for 𝑃3 using 𝑃1, 𝑃4 and 𝑃5. Model Zoo instantiates this idea and attempts to discover
synergistic tasks by iteratively choosing those tasks with high loss under the ensemble.

Model Zoo adds one model to the zoo after every “episode” of continual learning. At episode 𝑘, we train

the new model on samples from the newest task 𝑃𝑘 and from b− 1 other tasks from the set {𝑃𝑖}𝑘−1
𝑖=1 , where

b is the number of tasks considered for every episode of training. We favor larger values of b if the tasks

are closely related and smaller values if tasks are dissimilar. We denote the tasks selected at episode 𝑘 to be

�̄�𝑘 = {𝑃𝜔1
𝑘
, · · · , 𝑃𝜔b

𝑘
}.

A model trained at episode 𝑘 uses a shared representation for all tasks �̄�𝑘 and few task-specific classification

layers. We denote the hypotheses trained on tasks �̄�𝑘 by ℎ̄𝑘 = (ℎ𝜔1
𝑘
, · · · , ℎ𝜔b

𝑘
). Hypothesis ℎ

𝜔
𝑗
𝑘

: 𝑋 ↦→
P(𝑌

𝜔
𝑗
𝑘
) maps the input space to a probability distribution on the output space of task 𝑃

𝜔
𝑗
𝑘
. The hypothesis

can be expressed as

ℎ
𝜔
𝑗
𝑘
= 𝑔𝑘

𝜔
𝑗
𝑘

� 𝑓 𝑘

where 𝑓 𝑘 is the shared representation generator for model 𝑘 and 𝑔𝑘
𝜔
𝑗
𝑘

is the task-specific layer for task 𝑃
𝜔
𝑗
𝑘
in
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model 𝑘. We select a set of hypotheses ℎ̄𝑘 to minimize the empirical risk

ℎ̄𝑘 = argmin
ℎ̄∈𝐻b

𝑒�̄�𝜔𝑘 (ℎ̄).

After 𝑘 rounds, predictions for task 𝑃𝑖 are the average of the outputs of all models trained on 𝑃𝑖 , i.e.,

𝑝𝑘,𝑖(𝑦|𝑥) ∝
𝑘∑
𝑙=1

1[𝑃𝑖 ∈ �̄�𝑙] 𝑔𝑘𝑖 � 𝑓 𝑘 .

Task-specific layers like 𝑔𝑘𝑖 are only viable if we know task-identities during training and inference.

Remark 6 (Task-incremental continual learning). Model Zoo operates in the task-incremental continual

learning setting (Van de Ven et al., 2022); Tasks arrive sequentially and the task identities for each sample

are available at both train and test times. Other variations of continual learning include class-incremental

and domain-incremental continual learning (Van de Ven et al., 2022). Class-incremental continual learning

tackles a single classification problem where a new class is added after every episode. Domain-incremental

continual learning is similar to the task-incremental setting, except that task identities are not available at

both train and test times.

Selecting tasks for each round using boosting. Model Zoo must select b tasks after every episode of

continual learning. Ideally, it selects a related set of tasks based on the transfer exponent 𝜌. However, we

lack access to the values 𝜌 and estimating these distances for all pairs of tasks is expensive. Model Zoo hence

uses the training loss as a proxy for task-relatedness, drawing inspiration from boosting.

AdaBoost (Schapire and Freund, 2013) builds an ensemble of weak-learners, each trained on samples which

have a high loss under the ensemble. Analogously, each learner in the Model Zoo is similar to a weak-learner

in AdaBoost. Each round of Model Zoo samples tasks that have high loss under the ensemble of learners.

After 𝑘 episodes, Model Zoo estimates the probability scores of each task �̄�𝑘 ∈ R𝑘 using

�̄�𝑘,𝑖 ∝ exp ©«− 1
𝑚

∑
(𝑥,𝑦)∈𝑆𝑖

log 𝑝𝑘,𝑖(𝑦|𝑥)ª®¬ (2.5)

i.e, the probability of sampling a task is proportional to its empirical loss. Model Zoo draws tasks �̄�𝑘+1 from
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the multinomial distribution �̄�𝑘,𝑖 . Like AdaBoost, Model Zoo strives to achieve low errors on all tasks.

Model zoo is more likely to sample tasks with high empirical risk. Consider two similar tasks 𝑃𝑖 and 𝑃𝑗 which

are dissimilar to all other tasks. We expect 𝑃𝑖 and 𝑃𝑗 to have a high risk when evaluated using the Model

Zoo because of its dissimilarity to most other tasks. Equation (2.5) assigns 𝑃𝑖 and 𝑃𝑗 a higher probability in

�̄�𝑘 in subsequent iterations of the model zoo. Hence, Model Zoo will likely train 𝑃𝑖 and 𝑃𝑗 together. Even

if initial iterations of the zoo train on dissimilar tasks, the sampling strategy encourages future iterations of

Model Zoo to train on synergistic tasks.

2.1.5 Experiments
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Isolated-small-Single Epoch (66)
Model Zoo-small-Single Epoch (81)
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Model Zoo- Single Epoch (64)
Isolated-Multi epoch (86)
Model Zoo-Multi Epoch (97)

Comparison of Methods on Mini-Imagenet

Figure 2.3: We consider the Split-MiniImagenet dataset which consists of 20 5-way classification tasks. We track the evolution of
the average task accuracy of different continual learners as we increase the number of tasks seen by each learner. If the x-axis reads
7, then the continual learner has seen 7 tasks and the y-axis corresponds to the accuracy averaged over these 7 tasks. Except for
the red/orange lines, we evaluate all methods in the single-epoch setting – the model trains for 1 epoch after obtaining data from a
new task. The lines in bold correspond to Model Zoo and its variants while the faint lines are other single-epoch continual learning
methods. “Isolated” is a variant of Model Zoo which shares no information between different tasks. “Small” indicates that each
learner in the Model Zoo use a network wit 0.12M weights as opposed to a WideResnet 16-4 (3.6M weights)
Do existing methods leverage information from other tasks? Consider Isolated small-single epoch, indicated by the black line;
It is a simple model that trains a small network on each task without any information shared across tasks. It has the fastest train-
ing/inference times, the smallest storage/model footprint and no data replay and yet, it outperforms other continual learning methods.
This indicates existing methods fail to leverage data from multiple tasks to improve accuracy.
Model Zoo has an improved ability to solve each task by using other tasks. Regardless of architecture or epoch-setting, Model
Zoo improves over the corresponding Isolated variant in all settings. Replaying a subset of data from past tasks alleviates catas-
trophic forgetting and results in forward and backward transfer.
Models in the single-epoch setting are under-trained: Isolated-single epoch (royal blue) and Isolated small-single epoch (black)
differ in accuracies by 25% and Isolated-multi epoch (orange) outperforms both these methods. These two observations point to
larger models being severely under-trained in the single-epoch setting. This indicates that the single-epoch setting is not appropriate
for evaluating continual learning methods.
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2.1.5.1 Setup

Datasets. We performed experiments using the following datasets:

(1) Rotated-MNIST (Lopez-Paz and Ranzato, 2017) uses the MNIST dataset to generate 5 different 10-

way classification tasks. Each task involves using the entire MNIST dataset rotated by 0, 10, 20, 30,

and 40 degrees, respectively.

(2) Permuted-MNIST (Kirkpatrick et al., 2017) involves 5 different 10-way classification tasks with each

task being a different permutation of the input pixels. The first task is the original MNIST task as is

convention. All other tasks are distinct random permutations of MNIST images.

(3) Split-MNIST (Zenke et al., 2017) has 5 tasks with each task consisting of 2 consecutive labels (0-1,

2-3, 4-5, 6-7, 8-9) of MNIST.

(4) Split-CIFAR10 (Zenke et al., 2017) has 5 tasks with each task consisting of 2 consecutive labels

(airplane-automobile, bird-cat, deer-dog, frog-horse, ship-truck) of CIFAR10.

(5) Split-CIFAR100 (Zenke et al., 2017) has 20 tasks with each task consisting of 5 consecutive labels of

CIFAR100. See the original paper for the exact constitution of each task.

(6) Coarse-CIFAR100 (Rosenbaum et al., 2017; Yoon et al., 2019) has 20 tasks with each task consisting

of 5 labels. The tasks are based on an existing categorization of classes into super-classes.

(7) Split-miniImagenet (Vinyals et al., 2016) is a variant introduced in Chaudhry et al. (2019b), consisting

of 20 tasks, with each task consisting of 10 consecutive labels. We merge the meta-train and meta-test

categories to obtain a continual learning problem with 20 tasks. Each task containing 10 consecutive

labels and 20% of the samples are used as the validation set.

The CIFAR10 and CIFAR100-based datasets consist of RGB images of size 32×32 while MNIST-based

datasets consist of images of size 28×28. The miniImagenet dataset consists of RGB images of size 84×84.

Previous works have argued against using Permuted-MNIST (Prabhu et al., 2020; Farquhar and Gal, 2019b)
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since it exhibits an unrealistic notion of task-relatedness. The accuracies of Coarse-CIFAR100 and Split-

CIFAR100 differ by as much as 10%, suggesting that it isn’t advisable to form tasks from CIFAR100 by

randomly sampling classes. Random sampling also makes it harder to compare accuracies across different

works.

Network architectures Benchmarks constructed fromMNIST use fully-connected networks. Benchmarks

based on CIFAR10 and CIFAR100 typically use the Resnet18 architecture (11.6M weights) (He et al., 2016)

or a modified version of Resnet18 called Resnet18-S (1.6Mweights) (Lopez-Paz and Ranzato, 2017). Model

Zoo considers three different neural net architectures: 1. A wide-residual network (WRN 16-4 with 3.6M

weights) 2. A small network (0.12 M) weights with 3 convolution layers 3. Resnet18-S. All networks share

the network backbone and have task-specific linear classification layers.

2.1.5.2 Evaluating continual learning methods

We compare the generalization errors of all tasks across different continual learning methods. In addition,

we consider other metrics like training time, inference time, model storage and sample storage. Continual

learning has formulations which impose different constraints on these metrics. For example, some methods

limit the model storage while others can disallow storing any samples.

It is difficult to compare methods (Prabhu et al., 2020; Farquhar and Gal, 2019a; Vogelstein et al., 2020a;

Van de Ven et al., 2022) since many of them can only function in specific formulations of continual learning.

We summarize some popular formulations below:

(i) Some methods (Chaudhry et al., 2019b; Guo et al., 2020; Lopez-Paz and Ranzato, 2017) chose to

store and replay data from past tasks The amount of replay data could include all past data or a

subset of it.

(ii) In the strict formulation (Kirkpatrick et al., 2017; Zenke et al., 2017; Kaushik et al., 2021) we store

no samples from past tasks (and no replay as a result).

(iii) Some formulations enforce a computation budget for every episode of training (Vogelstein et al.,

2020a; Ramesh and Chaudhari, 2022). For example, Lopez-Paz and Ranzato (2017); Chaudhry et al.

(2019b) allow 1 epoch of training for every episode which we refer to as the single epoch setting.
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(iv) This last setup imposes a budget on model storage. Methods do not evaluate on this setting formally;

The constraint is implicitly imposed by the choice of architecture.

Model Zoo replays data from a subset of the past tasks with a computational budget determined by b. It

replays fewer tasks for smaller values of b, resulting in lower training times per episode. Unlike a vanilla

multi-task learner, (which has a computation budget that grows linearly with the number of episodes) the

computation budget of Model Zoo is a constant across episodes, making it a legitimate continual learner. We

consider the following versions of Model Zoo that abide by different formulations of continual learning:

(i) Model Zoo can access all data from past tasks. Model Zoo (10%) stores 10% of the samples seen at

every episode and can only access these stored samples. We can compare these two models to other

methods that use varying degrees of replay.

(ii) Isolated refers to a version of Model Zoo with b = 1. This is identical to training a separate model on

each task with no information shared across tasks. Isolated abides by the strict formulation of continual

learning.

(iii) Model Zoo can reduce the required compute by decreasing the value of b. Model Zoo (single-epoch)

and Isolated (single-epoch) refer to Model Zoo and Isolated, evaluate in the single epoch setting.

Strictly speaking, only Isolated (single-epoch) trains for a single epoch; Model Zoo (single-epoch) uses

replay which results in more mini-batch updates. However Model Zoo (single-epoch) has comparable

training times to other single-epoch methods which allows us to make fair comparisons.

(iv) Model Zoo can make use of different neural network backbones. Versions of Model Zoo that use

WRN16-4, Resnet18-S and small convolution networks are called Model Zoo, Model Zoo-Resnet

andModel Zoo-Small. We have similar versions for Isolated too. Model Zoo-Small has a comparable

number of weights to architectures – like Resnet18-S – which is often used in other methods. This

allows us compare Model Zoo-small to other methods when there is a constraint on model storage.

Evaluation criteria The final per-task accuracy, reported in table 2.1 and table 2.2, is the validation accu-

racy averaged across all tasks at the end of all episodes. The learning accuracy (Riemer et al., 2018) is the
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average accuracy on a task when first seen. Higher learning accuracy indicates forward transfer – an improved

ability to learn new tasks. The average per-task forgetting metric is the gap between the maximal accuracy

over all episodes and the accuracy at the end, averaged across all tasks. It measures backward transfer – the

ability to improve on past tasks.

2.1.5.3 Efficacy of Model Zoo as a Continual Learner

Method Replay Single Rotated- Permuted- Split- Split- Split- Coarse- Split-
Epoch MNIST MNIST MNIST CIFAR10 CIFAR100 CIFAR100 MiniImagenet

GEM (Lopez-Paz and Ranzato, 2017) 3 3 86.07 82.60 - - 67.8∗ - 51.86
A-GEM (Chaudhry et al., 2019a) 3 3 - 89.1 - - 62.3∗ - 61.13
ER-Reservoir (Chaudhry et al., 2019b) 3 3 - 79.8 - - 68.5∗ - 64.03
MC-SGD (Mirzadeh et al., 2020a) 3 3 82.63 85.3 - - 63.30 - -
MEGA-II (Guo et al., 2020) 3 3 - 91.20 - - 66.12 - -
OGD (Farajtabar et al., 2020) 7 3 88.32 86.44 98.84 - - - -
Stable-SGD (Mirzadeh et al., 2020b) 7 3 70.8 80.1 - - 59.9∗ - 57.79
TAG (Malviya et al., 2021) 7 3 - - - - 62.79 - 57.2
VCL (Nguyen et al., 2018) 3 7 - 95.5 98.4 - - - -
FRCL (Titsias et al., 2020) 3 7 - 94.3 97.8 - - - -
FROMP (Pan et al., 2020) 3 7 - 94.9 99.0 - - - -
EWC (Kirkpatrick et al., 2017) 7 7 •84 •96.9 - - •42.40 - -
Prog-Nets (Rusu et al., 2016) 7 7 - •93.5 - - •59.2 - -
SI (Zenke et al., 2017) 7 7 - •97.1 •98.9 - - - -
HAT(Serra et al., 2018) 7 7 - 98.6 99.0 - - - -
APD (Yoon et al., 2019) 7 7 - - - - - 56.81 -
FedWeIT (Yoon et al., 2021) 7 7 - - - - - 55.16 -
RMN (Kaushik et al., 2021) 7 7 - 97.73 99.5 - 80.01 - -
Our methods
Isolated-small 7 7 - - - 96.88 90.18 69.07 82.48
Model Zoo-small 3 7 - - - 96.85 92.06 73.72 94.27
Model Zoo-small (10% replay) 3 7 - - - 96.58 89.76 77.18 84.6
Isolated-Resnet 7 7 - - - - 88.95 - -
Model Zoo-Resnet 3 7 - - - - 93.15 - -
Isolated 7 7 99.64 98.03 99.98 97.46 91.90 80.72 86.28
Model Zoo 3 7 99.66 97.71 99.97 98.68 94.99 84.27 96.84
Multi-Head (multi-task) 99.66 98.16 99.98 98.11 95.38 83.19 90.83

Table 2.1: Final per-task accuracy (%) at the end of all episodes. Model Zoo outperforms other continual learning regardless
of the formulation which includes: full replay (Model Zoo), limited replay (Model Zoo (10%)), no replay (Isolated) and limited
model size (Model Zoo-small). Every version of Model Zoo has a higher accuracy than the corresponding version of Isolated. This
indicates that Model Zoo leverages other tasks to improve the generalization error. The accuracies do not differ across architectures
highlighting how Model Zoo is robust to this choice. Finally, Isolated achieves 99+% accuracy on all MNIST benchmarks which
indicates it is not suitable for continual learning since tasks cannot benefit from sharing any information.
Note: ∗ indicates that the evaluation was on Split-CIFAR100 with each task containing randomly sampled labels. • denotes that the
accuracy is not from the original paper but from one of (Nguyen et al., 2018; Serra et al., 2018; Chaudhry et al., 2019a). Numbers
for all methods on Split-MiniImagenet were computed using open-source implementations of the original authors.

Model Zoo outperforms all other continual learning methods in all formulations of continual learning

discussed in section 2.1.5.2. Table 2.1 compares against other methods and shows that for varying degrees

of replay, Model Zoo (or a relevant version of it) outperforms other methods. Table 2.2 evaluates Model
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Zoo in the single-epoch setting and shows that both Model Zoo (single-epoch) and Isolated (single-epoch)

outperform other methods designed for the single-epoch setting with respect to accuracy and a number of

other metrics.

Model Zoo exhibits desirable traits in a continual learner like forward and backward transfer. Figure 2.4 high-

lights the same in the single and multi-epoch settings. Tasks seen in the past improve with more episodes

indicating backward transfer. Additionally, each task starts with a better accuracy (when first seen by the

learner) compared to Isolated, indicating forward transfer. These observations are further validated by ta-

ble 2.2.
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Figure 2.4: We track the accuracy of individual tasks from the Split-MiniImagenet dataset. Model Zoo shows both forward and
backward transfer in this plot. Task 1 (in the single and multi-epoch settings) improves its validation accuracy with each episode,
which indicates backward transfer. The ’x’ denotes the accuracy of Isolated, where the task is trained without data from other tasks.
The starting accuracy – the accuracy when the task is first seen by the continual learner – is higher than the accuracy of Isolated,
which indicates forward transfer in Model Zoo.

In table 2.1, Model Zoo matches or outperforms the Multi-head model which is single multi-task model

trained on all the tasks. Continual learning literature considers Multi-head to be the gold-standard since it

has access to all tasks unlike a continual learner, which is shown tasks sequentially. It is surprising that

Model Zoo achieves a 6% improvement in accuracy on Split-MiniImagenet over Multi-head. This highlights

howModel Zoo avoids task competition and manages to train on synergistic groups of tasks. The Multi-head

learner trains a single model on all tasks and is affected by task competition.
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Model Zoo-small and Isolated-small achieve better accuracies than other algorithms indicating it is a simple

and scalable method that works with different architectures. Since it uses a small convolution network, Model

Zoo-small has fast training and inference times (see table 2.2) and comparable number of weights to other

methods.

Method Inference Training Storage Metrics (Multi Epoch) Metrics (Single Epoch)
time time Samples #Weights Accuracy Forgetting Forward Accuracy Forgetting Forward

(ms/sample) (min) (%) (M) (%) (%) (%) (%) (%) (%)

EWC 10.34 50 0 1.6 - - - 42.4 17.52 67.76
Prog-NN - 82 0 23.7 - - - 59.2 0.0 59.2
GEM 10.34 1048 5–10 1.6 - - - 61.2 6.0 67.61
A-GEM 10.34 88 5–10 1.6 - - - 62.3 7.0 70.13
RMN 2712.4 - 0 11.5 80.01 - - - - -

Our methods
Isolated-small 2.34 17.09 0 2.42 90.18 0.0 91.18 71.6 0.0 71.6
Model Zoo-small 11.70 31.71 100 2.42 92.28 0.17 90.0 73.67 0.20 71.91
Model Zoo-small (10% replay) 11.70 22.41 10 2.42 89.76 0.22 89.8 71.09 0.69 70.5
Isolated 2.34 20.76 0 54.8 91.9 0.0 91.0 50.43 0.0 50.43
Model Zoo 31.84 41.86 100 54.8 94.99 0.21 94.02 57.67 0.81 56.58

Table 2.2: We compare Model Zoo to other continual learning methods across a number of metrics. Model Zoo shows forward and
backward transfer and no forgetting. It also demonstrates strong training and inference times. Model Zoo-small and Isolated-small
have low model storage requirements in addition. Training times of other methods are from Chaudhry et al. (2019a) and it is the
total training time in minutes for all tasks. The Inference time is the per sample prediction latency averaged over 50 mini-batches of
size 16.

2.1.5.4 Rethinking the evaluation setup in continual learning

Isolated outperforms other continual learning methods as seen in tables 2.1 and 2.2; It is only outperformed

by Model Zoo. This is a surprising observation since Isolated does not do any form of continual learning

and does not share any information between different tasks. Consider Isolated-small in particular: It has low

training/inference times (table 2.1, stores no samples for replay and uses a comparable number of weights to

othermethods. Hence, Isolated is a strong continual learning baseline formost formulations of continual

learning; Recent works (Yoon et al., 2019; Liu and Liu, 2022) have made a similar observation too.

The performance of Isolated also points to another troubling conclusion. Existing methods fail to share

useful information across tasks; It is preferable to train each task in isolation instead. From table 2.2, other

methods have reasonable forward accuracies but all of them are significantly affected by forgetting. In an

effort to combat forgetting, literature has ignored optimizing the accuracy (Díaz-Rodríguez et al., 2018). We

believe it is important build methods that outperform the Isolated baseline and consider replay-based
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formulations of continual learning in order to combat forgetting.

Split-MNIST, Permuted-MNIST and Rotated-MNIST are not good benchmarks for task-incremental

continual learning. Since the Isolated learner achieves 99+% final per-task accuracy on all these bench-

marks, there is little benefit to sharing information across tasks. Hence these benchmarks are only useful for

studying model compression in a continual learning setting. Using fewer labeled samples in the training set is

one alternative for MNIST-based benchmarks; This ensures that we can improve the accuracy by leveraging

multiple tasks in tandem and there is some benefit to training on many tasks.

The single-epoch setting is not conducive for evaluating continual learning methods for two reasons:

1. Networks are severely under-trained in this regime 2. The number of epochs is not an accurate way to

enforce a computational budget per episode of training. Table 2.2 and figs. 2.3 and 2.4 point to the low

accuracy of single-epoch methods; The accuracy improves when trained for multiple epochs – fig. 2.3 show

that the margin is as wide as 25% on Split-MiniImagenet. Models with a larger number of weights have low

accuracies if allowed only 1 epoch of training; From table 2.2, the accuracy of Isolated-small (single-epoch)

on Split-CIFAR100 is 23% higher than the accuracy of Isolated (single-epoch). Finally, methods like GEM

take 10x longer to train than Model-Zoo even though both methods train for 1 epoch. This indicates that a

single epoch of training is not the best way to enforce a per-episode limit on computation.

2.1.5.5 Ablation Studies

We study three ablation experiments to understand different components of Model Zoo. Table 2.3 shows

that Model Zoo works with varying degrees of replay and works best when we use all samples from past

tasks. This is unsurprising since a limited replay forces us to discard useful information. Model Zoo doesn’t

improve the accuracy solely due to ensemble learning; table 2.5 shows that the gains in accuracy only occur

if we share information across tasks.

Table 2.4 varies the hyper-parameter b and tracks the average per-task accuracy at the end of all episodes.

Split-CIFAR100 improves in accuracy as we increase the number of tasks sampled per episode (b) from 1 to

9. However the same monotonic trend is not observed in Split-MiniImagenet showing that task competition

occurs in even common benchmark datasets.
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Replay Split- Split-
(%) CIFAR100 miniImagenet

0 71.91 65.80
1 70.48 67.18
5 71.33 70.71
10 71.97 74.22
100 73.67 81.05

Table 2.3: We analyze the final per-task accuracy for varying degrees of replay. A larger replay size leads to high accuracies on
both Split-CIFAR100 and Split-MiniImagenet. This also shows Model Zoo works with varying degrees of replay

# Tasks (b) Split- Split-
(100% replay) CIFAR100 MiniImagenet

1 71.91 65.02
2 72.26 67.33
5 73.67 81.05
7 73.97 88.76
9 74.13 84.9

Table 2.4: We study the final per-task accuracy for varying number of tasks sampled per episode (b). Split-CIFAR100. More tasks
usually lead to better accuracies. However, this improvement is not monotonic like in Split-MiniImagenet, indicating the existence
of task competition.

Method Model Ensemble of
Zoo Isolated (100×)

Split-CIFAR100 73.67 71.46
Split-MiniImagenet 81.05 67.26

Table 2.5: We compare Model Zoo to an Ensemble of learners with no data shared across tasks. The numbers show that accuracy
gains from Model Zoo are not due to ensemble learning. All ablation experiments are performed in the single-epoch setting.
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2.2 Generalization error can be a non-monotonic function of amount

of data

In the previous section, we developed theory to formalize task competition and showed that similar tasks

benefit from being trained together. It stands to the reason that a multitask learner or or continual learner

would benefit from being trained on samples from related tasks. In this section, we consider a setting where

we have samples from a target task, which we would like to generalize to, and samples from a different task,

which we refer to as out-of-distribution (OOD) samples. For a model trained on data from both tasks, we

expect one of the following outcomes: (i) if the OOD task is similar to the target task, then more OOD

samples will help us generalize to the target task; (ii) if the OOD task is dissimilar to the target task, then

more samples are detrimental. In other words, we expect the generalization error to be a monotonic function

of the number of OOD samples.

We show that there is a third counterintuitive possibility: the generalization error of a task can be a non-

monotonic function of the number of OOD samples. As the number of OOD samples increases, the general-

ization error on the target task improves before deteriorating beyond a threshold. We use upper bounds for the

generalization error from Ben-David et al. (2010) to show that this phenomenon arises from a bias-variance

trade-off, i.e. having more OOD samples decreases the variance but increases the bias.

We first demonstrate the non-monotonic behavior through a simple but theoretically tractable problem using

Fisher’s Linear Discriminant (FLD). We also present empirical evidence for the presence of non-monotonic

trends in target generalization error on synthetic tasks and in experimental settings constructed fromMNIST,

CIFAR-10, PACS and DomainNet datasets. In the setting where we know task identities of each sample, we

show that non-monotonic trends can be exploited using an objective that appropriately weights the empirical

risks of the target and OOD tasks.

2.2.1 Non-monotonic trends on synthetic data

We assume that the data is drawn from two tasks: 𝑛 samples drawn from a target task 𝑃𝑡 and𝑚 samples drawn

from an out-of-distribution (OOD) task 𝑃𝑜 . We would like to minimize the generalization error 𝑒𝑡(ℎ) =
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E(𝑥,𝑦)∼𝑃𝑡
[
ℎ(𝑥) ≠ 𝑦

]
on the target task. Unlike in the previous section, we assume that the entire hypothesis

ℎ is shared for both tasks and that the task identities are potentially unknown. If we were unaware of the

presence of OOD samples, we would consider all data to be drawn from a single task. Therefore, we may

find a hypothesis that minimizes the empirical loss

𝑒(ℎ) = 1
𝑛 + 𝑚

𝑛+𝑚∑
𝑖=1

ℓ
(
ℎ(𝑥𝑖), 𝑦𝑖 ) , (2.6)

using the dataset
{(𝑥𝑖 , 𝑦𝑖)}𝑛+𝑚𝑖=1 ; here ℓ measures the mismatch between prediction ℎ(𝑥𝑖) and label 𝑦𝑖 . If

𝑃𝑡 = 𝑃𝑜 , then 𝑒𝑡(ℎ) − 𝑒(ℎ) = O((𝑛 + 𝑚)−1/2) (Vapnik, 1999). But if 𝑃𝑡 ≠ 𝑃𝑜 , then we should expect that

error on 𝑃𝑡 of a hypothesis obtained by minimizing the average empirical loss can be sub-optimal, especially

when the number of OOD samples 𝑚 � 𝑛.

2.2.1.1 An example using Fisher’s Linear Discriminant
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Figure 2.5: Left: A schematic of the Gaussian mixture model corresponding to the target task (top) and the OOD samples (bottom).
The OOD sample size (𝑚 = 28) at which the target generalization error is minimized at Δ = 1 is indicated at the top.
Right: For 𝑛 = 100, we plot the generalization error of FLD on the target task as a function of the ratio of OOD and target samples
𝑚/𝑛, for different types of OOD samples corresponding to different values of Δ. This plot uses the analytical expression for the
generalization error in eq. (2.7). For small values of Δ, when the two tasks are similar to each other, the generalization error 𝑒𝑡 (ℎ)
decreases monotonically. However, beyond a certain value of Δ, the generalization error is non-monotonic in the number of OOD
samples. The optimal value of 𝑚/𝑛 which leads to the best generalization error is a function of the relatedness between the two
tasks, as governed by Δ in this example. This non-monotonic behavior can be explained in terms of a bias-variance trade-off with
respect to the target task: a large number of OOD samples reduces the variance but also results in a bias with respect to the optimal
hypothesis of the target task.

Consider a binary classification problem with one-dimensional inputs in fig. 2.5. Target samples are drawn

30



from a Gaussian mixture model (with means
{−𝜇, 𝜇}

for the two classes) and OOD samples are drawn from

a Gaussian mixture with means
{−𝜇 + Δ, 𝜇 + Δ

}
. Fisher’s linear discriminant (FLD) is a linear classifier

for binary classification problems, and it computes ℎ̂(𝑥) = 1 if 𝜔>𝑥 > 𝑐 and ℎ̂(𝑥) = 0 otherwise; here 𝜔

is a projection vector which acts as a feature extractor, and 𝑐 is a threshold that performs one-dimensional

discrimination between the two classes. FLD assumes that the class conditional density of each class is a

multivariate Gaussian distribution with the same covariance structure. We provide a detailed account of FLD

in section B.1.1.

Suppose we fit an FLD on a dataset which comprises of 𝑛 target samples and𝑚 OOD samples. Also, suppose

that we do not know which samples are OOD and believe that all the samples in the dataset come from a

single target distribution. For univariate data, the FLD decision rule reduces to

ℎ̂(𝑥) =


1, 𝑥 >
�̂�0+�̂�1

2

0, otherwise.

Define the decision threshold 𝑐 = (�̂�0 + �̂�1)/2. We can calculate (sections B.1.1 and B.1.2) an analytical

expression for the generalization error of FLD on the target task:

𝑒𝑡(ℎ̂) = 1
2

[
Φ

(
𝑚Δ − (𝑛 + 𝑚)𝜇√(𝑛 + 𝑚)(𝑛 + 𝑚 + 1)

)
+Φ

( −𝑚Δ − (𝑛 + 𝑚)𝜇√(𝑛 + 𝑚)(𝑛 + 𝑚 + 1)

)]
; (2.7)

here Φ is the CDF of the standard normal distribution.

Figure 2.5 (right) shows how the generalization error 𝑒𝑡(ℎ̂) decreases up to some threshold of the ratio be-

tween the number of OOD samples and the number of samples from the target task 𝑚/𝑛 and then increases

beyond that. This threshold is different for different values of Δ as can be seen in eq. (2.7) and fig. 2.5 (right).

This behavior is surprising because one would a priori expect the generalization error to be monotonic in

the number of OOD samples. The fact that a non-monotonic trend is observed even for a one-dimensional

Gaussian mixture model suggests that this may be a general phenomenon. We can capture this discussion as

a remark; the FLD example above is the proof.

Remark 7 (Non-monotonic generalization error). There exist target and OOD tasks, 𝑃𝑡 and 𝑃𝑜 respec-
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Figure 2.6: Mean squared error (MSE) (Y-axis) of the decision threshold 𝑐 of FLD (see section B.1.2), for the same setup as
that of fig. 2.5, plotted against the ratio of the OOD and target samples 𝑚/𝑛 (X-axis) for Δ = 1. Squared bias and variance of the
MSE are in violet and blue, respectively. This illustration clearly demonstrates the intuition behind non-monotonic target error: the
MSE drops initially because of the smaller variance due to the OOD samples. With more OOD samples, MSE increases due to the
increasing bias. Non-monotonic trend in MSE of 𝑐 translates to a similar trend in the target generalization error (0-1 loss).

tively, such that the generalization error on the target task of the hypothesis that minimizes the empirical

risk in eq. (2.6), is non-monotonic in the number of OOD samples.

2.2.2 Non-monotonic trends for neural networks and image classification tasks

We experiment with several popular datasets including MNIST, CIFAR-10, PACS, and DomainNet and 3 dif-

ferent network architectures: (a) a small convolutional network with 0.12M parameters (denoted by Small-

Conv), (b) a wide residual network (Zagoruyko and Komodakis, 2016) of depth 10 and widening factor 2

(WRN-10-2), and (c) a larger wide residual network of depth 16 and widening factor 4 (WRN-16-4).

A non-monotonic trend in generalization error can occur due to geometric and semantic nuisances.

Such nuisances are very common even in curated datasets (Van Horn, 2019). We constructed 5 binary clas-

sification sub-tasks (denoted by 𝑇𝑖 for 𝑖 = 1, . . . , 5) from CIFAR-10 to study this aspect (see section A.6.2).

We consider a CIFAR-10 sub-task 𝑇2 (Bird vs. Cat) as the target and introduce rotated images by a fixed

angle between 0◦-135◦) as OOD samples. fig. 2.8 (left) shows that the generalization error decreases mono-

tonically for small rotations but is non-monotonic for larger angles. Next, we considered the sub-task 𝑇4

(Frog vs. Horse) as the target task and generate OOD samples by adding Gaussian blur of varying levels

to images from the same task. In fig. 2.8 (middle), the generalization error on the target is a monotonically
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Figure 2.7: We can control the Bayes optimal error by adjusting 𝜇, 𝜎 of the Gaussian mixture model in section 2.2.1.1. When the
Bayes optimal error is large for (𝜇 = 6, 𝜎 = 16), we can observe non-monotonic trends even for a large number of target samples
(𝑛 = 500). This suggests that non-monotonic trends in generalization are not limited to small sample sizes.

decreasing function of the number of OOD samples for low blur but it increases non-monotonically for high

blur.

Non-monotonic trends can occur when OOD samples are drawn from a different task Large datasets

can contain categories whose appearance evolves in time (e.g., a typical laptop in 2022 looks very different

from that of 1992), or categories can have semantic intra-class nuisances (e.g., chairs of different shapes).

We use CIFAR-10 sub-tasks to study how such differences can lead to non-monotonic trends. For 5 CIFAR-

10 sub-tasks; each sub-task is a binary classification problem with two consecutive classes: Airplane vs.

Automobile, Bird vs. Cat, etc. We consider (𝑇𝑖 , 𝑇𝑗) as the (target, OOD) task pair and evaluate the trend in

generalization error for all 20 distinct pairs of tasks. fig. 2.8 (right) illustrates non-monotonic trends for 3

such pairs.

Non-monotonic trends also occur for benchmark domain generalization datasets We investigated three

widely used benchmarks in the domain generalization literature. First, we consider the Rotated MNIST

benchmark from DomainBed (Gulrajani and Lopez-Paz, 2020). We define the 10-way classification of un-

rotated MNIST images as the target task and 𝜃-rotated MNIST images as the OOD samples. Similar to the

previous rotated CIFAR-10 experiment, we observe non-monotonic trends in target generalization for larger

angles 𝜃. Next, we consider the PACS benchmark from DomainBed which contains 4 distinct environments:

photo, art, cartoon, and sketch. A 3-way classification task involving photos (real images) is defined as the
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Figure 2.8: Left: Sub-task 𝑇2 (Bird vs. Cat) from Split-CIFAR10 is the target task and images of these classes rotated by different
angles 𝜃◦ are the OOD task. WRN-10-2 architecture was used to train the model. We see non-monotonic curves for larger values
of 𝜃◦. For 60◦ and 135◦ in particular, the generalization error at 𝑚/𝑛 = 20 is worse than the generalization error with a fewer OOD
samples, i.e. OOD samples actively hurt generalization. Middle: The Split-CIFAR10 binary sub-task 𝑇4 (Frog vs. Horse) is the
target task and images with different levels of Gaussian blur are the OOD samples. WRN-10-2 architecture was used to train the
model. Non-monotonic curves are observed for larger levels of blur, while for smaller levels of blur, we notice that adding more
OOD data improves the generalization on the target task. Right: Generalization error of two separate networks, WRN-10-2 and
SmallConv, on the target task is plotted against the number of samples from the OOD task for 3 different pairs of target-OOD tasks
from Split-CIFAR10. All the 3 pairs exhibit non-monotonic target generalization trends across both network models. Error bars
indicate 95% confidence intervals (10 runs).

target task, and we let the corresponding data from other environments be the OOD samples. Interestingly,

we observe that when OOD samples consist of sketched images, then the generalization error on the real

images exhibits a non-monotonic trend. We also observe similar trends in DomainNet, a benchmark that

resembles PACS; see fig. 2.9.

Generalization error is not always non-monotonic even when there is distribution shift We considered

CINIC-10 (Darlow et al., 2018), a dataset which was created by combining CIFAR-10 with images selected

and down-sampled from ImageNet. We train a network on a subset of CINIC-10 that comprises of both

CIFAR-10 and ImageNet images. The target task is CIFAR-10 itself, so images from ImageNet in CINIC-10

act as OOD samples. fig. 2.10 demonstrates that having more ImageNet samples in the training data improves

the generalization (monotonic decrease) on the target task, but at a slower rate than the instance where the

training data is purely comprised of target data. This phenomenon is also demonstrated in fig. 2.5: for
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Figure 2.9: Non-monotonic trends in target generalization error on three DomainBed benchmarks. Left: Rotated MNIST (10
classes, 10 target samples/class, SmallConv), Middle: PACS (3 classes {dog, elephant, horse}, 10 target samples/class, WRN-16-4),
and Right: DomainNet (2 classes {bird, plane}, 25 target samples/class, WRN-16-4). Error bars indicate 95% confidence intervals
(10 runs).

0 5 10 15 20
m/n, n = 100

0.60

0.66

0.72

0.78

Ta
rg

et
 G

en
er

al
 z

at
 o

n 
E

rr
or

CINIC−10
Target: CIFAR-10, OOD: X (WRN-10-2)

X
CIFAR-10
ImageNet

Figure 2.10: Target task is CIFAR-10 and OOD samples are from ImageNet. Although there is a distribution shift that causes the
red curve to be higher error than the purple one, there is no non-monotonic trend in the generalization on CIFAR-10 due to OOD
samples from ImageNet. Error bars indicate 95% confidence intervals (10 runs).

sufficiently small shifts, the target generalization error decreases as the number of OOD samples increases.

2.2.3 Weighted objective to optimally exploit all tasks

Assumption in Sections 3.1 and 3.2 In the previous section, we discussed non-monotonic trends in gener-

alization error due to the presence of OOD samples in training datasets. If we do not knowwhich samples are

OOD, then the generalization for the intended target task can deteriorate. But it is statistically challenging
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to identify which samples are OOD. We neither propose nor use an explicit method to do this in this section.

Instead, we assume for the sake of analysis that the identities of the target and OOD samples in the datasets

are known in advance. We begin by stating the following theorem.

Theorem 8 (Ben-David et al. (2010)). For two tasks 𝑃𝑡 and 𝑃𝑜 , let ℎ̂𝛼 be the minimizer of the 𝛼-weighted

empirical risk 𝑒𝛼(ℎ) = 𝛼𝑒𝑡(ℎ) + (1 − 𝛼)𝑒𝑜(ℎ) where 𝑒𝑡(ℎ) and 𝑒𝑜(ℎ) are the empirical risks of 𝑃𝑡 and 𝑃𝑜

respectively. The generalization error

𝑒𝑡(ℎ̂𝛼) ≤ 𝑒𝑡(ℎ∗𝑡) + 4

√(
𝛼2

𝑛
+ (1 − 𝛼)2

𝑚

)√
𝑉𝐻 log(2(𝑚 + 𝑛 + 1)) + 2 log

8
𝛿
+ 2(1 − 𝛼)(1

2
𝑑𝐻(𝑃𝑡 , 𝑃𝑜) + 𝜆),

with probability at least 1 − d. Here ℎ∗𝑡 = argminℎ∈𝐻 𝑒𝑡(ℎ) is the target error minimizer; 𝑉𝐻 is the VC-

dimension of the hypothesis class 𝐻, 𝜆 = 𝑒𝑡(ℎ∗) + 𝑒ood(ℎ∗) and 𝑑𝐻(𝑃𝑡 , 𝑃𝑜) is the 𝐻Δ𝐻-divergence which is

a notion of relatedness between the tasks 𝑃𝑡 and 𝑃𝑜 .

The theorem shares a lot of similarity to the task competition theorem (theorem 5), in that it also captures a

bias-variance trade-off. However, instead of splitting the model capacity, we consider reweighing the losses

of different tasks using weights 𝛼. If we use an appropriate value of 𝛼 that makes the second and third terms

on the right-hand side small, then we can mitigate the deterioration of generalization error due to OOD

samples. If the OOD samples are very different from those of the target task, i.e., if 𝑑(𝑃𝑡 , 𝑃𝑜) is large, then
this theorem suggests that we should pick an 𝛼 ≈ 1. Doing so effectively ignores the OOD samples and the

generalization error then decreases monotonically as O(𝑛−1/2). Note that computation and minimization of

the 𝛼-weighted convex combination of target and OOD losses, 𝛼𝑒𝑡(ℎ) + (1− 𝛼)𝑒𝑜(ℎ), is possible only when

the identities of target and OOD samples are known in advance.

2.2.3.1 Choosing the optimal 𝛼∗

If we define 𝜌 =
√
𝑉𝐻−log d
𝑑𝐻 (𝑃𝑡 ,𝑃𝑜) to be, roughly speaking, the ratio of the capacity of the hypothesis class and the

distance between tasks, then a short calculation shows that for 𝛼 ∈ [0, 1],

𝛼∗ =


1 if 𝑛 ≥ 4𝜌2 ,

𝑛
𝑛+𝑚

(
1 +

√
𝑚2

4𝜌2(𝑛+𝑚)−𝑛𝑚
)

else.
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This suggests that if we have a hypothesis space with small VC-dimension or if the OOD samples and target

samples come from very different distributions, then we should train only on the target samples to obtain

optimal error. Otherwise, including the OOD samples after appropriately weighing them using 𝛼∗ can give

a better generalization error.

Estimating 𝜌 is difficult because it depends on the VC-dimension of the hypothesis class (Ben-David et al.,

2010; Vedantam et al., 2021). But in general, we can treat 𝛼 as a hyperparameter and use validation data to

search for its optimal value. For our FLD example we can do slightly better: we can calculate the analyti-

cal expression for the generalization error for the hypothesis that minimizes the 𝛼-weighted empirical risk

(see sections B.1.3 and B.1.4) and calculate 𝛼∗ by numerically evaluating the expression for 𝛼 ∈ [0, 1].
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Figure 2.11: Left: Generalization error on the target task for the Gaussian mixture model using a weighted objective (theorem 8)
in FLD; see section B.1.3. Note that unlike in fig. 2.5, the generalization error monotonically decreases with the number of OOD
samples 𝑚. Right: The optimal 𝛼∗ that yields the smallest target generalization error as a function of the number of OOD samples.
Note that 𝛼∗ increases as the number of OOD samples 𝑚 increases; this increase is more drastic for large values of Δ and is more
gradual for small values of Δ. Observe that 𝛼∗ = 1/2 for all values of 𝑚 if Δ = 0.

Figure 2.11 shows that regardless of the number of OOD samples (𝑚) and the relatedness between OOD and

target tasks (Δ), we can obtain a generalization error that is always better than that of a hypothesis trained

without OOD samples. In other words, if we choose 𝛼∗ appropriately (fig. 2.5 corresponds to choosing

𝛼 = 1/2), then we do not suffer from non-monotonic generalization error on the target task.
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2.2.3.2 Training networks with the 𝛼-weighted objective

In section 2.2.2, for a variety of computer vision datasets, we found that for some pairs of tasks, the general-

ization error is non-monotonic in the number of OOD samples. We now show that if we knew which samples

were OOD, then we can rectify this trend using an appropriate value of 𝛼∗ to weigh the samples differently. In

fig. 2.12, we track the test error of the target task for three cases: training is agnostic to the presence of OOD

samples (red), the learner knows which samples are OOD and uses an 𝛼 = 1/2 in the weighted risk to train

(yellow, we call this “naive”), and when it uses an optimal value of 𝛼 using grid-search (green). Searching

over 𝛼 improves the test error on all these 3 pairs of target-OOD tasks.
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Figure 2.12: Here we present three settings: minimizing the average risk over target and OOD samples is agnostic to OOD samples
present (red), minimizing the sum of the average loss of the target andOOD taskswhich corresponds to 𝛼 = 1/2 (yellow), minimizing
an optimally weighted convex combination of the target and OOD empirical loss (green). The last two settings are only possible
when one knows which samples are OOD. For each setting, we plot the generalization error on the target task against the number
of OOD samples for (target, OOD) pairs from PACS (Left) and CIFAR-10 subtasks (Middle). Unlike in CIFAR-10 task pairs, we
observe that in PACS, the target generalization error has a downward trend when 𝛼 = 0.5 (yellow line, left panel). We speculate that
this could be due to the similarity between the target and OOD tasks, which causes the model to generalize to the target even at a
naive weight. Right: The optimal 𝛼∗ obtained via grid search for the three problems in the middle column plotted against different
number of OOD samples. The value of 𝛼∗ lies very close to 1 but it is never exactly 1. In other words, if we use the weighted
objective in theorem 8 then we always obtain some benefit, even if it is marginal when OOD samples are very different from those
of the target. Error bars indicate 95% confidence intervals over 10 experiments.

Sampling mini-batches during training For 𝑚 � 𝑛, mini-batches that are sampled uniformly randomly

from the dataset will be dominated by OOD samples. As a result, the gradient even if it is still unbiased, is
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computed using very few samples from the target task. This leads to an increase in the test error, which is

particularly noticeable with 𝛼∗ chosen appropriately after grid search. We therefore use a biased sampling

procedure where each mini-batch contains a fraction 𝛽 samples from the target task and the remainder 1− 𝛽

consists of OOD samples. This parameter controls the bias and variance of the gradient of the target task

(𝛽 = 𝑛
𝑛+𝑚 gives unbiased gradients with respect to the unweighted total objective and high variance with

respect to the target task when 𝑚 � 𝑛. We found that both 𝛽 = {0.5, 0.75} improve test error.

Weighted objective for over-parameterized networks It has been argued previously that weighted objec-

tives are not effective for over-parameterized models such as deep networks because both surrogate losses

𝑒𝑡(ℎ) and 𝑒𝑜(ℎ) are zero when the model fits the training dataset (Byrd and Lipton, 2019). It may therefore

seem that the weighted objective in theorem 8 cannot help us mitigate the non-monotonic nature of the gen-

eralization error; indeed the minimizer of 𝛼𝑒𝑡(ℎ) + (1 − 𝛼)𝑒𝑜(ℎ) is the same for any 𝛼 if the minimum is

exactly zero. Our experiments suggest otherwise: the value of 𝛼 does impact the generalization error—even

for deep networks. This is perhaps because even if the cross-entropy loss is near-zero for a deep network

towards the end of training, it is never exactly zero.

Limitations of using a weighted objective The numerical and experimental evidence above indicate that

even a weighted empirical risk minimization (ERM) algorithm between the target and OOD samples is able

to rectify the non-monotonicity. However, this procedure is dependent on two critical ideal conditions: (1)

We must know which samples in the dataset are OOD, and (2) We must have a held out dataset of target

samples to tune the weight 𝛼. The difficulty of meeting both of these conditions in reality limits the utility

of this procedure as a practical solution to the problem. Instead, we hope that it would serve as a proof-of-

concept solution that motivates future research into accurately identifying OOD samples within datasets and

designing ways of determining the optimal weights.
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2.3 Prospective learning: A framework for learning over time

We end this chapter by presenting a new framework for learning from multiple tasks over time. In the first

two sections, we assume that each sample belongs to one of a finite number of tasks and that the samples

from every task are independent and identically distributed. Prospective learning is a theoretical framework

that takes this assumption to its limit and assumes that every sample belongs to its own task.

In PAC-learning, the samples are independent and identically distributed, i.e., the future is identical to this

past. This assumption is neither testable nor believed to be true in practice. The future is always different from

the past and those changes may cause the optimal hypothesis to change over time as well. There are numerous

mathematical and empirical approaches that have been developed to address this issue, e.g., techniques for

being invariant to, or adapting to, distribution shift, modeling the future as a different task, etc. But we lack

a first-principles framework to address problems where data distributions and goals may change over time in

such a way that the optimal hypothesis is time-dependent.

This section develops a theoretical framework called “Prospective Learning” (PL). Instead of data arising

from an unknown probability distribution like in PAC learning, prospective learning assumes that data is

drawn from an unknown stochastic process, and that the optimal hypothesis may change over time. A prospec-

tive learner uses samples received up to some time 𝑡 ∈ N to output an infinite sequence of predictors, which

it uses for making predictions on data at all future times 𝑡′ > 𝑡.

Why should one care about prospective learning? Imagine a deployed machine learning system. The

designer of this system desires to optimize—not the risk upon the past training data, or the risk on the

immediate future data—but the risk on all data that the model will make predictions upon in the future.

As data evolves, e.g., due to changing trends and preferences of the users, the optimal hypothesis to make

predictions also changes. Time is the critical piece of information if the system designer is to achieve their

goals. Both in the sense of how far back in time a particular datum was recorded, and in the sense of how far

ahead in the future this system will be used to make predictions. The designer must take time into account

to avoid retraining the model periodically, ad infinitum.
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2.3.1 A definition of prospective learning

A prospective learner minimizes the expected cumulative risk of the future using past data. Such a learner is

defined by the following key ingredients (see fig. 2.13 (left) for schematic illustration).

Data. Let the input and output at time 𝑡 be denoted by 𝑥𝑡 ∈ X and 𝑦𝑡 ∈ Y respectively. Let 𝑧𝑡 = (𝑥𝑡 , 𝑦𝑡).
We will model the data as a stochastic process 𝑍 ≡ (𝑍𝑡)𝑡∈N defined on an appropriate probability space

(Ω,ℱ , P). At time 𝑡 ∈ N, denote past data by 𝑧≤𝑡 ≡ (𝑧1 , . . . , 𝑧𝑡) and future data by 𝑧>𝑡 ≡ (𝑧𝑡+1 , . . . ). We

will find it useful to distinguish between the realization of the data, denoted by 𝑧≤𝑡 , and the corresponding

random variable, 𝑍≤𝑡 .

Hypothesis class. At time 𝑡, a prospective learner selects an infinite sequence ℎ ≡ (ℎ1 , . . . , ℎ𝑡 , ℎ𝑡+1 , . . . )
which it uses tomake predictions on data at any time in the future. Each element of this sequence ℎ𝑡 : X ↦→ Y
and therefore ℎ𝑡 ∈ YX .1 The hypothesis class ℋ is the space of such hypotheses, ℎ ∈ ℋ ⊆ (YX)N.2 We

will again use the shorthand ℎ≤𝑡 ≡ (ℎ1 , . . . , ℎ𝑡). We will sometimes talk about a “time-agnostic hypothesis”

which will refer to a hypothesis such that ℎ𝑡 = ℎ𝑡′ for all 𝑡 , 𝑡′ ∈ N. Observe that this makes our setup different

from the standard setup in PAC learning where the learner selects a single hypothesis inYX . One could also

think of prospective learning as using a single time-varying hypothesis ℎ : N×X ↦→ Y, i.e., the hypothesis

takes both time and the datum as input to make a prediction.

Learner. A prospective learner is a map from the data received up to time 𝑡, to a hypothesis that makes

predictions on the data over all time (past and future): (X × Y )𝑡 → (YX)N. The learner gives as output a

hypothesis ℎ(𝑧≤𝑡) ∈ ℋ . Unlike a PAC learner, a prospective learner can make different kinds of predictions

at different times. This is a crucial property of prospective learning. In other words, after receiving data up

to time 𝑡, the hypothesis selected by the prospective learner can predict on samples at any future time 𝑡′ > 𝑡.
1 We will use some non-standard notation in this paper. In particular, a hypothesis ℎ will always refer to sequence of predictors

ℎ ≡ (ℎ1 , . . . , ℎ𝑡 , ℎ𝑡+1 , . . . ). This helps us avoid excessively verbose mathematical expressions.
2 When we say that “learner selects a hypothesis” in the sequel, it will always mean that the learner selects an infinite sequence

from within the hypothesis class ℋ .
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Prospective loss and risk. The future loss incurred by a hypothesis ℎ is

ℓ̄𝑡(ℎ, 𝑍) = lim sup
𝜏→∞

1
𝜏

𝑡+𝜏∑
𝑠=𝑡+1

ℓ (𝑠, ℎ𝑠(𝑋𝑠), 𝑌𝑠), (2.8)

where ℓ : N×Y ×Y ↦→ [0, 1] is a bounded loss function. 3 Prospective risk at time 𝑡 is the expected future

loss

𝑅𝑡(ℎ) = E
[
ℓ̄𝑡(ℎ, 𝑍) | 𝑧≤𝑡

]
=

∫
ℓ̄𝑡(ℎ, 𝑍) dP𝑍 | 𝑧≤𝑡 , (2.9)

where we assume that ℎ is a random variable and ℎ ∈ 𝜎(𝑍≤𝑡) where 𝜎(·) denotes the filtration (an increasing

sequence of sigma algebras) of the stochastic process 𝑍. We have used the shorthand E[𝑌 | 𝑥] for E[𝑌 | 𝑋 =

𝑥]. Observe that we have conditioned the prospective risk of the hypothesis ℎ upon the realized data 𝑧≤𝑡 . We

can take an expectation over the realized data, to obtain the expected prospective risk

E [𝑅𝑡(ℎ)] =
∫

𝑅𝑡(ℎ) dP𝑍≤𝑡 .

Prospective Bayes risk is the minimum risk achievable by any hypothesis. In PAC learning, it is a constant

that depends upon the (fixed) true distribution of the data and the risk function. In prospective learning, the

optimal hypothesis can predict differently at different times. We therefore define the prospective Bayes risk

at a time 𝑡 as

𝑅∗
𝑡 = inf

ℎ∈𝜎(𝑍≤𝑡 )
𝑅𝑡(ℎ), (2.10)

which is the minimum achievable prospective risk by any learner that observes data 𝑧≤𝑡 . We define the Bayes

optimal learner as any learner that achieves a Bayes optimal risk at every time 𝑡 ∈ N. In certain contexts,

one might be interested in the limiting prospective Bayes risk as 𝑡 → ∞.

2.3.1.1 Different prospective learning scenarios with illustrative examples

We next discuss four prospective learning scenarios that are relevant to increasingly more general classes of

stochastic processes. Our goal is to illustrate, using examples, how the definitions developed in the previous

section capture these scenarios. We will assume that for all times 𝑡 we have 𝑋𝑡 = 1,𝑌𝑡 ∈ {0, 1}. We will also
3 The limsup is guaranteed to exist if ℓ is bounded. If the series always converges, we can use lim instead.
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focus on the time-invariant zero-one loss ℓ (𝑡 , �̂� , 𝑦) = 𝛿(�̂� ≠ 𝑦) for all 𝑡, here 𝛿 is the Dirac delta function.

Figure 2.13 shows example realizations of the data for each scenario.

z1 z2 zt zt+1 zt+2 zt+3

Realized Past (z≤t)

zt+1 zt+2 zt+3

zt+1 zt+2 zt+3

. . .

... ... ...

... ... ...

. . .

. . .

. . .

Potential Futures (z>t)

ht+1 ht+2 ht+3

Learner (L)

. . .

Time0 t

5 10 15
Time (t)

0.2

0.3

0.4

0.5

Pr
os

pe
ct

iv
e 

ris
k

Scenario 1
Independent and identically distributed data

MLE
Bayes risk

5 10 15
Time (t)

0.2

0.3

0.4

0.5

Pr
os

pe
ct

iv
e 

ris
k

Scenario 2
Independent but not identically distributed data

MLE
Prospective learner
Variant 2
Variant 3
Bayes risk

5 10 15
Time (t)

0.2

0.3

0.4

0.5
Pr

os
pe

ct
iv

e 
ris

k

Scenario 3
Data from a two-state Markov chain

MLE
Prospective learner
Bayes risk

Figure 2.13: A schematic for prospective learning (left) and realizations of the examples for the four scenarios (top right); dots
denote 1s and empty spaces denote 0s for 𝑌𝑡 ∈ {0, 1} with 𝑋𝑡 = 1 for all times 𝑡. Prospective risk of learners at different times
is shown in the bottom panels and discussed in section 2.3.1.1. scenario 1: For Bernoulli probability 𝑝 = 0.2, the maximum-
likelihood estimator (MLE) in blue uses a time-agnostic hypothesis ℎ𝑡 (𝑋𝑡 ) = 1(�̂�𝑡 > 0.5) where �̂�𝑡 = 𝑡−1 ∑𝑡

𝑠=1 𝑦𝑠 , ties at �̂�𝑡 = 0.5
are broken randomly. The risk of this learner converges to the Bayes risk. scenario 2: For Bernoulli probability 𝑝 = 0.2, the MLE
estimator (blue) performs at chance levels. A prospective learner (red) that alternates between two predictors at even and odd times
converges to Bayes risk. Variants of this learner that use less information from the stochastic process (purple does not know that the
data distributions at even and odd times are tied, green does not know that the distribution shifts at every time-step) also converge
to Bayes risk, but more slowly. scenario 3: For 𝜃 = 0.1 and 𝛾 = 0.9 in the discounted prospective risk, the MLE estimator (blue)
again performs at chance levels. A prospective learner that computes an estimate of the transition probability of the two-state Markov
chain to estimate P(𝑌𝑡′ | 𝑦𝑡 ) for future times 𝑡′ > 𝑡 converges to Bayes risk.

Data is independent and identically distributed. Formally, this consists of stochastic processes where

P𝑍𝑡′ | 𝑍≤𝑡 = P𝑍𝑡 for all 𝑡 , 𝑡′ ∈ N. As an example, consider 𝑌𝑡 ∼ Bernoulli(𝑝) for some unknown parameter

𝑝 ∈ [0, 1]. Prospective Bayes risk is equal to min(𝑝, 1 − 𝑝) in this case. A time-agnostic hypothesis, for
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example one that thresholds themaximum likelihood estimator (MLE) of the Bernoulli probability, converges

to the limiting prospective Bayes risk.

Data is independent but not identically distributed. This consists of stochastic processes where P𝑍𝑡 | 𝑍≤𝑡 =

P𝑍𝑡 for all 𝑡 ∈ N. Consider 𝑌𝑡 ∼ Bernoulli(𝑝) if 𝑡 is odd, and 𝑌𝑡 ∼ Bernoulli(1 − 𝑝) if 𝑡 is even, i.e.,

data is drawn from two different distributions at alternate times. Prospective Bayes risk is again equal to

min(1 − 𝑝, 𝑝) in this case. A time-agnostic hypothesis can only perform at chance level. But a prospective

learner, for example one that selects a hypothesis that alternates between two predictors at even and odd times,

can converge to prospective Bayes optimal risk. We can also construct variants, e.g., when the relationship

between the Bernoulli probabilities are not known (Variant 1 in fig. 2.13), or when the learner does not

know that the data distribution changes at every time step (Variant 2 in fig. 2.13 where we implemented a

generalized likelihood ratio test to determine whether the distribution changes). The risk of these variants

also converges to prospective Bayes risk, but they need more samples because they use more generic models

of the stochastic process. This scenario is closely related to (online) multitask/meta-learning (Finn et al.,

2017).

Data is neither independent nor identically distributed. Formally, this scenario consists of general stochas-

tic processes. As an example, consider a Markov process P(𝑌𝑡+1 = 𝑘 | 𝑌𝑡 = 𝑘) = 𝜃 with two states 𝑘 ∈ {0, 1}
and 𝑌1 ∼ Bernoulli(𝜃). The invariant distribution of this Markov process is P(0) = P(1) = 1/2. Prospective

Bayes risk is also equal to 1/2. For stochastic processes that have a invariant distribution, it is impossible to

predict the next state infinitely far into the future and therefore it is impossible to prospect. The prospective

Bayes risk is trivially chance levels. In such situations, the learner could consider losses that are discounted

over time. For example, one could use a slightly different loss than the one in eq. (2.8) to write

ℓ̄𝑡(ℎ, 𝑍) = (1 − 𝛾)∑∞
𝑠=𝑡+1 𝛾

𝑠−𝑡−1ℓ (ℎ𝑠(𝑋𝑠), 𝑌𝑠) (2.11)

for some 𝛾 ∈ [0, 1). In this example, we can calculate the prospective Bayes risk analytically; see sec-

tion A.1.1. For 𝛾 = 0.9, 𝜃 = 0.1 and the zero-one loss, limiting prospective Bayes risk is 0.357. Now

consider a learner which computes the MLE of the transition matrix Γ𝑡
′−𝑡
𝑡 . It calculates P(𝑌𝑡′ | 𝑦𝑡) = �̂�𝑡′

where [1 − �̂�𝑡′ , �̂�𝑡′] = Γ𝑡
′−𝑡
𝑡 [1 − 𝑦𝑡 , 𝑦𝑡]> and uses the hypothesis ℎ𝑡′(𝑋𝑡′) = 1(�̂�𝑡′ > 0.5) (ties broken ran-
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domly). We can see in fig. 2.13 that this learner converges to the prospective Bayes risk. This example shows

that if we model the changes in the data, then we can perform prospective learning. This scenario is closely

related to certain continual learning problems (Vogelstein et al., 2020b; Ramesh and Chaudhari, 2022).

2.3.2 Theoretical foundations of prospective learning

Definition 2 (Strong Prospective Learnability). A family of stochastic processes is strongly prospectively

learnable, if there exists a learner with the following property: there exists a time 𝑡′(𝜖, 𝛿) such that for any

𝜖, d > 0 and for any stochastic process 𝑍 from this family, the learner outputs a hypothesis ℎ such that

P
[
𝑅𝑡(ℎ) − 𝑅∗

𝑡 < 𝜖
] ≥ 1 − 𝛿, for any 𝑡 > 𝑡′.

This definition is similar to the definition of strong learnability in PAC learning with one key difference.

Prospective Bayes risk 𝑅∗
𝑡 depends upon the realization of the stochastic process 𝑧≤𝑡 up to time 𝑡. In PAC

learning, it would only depend upon the true distribution of the data. Not all families of stochastic processes

are strongly prospectively learnable. We therefore also define weak learnability with respect to a “chance”

learner that predicts E[𝑌] and achieves a prospective risk 𝑅0
𝑡 .

4

Definition 3 (Weak Prospective Learnability). A family of stochastic processes is weakly prospectively

learnable, if there exists a learner with the following property: there exists an 𝜖 > 0 such that for any d > 0,

there exists a time 𝑡′(𝜖, 𝛿) such that for any stochastic process 𝑍 from this family, P
[
𝑅0
𝑡 − 𝑅𝑡(ℎ) > 𝜖

] ≥
1 − 𝛿, for any 𝑡 > 𝑡′.

In PAC learning for binary classification, strong and weak learnability are equivalent (Schapire, 1990) in the

distribution agnostic setting, i.e., when strong and weak learnability is defined as the ability of a learner to

learn any data distribution. But even in PAC learning, if there are restrictions on the data distribution, strong

and weak learnability are not equivalent (Kearns, 1988). This motivates proposition 1 below. Before that,

we define a time-agnostic empirical risk minimization (ERM)-based learner. In PAC learning, ERM selects

a hypothesis that minimizes the empirical loss on the training data. It outputs a time-agnostic hypothesis, i.e.,

using data, say, 𝑧≤𝑡 standard ERM returns the same predictor for future data from any time 𝑡′ > 𝑡. There is
4 We can also define weak learnability with respect to the prospective risk of a particular learner, even one that is not prospective.

This may be useful to characterize learning for stochastic processes which do not admit strong learnability.
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a natural application of ERM to prospective learning problems, defined below.

Definition 4 (Time-agnostic ERM). Let ℋ be a hypothesis class that consists of time-agnostic predictors,

i.e., ℎ𝑡 = ℎ𝑡′ for any 𝑡 , 𝑡′ ∈ N for all predictors ℎ ∈ ℋ . Given data 𝑧≤𝑡 , a learner that returns

ℎ̂ = argmin
ℎ∈ℋ

1
𝑡

𝑡∑
𝑠=1

ℓ (𝑠, ℎ𝑠(𝑥𝑠), 𝑦𝑠) (2.12)

is called a time-agnostic empirical risk minimization (ERM)-based learner.

Time-agnostic ERM in prospective learning may use a time-dependent loss ℓ (𝑠, ℎ𝑠(𝑥𝑠), 𝑦𝑠). This ERM is not

very different from standard ERM in PAC learning (when instantiated with the hypothesis class that consists

of sequences of predictors, that we are interested here). If data is IID (scenario 1), then there is no information

provided by time in the training samples. But if there are temporal patterns in the data, like in the examples

for scenarios 2 or 3, then time-agnostic ERM as defined here will return predictors that are different from

those of standard ERM that uses a time-invariant loss.

Proposition 1. There exist stochastic processes for which time-agnostic ERM is not a weak prospective

learner. There also exist stochastic processes for which time-agnostic ERM is a weak prospective learner

but not a strong one.

See section A.1.2 for the proof. We do not know yet whether (or when) strong and weak learnability are

equivalent for prospective learning.

2.3.2.1 Prospective empirical risk minimization

In PAC learning, the hypothesis returned by ERM using the training data can predict arbitrarily well (approx-

imate the Bayes risk arbitrarily well with arbitrarily high probability), with a sufficiently large sample size.

This statement holds if (a) there exists a hypothesis in the hypothesis class whose risk matches the Bayes risk

asymptotically, and (b) if risk on training data converges to that on the test data sufficiently quickly and uni-

formly over the hypothesis class (Blumer et al., 1989; Alon et al., 1997). Theorem 9 is an analogous result

for prospective learning.

Theorem 9 (Prospective ERM is a strong prospective learner). Consider a finite family of stochastic
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processes Z. If we have (a) consistency, i.e., there exists a hypothesis class ℋ ⊆ (YX)N such that ∀𝑍 ∈ Z,

lim
𝑡→∞E

[
inf
ℎ∈ℋ

𝑅𝑡(ℎ) − 𝑅∗
𝑡

]
= 0, (2.13)

where ℎ ∈ ℋ is a random variable in 𝜎(𝑍≤𝑡), and (b) uniform concentration of the limsup, i.e., ∀𝑍 ∈ Z,

E

[
max
ℎ∈ℋ

�����ℓ̄𝑡(ℎ, 𝑍) − 1
𝑚

𝑚∑
𝑠=1

ℓ (𝑠, ℎ𝑠(𝑥𝑠), 𝑦𝑠)
�����
]
≤ 𝛾𝑡 , (2.14)

for some 𝛾𝑡 → 0 (all uniform over the family of stochastic processes), then a learner that returns

ℎ̂ = argmin
ℎ∈ℋ

1
𝑚

𝑚∑
𝑠=1

ℓ (𝑠, ℎ𝑠(𝑥𝑠), 𝑦𝑠), (2.15)

is a strong prospective learner for this family. We define prospective ERM as the learner that uses train data

𝑧≤𝑡 to implement eq. (2.15).

Proof. We would like to bound the gap between the empirical prospective risk and the true prospective risk.

We define 𝑒𝑡(ℎ̂) = 1
𝑡

∑𝑡
𝑠=1 𝑙(𝑠, ℎ𝑠(𝑥𝑠), 𝑦𝑠) and assuming ℋ is compact, let ℎ∗𝑡 = argminℎ∈ℋ 𝑅𝑡(ℎ). We

express the difference between the empirical and true risk as follows:

𝑅𝑡(ℎ̂) − 𝑅∗
𝑡 = (𝑅𝑡(ℎ̂) − 𝑒𝑡(ℎ̂)) + (𝑒𝑡(ℎ̂) − 𝑒𝑡(ℎ∗𝑡)) + (𝑒𝑡(ℎ∗𝑡) − 𝑅𝑡(ℎ∗𝑡)) + (𝑅𝑡(ℎ∗𝑡) − 𝑅∗

𝑡).

Since ℎ̂ minimizes the empirical risk, 𝑒𝑡(ℎ̂) ≤ 𝑒𝑡(ℎ∗), which results in

𝑅𝑡(ℎ̂) − 𝑅∗
𝑡 = (𝑅𝑡(ℎ̂) − 𝑒𝑡(ℎ∗𝑡)) + (𝑒𝑡(ℎ∗𝑡) − 𝑅𝑡(ℎ∗𝑡)) + (𝑅𝑡(ℎ∗𝑡) − 𝑅∗

𝑡)

We can apply Markov’s inequality to eq. (2.13) to deduce that 𝐸
[
𝑅𝑡(ℎ∗𝑡) − 𝑅∗

𝑡

] → 0, which implies that

𝑅𝑡(ℎ∗𝑡)
𝑝→ 𝑅∗

𝑡 . As a second step, we would like to prove that |𝑅𝑡(ℎ)− 𝑒𝑚(ℎ)| → 0 ∀ℎ. Using the assumption
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in eq. (2.14),

E𝑍≤𝑡 [𝑅𝑡(ℎ) − 𝑒𝑚(ℎ)] = E𝑍≤𝑡
[
E

[
𝑙(𝑡 , 𝑍) − 𝑒𝑚(ℎ) | 𝑍≤𝑡

] ]
= E𝑍

[
𝑙(𝑡 , 𝑍) − 𝑒𝑚(ℎ) | 𝑍≤𝑡

] ≤ 𝛾𝑡

Since 𝛾𝑡 → 0, we can use Markov’s inequality to show that

𝑃 (|𝑅𝑡(ℎ) − 𝑒𝑡(ℎ)| ≥ 𝜖) ≤ 1
𝜖
E

[
𝑙(𝑡 , 𝑍) − 𝑒𝑡(ℎ)

] ≤ 𝛾𝑡
𝜖

Hence, 𝑅𝑡(ℎ) 𝑝→ 𝑒𝑡(ℎ) for all ℎ. Using the results from both steps, we get, 𝑅𝑡(ℎ̂) − 𝑅∗
𝑡 → 0, which implies

that prospective ERM is a strong prospective learner. □

In this version of the theorem, we assume that the lim is always well-defined. A more general version of

this theorem would use the lim sup instead. The first condition, eq. (2.13), is analogous to the consistency

condition in PAC learning. In simpler words, it states that the Bayes risk can be approximated well using the

chosen sequence of hypothesis classes {ℋ𝑡}∞𝑡=1. The second condition, eq. (2.14), is analogous to concentra-

tion of measure in PAC learning, it requires that the lim in eq. (2.8) is close to an empirical estimate of the

lim (the second term inside the absolute value in eq. (2.14)).

At each time 𝑡, prospective ERM in eq. (2.15) selects the best hypothesis ℎ̂ ∈ ℋ for future times 𝑡′ > 𝑡, that

minimizes an empirical estimate of the limsup using the training data 𝑧≤𝑡 . Prospective ERM can exploit the

difference between the latest datum in the training set with time 𝑡 and the time for which it makes predictions

𝑡′ by selecting specific sequences inside the hypothesis class ℋ . For example, in scenario 2 it can select

sequences where alternating elements can be used to predict on data from even and odd times.

Remark 10 (How to implement prospective ERM?). An implementation of prospective ERM is therefore

not much different than an implementation of standard ERM, except that there are two inputs: time 𝑠 and

the datum 𝑥𝑠 . Suppose we use a hypothesis class where each predictor is a neural network, this could be a

multi-layer perceptron or a convolutional neural network. The training set 𝑧≤𝑡 consists of inputs 𝑥𝑠 along

with corresponding time instants 𝑠 and outputs 𝑦𝑠 . To implement prospective ERM, we modify the network

to take (𝑠, 𝑥𝑠) as input (using any encoding of time, we discuss one in section 2.3.3) and train the network
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to predict the label 𝑦𝑠 . At inference time, this network is given the input (𝑡′, 𝑥𝑡′) to obtain the prediction

𝑦𝑡′. Note that if prospective ERM is implemented in this fashion, the learner need not explicitly calculate the

infinite sequence of predictors.

Corollary 2.3.1. There exist stochastic processes for which time-agnostic ERM is not a strong prospective

learner, but prospective ERM is a strong learner.

In PAC learning, one first proves uniform convergence for a finite hypothesis class. This can then be used

to calculate the sample complexity of ERM, or extended to infinite hypothesis classes using constructions

such as VC-dimension and covering numbers (Vapnik and Chervonenkis, 2015). Although we do not have

such results for prospective learning for a general family of stochastic process, for periodic processes we can

calculate the sample complexity.

2.3.2.2 Prospective ERM on periodic processes

Suppose we have a stochastic process such that 𝑍𝑡 ∼ 𝑃(𝑡 mod 𝑇) for some known period𝑇, i.e., data is indepen-

dent across time but not identically distributed, and the loss function ℓ (𝑡 , ·, ·) is time-invariant. Scenario 2 is

a special case with 𝑇 = 2. Assume that we can find a hypothesis classG that contains the Bayes estimator for

each 𝑃𝑡 with 𝑡 ∈ {1, . . . , 𝑇}. Thenℋ𝑇 = {ℎ : ℎ𝑡+𝑇 = ℎ𝑡 and ℎ𝑡 ∈ G ∀𝑡}. Note that even if we do not know

the period, we can still implement prospective ERM using the hypothesis class ∪𝑡∈{1,···𝑇}ℋ𝑡 . Prospective

ERM is therefore a strong prospective learner if the period 𝑇 is bounded.

Remark 11 (Implementing prospective ERM for periodic processes). If G has a finite VC-dimension,

choosing ℋ = ℋ𝑇 as the hypothesis class guarantees that lim𝑚→∞ 1
𝑚

∑𝑚
𝑠=1 ℓ (𝑠, ℎ𝑠(𝑥𝑠), 𝑦𝑠) is well defined.

We can therefore choose

ℎ̂ = argmin
ℎ∈ℋ

1
𝑡

𝑡∑
𝑠=1

ℓ (𝑠, ℎ𝑠(𝑥𝑠), 𝑦𝑠)

in eq. (2.15). In other words, implementing prospective ERM for a periodic process boils down to solving

𝑇 different time-agnostic ERM problems, each using data {𝑧𝑠𝑇+𝑘}∞𝑠=0, 𝑘 ∈ {1, ..., 𝑇}. Observe that this is

identical to the prospective learner we used for the example in scenario 2 and fig. 2.13.

Remark 12 (Sample complexity of prospective ERM for a periodic process). We can calculate the sample

complexity by exploiting the relatedness of the different distributions in the periodic process. First assume

𝑡 > 𝑇, i.e., at least one sample from each distribution is available. We again pick ℋ = ℋ𝑇 . Let us assume
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that ℎ̂𝑡 ∈ G for all times 𝑡. Let 𝐶 ≡ 𝐶(𝜖/16,G𝑇) denote the covering number of a hypothesis class of

𝑇-length sequences of hypotheses G𝑇 = {(ℎ, . . . , ℎ) : ℎ ∈ G} using balls of radius 𝜖/16 with respect to loss

ℓ . Then, using Baxter (2000, Theorem 4) we can show that, if

𝑡 ≥ max
{

64
𝜖2 log

4𝐶(𝜖,G𝑇)
d ,

16𝑇
𝜖2

}
, (2.16)

then for prospective ERM in eq. (2.15) we have

E
[
𝑅𝑡(ℎ̂)

] ≤ lim
𝑡→∞E

[
inf
ℎ∈ℋ

𝑅𝑡(ℎ)
]
+ 2𝜖,

with probability at least 1− 𝛿. The sample complexity in eq. (2.16) is dominated by the first term in the curly

brackets; Baxter (2000, Lemma 5) shows that 𝐶(𝜖,G𝑇) ≤ (𝐶(𝜖,G))𝑇 . Sample complexity of prospective

ERM grows at most linearly with the period 𝑇, as one would expect.

2.3.3 Experiments on prospective learning

This section demonstrates that we can implement prospective ERM on prospective learning problems con-

structed on synthetic data, MNIST and CIFAR-10. In practice, prospective ERMmay approximately achieve

the guarantees of theorem 9. We will focus on the distribution changing, independently or not (scenario 2,

3). Recall that scenario 1 is the same as the IID setting used in standard supervised learning problems. We

discuss experiments that check whether large language models can do prospective learning in section 2.3.3.5.

Learners and hypothesis classes. Task-agnostic online continual learning methods are the closest algo-

rithms in the literature that can address situations where data evolve over time. We use the following three

methods.

(i) Follow-the-Leaderminimizes the empirical risk calculated on all past data and is a no-regret algorithm

(Cesa-Bianchi and Lugosi, 2006). We note that while this is a popular online learning algorithm, we

do not implement the algorithm in an online fashion.

(ii) Online SGD fine-tunes the network using new data in an online fashion. At every time step, weights

of the network are updated once using the last eight samples.
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(iii) Bayesian gradient descent (Zeno et al., 2018) is an online continual learning algorithm designed to

address situations where the identity of the task is not known during both training and testing, i.e., it

implements continual learning without knowledge of task boundaries.

These three methods are not explicitly designed for prospective learning, but are designed to address the

changing data distribution 𝑡.5

We calculate the prospective risk of the predictor returned by these methods; note that they do not output

a time-varying predictor and consequently, these methods output a time-agnostic hypothesis. As a result,

when we evaluate the prospective risk of these methods, we use the same hypothesis for all future time. For

all three methods, we use a multi-layer perceptron (MLP) for synthetic data and MNIST, and a convolutional

neural network (CNN) for CIFAR-10.

For prospective ERM the sequence of predictors is built by incorporating time as an additional input to

an MLP or CNN as follows. For frequencies 𝜔𝑖 = 𝜋/𝑖 for 𝑖 = 1, . . . , 𝑑/2, we obtain a 𝑑-dimensional

embedding of time 𝑡 as 𝜑(𝑡) = (sin(𝜔1𝑡), . . . , sin(𝜔𝑑/2𝑡), cos(𝜔1𝑡), . . . , cos(𝜔𝑑/2𝑡)). This is similar to the

position encoding in Vaswani et al. (2017). A predictor ℎ𝑡(·) uses a neural network that takes as input, an

embedding of time 𝜑(𝑠), and the input 𝑥𝑠 to predict the output 𝑦𝑠 for any time 𝑠 ∈ N. Using such a time

embedding is useful in prospective learning because one does not need to explicitly maintain the infinite

sequence of predictors ℎ ≡ (ℎ1 , . . . , ).

Training setup. We use the zero-one error 1{ �̂� ≠ 𝑦} to calculate prospective risk for all problems; all

learners are trained using a standard surrogate of this objective, the cross-entropy loss. For all experiments,

for each time 𝑡, we calculate the prospective risk 𝑅𝑡(ℎ) in eq. (2.9) of the hypothesis created by these learners

for a particular realization of the stochastic process 𝑧≤𝑡 . For each prospective learning problem, we generate

a sequence of 50,000 samples. Learners are trained on data from the first 𝑡 time steps (𝑧≤𝑡) and prospective

risk is computed using samples from the remaining time steps. Except for online SGD and Bayesian gradient
5 There are many algorithms in the existing literature that the reader may think of as reasonable baselines. We have chosen a

representative and relevant set here, rather than an exhaustive one. For example, online meta-learning approaches are close to online-
SGD; since the learner fine-tunes on the most recent data. Algorithms in the literature on time-series (i) focus on predicting future
data, say, 𝑌𝑡′ given past data 𝑦≤𝑡 without taking covariates 𝑋𝑡′ or some exogenous variables 𝑋≤𝑡 into account, (ii) can usually only
make predictions for a pre-specified future context window (Lim et al., 2021), and (iii) work for low-dimensional signals (unlike
images).
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descent, learners corresponding to different times are trained completely independently. See section A.6.3

for more details.

Remark 13 (Whywe do not use existing benchmark continual learning scenarios). The tasks constructed

below resemble continual learning benchmark scenarios such as Split-MNIST or Split-CIFAR10 (Zenke et al.,

2017) where data from different distributions are shown sequentially to the learner. However, there are

three major differences. First, in these existing benchmark scenarios, data distributions do not evolve in a

predictable fashion, and prospective learning would not be meaningful. Second, existing scenarios consider

a fixed time horizon. We are keen on calculating the prospective risk for much longer horizons whereby the

differences between different learners are easier to discern; our experiments go for as large as 30,000 time

steps. Third, our tasks have the property that the Bayes optimal predictor changes over time.

2.3.3.1 Prospective learners for independent but not identically distributed data (scenario 2)

We create tasks using synthetic data, MNIST and CIFAR-10 datasets to design prospective learning problems

when data are independent but not identically distributed across time (scenario 2)

Dataset and Tasks. For the synthetic data, we consider two binary classification problems (“tasks”) where

the input is one-dimensional. Inputs for both tasks are drawn from a uniform distribution on the set [−2,−1]∪
[1, 2]. Ground-truth labels correspond to the sign of the input for Task 1, and the negative of the sign of the

input for Task 2. For MNIST and CIFAR-10 we consider 4 tasks corresponding to data from classes 1-5,

4-7, 6-9 and 8-10 in the original dataset, i.e., the first task considers classes 1-5 labeled 1-5 respectively, the

second task considers classes 4-7 labeled 1-4, the third task considers classes 6-9 labeled 1-4 and the last

task considers labels 8-10 labeled 1-3. In other words, images from class 1 in task 1, class 4 from task 2 and

class 6 from task 3 are all assigned the label 1. For the prospective learning problem based on synthetic data,

the task switches every 20 time steps. For MNIST and CIFAR-10, the data distribution cycles through the 4

tasks, and the distribution of data changes every 10 time-steps. For more details, see section A.6.3.

Figure 2.14 shows that prospective ERM can learn problems in scenario 2 when the data are indepen-

dent but not identically distributed. For prospective learning problems constructed from synthetic data,

the risk of prospective ERM converges to prospective Bayes risk over time. For the MNIST and CIFAR-10

prospective problems, the prospective learning risk drops precipitously. In contrast, online learning base-
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Figure 2.14: Prospective ERM can achieve good instantaneous and prospective risk in scenario 2. Left: Instantaneous and
prospective risks for problems constructed using synthetic data (see text) across 5 random seeds (which govern the sequence of
samples and the weight initializations of neural networks). Instantaneous risk spikes when the task switches for many online learning
baseline algorithms. In contrast, prospective ERM has minimal spikes at later times and both instantaneous and prospective risks
eventually converge to zero. Right: Prospective risk for different baseline algorithms and prospective ERM for tasks constructed
using MNIST and CIFAR-10 for scenario 2. In all three cases, the risk of prospective ERM approaches Bayes risk while online
learning baselines considered here do not achieve a low prospective risk. For comparison, the chance prospective risk is 0.5 for
synthetic data and 0.742 for MNIST and CIFAR-10 tasks.

lines discussed above achieve a far worse prospective risk. Observe that Follow-the-Leader (blue) performs

as well, or better, as online SGD and Bayesian GD. This is not surprising; while the ERMmodels correspond-

ing to each time 𝑡 were trained independently, the networks corresponding to online SGD and Bayesian GD

were trained in an online fashion. In practice, it is often difficult to tune online learning methods effec-

tively (Li et al., 2020a). 6

2.3.3.2 Prospective learners when data are neither independent nor identically distributed
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Figure 2.15: Left: For MNIST and CIFAR-10, we consider 4 tasks corresponding to the classes 1-5, 4-7, 6-9 and 8-10. Using
these tasks, we construct scenario 3 problems corresponding to a stochastic process which is a hierarchical hidden Markov model.
After every 10 time-steps, a different Markov chain governs transitions among tasks (one Markov chain for tasks 1 and 2, and
another for tasks 3 and 4). This ensures that the stochastic process does not have a stationary distribution. Right: For synthetic
data, the 4 tasks are created using two-dimensional input data as shown pictorially above. The four parts of the input domain
are {(𝑥1 , 𝑥2) : 1 ≤ 𝑥1 , 𝑥2 ≤ 2}, {(𝑥1 , 𝑥2) : 1 ≤ 𝑥1 ≤ 2, and − 2 ≤ 𝑥2 ≤ −1}, {(𝑥1 , 𝑥2) : −2 ≤ 𝑥1 , 𝑥2 ≤ −1} and
{(𝑥1 , 𝑥2) : −2 ≤ 𝑥1 ≤ −1 and 1 ≤ 𝑥2 ≤ 2}. Colors indicate classes. The hierarchical hidden Markov model for transitions among
the tasks is identical for MNIST and CIFAR-10.

6 For CNNs on CIFAR-10, if one concatenates the time embedding directly to the input images as opposed to concatenating to a
layer before softmax, like it is done here, the prospective risk in fig. 2.14 (right) is much higher (worse by almost 0.2; See fig. A.29).
The implementation details of the time embedding matter when implementing prospective learners in practice, even if theorem 9 is
true in general.
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Figure 2.16: Prospective ERM can achieve good prospective risk in scenario 3. Prospective risk across 5 random seeds (which
govern the sequence of samples and the weight initializations of neural networks). In all three cases, the risk of prospective ERM
approaches Bayes risk while a number of baseline algorithms do not achieve a low prospective risk. Stochastic processes in these
problems corresponding to scenario 3 do not have an invariant distribution. This is why a time-agnostic hypothesis (ERM) that is
constructed by the baseline algorithms does not achieve a good prospective risk.

Dataset and Tasks. For synthetic data, we construct 4 binary classification problemswith two-dimensional

input data (see fig. 2.15 and caption for details). For CIFAR-10 and MNIST, we consider four tasks corre-

sponding to the classes 1-5, 4-7, 6-9 and 8-10. Using these tasks, we construct problems where the data

distribution is governed by a stochastic process which is a hierarchical hidden Markov model (scenario 3).

After every 10 time-steps, a different Markov chain governs transitions among tasks (one Markov chain for

tasks 1 and 2, and another for tasks 3 and 4, as shown in fig. 2.15). These choices ensure that the stochastic

process does not have a stationary distribution.7

As fig. 2.16 shows, prospective ERM can prospectively learn problems when data is both independent

and not identically distributed (scenario 3). Stochastic processes in these problems corresponding to

scenario 3 do not have a stationary distribution. This is why a time-agnostic hypothesis (Follow-the-Leader)

does not achieve a good prospective risk, unlike prospective ERM.

2.3.3.3 Markov chain with periodic resets

Dataset and Tasks. For synthetic data, we consider the 2 binary classification problems described in sec-

tion 2.3.3.1. For CIFAR-10 andMNIST, we consider 2 tasks corresponding to the classes 1-5, and the classes
7 As we discussed in scenario 3, prospective Bayes risk can be trivial in situations when the stochastic process has a stationary

distribution.
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1-5 but with each class 𝑦 relabeled to (𝑦 + 1) (mod 5). Using these tasks, we construct Scenario 3 problems

corresponding to a stochastic process which is a hidden Markov model on two states. The tasks are governed

by a Markov process with transition matrix 𝑃(𝑆𝑡+1 = 𝑘 | 𝑆𝑡 = 𝑘) = 0.1, where 𝑆𝑡 is the task at time 𝑡. Ad-

ditionally after every 10 time-steps, the state of the Markov chain is reset to the first task. This ensures that

the stochastic process does not have a stationary distribution. Similar to the previous experiments, for each

problem, we generate a sequence of 50,000 samples. Learners are trained on data from the first 𝑡 time steps

(𝑧≤𝑡) and prospective risk is computed using samples from the remaining time steps.

Learners and hypothesis classes. For this scenario, we conduct experiments using follow-the-leader and

prospective ERM. Both methods use MLPs for synthetic and MNIST tasks, and a CNN for the CIFAR-10

task. Note that prospective ERM uses an embedding of time as input in addition to the datum. Training and

evaluation setup is identical to that of scenario 2.
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Figure 2.17: Prospective ERM can achieve good prospective risk in another instance of scenario 3 We plot the prospective
risk across 5 random seeds (which govern the sequence of samples and the weight initialization of the neural networks). In all three
cases, the risk of prospective ERM approaches Bayes risk while Follow-the-Leader does not achieve a low prospective risk. Bayes
risk for MNIST and CIFAR-10 problems is calculated by assuming that Bayes risk on individual tasks is zero.

As Figure 2.17 shows, prospective ERM can also prospectively learn another instance of a problem in

Scenario 3 when data is neither independent nor identically distributed.

2.3.3.4 Stationary Markov chain

Dataset and Tasks. For synthetic data, we consider the 2 binary classification problems described in sec-

tion 2.3.3.1. For CIFAR-10 andMNIST, we consider 2 tasks corresponding to the classes 1-5, and the classes

1-5 but with each class 𝑦 relabeled to (𝑦 + 1) mod 5. Using these tasks, we construct Scenario 3 problems
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corresponding to a stochastic process which is a hidden Markov model on 2 states. The tasks are governed

by a Markov process with transition matrix 𝑃(𝑆𝑡+1 = 𝑘 | 𝑆𝑡 = 𝑘) = 0.1, where 𝑆𝑡 is the task at time 𝑡. Unlike

the previous subsection (Figure 2.17), in this experiment, the Markov chain equilibriates to the stationary dis-

tribution. Similar to the previous experiments, for each problem, we generate a sequence of 50,000 samples.

Learners are trained on data from the first 𝑡 time steps (𝑧≤𝑡) and prospective risk is computed using samples

from the remaining time steps.

Learners and hypothesis classes. For this scenario, we conduct experiments using follow-the-leader and

prospective ERM. Both methods use MLPs for the synthetic and MNIST tasks, and a CNN for the CIFAR-10

task. Note that prospective ERM uses an embedding of time as input in addition to the datum. Training is

identical to that of scenario 2. For evaluation, we compute the empirical prospective risk in fig. 2.18 and

empirical discounted prospective risk in fig. 2.19.
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Figure 2.18: For a task defined on a stationary Markov process, the Bayes risk is trivial and can be achieved by a hypothesis
that doesn’t change over time. We plot the prospective risk across 5 random seeds (which govern the sequence of samples and
the weight initialization of the neural networks). In all three cases, both follow-the-leader and prospective ERM approach the Bayes
risk. The stationary distribution has an equal probability of seeing either task and a fixed hypothesis can achieve Bayes risk on this
problem.

2.3.3.5 Large language models may not be good prospective learners

It is an interesting question whether LLMs which are trained using auto-regressive likelihoods with Trans-

former architectures can do prospective learning. To study this, we used LLama-7B (Touvron et al., 2023)

and Gemma-7B (Team et al., 2024) to evaluate the prospective risk for scenarios 1, 2, 3. The prompt contains

a few samples from the stochastic process (sub-sequences of (𝑌𝑡) consisting of 0s and 1s) and an English lan-

guage description of the family of stochastic processes that generated the samples. The LLM is tasked with
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Figure 2.19: Both prospective ERM and follow-the-leader achieve similar discounted prospective risks (with discount factor
0.95). We plot the discounted prospective risk across 5 random seeds. Both follow-the-leader and prospective ERM achieve similar
discounted risks. Note that the error bars are larger since the risk is computed over fewer samples, i.e., the discount factor reduces
the effective number of test data points.

completing the prompt with the next 20 most likely sequence of samples.
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Figure 2.20: The prospective risk of LLMs when evaluated on the three scenarios, when averaged over draws of the training data.
The LLM does not improve with more data unlike a prospectiveMLE-learner. This suggests that LLMs are incapable of prospection.

Selecting the appropriate prompt LLMs can be brittle and are known to generate different completions

depending on if the prompt was in English, Thai or Swahili (Deng et al., 2023). This makes it difficult

to evaluate prospective learning in LLMs. In our experiments, we do not describe prospective risk or other

details about prospective learnability in the prompt. We simply describe the data generating process and some

samples from this process in the prompt and the model generates the most likely completion. The prompts

are described in detail in section A.6.3.3; we also experimented with a few variants of these prompts.

We use greedy decoding to generate a sequence of tokens, i.e., the token with the highest probability is
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Figure 2.21: We prompt LLMs to generate the outcomes of 10 Bernoulli trials with 𝑝 = 0.75. We plot the probability of generating
token 1 over all possible sequences of 10 Bernoulli trials and find that the outcomes are generated with probabilities that range from
0 to 1 with an average of 0.5. Ideally, the token 1 should should always be generated with 𝑝 = 0.75, i.e., the LLMs cannot simulate
outcomes of a Bernoulli distribution.

sampled at every step. We vary the number of time-steps in the prompt from 1 to 100. For a particular value of

time 𝑡, we generate 20 more tokens and compute (an estimate of) the prospective risk of this completion; this

is the test data. We report the prospective risk computed on 100 different realizations of the stochastic process,

i.e., each point in fig. 2.20 is the prospective risk on the next 20 samples, averaged over 100 realizations of

the training data. In fig. 2.20, we find that LLMs do not obtain better prospective risk with more samples, i.e.,

Llama-7B and Gemma-7B do not seem to be doing prospective learning. It is quite surprising that they do

not achieve Bayes risk even on independent and identically distributed data. We note that these experiments

do not definitively answer whether LLMs can learn prospectively.

Can LLMs even generate outcomes of a sequence of Bernoulli trials? We prompted an LLM to generate

a sequence of 0s and 1s sampled from a Bernoulli distribution with probability 𝑝 = 0.75. We then plot the

probability of generating each 0 or 1, for all sequences of length 10 in fig. 2.21. Ideally, the strip plot would

be concentrated around 0.25 for 0 and 0.75 for 1, i.e., 0s should be generated with frequency close to 0.25.

However, we find this is not the case and LLMs seem incapable of even generating a sequence of Bernoulli

trials. This provides some context to the results discussed above. LLMs do not seem to be doing prospective

learning, but they cannot even sample from a Bernoulli distribution under these experimental conditions.8

8 Responses of ChatGPT-turbo and GPT-4o were more verbose compared to those of Llama-7B and Gemma-7B. ChatGPT re-
sponded correctly to scenario 1, perhaps as a result of using a scratchpad (Nye et al., 2021; Wei et al., 2022b) for generating the
results of intermediate steps of the algorithm. But it did not achieve a small prospective risk for scenarios 2 and 3. Gemini and
GPT-4o refused to give a complete response to scenario 3 and only outlined the sequence of steps, albeit correctly.
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2.4 Related Work

Theoretical work on learning from multiple tasks Works such as Baxter (2000); Maurer (2006), or

recent ones like Du et al. (2020); Tripuraneni et al. (2020b) study a shared feature generator with task-specific

classifiers, and show that the sample complexity of learning a task improves if true task-specific classifiers

are diverse enough. It is also appreciated that such a shared feature generator may not exist for dissimilar

tasks. A different perspective on the problem can be found in Crammer et al. (2008); Ben-David et al. (2010);

Ben-David and Borbely (2008) who show that learning diverse tasks requires a larger feature generator and,

thereby, more samples. Model Zoo builds upon Hanneke and Kpotufe (2019, 2020) to construct the transfer

exponent in section 2.1.2; Their work shows that even in very favorable settings, for example, when all tasks

have the same optimal classifier, having access to a large number of tasks may not help. Model Zoo is strongly

influenced from these results and we think of it as essentially a way to circumvent them.

There are a number of algorithmic tools to estimate task relatedness, e.g. (Kumar and Daume III, 2012;

Evgeniou et al., 2005; Cavallanti et al., 2010), and although such methods are popular in areas such as trans-

fer learning (Pentina and Lampert, 2015; Jaakkola and Haussler, 1999), one cannot apply them in continual

learning because we do not know the tasks beforehand. As section 2.1.2 shows, task relatedness is critical for

good learning. So, taking inspiration from AdaBoost (Schapire and Freund, 2013), Model Zoo uses a simple

indicator of which past tasks can benefit from future ones, these are the ones with low accuracy under the

current ensemble.

Approaches for continual learning. Catastrophic forgetting has been the focus of a number of contin-

ual learning techniques, e.g., episodic memory-based ones (Lopez-Paz and Ranzato, 2017; Chaudhry et al.,

2019a; Farajtabar et al., 2020; Guo et al., 2020), data replay (Robins, 1995; Shin et al., 2017; Lee et al.,

2017), new architectures (Serra et al., 2018), generative replay-based (Mocanu et al., 2016; Shin et al.,

2017; Liu et al., 2020; Ven et al., 2020), ensemble-based (Aljundi et al., 2017; Wen et al., 2020) and meth-

ods that select locally redundant directions in the weight space (Kirkpatrick et al., 2017; Aljundi et al.,

2018; Mallya et al., 2018; Zenke et al., 2017; Chaudhry et al., 2018). Variational methods, for exam-

ple, (Nguyen et al., 2018; Farquhar and Gal, 2019a), sequentially update a posterior over the weights and

have an elegant foundation in Bayesian methods, but implementing them for large datasets remains a chal-
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lenge. Despite intense activity in this area, an effective solution to forgetting remains largely unknown.

Model Zoo embraces the fact that forgetting is a fundamental phenomenon of learning multiple tasks and

therefore splitting the capacity may be essential; our results indicate that this approach is effectively at

tackling forgetting. This approach also significantly improves other key metrics, for example forward-

backward transfer and computational complexity of training and inference that have received limited atten-

tion (Díaz-Rodríguez et al., 2018). Let us note that Model Zoo is designed for the task-incremental continual

learning setting (Van de Ven et al., 2022).

A single shared feature generator (i.e., hard parameter sharing) is a popular architecture (Kirkpatrick et al.,

2017; Lopez-Paz and Ranzato, 2017; Rebuffi et al., 2017; Nguyen et al., 2018; Mirzadeh et al., 2020b;

Chaudhry et al., 2019b). It has been recognized that this is not sufficient; this has resulted in methods

for soft-parameter sharing that either design or learn specialized routing architectures (Rosenbaum et al.,

2017; Sun et al., 2019; Fernando et al., 2017; Devin et al., 2017; Misra et al., 2016; Vandenhende et al.,

2019). Model Zoo is a very simplistic instantiation of parameter isolation, or growing (Rusu et al., 2016;

Mallya and Lazebnik, 2018; Xu and Zhu, 2018). Model Zoo trains on one episode and never updates the

model again but its accuracy does play a role in determining whether a new model should be used for that

past task, or not. To extend the analogy, just like soft-parameter sharing architectures use, say gradient con-

flict (Aljundi et al., 2018) or attention (Serra et al., 2018), to determine which synapses to share, Model Zoo

uses the training loss of the ensemble to decide what task the new model should be trained upon.

Distribution shift. Prospective learning (De Silva et al., 2023) is equivalent to PAC learning (Vapnik, 1999)

when data is IID. Situations in which this assumption may not be valid are often modeled as a distribu-

tion shift between train and test data (Quiñonero-Candela, 2009). Techniques such as propensity scor-

ing (Agarwal et al., 2011; Fakoor et al., 2024) or domain adaptation (Daume, 2007; Ben-David et al., 2010)

reweight or map train / test data to return to the IID setting; techniques such as domain invariance (Arjovsky,

2020; Blum-Smith and Villar, 2023) build a statistic that is invariant to the distribution shift. Typically, the

loss is unchanged across train and test data. If the set of marginals {P(𝑍𝑡)} of the stochastic process only

has two elements, then PL is equivalent to the classical distribution shift setting. But otherwise, in PL, data

is correlated over time, distributions (marginals) can change multiple times.
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Sequential decision making and online learning. Prospective learning builds upon works on learning from

streaming data. But our goals are different. For example, Gama et al. (2013) minimize the error on samples

from a stationary process; Hayes et al. (2020) minimize the error on a fixed held-out dataset or on all past

data—neither of these emphasizes prospection. There is a rich body of work on sequential decision making,

for example, predicting a finite-state stationary ergodic process from past data (Cover, 1975). Even in this

simple case, there does not exist a consistent estimator using the finite past 𝑍1:𝑡 (Bailey, 1976; Ryabko, 1988;

Ornstein, 1978). This is also true for regression (Morvai et al., 1996; Nobel, 2003), when the true hypothesis

𝑓 ∗ s.t. 𝑌𝑡 = 𝑓 ∗(𝑋𝑡) is fixed. In other words, Bayes risk 𝑅∗
𝑡 in theorem 9 may be nonzero in prospective

learning even for finite-state stationary ergodic processes. Hanneke (2021) lifts the restriction on stationarity

and ergodicity. They obtain conditions on the input process 𝑋 for consistent inductive (predict at time 𝑡′ > 𝑡

using data up to 𝑡), self-adaptive (predict at time 𝑡′ using 𝑍≤𝑡 and 𝑋𝑡+1:𝑡′) and online learning (predict at 𝑡′

using 𝑍≤𝑡′). They prove the existence of a learning rule that is consistent for every𝑋 that admits self-adaptive

learning. If 𝑋 is “smooth”, i.e., input marginals have a similar support over time, then the ERM has a sample

complexity similar to that of the IID setting (Block et al., 2024). Haghtalab et al. (2022) give algorithmic

guarantees for several online estimation problems in this setting.

The true hypothesis in prospective learning can change over time. This is different from the continual learning

setting, where we can find a common hypothesis for tasks at all times (Peng et al., 2023), and this is why our

proofs work quite differently from existing ones in the literature. Instead of a hypothesis class ℋ ⊆ YX , we

define the notion of a hypothesis class that consists of sequences of predictors, i.e., subset of (YX)N; we can

do ERM in this new space. Instead of consistency of prediction as in Hanneke (2021), we give guarantees

for strong learnability, i.e., convergence of the ERM risk to the Bayes risk.
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CHAPTER 3

SELF-SUPERVISED LEARNING FOR MULTIPLE TASKS

The previous chapter was dedicated to learning representations using labeled data from multiple tasks. How-

ever, the overwhelming preference today is to pretrain representations using unlabeled data, largely because

it is easier to access massive amounts of it. The unlabeled datasets are often orders of magnitude larger than

the labeled data, which helps us train representations that often parallel, if not outperform, ones trained on

unlabeled data.

In this chapter, we consider the problem of learning representations for multiple tasks using just unlabeled

data. However, the unlabeled data is not divided up into well-defined tasks. The main contribution of this

chapter is to use reference priors to develop a formal theory for self-supervised learning. In particular, we

treat the problem of pretraining on unlabeled data as identical to the task of selecting a prior over the weights.

Using the theory of reference priors, we argue that it is optimal to train an ensemble of models that span

the space of typical tasks, as opposed to training one single model — we saw something very similar in the

first chapter with Model Zoo. We end this chapter with a study on a popular objective that is used to train

most self-supervised models today: masked reconstruction. We find that the scale of the noise controls the

scale of the features learned from pretraining; we show this analytically for linear masked autoencoders and

experimentally on masked autoencoders trained using vision transformers. In summary, we expect that there

is no silver bullet objective for self-supervised learning for all tasks. Different objectives are more suitable

for different tasks, and one must ideally build an ensemble that spans the space of tasks.
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3.1 Deep reference priors: Training Model Zoos on unlabeled data

In this section, we turn to the theory of reference priors to train a zoo of models from just unlabeled data.

In short, instead of training a single model from unlabeled data, deep reference priors train an ensemble of

diverse models that span manifold of probability distributions. In this section:

(1) We introduce the theory of reference priors, which are objective, uninformative Bayesian priors com-

puted by maximizing the mutual information between the task and the weights. We show how these priors

maximize the KL-divergence between the posterior computed from the task and the prior, on average over

the distribution of the unknown future data. This allows the samples from the task to maximally influence

the posterior.

(2) We formalize semi-supervised learning as computing a reference prior where the learner is given access

to a pool of unlabeled data and seeks to compute a prior using this data. We show that techniques such as

consistency regularization and entropy minimization which are commonly used in practice can be directly

understood using the reference prior formulation.

(3) Finally, we show an empirical study of our formulations on the CIFAR-10 and CIFAR-100 datasets. We

show that our methods to compute reference priors provide results that are competitive with state of the art

methods for semi-supervised learning, e.g., we obtain an accuracy of 85.45% on CIFAR-10 with 5 labeled

samples/class. We obtain significantly better accuracy than well-tuned fine-tuning for transfer learning, even

for very small sample sizes.

3.1.1 Methods

3.1.1.1 Setup

Consider a dataset �̂�𝑛 =
{(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 with 𝑛 samples that consists of inputs 𝑥𝑖 ∈ R𝑑 and labels 𝑦𝑖 ∈

{1, . . . , 𝐶}. Each sample of this dataset is drawn from a joint distribution 𝑃(𝑥, 𝑦) which we define to be

the “task”. We will use the shorthand 𝑥𝑛 = (𝑥1 , . . . , 𝑥𝑛) and 𝑦𝑛 = (𝑦1 , . . . , 𝑦𝑛) to denote all inputs and

labels. Let 𝑤 ∈ R𝑝 be the weights of a probabilistic model which evaluates 𝑝𝑤(𝑦 | 𝑥). We will use a random
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variable 𝑧 with a probabilistic model 𝑝𝑤(𝑧) when we do not wish to distinguish between inputs and labels.

Given a prior on weights 𝜋(𝑤), Bayes law gives the posterior 𝑝(𝑤 | 𝑥𝑛 , 𝑦𝑛) ∝ 𝑝(𝑦𝑛 | 𝑥𝑛 , 𝑤)𝜋(𝑤). The Fisher
Information Matrix (FIM) 𝑔 ∈ R𝑝×𝑝 has entries 𝑔(𝑤)𝑘𝑙 =

1
𝑛

𝑛∑
𝑖=1

𝐶∑
𝑦=1

𝑝𝑤(𝑦 | 𝑥𝑖)𝜕𝑤𝑘 log 𝑝𝑤(𝑦 | 𝑥𝑖)𝜕𝑤𝑙 log 𝑝𝑤(𝑦 | 𝑥𝑖).

It can be used to define the Jeffreys prior 𝜋𝐽(𝑤) ∝
√

det 𝑔(𝑤). Jeffreys prior is reparameterization invariant,

i.e., it assigns the same probability to a set of models irrespective of our choice of parameterization of those

models. It is an uninformative prior, e.g., it imposes some generic structure on the problem (reparameteriza-

tion invariance).

3.1.1.2 Reference Priors

Bernardo (1979) suggested that uninformative priors should maximize some divergence, say the Kullback-

Leibler (KL) divergence

𝐾𝐿(𝑝(𝑤 | 𝑧),𝜋(𝑤)) =
∫

d𝑤 𝑝(𝑤 | 𝑧) log
(
𝑝(𝑤 | 𝑧)/𝜋(𝑤)) ,

between the prior and the posterior for the data 𝑧.

This may seem absurd, since the prior is selected without any knowledge of the distribution of 𝑧. The ref-

erence prior is computed without knowing the true distribution 𝑝(𝑧). Instead, we draw samples 𝑧 from a

distribution hallucinated by the model, i.e., 𝑝(𝑧) = ∫
d𝑤 𝑝(𝑧 | 𝑤)𝜋(𝑤).

The rationale for this objective is to allow the data to dominate the posterior rather than our choice of the

prior. Since we do not know the data a priori when selecting the prior, we should maximize the average

KL-divergence over the data distribution 𝑝(𝑧). This amounts to maximizing the mutual information

𝜋∗ = argmax
𝜋

𝐼𝜋(𝑤; 𝑧)

:=
∫

d𝑧 d𝑤 𝑝(𝑧)𝑝(𝑤 | 𝑧) log
𝑝(𝑤 | 𝑧)
𝜋(𝑤) = 𝐻(𝑤) − 𝐻(𝑤 | 𝑧)

(3.1)
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where 𝑝(𝑧) =
∫

d𝑤 𝜋(𝑤)𝑝(𝑧 | 𝑤) and 𝐻(𝑤) = − ∫
d𝑤 𝜋(𝑤) log𝜋(𝑤) is the Shannon entropy; the con-

ditional entropy 𝐻(𝑤 | 𝑧) is defined analogously. Mutual information is a natural quantity to measure the

amount of missing information on 𝑤 provided by the data 𝑧 if the initial belief was 𝜋. The prior 𝜋∗(𝑤) is
known as a reference prior. It is invariant to a reparameterization of the weight space because mutual infor-

mation is invariant to reparameterization. The reference prior does not depend upon the samples �̂�𝑛 but only

depends on their distribution 𝑃.

The objective to calculate reference prior 𝜋∗ above may not be analytically tractable since 𝑧 is an infinite-

dimensional data vector. Therefore Bernardo also suggested computing 𝑛-reference priors. We call 𝑛 the

“order” and deliberately overload the notation for the number of samples 𝑛; the reason will be clear soon.

𝜋∗
𝑛 = argmax𝜋 𝐼𝜋(𝑤; 𝑧𝑛) = 𝐻(𝑤) − 𝐻(𝑤 | 𝑧𝑛), (3.2)

using 𝑛 samples and then setting 𝜋∗ := lim𝑛→∞ 𝜋∗
𝑛 under appropriate technical conditions (Berger et al.,

1988). Reference priors are asymptotically equivalent to Jeffreys prior for one-dimensional problems. In

general, they differ for multidimensional problems, but it can be shown that Jeffreys prior is the continuous

prior that maximizes the mutual information (Clarke and Barron, 1994).

3.1.1.3 Blahut-Arimoto algorithm

The Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972) is a method for maximizing functionals and

leads to iterations of the form 𝜋𝑡+1(𝑤) ∝ exp
(
KL(𝑝(𝑧 | 𝑤), 𝑝(𝑧))) 𝜋𝑡(𝑤). It is typically implemented for

discrete variables, for example, in the Information Bottleneck (Tishby et al., 1999). In this case, maximizing

mutual information is a convex problem, and therefore the BA algorithm is guaranteed to converge. Such

discretization is difficult for high-dimensional deep networks. We therefore implement the BA algorithm

using particles; see remark 15.

Example 14 (Estimating the bias of a coin). To ground intuition, consider the estimation of the bias of a

coin 𝑤 ∈ [0, 1] using 𝑛 trials. If 𝑧 denotes the number of heads (which is a sufficient statistic), we have

𝑝(𝑧 | 𝑤) = 𝑤𝑧(1 − 𝑤)𝑛−𝑧𝑛!/(𝑧!(𝑛 − 𝑧)!). For 𝑛 = 1, since we know that 𝐼(𝑤; 𝑧1) ≤ log 2 with this one bit

of information, we can see that 𝜋∗
1(𝑧) = (𝛿(𝑤) + 𝛿(1 − 𝑤))/2 is the reference prior that achieves this upper

bound. This result is intuitive: If we know that we have only one observation, then the optimal uninformative
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prior should put equal probability mass on the two exhaustive outcomes 𝑤 = 0 (heads) and 𝑤 = 1 (tails).

We can numerically calculate 𝜋∗
𝑛 for different values of 𝑛 using the BA algorithm (fig. 3.1).
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Figure 3.1: We calculated the reference prior for the coin-tossing model for 𝑛 = 1, 10, 50 (from left to right) using the Blahut-
Arimoto algorithm. Atoms are critical points of the gray line which is KL(𝑝(𝑧𝑛), 𝑝(𝑧𝑛 | 𝑤)). The prior is discrete for finite order
𝑛 < ∞ (Mattingly et al., 2018). Atoms of the prior are maximally different from each other, e.g., for 𝑛 = 1, they are on opposite
corners of the parameter space. As the number of samples increases, the separation between atoms of the prior reduces. The prior
converges to Jeffreys prior 𝜋𝐽 (𝑤) ∝ (𝑤(1 − 𝑤))−1 as 𝑛 → ∞.

We next discusses a key property of reference priors that enables us to calculate them numerically, namely

that they are supported on a discrete set in the weight space (section 3.1.1.4). It then formulates reference

priors for semi-supervised (section 3.1.1.6) and transfer learning (sections 3.1.1.7 and 3.1.1.8).

3.1.1.4 Existence and discreteness of reference priors

Rigorous theoretical development of reference priors has been done in the statistics literature. We focus on

their applications. We however mention some technical conditions under which our development remains

meaningful.

A reference prior does not exist if 𝐼𝜋(𝑤; 𝑧𝑛) is infinite (Berger et al., 1988). For the concept of a reference

prior to remain meaningful, wemake the following technical assumptions. (i)𝜋 is supported on a compact set

Ω ⊂ R𝑝 , and (ii) if 𝑝𝜋(𝑧𝑛) =
∫
Ω d𝑤 𝜋(𝑤)𝑝(𝑧𝑛 | 𝑤) is the marginal, then KL(𝑝𝑤 , 𝑝𝜋) is a continuous function

of𝑤 for any 𝜋. Under these conditions, the 𝑛-order prior 𝜋∗
𝑛 exists and 𝐼𝜋𝑛 (𝑤; 𝑧𝑛) is finite; see (Zhang, 1994,

Lemma 2.14). Now assume that 𝜋∗
𝑛 exists and is unique up to a set of measure zero. Let Ω𝑛 = {𝑤 ∈ Ω :

𝜋∗
𝑛(𝑤) > 0} be the support of𝜋∗

𝑛 and 𝑧𝑛 be a discrete randomvariablewith𝐶 atoms. If {𝑝(𝑧𝑛 | 𝑤) : 𝑤 ∈ Ω𝑛}
is compact, then 𝜋∗

𝑛 is discrete with no more than 𝐶 atoms (Zhang, 1994, Lemma 2.18)).

Remark 15 (Blahut-Arimoto algorithm with particles). Since the optimal prior is discrete, we can maximize

the mutual information directly by identifying the best set of atoms. We set the prior to have the form 𝜋∗
𝑛 =
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∑𝐾
𝑖=1 𝐾

−1𝛿(𝑤−𝑤 𝑖) where {𝑤1 , . . . , 𝑤𝐾} are the 𝐾 atoms. We call these atoms “particles”. Using standard

backpropagation, we can then compute the gradient of the objective in eq. (3.2) with respect to each particle

(note that the gradient of each particle depends upon all other particles).

3.1.1.5 Visualizing the reference prior for deep networks

One cannot directly visualize the high-dimensional particles 𝑤 in 𝜋∗
𝑛 . But we can think of each particle 𝑤

as representing a probability distribution 𝑓 (𝑤) ∈ R𝑛𝐶 given by

(√
𝑝𝑤(𝑦 = 1 | 𝑥1),

√
𝑝𝑤(𝑦 = 2 | 𝑥1), . . . ,

√
𝑝𝑤(𝑦 = 𝐶 | 𝑥𝑛)

)
.

and use a method for visualizing such distributions developed in Quinn et al. (2019a) that computes a prin-

cipal component analysis (PCA) of such vectors { 𝑓 (𝑤1), . . . , 𝑓 (𝑤𝐾)} shown in fig. 3.2.
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Figure 3.2: Reference prior (green) for binary classification on MNIST. A three-dimensional embedding of the probability
distributions of 𝐾 = 3000 atoms in the reference prior after 50,000 iterations of the BA algorithm (green) for a binary classification
problem on MNIST (digits 3 vs. 5). Particles were initialized randomly (blue) and they are nearby in this embedding because at
initialization, the logits of each particle are uniformly distributed. Orange shows particle locations after 5,000 iterations. As the
reference prior objective in eq. (3.2) is optimized, the particles increasingly make more diverse predictions (orange) and towards the
end (green) these particles spread apart in the prediction space.

This experiment demonstrates that we can instantiate reference priors for deep networks in a scalable fashion

even for a large number of particles 𝐾. It provides a visual understanding of how atoms of the prior are
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diverse models in prediction space.

How to choose the number of atoms 𝐾 in the reference prior? Each particle in this paper is a deep

network, so must be careful to ensure that we do not maintain an unduly large number of atoms in the prior.

Abbott and Machta (2019) suggest a scaling law for 𝐾 in terms of the number of samples 𝑛, e.g., 𝐾 ∼ 𝑛4/3

for a problem with two biased coins. We will instead treat 𝐾 as a hyper-parameter. This choice is motivated

from the emergent low-dimensional structure of the green particles in fig. 3.2; see the further analysis in

in section 3.1.2.1.

Remark 16 (Variational approximations of reference priors). Nalisnick and Smyth (2017) maximize a lower

bound on 𝐼𝜋(𝑤; 𝑧) and replace the term 𝑝(𝑧) = ∫
d𝑤 𝜋(𝑤)𝑝(𝑧 | 𝑤) in eq. (3.1) by the so-called VR-max esti-

mator max𝑤 log 𝑝(𝑧 | 𝑤) where the maximum is evaluated across a set of samples from 𝜋(𝑤) (Li and Turner,

2016). They use a continuous variational family parameterized by neural networks. However, reference

priors are supported on a discrete set. Using a continuous variational family, e.g., a Gaussian distribution,

to approximate 𝜋∗
𝑛 is computationally beneficial but it is detrimental to the primary purpose of the prior,

namely to discover diverse models. This is also seen in fig. 3.2 where it would be difficult to construct a vari-

ational family whose distributions put mass mostly on the green points. We therefore do not use variational

approximations.

Remark 17 (Reference prior depends upon the number of samples and its atoms are diversemodels). eq. (3.1)

encourages the likelihood 𝑝(𝑧𝑛 | 𝑤) of atoms in the reference prior to be maximally different from that of other

atoms. This gives us intuition as to why the prior should have finite atoms. Consider the covering number

in learning theory (Bousquet et al., 2003) where we endow the model space with a metric that measures

disagreement between two hypotheses over 𝑛 samples. Smaller the number of samples 𝑛, smaller the covering

number, and smaller the effective set of models considered. The reference prior is similar. If we only have

few samples 𝑛, then it is not possible for the likelihood in Bayes law to distinguish between a large set of

models and assign them different posterior probabilities. The prior therefore puts probability mass only on

a finite set of atoms and these atoms have diverse outputs on the 𝑛 samples. This ability of the prior to select

a small set of representative models is extremely useful for training deep networks with few data and it was

our primary motivation.
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3.1.1.6 Reference priors for self-supervised learning

Consider the situation where we are given inputs 𝑥𝑛 , their corresponding labels 𝑦𝑛 and unlabeled inputs

𝑥𝑢 . Our goal is semi- or self-supervised learning, i.e., to use 𝑥𝑢 to build a prior 𝜋∗(𝑤) that selects models

that can be learned using the labeled data (𝑥𝑛 , 𝑦𝑛). Recall that since 𝜋∗ is a prior, it should not depend on

(𝑥𝑛 , 𝑦𝑛). Just like the construction of the reference prior in section 3.1.1.2, we can maximize

𝐼𝜋(𝑦𝑛 , 𝑥𝑛;𝑤) = E
𝑥𝑛 ,(𝑦𝑛 | 𝑥𝑛 ,𝑤),𝑤∼𝜋

[
log

𝑝(𝑦𝑛 | 𝑥𝑛 , 𝑤)
𝑝𝜋(𝑦𝑛 | 𝑥𝑛)

]
= E
𝑥𝑛 ,(𝑦𝑛 | 𝑥𝑛 ,𝑤),𝑤∼𝜋

[
log 𝑝(𝑦𝑛 | 𝑥𝑛 , 𝑤)] − E

𝑥𝑛 ,𝑦𝑛 | 𝑥𝑛
[
log 𝑝𝜋(𝑦𝑛 | 𝑥𝑛)

]
= E
𝑥𝑢

[
𝐻(𝑦𝑢 | 𝑥𝑢)] − E

𝑥𝑢 ,𝑤∼𝜋
[
𝐻(𝑦𝑢 | 𝑥𝑢 , 𝑤)] ,

(3.3)

where 𝑝𝜋(𝑦𝑛 | 𝑥𝑛) =
∫

d𝑤 𝜋(𝑤)∏𝑛
𝑖=1 𝑝(𝑦𝑖 | 𝑥𝑖 , 𝑤) and likewise for 𝑝𝜋(𝑦𝑢 | 𝑥𝑢). The first step is simply the

definition of 𝐼𝜋: it is the KL-divergence of the posterior after seeing (𝑥𝑛 , 𝑦𝑛) with respect to the prior 𝜋(𝑤).
The second step is the key idea, and its rationale is as follows. If we know that the inputs 𝑥𝑢 and 𝑥𝑛 come

from the same task, then we can use samples 𝑥𝑢 to compute the expectation over 𝑥𝑛 . For the same reason, we

can average the outputs 𝑦𝑢 which are predicted by the network instead of the fixed labels 𝑦𝑛 . We emphasize

that both 𝑥𝑢 and 𝑦𝑢 are averaged out in the objective above. Predictions on new samples 𝑥 are made using

the Bayesian posterior predictive distribution

𝑝(𝑦 | 𝑥, 𝑥𝑛 , 𝑦𝑛) ∝
∫

d𝑤 𝜋∗
𝑛(𝑤)𝑝(𝑦 | 𝑥, 𝑤)𝑝(𝑦𝑛 | 𝑥𝑛 , 𝑤). (3.4)

An intuitive understanding of eq. (3.3) Assume for now that we know the number of classes 𝐶 (although

the objective is valid even if that is not the case). If our prior has 𝐾 particles, then the second term is

the average of the entropy per particle of the predictions. The objective encourages each particle 𝑤𝑖 to

predict confidently, i.e., to have a small entropy in its output distribution 𝑝𝑤𝑖 (𝑦 | 𝑥). The first term is the

entropy of the average predictions: 𝑝𝜋(𝑦𝑛 | 𝑥𝑛), and it is large if the particles predict different outputs 𝑦𝑛 for

the same inputs 𝑥𝑛 , i.e., they disagree with each other. We treat the constant 𝛼 (which should be 1 in the

definition of mutual information) as a hyperparameter to allow control over this phenomenon. The reference

prior self-supervised learning objective encourages particles to be dissimilar but confident models (not
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necessarily correct).

3.1.1.7 Reference priors for a two-stage experiment

We first develop the idea using generic random variables 𝑧𝑛 . Consider a situation when we see data in two

stages, first 𝑧𝑚 , and then 𝑧𝑛 . How should we select a prior, and thereby the posterior of the first stage, such

that the posterior of the second stage makes maximal use of the new 𝑛 samples? We can extend the idea

in section 3.1.1.6 in a natural way to address this question. We can maximize the KL-divergence between

the posterior of the second stage and the posterior after the first stage, on average, over samples 𝑧𝑛 .

Since we have access to samples 𝑧𝑚 , we need not average over them, we can compute the posterior 𝑝(𝑤 | 𝑧𝑚)
from these samples given the prior 𝜋(𝑤). First, notice that 𝑝(𝑤, 𝑧𝑛 | 𝑧𝑚) = 𝑝(𝑤 | 𝑧𝑚+𝑛)𝑝(𝑧𝑛 | 𝑧𝑚) =

𝑝(𝑧𝑛 | 𝑤)𝑝(𝑤 | 𝑧𝑚). We can now write

𝜋∗
𝑛 | 𝑚 = argmax

𝜋
𝐼𝑝(𝑤 | 𝑧𝑚)(𝑤; 𝑧𝑛)

:=
∫

d𝑧𝑛 𝑝(𝑧𝑛 | 𝑧𝑚) KL(𝑝(𝑤 | 𝑧𝑚+𝑛), 𝑝(𝑤 | 𝑧𝑚))

=
∫

d𝑤 𝑝(𝑤 | 𝑧𝑚)
∫

d𝑧𝑛 𝑝(𝑧𝑛 | 𝑤) log
𝑝(𝑧𝑛 | 𝑤)
𝑝(𝑧𝑛 | 𝑧𝑚) ,

(3.5)

where 𝑝(𝑤 | 𝑧𝑚) ∝ 𝑝(𝑧𝑚 | 𝑤)𝜋(𝑤) and 𝑝(𝑧𝑛 | 𝑧𝑚) = ∫
d𝑤 𝑝(𝑧𝑛 | 𝑤)𝑝(𝑤 | 𝑧𝑚). The key observation is that if

the reference prior eq. (3.2) has a unique solution, we should have that the optimal 𝑝(𝑤 | 𝑧𝑚) ≡ 𝜋∗
𝑛(𝑤). This

leads to

𝜋∗
𝑛 | 𝑚(𝑤) ∝ 𝜋∗

𝑛(𝑤) 𝑝(𝑧𝑚 | 𝑤)−1. (3.6)

This prior puts less probability on regions which have high likelihood on old data 𝑧𝑚 whereby the posterior

is maximally informed by the new samples 𝑧𝑛 . Given knowledge of old data, the prior downweighs regions

in the weight space that could bias the posterior of the new data. We also have 𝜋∗
𝑛 | 𝑚 = 𝜋∗

𝑛 for 𝑚 = 0 which

is consistent with eq. (3.2). As 𝑚 → ∞, this prior ignores the part of the weight space that was ideal for 𝑧𝑚 .

Remark 18 (Averaging over 𝑧𝑚 in the two-stage experiment). If we do not know the outcomes 𝑧𝑚 yet, the
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prior should be calculated by averaging over both 𝑧𝑚 , 𝑧𝑛

𝜋∗ = argmax
𝜋

∫
d𝑧𝑚 𝑝(𝑧𝑚)𝐼𝑝(𝑤 | 𝑧𝑚)(𝑤; 𝑧𝑛)

:= 𝐼𝜋(𝑤; 𝑧𝑚+𝑛) − 𝐼𝜋(𝑤; 𝑧𝑚) = 𝐻(𝑤 | 𝑧𝑚) − 𝐻(𝑤 | 𝑧𝑚+𝑛).
(3.7)

The encourages multiple explanations of initial data 𝑧𝑚 , i.e., high 𝐻(𝑤 | 𝑧𝑚), so as to let the future samples

𝑧𝑛 select the best one among these explanations, i.e., reduce the entropy 𝐻(𝑤 | 𝑧𝑚+𝑛). It is interesting to

note that neither is this two-stage prior equivalent to maximizing 𝐼𝜋(𝑤; 𝑧𝑚+𝑛), nor is it simply the optimal

prior corresponding to objectives 𝐼𝜋(𝑤; 𝑧𝑚) or 𝐼𝜋(𝑤; 𝑧𝑛). Both eqs. (3.6) and (3.7) therefore indicate that

two-stage priors are useful when we have some data a priori, this can be either unlabeled samples from the

same task, or labeled samples from some other task.

Remark 19 (A softer version of the two-stage reference prior). The objective in eq. (3.7) resembles the

predictive information bottleneck (IB) of Bialek et al. (2001), or its variational version in Alemi (2020), which

seek to learn a representation, say 𝑤, that maximally forgets past data while remaining predictive of future

data

max𝑝(𝑤 | 𝑧𝑚) 𝐼(𝑤; 𝑧𝑛) − 𝛽𝐼(𝑤; 𝑧𝑚). (3.8)

The parameter 𝛽 in eq. (3.8) gives this objective control over how much information from the past is retained

in 𝑤. We take inspiration from this and construct a variant of eq. (3.6)

𝜋
𝛽
𝑛 | 𝑚(𝑤) ∝ 𝜋∗

𝑛(𝑤)𝑝(𝑧𝑚 | 𝑤)−𝛽 for 𝛽 ∈ (0, 1).
⇒ 𝑝(𝑤 | 𝑧𝑚+𝑛) ∝ 𝑝(𝑧𝑛 | 𝑤)𝑝(𝑧𝑚 | 𝑤)1−𝛽𝜋∗

𝑛(𝑤).
(3.9)

We should use 𝛽 = 0 when we expect that data from the first stage 𝑧𝑚 is similar to data 𝑧𝑛 from the second

stage. This allows the posterior to benefit from past samples. If we expect that the data are different, then

𝛽 = 1 ignores regions in the weight space that predict well for 𝑧𝑚 . This is similar to the predictive IB where

a small 𝛽 encourages remembering the past and 𝛽 = 1 encourages forgetting.
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3.1.1.8 Reference priors for transfer learning

Consider the two-stage experiment where in the first stage we obtain 𝑚 samples (𝑥𝑚𝑠 , 𝑦𝑚𝑠 ) from a “source”

task 𝑃𝑠 and the second stage consists of 𝑛 samples (𝑥𝑛𝑡 , 𝑦𝑛𝑡 ) from the “target” task 𝑃𝑡 . Our goal is to calculate

a prior 𝜋(𝑤) that best utilizes the target task data.

Bayesian inference involves first computing the posterior 𝑝(𝑤 | 𝑥𝑚𝑠 , 𝑦𝑚𝑠 ) ∝ 𝑝(𝑦𝑚𝑠 | 𝑤, 𝑥𝑚𝑠 )𝜋(𝑤) from the

source task and using it as a prior to compute the posterior for the target task 𝑝(𝑤 | 𝑥𝑛𝑡 , 𝑦𝑛𝑡 , 𝑥𝑚𝑠 , 𝑦𝑚𝑠 ). Just

like section 3.1.1.2, the key idea again is to maximize the KL-divergence between the two posteriors

KL
(
𝑝(𝑤 | 𝑥𝑛𝑡 , 𝑦𝑛𝑡 , 𝑥𝑚𝑠 , 𝑦𝑚𝑠 ), 𝑝(𝑤 | 𝑥𝑚𝑠 , 𝑦𝑚𝑠 )

)
, but averaged over samples 𝑥𝑚𝑠 and 𝑥𝑛𝑡 .

Case 1: Access to unlabeled data from the source 𝑥𝑚𝑠 and the target task 𝑥𝑛𝑡 We should average the

KL-divergence over both the source and target predictions 𝑦𝑚𝑠 and 𝑦𝑛𝑡 and maximize

E
𝑥𝑚𝑠 ,𝑥

𝑛
𝑡 ,𝑦

𝑚
𝑠 | 𝑥𝑚𝑠 ,𝑦𝑛𝑡 | 𝑥𝑛𝑡

KL
(
𝑝(𝑤 | 𝑥𝑛𝑡 , 𝑦𝑛𝑡 , 𝑥𝑚𝑠 , 𝑦𝑚𝑠 ), 𝑝(𝑤 | 𝑥𝑚𝑠 , 𝑦𝑚𝑠 )

)
(3.10)

over the prior 𝜋. Here 𝑝𝜋(𝑦𝑚𝑠 | 𝑥𝑚𝑠 ) = E𝑤∼𝜋 𝑝(𝑦𝑚𝑠 | 𝑥𝑚𝑠 , 𝑤) and 𝑝𝜋(𝑦𝑛𝑡 | 𝑥𝑛𝑡 ) = E𝑤∼𝜋 𝑝(𝑦𝑛𝑡 | 𝑥𝑛𝑡 , 𝑤), respec-
tively. Note that averages over 𝑥𝑚𝑠 and 𝑥𝑛𝑡 are computed using samples while averages over 𝑦𝑚𝑠 | 𝑥𝑚𝑠 and

𝑦𝑛𝑡 | 𝑥𝑛𝑡 are computed using the model’s predictions.

Case 2: 𝑥𝑚𝑠 , 𝑦𝑚𝑠 are fixed and known, and we have a pool of unlabeled target data 𝑥𝑛𝑡 Since we already

know the labels for the source task, we will only average over 𝑥𝑛𝑡 and 𝑦𝑛𝑡 and maximize

E
𝑥𝑛𝑡 ,𝑦

𝑛
𝑡 | 𝑥𝑛𝑡

KL
(
𝑝(𝑤 | 𝑥𝑛𝑡 , 𝑦𝑛𝑡 , 𝑥𝑚𝑠 , 𝑦𝑚𝑠 ), 𝑝(𝑤 | 𝑥𝑚𝑠 , 𝑦𝑚𝑠 )

)
; (3.11)

here 𝑝𝜋(𝑦𝑛𝑡 | 𝑥𝑛𝑡 ) =
∫

d𝑤 𝜋(𝑤)𝑝(𝑦𝑛𝑡 | 𝑥𝑛𝑡 , 𝑤).
Remark 20 (Connecting eqs. (3.10) and (3.11) to practice). Both objectives can be written down as

𝜋∗ = argmax
𝜋

𝐼𝜋(𝑤; 𝑦𝑛𝑡 , 𝑥
𝑛
𝑡 , 𝑥

𝑚
𝑠 , 𝑦

𝑚
𝑠 ) − 𝐼𝜋(𝑤; 𝑥𝑚𝑠 , 𝑦𝑚𝑠 ) (3.12)

with the distinction that while in Case 1, we average over all quantities, namely 𝑝(𝑥𝑚𝑠 ), 𝑝(𝑦𝑚𝑠 ), 𝑝(𝑥𝑛𝑡 ), 𝑝(𝑦𝑛𝑡 )
while in Case 2, we fix 𝑥𝑚𝑠 and 𝑦𝑚𝑠 to the provided data from the source task. Case 2 is what is typically called
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transfer learning. Case 1, where one has access to only unlabeled data from a source task that is different

from the target task is not typically studied in practice. Like eq. (3.9), we can again introduce a coefficient 𝛽

on the second term in eq. (3.12) to handle the relatedness between source and target tasks.

3.1.1.9 Practical tricks for implementing reference priors

The reference prior objective is difficult to implement directly using deep networks and modern datasets. We

next discuss some practical tricks that we have developed.

(1) Order of the reference prior 𝑛 versus the number of samples Bernardo (1979) set the order of the

prior 𝑛 to be the same as the number of samples. We observe that both do not have to be identical and

make a distinction between the two. In our expierments, we restrict the order to 𝑛 = 2, 3. Mathematically,

this amounts to computing averages in eq. (3.2) or eq. (3.3) over only sets of 𝑛-tuples. This significantly

reduces the class of models considered in the reference prior by pretending that there is a small number of

samples available for training the task—which is useful, and also true in practice, for over-parametrized deep

networks. This choice is also motivated by the low-dimensional structure in the reference prior in fig. 3.2.

Note that we are not restricting to small order 𝑛 for computational reasons, i.e., computing the expectation

over all classes 𝑦𝑛 in eq. (3.3) can be done in a single forward pass.

(2) Cross-entropy loss to bias particles towards good parts of the weight space The posterior eq. (3.4)

suggests that we should first compute the prior, and then weight each particle by the likelihood of the labeled

data. In practice, we combine these two steps into a single objective

max
𝜋

𝛾𝐼𝜋(𝑤; 𝑦𝑢 , 𝑥𝑢) + E
𝑤∼𝜋

[
log 𝑝(𝑦𝑛 | 𝑥𝑛 , 𝑤)] , (3.13)

where 𝛾 is a hyper parameter, 𝑥𝑛 , 𝑦𝑛 are labeled samples. eq. (3.13) allows us to directly obtain particles that

both have high probability under the prior and a high likelihood. This is different from the correct Bayesian

posterior (which would set 𝛾 = 1, we use 𝛾 = 1/2) but it is a trick often employed in the SSL literature. The

second term restricts the search space for the particles in 𝜋(𝑤).

(3) Data augmentation State of the art SSL methods use a large set of data augmentations, e.g., RandAug-

ment (Cubuk et al., 2020) and CTAugment (Berthelot et al., 2019a), which both have about 20 transforma-

tions. Some are weak augmentations such as mirror flips and crops while some others are strong augmen-
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tations such as color jitter. Methods such as FixMatch (Sohn et al., 2020) or MixMatch (Berthelot et al.,

2019b) use weak augmentations to get soft labels for predictions on strong augmentations.

We compute the entropy term 𝐻(𝑦𝑢 | 𝑥𝑢 , 𝑤) in eq. (3.3) using the conditional distribution 𝑝𝐺(𝑦 | 𝑥, 𝑤) =

E𝑔∼𝐺[𝑝𝑤(𝑦 | 𝑔(𝑥), 𝑤)] where 𝐺 = 𝐺1 ∪ 𝐺2 is the set of weak (𝐺1) and strong (𝐺2) augmentations. Let

𝑔𝑖 ∼ 𝐺𝑖 be an augmentation and denote 𝑝𝑔𝑖 ≡ 𝑝𝑤(𝑦 | 𝑔𝑖(𝑥), 𝑤) for 𝑖 ∈ {1, 2}. In every mini-batch we use

𝑝𝐺(𝑦 | 𝑥, 𝑤) ≈ 𝜏𝑝𝑔1 +(1−𝜏)𝑝𝑔2 where 𝜏 is a hyper-parameter. This gives accuracy that is reasonable (about

87% for 500 samples) but a bit lower than that of the state-of-the-art SSL methods. We noticed that if we

use an upper bound on the entropy from Jensen’s inequality

− E
𝑥𝑢

∫
d𝑦𝑢 𝑝𝐺(𝑦𝑢 | 𝑥𝑢 , 𝑤)

[
𝜏 log 𝑝𝑔1 + (1 − 𝜏) log 𝑝𝑔2

]
(3.14)

then we can close this gap in accuracy (see table 3.1). This is perhaps because the cross-entropy terms, e.g.,

−𝑝𝑔1 log 𝑝𝑔2 , force the predictions of the particles to be consistent across both types of augmentations, just

like the objective in FixMatch or MixMatch. Our formulation is thus useful not only to understand SSL but

also to tweak it to perform as well as current methods and thereby shed light on the theoretical underpinnings

of their performance.

(4) Computing 𝐻(𝑦𝑢 | 𝑥𝑢 , 𝑤) A number of SSL methods work by creating pseudolabels from weakly

augmented data, which seems to be a key ingredient of good accuracy in our experience with these methods.

We tried two heuristics to compute the entropy term 𝐻(𝑦𝑢 | 𝑥𝑢 , 𝑤) that are motivated by these papers. First,

we follow FixMatch and only use unlabeled data with confident predictions to compute 𝐻(𝑦𝑢 | 𝑥𝑢 , 𝑤). A

datum 𝑥 contributes to the objective only if max𝑦 𝑝𝑤(𝑦|𝑔1(𝑥), 𝑤) > 0.95. Changing this threshold does

not lead to deterioration of the accuracy, so this heuristic need not be used while building the reference

prior. Second, if 𝐺1 is the set of weak augmentations (see previous point), methods like FixMatch and

MixMatch use argmax𝑦 𝑝(𝑦 | 𝑔1(𝑥), 𝑤) as a pseudo-label but do not update this using the back-propagation

gradient. This prevents the more reliable predictions on 𝐺1 from changing. As a result, the entropy term

−𝜏2𝑝𝑔1 log 𝑝𝑔1 is a constant in eq. (3.14). To normalize the terms coming from 𝜏 in eq. (3.14), we set 𝛾

in eq. (3.13) to 1/(1− 𝜏2) instead of 1. We have also developed an argument to choose the appropriate value

of 𝜏 = 1/3. Our experiments suggest that the second heuristic seems essential; we obtain only 10% accuracy
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without this heuristic.

3.1.2 Empirical Study

3.1.2.1 Setup

We evaluate on CIFAR-10 and CIFAR-100 (Krizhevsky, 2009). For SSL, we use 50–1000 labeled samples,

i.e., 5–100 samples/class and use the rest of the samples in the training set as unlabeled samples. For trans-

fer learning, we construct 20 five-way classification tasks from CIFAR-100 and use 1000 labeled samples

from the source and 100 labeled samples from the target task. All experiments use the WRN 28-2 architec-

ture (Zagoruyko and Komodakis, 2016), same as in Berthelot et al. (2019b).

For all our experiments, the reference prior is of order 𝑛 = 2 and has 𝐾 = 4 particles. We run all our

methods for 200 epochs, with 𝜏 = 1/3 in eq. (3.14) and 𝛼 = 0.1 in eq. (3.3). We set 𝛾 = (1 − 𝜏2)−1 as

discussed in section 3.1.1.9. For inference, each particle maintains an exponential moving average (EMA)

of the weights (this is common in SSL (Tarvainen and Valpola, 2017)).

Semi-supervised learning

Baselines We compare to methods such as FixMatch (Sohn et al., 2020), DASH (Xu et al., 2021), Mix-

Match (Berthelot et al., 2019b), SelfMatch (Kim et al., 2021), Mean Teacher (Tarvainen and Valpola, 2017),

Virtual Adversarial Training (Miyato et al., 2018), and Mixup (Berthelot et al., 2019b).

Table 3.1 compares the accuracy of different SSL methods on CIFAR-10. We find that the reference prior

approach is competitive with a number of existing methods, e.g., it is remarkably close to FixMatch on all

sample sizes (notice the error bars). There is a gap in accuracy at small sample sizes (40–50) when compared

to recent methods. It is important to note that these recent methods employ a number of additional tricks,

e.g., FlexMatch implements curriculum learning on top of FixMatch, DASH and FlexMatch use different

thresholding for weak augmentations (this increases their accuracy by 2-5%), SelfMatch has higher accu-

racies because of a self-supervised pretraining stage, FixMatch (CTA) outperforms its RA variant by 1.5%

which indicates CTA augmentation is beneficial (we used RA). It is also extremely expensive to train SSL

algorithms for 1000 epochs (all methods in table 3.1 do so), we trained for 200 epochs.
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Method Samples
50 100 250 500 1000

Mixup - - 52.57 63.86 74.28
VAT - - 63.97 73.89 81.32
Mean Teacher - - 52.68 57.99 82.68
MixMatch 64.21* 80.29* 88.91* 90.35* 92.25*

FixMatch (RA) 86.19 ± 3.37 (40) 90.12* 94.93 ± 0.65 93.91* 94.3*

FixMatch (CTA) 88.61 ± 3.35 (40) - 94.93 ± 0.33 - -
DASH (RA) 86.78 ± 3.75 (40) - 95.44 ± 0.13 - -
DASH (CTA) 90.84 ± 4.31 (40) - 95.22 ± 0.12 - -
SelfMatch 93.19 ± 1.08 (40) - 95.13 ± 0.26 - -
FlexMatch 95.03 ± 0.06 (40) - 95.02 ± 0.09 - -

Deep Reference Prior 85.45 ± 2.12 88.53 ± 0.67 92.13 ± 0.39 92.94 ± 0.22 93.48 ± 0.24

Table 3.1: Classification accuracy of different semi-supervised learning methods on CIFAR-10. Note: RA and CTA in the
methods column indicate that RandAugment or CTAugment were used for augmentations. Entries with * were evaluated by us
using open-source implementations from the original authors for 256 epochs. All other entries are from original papers. Entries
with “(40)” indicate that 40 labeled samples were used instead of 50.

This experiment shows that our approach to SSL can obtain results that are competitive to sophisticated em-

pirical methods without being explicitly formulated to enforce properties like label consistency with respect

to augmentations. This also indicates that reference priors could be a good way to explain the performance

of these existing methods, which is one of our goals in this paper.

Transfer learning

Just like we did in section 3.1.1.9 for SSL, we instantiate eq. (3.9) and eq. (3.11), by combining prior selection,

pretraining on the source task and likelihood of the target task, into one objective,

𝛾𝐼𝜋(𝑤; 𝑦𝑢𝑡 , 𝑥
𝑢
𝑡 ) + E

𝑤∼𝜋
[
log 𝑝(𝑤, 𝑦𝑛𝑡 | 𝑥𝑛𝑡 )

] + (1 − 𝛽) E
𝑤∼𝜋

[
log 𝑝(𝑤, 𝑦𝑚𝑠 | 𝑥𝑚𝑠 )

]
, (3.15)

where 𝛾 = 1/2 and 𝛽 = 1/2 are hyper-parameters, (𝑥𝑚𝑠 , 𝑦𝑚𝑠 ) are labeled data from the source task (𝑚 =

1000), (𝑥𝑛𝑡 , 𝑦𝑛𝑡 ) are labeled data from the target task (𝑛 = 100) and 𝑥𝑢𝑡 are unlabeled samples from the target

task (all other samples).
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Baselines We use three methods: (a) fine-tuning, which is a very effective strategy for transfer learn-

ing (Dhillon et al., 2020; Kolesnikov et al., 2020) but it cannot use unlabeled target data, (b) using only

labeled target data (this is standard supervised learning), and (c) using only labeled and unlabeled target data

without any source data (this is simply SSL, or 𝛽 = 1 in eq. (3.15)). fig. 3.3 compares the performance for

pairwise transfer across 5 tasks from CIFAR-100. Our reference prior objective in eq. (3.15) obtains much

better accuracy than fine-tuning which indicates that it leverages the unlabeled target data effectively. For

each task, the accuracy is much better than both standard supervised learning and semi-supervised learning

using our own reference prior approach eq. (3.13); both of these indicate that the labeled source data is being

used effectively in eq. (3.15).
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Method Task (→) Vehicles-1 Vehicles-2 Fish People Aq. Mammals

Supervised Learning 42.2 63.2 56.8 31.0 42.6
Deep Reference Prior (SSL) 63.6 75.2 54.6 34.0 47.4

Figure 3.3: Top: Accuracy (%) of deep reference priors (left) and fine-tuning (right) for transfer learning tasks in CIFAR-
100. Cells are colored red/green relative to the median accuracy of each row. Darker shades of green indicate that the source task is
more suitable for transfer. For example, Vehicles-1 as source is the best for all tasks according to the reference prior (left) (which is
optimal in theory) but fine-tuning cannot replicate this. The accuracy of cells in the left panel is better than the corresponding cells
on the right, e.g., the gap in accuracy is 34.8% for Vehicles 2 → Vehicles 1. Bottom: Accuracy (%) of supervised learning and
SSL for all 5 tasks. Each number here should be compared to the corresponding row of the matrices in the top panel, e.g., Vehicles
2 has 86% accuracy when transferred from Vehicles 1 using our transfer method (left), it has 66% accuracy from fine-tuning (right),
while the same task achieves 63.2% accuracy when trained by itself using supervised learning (table first row) and 75.2% accuracy
when trained using unlabeled target data (table second row). Therefore the reference prior-based transfer objective can leverage both
labeled source data as well as unlabeled target data. This pattern is consistent for all tasks.

Ablation and analysis

This section presents ablation and analysis experiments for SSL on CIFAR-10 with 1000 labeled samples.

We study the reference prior for different settings (i) varying the order 𝑛 of the prior, (ii) varying the number
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of particles in the BA algorithm (𝐾), (iii) exponential moving averaging of the weights for each particle. We

also study the two entropy terms in the reference prior objective individually.

We use a reference prior of order 𝑛 = 2 in all our experiments. We see in table 3.2 that changing the order

of the prior leads to marginal (about 1%) changes in the accuracy.

Method Order (→) 2 3 4 5

Deep Reference Prior (𝐾 = 4) 91.76 90.53 91.51 91.36

Table 3.2: The order of the reference prior has a minimal impact on the accuracy.

Method #Particles (→) 2 4 8 16

Deep Reference Prior (𝑛 = 2) 91.3 91.76 89.79 90.72

Table 3.3: Number of particles has a minimal impact on accuracy.
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Figure 3.4: (Left) Accuracy of individual particles in the prior during training (250 labeled samples). The individual particles
have diverse predictions due to the entropy term 𝐻(𝑦𝑛 | 𝑥𝑛), the accuracy of the ensemble is larger than the accuracy of any single
particle. (Right) Evolution of entropy terms 𝐻(𝑦𝑢 | 𝑥𝑢 , 𝑤) and 𝐻(𝑦𝑢 | 𝑥𝑢) for two cases (500 labeled samples and 50 labeled
samples). While 𝐻(𝑦𝑢 | 𝑥𝑢) is expected to be larger than 𝐻(𝑦𝑢 | 𝑥𝑢 , 𝑤) in eq. (3.3) since KL-divergence is non-negative, this is not
always the case since we approximate 𝐻(𝑦𝑢 | 𝑥𝑢 , 𝑤) by an upper-bound obtained from Jensen’s inequality for data augmentation as
discussed in section 3.1.1.9.

We next vary the number of particles in the prior in table 3.3 and find that the accuracy is relatively consis-

tent when the number of particles varies from 𝐾 = 2 to 𝐾 = 16. This seems surprising because a reference

prior ideally should have an infinite number of atoms, when it approximates Jeffreys prior. We should not a

priori expect 𝐾 = 2 particles to be sufficient to span the prediction space of deep networks. But our experi-

ment in fig. 3.2 provides insight into this phenomenon. It shows that the manifold of diverse predictions is

low-dimensional. Particles of the reference prior only need to span these few dimension and we can fruitfully
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implement our approach using very few particles.

Effect of exponential moving averaging (EMA) We use EMA on the weights of each particle (inde-

pendently). Table 3.4 analyzes the impact of EMA. As noticed in other works in semi-supervised learn-

ing (Berthelot et al., 2019b; Sohn et al., 2020), EMA improves the accuracy by 2-3% regardless of the num-

ber of labeled samples used.

Method #Samples (→) 50 100 250 500 1000

EMA 85.45 ± 2.12 88.53 ± 0.67 92.13 ± 0.39 92.94 ± 0.22 93.48 ± 0.24
No EMA 82.36 ± 2.13 85.64 ± 0.43 89.75 ± 0.36 90.06 ± 1.71 91.57 ± 0.25

Table 3.4: Using EMA for weights of each particle is beneficial and improves accuracy by 2-3%.

The two entropy terms in the reference prior objective fig. 3.4 (left) shows how, because of the entropy

term𝐻(𝑦𝑢 | 𝑥𝑢), the accuracy of particles is quite different during training. Particles have different predictive

abilities ( 7% range in test error) but the Bayesian posterior predictive distribution has a higher accuracy than

any of them. fig. 3.4 (right) tracks the two entropy terms in the objective. For large number of labeled data

(500, blue) the entropy𝐻(𝑦𝑢 | 𝑥𝑢)which should always be higher than𝐻(𝑦𝑢 | 𝑥𝑢 , 𝑤) in eq. (3.3) is lower (this

is not the case for 50 samples, red). This is likely a result of the cross-entropy term in the modified objective

in eq. (3.13) which narrows the search space of the particles. This experiment is an important insight into the

working of existing semi-supervised learning methods as well, all of which also have a similar cross-entropy

objective in their formulation. It points to the fact that at large sample-sizes, the cross-entropy loss and not

the semi-supervised learning objective could dominate the training procedure.
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3.2 Masked reconstruction learns features at different scales

We end this chapter by studying masked reconstruction, the key objective behind most image (He et al.,

2021; Xie et al., 2021) and video (Feichtenhofer et al., 2022; Tong et al., 2022;Wang et al., 2023) foundation

models. Despite their success, we do not understand how certain design choices for masked autoencoders

(MAEs) — such as masking ratio, patch size, and model depth — affect the downstream tasks that we can

solve. Our results point to how masked reconstruction is not a silver bullet to self-supervised learning, and

there is no single hyperparameter that works for all tasks.

Our central hypothesis is that MAEs learn representations that capture spatial correlations in the input im-

age (fig. 3.5), with the masking ratio and the patch size controlling the scale of the learned features. In other

words, the size and number of masks control the features learned by an MAE. We propose that MAEs help

lear ViT architectures which inherently lack it, . To formalize this hypothesis, we make the following key

contributions:

1. We formalizeMAEs in the linear setting and derive an analytical expression for the encoder and decoder

to characterize the features learnt by anMAE.We show howMAEs can learn features that capture short-

or long- range correlations by controlling the masking ratio and patch size.

2. We provide some insights for practitioners on how to select hyperparameters forMAEs such asmasking

ratio, patch size, and number of encoder/decoder layers.

3.2.1 Linear Masked Autoencoders

Reconstruction is a popular objective for self-supervised learning but it often fails to learn useful features

for downstream perception tasks (Balestriero and LeCun, 2024). Masked reconstruction (He et al., 2021;

Xie et al., 2021), has emerged as a popular choice for pretraining deep networks. In this subsection, we study

how reconstruction differs from masked reconstruction, and answer when the latter is useful for downstream

perception tasks.

We first consider a linear MAE and analyze the kind of solutions obtained for different masking ratios and
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Figure 3.5: (Top): Different tasks have different spatial dependence on the information needed to successfully them, from short-
range tasks that only require neighboring information, to long-range tasks that require aggregation of spatially distant information.
(Bottom): Autoencoders learn features for one set of tasks, while MAEs can modulate the set of features they learn by changing the
masking ratio or patch size, in order to successfully solve different tasks.

Figure 3.6: A 𝑑 = 8 dimensional input can be divided up into 4 patches, each of size 𝑝 = 2.

patch-sizes. Consider input data 𝑋 ∈ R𝑛×𝑑 where 𝑛 is the number of samples, each being a real-valued

vector in 𝑑 dimensions. Consider a linear encoder with weights 𝐴 ∈ R𝑑×𝑘 and a linear decoder with weights

𝐵 ∈ R𝑘×𝑑—the network has no non-linearities. The encoder projects the input from 𝑑 input dimensions

to 𝑘 latent dimensions, and the decoder projects the representation back into 𝑑 dimensions. A linear MAE

minimizes the objective

ℓ𝑚(𝐴, 𝐵) = E𝑅
[‖𝑋 − (𝑅 � 𝑋)𝐴𝐵‖2] , (3.16)

where 𝑅 ∈ {0, 1}𝑛×𝑑 is a random variable denoting a mask and � is the element-wise product. We can

arrange our 𝑑-dimensional input vector into patches, each of size 𝑝 (see fig. 3.6). This is similar to how

images are divided into patches in a Vision Transformers (ViT) (Dosovitskiy et al., 2020). Patches are either

fully masked or fully visible; this means 𝑅𝑘𝑖 = 𝑅𝑘 𝑗 if 𝑖 and 𝑗 belong to the same patch for any image with

index 𝑘. Each patch is masked according to a Bernoulli random variable with probability 𝑚.9

9 Typical implementations of MAEs mask exactly a fraction 𝑚 of the patches instead of using a random variable for each patch to
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In lemma 1, we compute the expectation in eq. (3.16) in closed form to reduce the linear MAE objective to

ℓ𝑚(𝐴, 𝐵) = ‖𝑋 − (1 − 𝑚)𝑋𝐴𝐵‖2︸                    ︷︷                    ︸
reconstruction

+𝑚(1 − 𝑚) ‖𝐺𝐴𝐵‖2︸   ︷︷   ︸
regularizer

, (3.17)

where 𝐺 ∈ R𝑑×𝑑 satisfies 𝐺>𝐺 = blkdiag𝑝(𝑋>𝑋). The block-diagonal matrix blkdiag𝑝(𝑋>𝑋) consists

of block diagonal entries of size 𝑝 × 𝑝, with the off-diagonal blocks set to zero. This suggests that the

objective used to train an MAE consists of two terms. The first term is the standard reconstruction loss of an

autoencoder that encourages𝑋 ≈ (1−𝑚)𝑋𝐴𝐵. The second term ‖𝐺𝐴𝐵‖2 acts as a regularizer. Themasking

ratio 𝑚 controls the strength of the regularizer while the patch-size control the block-diagonal structure of

the regularizer. Note that 𝑚 = 0 recovers the objective for a non-masked autoencoder (AE). The regularizer

term here therefore is the “bias” of a MAE. It forces the representation of an MAE to deviate from that of a

AE.

3.2.1.1 Characterizing the minima of MAEs

Next, we characterize the encoder obtained using a linear MAE (eq. (3.17)). Baldi and Hornik (1989) show

that AEs are closely related to principal component analysis (PCA). The encoder at any global minimum

extracts the top-𝑘 principal components of the data. Linear AEs therefore discover features that best explain

the variance in the input data. The training objective of a linear AE does not have local minima. All global

minima are of the form 𝐴 = 𝑈𝐶−1 , 𝐵 = 𝐶𝑈>, where the columns of𝑈 ∈ R𝑑×𝑘 are the top-𝑘 eigenvectors

of 𝑋>𝑋, and 𝐶 ∈ R𝑘×𝑘 is any invertible matrix.

We can perform a similar analysis for linear MAEs, to derive analytical expressions for the optimal encoder

and decoder, and characterize the set of all critical points of this objective. Note that while there are no

non-linearities in a linear MAEs, the training objective is still non-convex.

Theorem 21. Let 𝑉 = (1 − 𝑚)𝑋>𝑋 + 𝑚 blkdiag𝑝(𝑋>𝑋) and let the columns of𝑈𝑘 denote the top-k eigen-

vectors of 𝑋>𝑋𝑉−1𝑋>𝑋. The objective in eq. (3.16) is minimized when the decoder

𝐵 = 𝐶𝑈𝑘 (3.18)

determine if it should be masked. Typically, MAEs also reconstruct only the unmasked patches at the output of the decoder, instead
of employing an objective that reconstructs all patches like we have done here.
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and the encoder

𝐴 = 𝑉−1𝑋>𝑋𝐵>(𝐵𝐵>)−1𝐶−1 , (3.19)

where 𝐶 is any invertible matrix of size 𝑘 × 𝑘.

Every critical point of the MAE objective is a subset of 𝑘 eigenvectors of 𝑋>𝑋𝑉−1𝑋>𝑋 (from lemma 2),

i.e., there are exponentially many critical points. The product of the encoder and the decoder for an MAE,

comprises of two essential parts. The first part𝑉−1𝑋>𝑋 whitens the data using a weighted mixture of 𝑋>𝑋

and blkdiag(𝑋>𝑋). The second part 𝐵>(𝐵𝐵>)−1𝐵, projects the data onto the column space of 𝐵.

Remark 22. If the input correlation matrix 𝑋>𝑋 is itself block diagonal, i.e., spatial correlations in the

input data are non-zero within a patch of size 𝑝, then 𝑉 = (1 − 𝑚)𝑋>𝑋 + 𝑚 blkdiag𝑝(𝑋>𝑋) = 𝑋>𝑋 and

which recovers the regular autoencoder solution from theorem 21, with a patch-size of 𝑝. In this case, a

linear autoencoder and a masked autoencoder have identical minima.
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Figure 3.7: Spatial correlations between pixels as a function of the distance between them for different datasets. Correlation between
pixels is inversely correlated to the distance for all 5 datasets, i.e., images have stronger local correlations.

Understanding the differences between an MAE and an AE using an Ising model. Images exhibit

strong local correlations (fig. 3.7) and the strength of the correlations between pixels is inversely proportional

to the distance between them (Hyvärinen et al., 2009). To emulate a part of this structure, we consider data
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drawn from an Ising model. This model exhibits strong local correlations controlled by the coupling constant

𝐽. Under the Ising model, input 𝑥 ∈ {−1, 1}𝑑 has probability

𝑝(𝑥) ∝ exp

(
𝐽𝑥1𝑥𝑑 + 𝐽

𝑑−1∑
𝑖=1

𝑥𝑖𝑥𝑖+1

)
.

Wefit both a linear AE and a linearMAE on samples from this distribution using objective in eq. (3.16) for the

MAE. For this model, we approximate the correlation between 𝑥𝑖 and 𝑥 𝑗 by its estimate in the thermodynamic

limit, i.e. 〈𝑥𝑖 , 𝑥 𝑗〉 ≈ tanh(𝐽)𝑟 where 𝑟 = min(| 𝑖 − 𝑗| , 𝑑 − | 𝑖 − 𝑗|) is the distance between 𝑥𝑖 and 𝑥 𝑗 . This can

be used to compute 𝑋>𝑋, which can be substituted into the analytical expressions in theorem 21.

In fig. 3.8, we plot the encoder weights (𝐴) and the product of the encoder and decoder weights (𝐴𝐵) for an

AE and MAE trained on the Ising model with 𝑑 = 32 dimensions and coupling constant 𝐽 = 2. Both the

MAE and AE consider an encoder that projects data from 32 to 6 dimensions. For the MAE, we consider

patch-size of 8 andmasking ratio of𝑚 = 0.5. For the AE (fig. 3.8 left), the matrix𝐴𝐵 has rank 6 (which is the

dimensionality of the feature space). The product𝐴𝐵 should be close to identity to minimize the autoencoder

objective, and this is indeed evident in the experiment. In fig. 3.8, the encoder of an autoencoder learns

features that resemble sinusoids of different frequencies, similar to that of natural images (Hancock et al.,

1992).

What is remarkable in this simple experiment is that an MAE learns a different encoder, one that clearly

prioritizes input dimensions at the boundary of the patches. Since data has strong local correlations, the

boundary of a patch has the largest correlation to nearby patches. The boundary of a patch is therefore

most useful for reconstructing other patches. In summary, MAEs selects features that are redundantly

present across patches while autoencoders pick features that best explain the variance in the data.

MAEs are perhaps successful on downstream tasks because many perception tasks are redundant functions

of the input (Ramesh et al., 2024), and MAEs find such redundant features.

3.2.1.2 Features of a linear MAE for natural images

We next train on natural images from CIFAR-10 and inspect how linear MAEs, linear denoising autoencoders

(DAEs), and AEs encode different kinds of features. Unlike MAEs, which perform masking, DAEs add
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Autoencoder: encoder matrix Masked autoencoder: encoder matrix

Autoencoder: weight matrix Masked autoencoder: weight matrix

Figure 3.8: We plot the product of the encoder and decoder matrices (bottom) and the encoder weight matrix (top) for an autoen-
coder (left) and masked autoencoder (right). Red indicates weights with higher magnitude while blue indicates weights with lower
magnitude. The plots show that masked autoencoders learn an encoder that projects the data onto a basis that is different from a
regular autoencoder. The masked autoencoders prioritizes features at the boundary of the patch since it is most correlated to the
other patches and hence most useful for predicting them.

Gaussian random noise to the input (Vincent et al., 2010). For linear encoders and decoder, DAEs eq. (3.20),

denoise additiveGaussian noisewith variance 𝜎2, and are equivalent to autoencoderswith an ℓ2 regularization

on the weights (𝐴𝐵).

ℓ𝑑(𝐴, 𝐵) = E𝐿∼N(0,𝜎2)
[‖𝑋 − (𝑋 + 𝐿)𝐴𝐵‖2

2
]

(3.20)

For AEs, DAEs and MAEs, we compare the average influence that an input pixel has on an output pixel as a

function of the distance between the two. To compute this influence, we consider the Jacobian of the output

with respect to the input. For example for our linear models, the quantity |(𝐴𝐵)𝑖 𝑗 | determines the influence

of input pixel 𝑖, towards reconstructing target pixel 𝑗. We compute the average magnitude of the normalized

absolute weight of the entries of the Jacobian as a function of the distance of the output pixel from the input

pixel for linear AEs, DAEs andMAEs trained on CIFAR-10 in fig. 3.9. We find that AEs learn more localized

85



0 10 20
Pixel Distance

10 2

10 1

No
rm

al
ize

d 
W

ei
gh

t

Jacobian
MAE
AE
DAE

Figure 3.9: An exponential fit to the magnitude of the entries of the input-output Jacobian as a function of distance from the output
pixel from the input pixel of different models (averaged over input and output pixels). Results are shown for three methods: Masked
Autoencoders (MAEs) with 80% masking ratio and patch size 𝑝 = 2, standard Autoencoders (AEs), and Denoising Autoencoders
(DAEs) with noise level 𝜎 = 0.2. Experiments are conducted on CIFAR-10 with a latent dimension of 128. In general, MAEs
integrate spatial information from distant patches, as opposed to an AE or a DAE.

kernels and DAEs are slightly less localized than AEs. On the other hand, MAEs integrate spatially distant

information. This is because the MAE objective encourages the use of other patches to reconstruct a pixel.

Next, we investigate how MAE hyperparameters—masking ratio 𝑚 and patch size 𝑝—affect the types of

learned correlations. Mathematically, we can see this influence from eq. (3.19), where the term 𝑉−1𝑋>𝑋

first performs a whitening transformation of the original data. As the masking ratio increases, this transforma-

tion effectively performs patch-wise whitening, making all intra-patch correlation identity and normalizing

inter-patch correlations. Masking forces the model to incorporate non-local information beyond the imme-

diate patch for reconstruction, as seen in fig. 3.10. Our results reveal that a high masking ratio produces

a more diffuse average Jacobian, whereas a low masking ratio yields a more localized one. We observe a

similar relationship with patch size, aligning with our prediction in eq. (3.19): larger patch sizes expand the

integration of information from regions outside the patch. In both of these cases, increasing the masking

ratio and patch size reduces the weight of intra-patch pixels.
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Figure 3.10: An exponential fit to the magnitude of the entries of the input-output Jacobian as a function of distance from the
output pixel from the input pixel of different models (averaged over input and output pixels) for different masking ratios and patch
sizes. Experiments were conducted for a linear MAE with latent dimension 128 on CIFAR-10. As the masking ratio increases, more
and more non-local information is used for reconstruction in a (linear) MAE. Similarly, the reconstruction relies more on nonlocal
information as the patch size increases.

3.2.1.3 What kinds of tasks benefit from MAEs compared to AEs?

Previously, we showed that MAEs learn different features than AEs and DAEs, as illustrated in fig. 3.9, e.g.,

MAEs capture more spatially distant information while reducing the emphasis on intra-patch details. This

raises a key question: what kinds of tasks benefit more fromMAEs compared to AEs? To investigate this, we

first examine a task that explicitly requires integrating spatially distant information, followed by an evaluation

of a real-world application—monocular depth prediction using the Cityscapes dataset.

Figure 3.10 suggests thatMAEs capture more spatially distant information as the masking ratio and patch size

increase. To investigate this, we trainMAEs and evaluate them on the task of predicting Gabor features, a task

that allows precise control over the spatial dependencies required for accurate prediction. Gabor functions,

denoted as 𝑔(𝑖 , 𝑗) for spatial coordinates 𝑖 , 𝑗, are localized harmonics modulated by a Gaussian window and

are parameterized by frequency 𝑓 , phase shift 𝜙, Gaussian scale 𝜎, and dilation 𝛾:

𝑔(𝑖 , 𝑗) = exp
(
− 𝑖

2 + 𝛾2 𝑗2

2𝜎2

)
cos

(
2𝜋𝑖 𝑓 + 𝜙

)
. (3.21)

Our target, 𝑥𝑔(𝑖 , 𝑗), is the convolution of the Gabor function over the entire image 𝑥𝑔(𝑖 , 𝑗) = (𝑥 ∗ 𝑔)(𝑖, 𝑗).
The key advantage of using the Gabor feature prediction task is that we can adjust the parameter 𝜎 to control
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Figure 3.11: Left: Gabor feature prediction task, where we use the pretrained features fromMAEs, and showcase their performance
as a function of spatial scale (𝜎), we select. In general, we see a higher masking ratio, which incorporates more non-local information,
performs better on more non-local tasks. Right: MSE performance reduction of a MAE over an AE as a function of the latent
dimension. We use the pretrained MAE or AE features and show how these perform on the task of supervised depth prediction on
CityScapes depth dataset.

whether the task depends on local or long-range spatial interactions. This design enables a systematic evalu-

ation of whether MAEs trained with higher masking ratios are better at capturing long-range dependencies.

To analyze this effect, we trained anMAEwith patch size (𝑝 = 2) and frequency values 𝑓 = [0.03, 0.06, 0.1],
with fixed 𝜙 = 0 and 𝛾 = 1, across various masking ratios (fig. 3.11). For small 𝜎 values, different meth-

ods perform similarly. However, as 𝜎 increases, MAEs trained with high masking ratios outperform those

with lower masking ratios. This aligns with our findings in fig. 3.9, where MAEs integrate information from

distant spatial patches.

While the Gabor prediction task provides a controlled setting to analyze MAEs, real-world perception tasks

present greater complexity. To assess howMAEs perform in practical scenarios, we evaluate them on monoc-

ular depth prediction—a task that requires integrating spatial information to infer depth accurately. We

trained MAEs on the Cityscapes dataset, downsampled to 32×32 resolution, and analyzed performance as a

function of latent space dimensionality. For small latent dimensionalities, all patch sizes (𝑚 = 0.8) outper-

form an AE. This finding highlights how MAEs, through different masks, can tailor their representations to

different downstream perception tasks.
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Linear MAEs are amenable to analysis but they come with their own limitations. (i) On datasets like CIFAR,

ViTs use an over-complete representations of the data, while our analysis is restricted to rank-deficient or

full-rank encoders and decoders. (ii) Linear MAEs only capture 2nd-order correlations of the data. Higher

order correlations in the data distribution can be used for better reconstruction, and possibly provide a better

prior for downstream tasks. (iii) The network architecture for linear MAEs is limited to fully connected

networks, but it does not give us insight into designing ViTs for MAEs.

3.2.2 From theory to practice: How to train your MAE

Masked autoencoders are notoriously slow to train. Both pretraining and fine-tuning can be sensitive to the

choice of hyperparameters, particularly when we use ViTs (Steiner et al., 2021). In this section, we discuss

some empirical insights on MAE pretraining and fine-tuning based on our experiments on CIFAR-10.

3.2.2.1 Experimental details

We train MAEs using the architecture in He et al. (2021). We fix the embedding dimension 𝑑 at 192, the

number of attention heads in the encoder to 12 and the decoder to 16 in all our experiments. The Transformer

blocks use the GeLU non-linearity (Hendrycks and Gimpel, 2016) with the layer-norm before the attention

and MLP blocks — also known as the pre layer-normalization transformer (Xiong et al., 2020).

The MAE is trained for 2000 epochs using the AdamW optimizer with 50 epochs of warmup and a cosine-

annealed learning rate schedule with an initial learning rate of 1.2×10−3. TheMAEs are trained with a batch-

size of 4096 and weight-decay of 0.05. After pretraining, we discard the decoder and fine-tune the encoder.

We fine-tune for only 100 epochs using a batch-size of 1024 with 5 epochs of warmup and an initial learning

rate of 10−3 annealed to 10−5 using a cosine-annealed schedule. For MAE pretraining, we use random-resize

crop and horizontal flips as the two augmentations, while for fine-tuning we use RandAugment (Cubuk et al.,

2020).

We evaluate the accuracy on the downstream task using a linear-probe applied to the encoder. We find that

trends obtained using a linear probe are nearly identical to trends obtained using fine-tuning (see section A.5).

89



1 2 4 8 12 16 20
Encoder size

1
2

4
6

8
12

D
ec

od
er

 s
iz

e
1.9 3.3 2.4 2.5 3.0 4.0 4.5

4.4 2.8 3.0 4.4 4.1 4.7 5.2

4.1 4.2 4.4 4.5 5.1 6.0 6.0

5.4 5.7 5.9 6.1 6.7 7.5 9.1

7.0 7.0 7.2 7.3 9.6 9.0 9.4

9.7 9.8 11.0 10.3 10.9 11.7 12.2

Training time (hours)

5

10

1 2 4 8 12 16 20
Encoder size

1
2

4
6

8
12

D
ec

od
er

 s
iz

e

52.33 57.93 62.39 66.20 69.35 70.16 69.99

52.14 59.41 67.74 73.93 74.59 76.42 78.47

44.55 54.54 60.88 74.35 77.53 79.21 81.32

43.58 51.04 59.35 70.03 75.92 77.09 80.11

43.12 49.37 56.49 65.34 65.66 69.44 76.03

42.78 48.75 51.86 59.39 68.60 63.61 69.65

Linear probe accuracy (%)

40

50

60

70

80

Figure 3.12: We plot (left) the training time and (right) linear probe accuracy for different combinations of the number of encoder
and decoder layers. MAEs are slow to train with training time increasing with the size of the decoder. We find that the training
loss is not a good proxy for downstream classification accuracy (fig. A.20). The accuracy of the trained encoder continues to
improve as we increase its size. However, this is not true for the decoder: the optimal decoder size is around 2-4 layers. We notice
that the differences in accuracies reduce when we fine-tune the encoder for a 100 epochs (fig. A.21).

3.2.2.2 Results

Howdowe select the size of the encoder and decoder? Masked autoencoders typically havemore encoder

layers than decoder layers but is this optimal? We investigate how the number of encoder and decoder layers

affect the reconstruction error, training time and downstream accuracy for classification. In fig. 3.12, we train

models on CIFAR-10 and plot the training time (in hours) when we use a different number of encoder and

decoder layers. The training time increases at a slower rate when we increase the number of encoder layers

compared to increasing the number of decoder layers since the decoder operates on a longer sequence of

tokens — the decoder uses both masked and unmasked tokens while the encoder only uses unmasked tokens.

Even for CIFAR-10, training can take as long as 6 to 10 hours on a single GPU.

Increasing the number of encoder and decoder layers decreases the reconstruction error (fig. A.20). However,

a smaller reconstruction error does not result in higher linear-probe accuracies (see fig. A.20) or fine-tuning

accuracies (see fig. A.21). We find that the linear-probe accuracy continues to improve as we increase

the size of the encoder. However, the optimal decoder has far fewer layers and even a 1-layer decoder

has high accuracy after fine-tuning with the added benefit of reduced training time. For example, a

model pretrained with a 1-layer decoder achieves 95.26% accuracy after fine-tuning, which is only 0.30%
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worse than our best model fig. A.21.

How do we select the masking ratio and patch-size? The masking ratio and patch-size control the basis

learnt by a linear MAE (section 3.2.1). We see that these two hyper-parameters also have a significant impact

on MAEs trained using deep networks. In fig. 3.13, we plot the reconstruction error and the linear-probe

accuracy for different values of masking ratio and patch-size. MAEs train faster if the patch-size is large

or if the masking ratio is small since a larger patch-size reduces the number of tokens by a quadratic

factor and increasing the masking ratio decreases the number of tokens fed to the encoder. The training time

increases from 4 hours to 10 hours as we decrease the masking ratio from 0.9 to 0.1.

Reconstruction improves as we decrease the masking ratio which is unsurprising— it is easier to reconstruct

an image if we have more patches. Reconstruction error also reduces as the patch-size becomes smaller. A

smaller patch-size reduces the average spatial distance to unmasked patches, which makes reconstruction

easier due to strong local spatial correlations seen in images (fig. 3.7). We find that a small patch-size and

large masking ratio achieve the best linear probe accuracies. While smaller values of patch-size achieve better

linear probe accuracies, an MAE with larger patch-size trains faster.
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Figure 3.13: We plot the reconstruction error (left) and the linear probe accuracy (right) for different values of patch-size and
masking ratio. Reconstruction loss decreases as we decrease the patch-size or decrease the masking ratio. However the linear probe
accuracy has no clear trend with respect to the masking ratio and the optimal masking ratio depends on the patch-size. While smaller
values of patch-size achieve better linear probe accuracies, they are also slower to train.
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Figure 3.14: We fine-tune the model for 100 epochs after freezing the first 𝑘 layers of the network and plot the accuracy against
number of layers frozen during fine-tuning. We find that even if we freeze all but 1 Transformer block, we recover the accuracy
compared to when no layers are frozen, i.e., the accuracy can be recovered while using a fraction of the training time and memory.

Can we fine-tune fewer layers to reduce GPU memory and training time? We investigate the effect of

fine-tuning a subset of the layers of an MAE in fig. 3.14. We find that if we freeze all but one Transformer

block, we achieve within 2% of the accuracy achieved from fine-tuning all the layers, i.e., a similar

accuracy can be achieved with a nearly 2x speedup (fig. A.21 (right)) and with less GPU memory. These

results align with the practice of setting learning rates that exponentially decrease across the different layers

of the encoder during fine-tuning (He et al., 2021).
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3.3 Related work

Reference priors in Bayesian statistics We build upon the theory of reference priors which was developed

in the objective Bayesian statistics literature (Bernardo, 1979; Berger et al., 1988, 2009). The main idea used

in our work is that non-asymptotic reference priors allow us to exploit the finite samples from the task in

a fundamentally different way than classical Bayesian inference. If the number of samples from the task

available to the learner is finite, then the prior should also select only a finite number of models. Reference

priors are not common in the machine learning literature. A notable exception is Nalisnick and Smyth (2017)

who optimize a variational lower bound and demonstrate results on small-scale problems. Themain technical

distinction of our deep reference priors is that we explicitly use the discrete prior instead of a variational

approximation.

Self-supervised learning. Contrastive learning (Becker and Hinton, 1992) learns representations without

using ground-truth labels (Gutmann and Hyvärinen, 2010; Chen et al., 2020a). It has been extremely effec-

tive for self-supervised learning (Doersch and Zisserman, 2017; Kolesnikov et al., 2019), Given inputs (say

images) 𝑥 from 𝑃, contrastive learning forces the representation 𝜑(𝑔(𝑥);𝑤1) and 𝜑(𝑔′(𝑥);𝑤1) (shortened
to 𝜑(𝑔(𝑥)) below) of the same input for two different augmentations 𝑔, 𝑔′ to be similar. And forces it to

be different from representations of other augmented inputs 𝑥′ (Zbontar et al., 2021; Bachman et al., 2019;

Dosovitskiy et al., 2014).

Semi-supervised learning Our formulation sheds light on the working of current SSL methods. For exam-

ple, the reference prior can automatically enforce consistency regularization of predictions across augmenta-

tions (Tarvainen and Valpola, 2017; Berthelot et al., 2019b), as we discuss in section 3.1.1.9. Similarly, min-

imizing the entropy of predictions on unlabeled data, either explicitly (Grandvalet et al., 2005; Miyato et al.,

2018) or using pseudo-labeling methods (Lee et al., 2013; Sajjadi et al., 2016), is another popular technique.

This is automatically achieved by the objective in eq. (3.3). Disagreement-based methods (Zhou and Li,

2010) employ multiple models and use confident models to soft-annotate unlabeled samples for others. Dis-

agreements in our formulation are encouraged by the entropy𝐻(𝑦𝑛 | 𝑥𝑛) in eq. (3.3). If 𝑝(𝑦𝑛 | 𝑥𝑛) is uniform,

which is encouraged by the reference prior objective, particles disagree strongly with each other.

93



Masked autoencoders. Theoretical work on understanding MAEs can be categorized into the following

themes: architectural modifications, data modeling, connections to other self-supervised learning objectives,

and denoising. Work on architectural modification generally demonstrates that masking alters the attention

structure of ViTs, creating more local attention in early layers rather than global (Cao et al., 2022; Xie et al.,

2023b; Park et al., 2023; Huang et al., 2024). This is significant as Raghu et al. (2021) suggests that net-

works with local receptive fields generalize better to vision tasks. Kong et al. (2023) hypothesizes that this

learning process attempts to learn a hierarchical latent variable model, where masking enforces identifiability

of coarser latent variables, though such a model is not definitively known to exist for natural image data. An-

other perspective interprets MAEs as a form of contrastive learning using only positive samples of unmasked

patches (Zhang et al., 2022). Littwin et al. (2024) challenges this hypothesis by demonstrating that MAE

approaches learn a different set of features than contrastive methods. Beyond explaining the architectural

bias induced by MAEs, researchers have also investigated how MAEs can perform masked image modeling

tasks under extreme masking ratios. This challenge can be framed as a linear inverse problem, where mea-

surements of unmasked pixels are used to recover masked pixels (Kadkhodaie and Simoncelli, 2021). While

compressive sensing offers one method to solve this inverse problem, it lacks the nonlinear encoder and prior

over the data distribution present in MAEs (Wright and Ma, 2022). For the nonlinear problem, the field of

image denoising provides a probabilistic understanding of the unique properties induced in this denoising

task (Bioucas-Dias and Figueiredo, 2009; Milanfar and Delbracio, 2024).
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CHAPTER 4

A PICTURE OF THE SPACE OF TASKS

In the first chapter, we used learning theory to understand how to optimally train on multiple tasks. The

learning theoretic definitions of task-relatedness are too strong and not usable in practice — the theory only

applies in the asymptotic regime of 𝑚 → ∞. The bounds are often vacuous because they are extremely

pessimistic in their predictions since they capture all possible distributions over the inputs and for all tasks

realizable by the hypothesis class.

In this chapter, we adopt the view that in order to build useful theory, we must build theory that only applies

to ”typical tasks”. But before we can build such a theory, we must understand what typical tasks look like.

Toward this end, this chapter discusses two results that attempt to characterize the space of typical learnable

tasks. We use an atypical set of tools from information theory, signal processing, and information geometry

to describe the manifold of tasks and to characterize redundancy in typical tasks.
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4.1 Training trajectories of typical tasks lie in a low-dimensional Mani-

fold

In this section, we use techniques from computational information geoemtry to understand the representa-

tions learned by deep networks when they are trained on different tasks and using different methods. While

algorithms for supervised, meta-, semi-supervised and contrastive learning are very different from each other,

they must be exploiting some structure in the space of tasks considering that all of these methods work incred-

ibly well. The goal is to uncover this structure and shed light on why these existing algorithms are successful.

The tools help us shed light on the following phenomena: (1) the manifold of probabilistic models trained on

different tasks using different representation learning methods is effectively low-dimensional; (2) supervised

learning on one task results in a surprising amount of progress even on seemingly dissimilar tasks; progress

on other tasks is larger if the training task has diverse classes; (3) the structure of the space of tasks indi-

cated by our analysis is consistent with parts of the Wordnet phylogenetic tree; (4) episodic meta-learning

algorithms and supervised learning traverse different trajectories during training but they fit similar mod-

els eventually; (5) contrastive and semi-supervised learning methods traverse trajectories similar to those of

supervised learning.

4.1.1 Methods

The key idea is to think of a deep network with weights 𝑤 trained on a task as a probabilistic model 𝑃𝑤( ®𝑦)
where ®𝑦 = (𝑦1 , . . . , 𝑦𝑁 ) denotes any sequence of outputs (each 𝑦𝑛 ∈ {1, . . . , 𝐶} classes) on 𝑁 independent

and identically distributed samples. We instantiate the technical machinery of information geometry using

this 𝑁𝐶-dimensional object to study different probabilistic models fitted to the task irrespective of which

representation learning algorithm, e.g., supervised learning, meta-learning, etc., or what neural architecture

was used to fit the probabilistic model. This construction circumvents the enormous diversity of algorithms,

architectures with different feature spaces and training methods across these different sub-fields and provides

us with a single space to study these models in — the prediction space of the model. Some of these tools are

developed in more detail in Mao et al. (2024). These tools are used to visualize these very high-dimensional

objects, to compute geodesics on such manifolds, to interpolate checkpoints along training trajectories into
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continuous curves, and to map models trained on different tasks into a unique prediction space.

Modeling the task A task 𝑃 is a joint distribution on inputs 𝑥 ∈ R𝑑 and outputs 𝑦 ∈ {1, . . . , 𝐶} corre-

sponding to 𝐶 classes. Suppose we have 𝑁 independent and identically distributed samples
{(𝑥𝑛 , 𝑦∗𝑛)}𝑁𝑛=1

from𝑃. Let ®𝑦 = (𝑦1 , . . . , 𝑦𝑁 ) denote any sequence of outputs on these𝑁 samples and ®𝑦∗ denote the sequence
of ground-truth labels. We can model the task as

𝑃𝑤( ®𝑦) =
𝑁∏
𝑛=1

𝑝𝑛𝑤(𝑦𝑛) (4.1)

where 𝑤 are the parameters of the model and we have used the shorthand 𝑝𝑛𝑤(𝑦𝑛) ≡ 𝑝𝑤(𝑦𝑛 | 𝑥𝑛). Let ”truth”
or 𝑃∗ ≡ 𝑃( ®𝑦∗) denote the true probability distribution which corresponds to the ground-truth labels. Let

”ignorance” or 𝑃0 denote the probability distribution that corresponds to 𝑝𝑛(𝑦) = 1/𝐶 for all 𝑛 and all

𝑦 ∈ {1, . . . , 𝐶}.

Bhattacharyya distance Given two models 𝑃𝑢 and 𝑃𝑣 parameterized by weights 𝑢 and 𝑣 respectively, the

Bhattacharyya distance (Bhattacharyya, 1946) between them averaged over samples can be written as

dB(𝑃𝑢 , 𝑃𝑣) := −𝑁−1 log
∑
®𝑦

∏
𝑛

√
𝑝𝑢(𝑦𝑛) 𝑝𝑣(𝑦𝑛)

= −𝑁−1
∑
𝑛

log
∑
𝑐

√
𝑝𝑛𝑢 (𝑐) 𝑝𝑛𝑣 (𝑐).

(4.2)

Our model eq. (4.1) involves a product over the probabilities of 𝑁 samples. Many distances, e.g., the

Hellinger distance 2
(
1 −∏

𝑛
∑
𝑐

√
𝑝𝑛𝑢 (𝑐) 𝑝𝑛𝑣 (𝑐)

)
, saturate for large 𝑁 , this is because two random high-

dimensional vectors are nearly orthogonal. This makes it difficult to use such distances to understand high-

dimensional probabilistic models. The Bhattacharyya distance is well-behaved for large 𝑁 due to the loga-

rithm (Quinn et al., 2019b; Teoh et al., 2020), and that is why it is well suited to our problem.

Remark 23 (Models with different intermediate representations can have zero Bhattacharyya distance). Two

models can have different internal representations and yet define identical probabilistic models. For example,

a representation and a rotated version of the same representation can define identical probabilistic models

if this rotation is undone before the output. The Bhattacharyya distance eq. (4.2) only depends on the output

probabilities and would be zero if the probabilistic models are identical. Focusing the theory on the proba-
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bilistic model that makes the predictions as opposed to the feature space therefore allows us to capture many

symmetries in the prediction space.

Distances between trajectories of probabilistic models Consider a trajectory (𝑤(𝑘))𝑘=0,...,𝑇 that records

the weights after 𝑇 updates of the optimization algorithm, e.g., stochastic gradient descent. This trajectory

corresponds to a trajectory of probabilistic models �̃�𝑤 = (𝑃𝑤(𝑘))𝑘=0,...,𝑇 . We are interested in calculating

distances between such training trajectories. First, consider �̃�𝑢 = (𝑢(0), 𝑢(1), 𝑢(2), . . . , 𝑢(𝑇)) and another

trajectory �̃�𝑣 ≡ (𝑢(0), 𝑢(2), 𝑢(4), . . . , 𝑢(𝑇), 𝑢(𝑇), . . . , 𝑢(𝑇)) which trains twice as fast but to the same end

point. If we define the distance between these trajectories as, say,
∑
𝑘 dB(𝑃𝑢(𝑘) , 𝑃𝑣(𝑘)), then the distance

between �̃�𝑢 and �̃�𝑣 will be non-zero—even if they are fundamentally the same. This issue is more pronounced

whenwe calculate distances between training trajectories of different tasks. It arises because we are recording

each trajectory using a different time coordinate, namely its own training progress.

To compare two trajectories correctly, we need a notion of time that can allow us to uniquely index any

trajectory. The geodesic between the start point 𝑃0 and the true distribution 𝑃∗ is a natural candidate for this

purpose since it is unique. Geodesics are locally length-minimizing curves in a metric space. For the product

manifold in eq. (4.1), we can obtain a closed-form formula for the geodesic by noticing that for each sample,

the vector
(√
𝑝𝑛𝑢 (𝑐)

)
𝑐=1,...,𝐶

lies on a 𝐶-dimensional unit sphere. The geodesic connecting two models 𝑃𝑢

and 𝑃𝑣 under the Fisher information metric which is induced by the Bhattacharyya distance is just the great

circle on the sphere (Ito and Dechant, 2020, Eq. 47):

√
𝑃𝜆
𝑢,𝑣 =

𝑁∏
𝑛=1

(
sin

((1 − 𝜆)d𝑛G
)

sin
(
d𝑛G

) √
𝑝𝑛𝑢 +

sin
(
𝜆d𝑛G

)
sin

(
d𝑛G

) √
𝑝𝑛𝑣

)
, (4.3)

where 𝜆 ∈ [0, 1] and d𝑛G = cos−1
(∑

𝑐

√
𝑝𝑛𝑢 (𝑐)

√
𝑝𝑛𝑣 (𝑐)

)
is one half of the great-circle distance between 𝑝𝑛𝑢 (·)

and 𝑝𝑛𝑣 (·). Any probabilistic model 𝑃𝑤 on a trajectory �̃�𝑤 can now be re-indexed by a new “time” that we

call “progress”:

[0, 1] 3 𝑡𝑤 = arg inf
𝜆∈[0,1]

dG(𝑃𝑤 , 𝑃𝜆
0,∗). (4.4)

It indicates the distance of 𝑃𝑤 to the truth 𝑃∗ measured in terms of the closest point 𝑃𝑡𝑤0,∗ on the geodesic to

𝑃𝑤 . We solve eq. (4.4) using bisection search (Brent, 1971).
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Observe that using the same expression as eq. (4.3), we can also interpolate between two successive recorded

points 𝑃𝑤(𝑘) and 𝑃𝑤(𝑘+1) of a trajectory by calculating 𝑃𝜆
𝑤(𝑘),𝑤(𝑘+1) for different values of 𝜆 ∈ [0, 1]. This is

useful because different networks train with very different speeds on different tasks, especially in early stages

of training. This allows us to effectively convert a sequence of models �̃�𝑤 = (𝑃𝑤(𝑘))𝑘=0,...,𝑇 into a continuous

curve 𝜏𝑤 = (𝑃𝑤(𝑡))𝑡∈[0,1]. We calculate the distance between continuous curves 𝜏𝑢 , 𝜏𝑣 as

dtraj(𝜏𝑢 , 𝜏𝑣) =
∫ 1

0
dB(𝑃𝑢(𝑡) , 𝑃𝑣(𝑡)) d𝑡 ; (4.5)

which is approximated using a uniform grid on [0, 1].

Riemann length of a trajectory Divergences like the Bhattacharyya distance or the Kullback-Leibler (KL)

divergence (which is the cross-entropy loss up to a constant) can be used to define a Riemannian structure in

the space of probabilistic models (Amari, 2016). The distance between two infinitesimally different models

𝑃𝑤 and 𝑃𝑤+d𝑤 is

d𝑠2 = 4dB(𝑃𝑤 , 𝑃𝑤+d𝑤) =
〈
d𝑤 , 𝑔(𝑤) d𝑤

〉 + O(‖d𝑤‖2),

where 𝑔(𝑤) = 𝑁−1 ∑
®𝑦(𝑃𝑤)−1𝜕2𝑃𝑤 is the Fisher InformationMatrix (Quinn, 2019, Section A.3). This Fisher

Information Matrix (FIM) is therefore the metric of the space of the probability distributions and weights 𝑤

play the role of the coordinates in this space. Up to a scalar factor, the Bhattacharyya distance and the KL-

divergence induce the same FIM. The Riemann length of a trajectory 𝜏𝑤 is the integral of these infinitesimal

lengths:

Length(𝜏𝑤) = 2
∫ 1

0

√
dB(𝑃𝑤(𝑡) , 𝑃𝑤(𝑡+d𝑡)); (4.6)

it is equal to the integral of FIM-weighted incremental distance traveled in the weight space. Observe that

we do not need the FIM to calculate the length. We can think of the length of a trajectory taken by a model to

reach the solution 𝑃∗ compared to the length of the geodesic as a measure of the inefficiency of the training

procedure since the geodesic is the curve with the shortest length. This inefficiency can arise because: (a)

not all probability distributions along the geodesic can be parametrized by our model class (approximation

error), and (b) the training process may take steps that are misaligned with the geodesic (e.g., due to the loss

function, mini-batch updates, supervised vs. some other form of representation learning, etc.).
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Mapping a model trained on one task to another task using “imprinting” We will consider different

tasks {𝑃𝑘}𝑘=1,..., with the same input domain but possibly different number of classes 𝐶𝑘 . Given a model

𝑃1
𝑤 parametrized by weights 𝑤 for task 𝑃1, we are interested in evaluating its learned representation on

another task, say, 𝑃2. Let 𝑤 = (𝑤1 , 𝑤2) be the weights for the backbone and the classifier respectively. The

logits are R𝐶1 3 𝑤2
>𝜑(𝑥;𝑤1) corresponding to an input 𝑥 and features of the penultimate layer 𝜑(𝑥;𝑤1).

The network’s output 𝑝𝑤(𝑐 | 𝑥𝑛) for 𝑐 = 1, . . . , 𝐶1 is computed using a softmax applied to the logits. If

we have learned 𝑤 from one task 𝑃1, then we can re-initialize each row of the classifier weights (𝑤2)′𝑐 for
𝑐 = 1, . . . , 𝐶2 to maximize the cosine similarity with the average feature of samples from task 𝑃2 with

ground-truth class 𝑐:

(𝑤2)′𝑐 = ℎ/‖ ℎ‖2 where ℎ =
∑
{𝑥:𝑦∗𝑥=𝑐} 𝜑(𝑥;𝑤1). (4.7)

The new network 𝑤 = (𝑤1 , 𝑤2
′) can be used to make predictions on 𝑃2. Using imprinting, we can map a

trajectory 𝜏1
𝑤 of a network being trained on 𝑃1 to another task 𝑃2 by mapping each point along the trajectory;

let us denote this mapped trajectory by 𝜏1→2
𝑤 .

Remark 24 (Imprinting versus training the final layer or probing). There are many ways of performing such a

mapping, e.g., one could fine-tune the weights using data from 𝑃2, linear probing (Shi et al., 2016), etc. The

technique described above is known as “imprinting” (Hu et al., 2015; Qi et al., 2018; Dhillon et al., 2020).

In this work, we will be mapping thousands of models across different trajectories to other tasks. Training

the final layer, or a new classifier, for all these models is cumbersome and imprinting provides a simple way

around this issue. Note that imprinting is not equivalent to training the classifier𝑤2 (with backbone𝑤1 fixed)

using samples from the other task but we found that imprinted weights work well in practice.

How to choose an appropriate task to map different models to? Consider the training trajectory 𝜏1
𝑢 of

a model being trained on 𝑃1 and another trajectory 𝜏2
𝑣 of a model being trained on 𝑃2. Using eq. (4.7), we

can map these trajectories to the other task to get 𝜏1→2
𝑢 and 𝜏2→1

𝑣 . This allows us to calculate, for instance,

dtraj(𝜏1→2
𝑢 , 𝜏2

𝑣) using eq. (4.5) which is the distance of the trajectory of the model trained on 𝑃1 and then

mapped to 𝑃2 with respect to the trajectory of a model trained on task 𝑃2. If the two learning tasks 𝑃1 and

𝑃2 are very different, (e.g., Animals in CIFAR-10 and Vehicles in CIFAR-10), then this distance will be large.

Quantities like dtraj(𝜏1→2
𝑢 , 𝜏2

𝑣) or dtraj(𝜏2→1
𝑣 , 𝜏1

𝑢) are reasonable candidates to study similarities between tasks
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𝑃1 and 𝑃2, but they are not equal to one another. We are also interested in doing such calculations withmodels

trained on many different tasks, and mapping them to each other will lead to an explosion of quantities.

To circumvent this, we map to a unique task whose output space is the union of the output spaces of the

individual tasks, e.g., to study 𝑃1 (Animals) and 𝑃2 (Vehicles), we will map both trajectories to 𝑃U which is

all of CIFAR-10. We will use

dtraj(𝜏1→U
𝑢 , 𝜏2→U

𝑣 ) (4.8)

as the distance between trajectories trained on 𝑃1 and 𝑃2.

Visualizing a high-dimensional probabilistic model in lower-dimensions We use a visualization tech-

nique called intensive principal component analysis (InPCA) (Quinn et al., 2019b) that embeds a probabilis-

tic model into a lower-dimensional space. For 𝑚 probability distributions, consider a matrix 𝐷 ∈ R𝑚×𝑚

with entries 𝐷𝑢𝑣 = dB(𝑃𝑢 , 𝑃𝑣) and
𝑊 = −𝐿𝐷𝐿/2 (4.9)

where 𝐿𝑖 𝑗 = 𝛿𝑖 𝑗 − 1/𝑚 is the centering matrix. An eigen-decomposition of𝑊 = 𝑈Σ𝑈> where the eigen-

values are sorted in descending order of their magnitudes |Σ00| ≥ |Σ11| ≥ . . . allows us to compute the

embedding of these 𝑚 probability distributions into an 𝑚-dimensional space as R𝑚×𝑚 3 𝑋 = 𝑈
√
Σ. Unlike

standard PCA where eigenvalues are non-negative, eigenvalues of InPCA can be both positive and nega-

tive, i.e., the lower-dimensional space is a Minkowski space (Quinn et al., 2019b). This allows the InPCA

embedding to be an isometry, i.e., pairwise distances are preserved:

∑𝑚
𝑖=1(𝑋 𝑖

𝑢 − 𝑋 𝑖
𝑣)2 = dB(𝑃𝑢 , 𝑃𝑣) ≥ 0 (4.10)

for embeddings 𝑋𝑢 , 𝑋𝑣 of two distributions 𝑃𝑢 , 𝑃𝑣 . We can measure how well pairwise distances are pre-

served by a 𝑘-dimensional sub-space using the “explained stress” 𝜒𝑘 (Cox and Cox, 2000):

𝜒𝑘 = 1 −

𝑊 −∑𝑘
𝑖=1 Σ𝑖𝑖 𝑈𝑖𝑈>

𝑖


F

‖𝑊‖F = 1 −
√∑𝑚

𝑖=𝑘+1 Σ
2
𝑖𝑖∑𝑚

𝑖=1 Σ
2
𝑖𝑖

. (4.11)
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Just like standard PCA, if we preserve all the eigenvectors (i.e., 𝑘 = 𝑚), then eq. (4.10) holds exactly and

𝜒𝑘 = 1. But if we use fewer eigenvectors then pairwise distances can be distorted.

4.1.2 Results

We next describe our findings using the theoretical ideas developed in the previous section. We present a

broad range of evidence and analysis using a large number of representation learning techniques, multiple

neural architectures and a large number of different image-classification tasks created from the CIFAR-10

and ImageNet datasets. Experiments in this work required about 30,000 GPU-hours.

Remark 25. All the analysis (except figs. 4.4 and 4.5) was conducted using the test data. All models were

trained using the training data, but all mapped models, distances between trajectories, quantitative evalu-

ation of progress and InPCA embeddings were computed using the test dataset. The reason for this is that

we would like to study the geometry of tasks as evidenced by samples that were not a part of training. To

emphasize, we do not develop any new algorithms for learning. Therefore using the test data to quantify rela-

tionships between tasks is reasonable; see similar motivations in Kaplun et al. (2022) or Ilyas et al. (2022)

among others. Our findings remain valid when training data is used for analysis; this is because in most

of our experiments, a representation is trained on one task but makes predictions on a completely new task

after mapping.

Result 1: Themanifold ofmodels trained on different tasks, and using different representation learning

methods, is effectively low-dimensional We trained multiple models on 6 different sub-tasks of ImageNet

(from 5 random initializations each) to study the dimensionality of the manifold of probabilistic models

along the training trajectories (100 points equidistant in progress eq. (4.4)) after mapping all models to all

ImageNet classes (∼ 108 dimensions). We use the explained stress, to measure if the distances are preserved

by the first 𝑘 dimensions of the embedding of the models. The first 3 dimensions of InPCA (fig. 4.1a)

preserve 80.02% of the explained stress (fig. 4.1b shows more dimensions). This is therefore a remarkably

low-dimensionalmanifold. It is not exactly low-dimensional because the explained stress is not 100%, but it is

an effectively low-dimensional manifold. This also indicates that the individual manifolds of models trained

on one task are low-dimensional, even if they start from different random initializations in the weight space.

Such low-dimensional manifolds are seen in all our experiments, irrespective of the specific method used for
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Random 333 classes

Dogs

Vertebrates

Instrumentality
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P0
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(a)

(b)
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Figure 4.1: (a) Visualization of training trajectories of models trained on 6 tasks from ImageNet. Each point is one network, bold
lines connect points along the average trajectory of each task (across 5 random weight initializations). Trajectories move towards
the truth 𝑃∗, which corresponds to the ground-truth labels. Training on one task makes a remarkable amount of progress on unseen,
seemingly dissimilar, classes. Trajectories of models trained on a random set of 333 classes are similar to those of the entire
ImageNet. Some classes (Instrumentality) are closer to this trajectory while others such as Vertebrates and Dogs are farther away.
Dogs is a semantic subset of Vertebrates; it splits at the beginning but seems to eventually reach a similar representation as one of
the intermediate points of Vertebrates.
(b) Percentage explained stress eq. (4.11) captured by subspace spanned by the top 𝑘 InPCA eigenvectors.
(c) Validation accuracy on different tasks vs. epochs.

representation learning, namely, supervised, transfer (fine-tuning), meta, semi-supervised and contrastive

learning.

Remark 26 (A detailed description of how we plot trajectories of representations). We provide a non-

mathematical description of how the theory was used to draw fig. 4.1a below. We train 5 different networks

(random seeds for initialization) for each of the 6 tasks, and record 61 model checkpoints during training;
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(b)(a)

Figure 4.2: (a) Progress made by each model on classes seen during training (left half, lighter shade) and on novel classes (right
half, darker shade). We compute 𝑡𝑐𝑤 which is the progress 𝑡𝑤 of images restricted to a single class 𝑐. This quantity 𝑡𝑐𝑤 measures the
quality of the representation for class 𝑐. Violin plots denote the distribution of 𝑡𝑐𝑤 indicate that we make more progress on classes
seen during training. If the model sees a larger diversity of classes (like with random 333 classes), more progress is made on the
novel classes. Surprisingly, even if we train on just the “Dogs”, we make some progress on novel classes.
(b) Progress 𝑡𝑤 eq. (4.4) on the Y-axis against the number of epochs of training on the X-axis. The progress 𝑡𝑤 increases with more
epochs of training—all models make non-trivial progress towards the truth 𝑃∗ (𝑡𝑤 = 1). Even if we train on only Dogs (118 classes)
we make progress on the entire ImageNet.

this gives 1830 checkpoints for this experiment. We re-index all checkpoints to calculate their progress us-

ing eqs. (4.3) and (4.4). We then interpolate between each consecutive pair of the 61 checkpoints along each

trajectory using eq. (4.3). The training trajectory can now be sampled at any progress 𝑡𝑤 ∈ [0, 1]. We next

calculate the “average trajectory” of the 5 networks (random seeds) of each task by averaging the output

probabilities in eq. (4.1) at a fixed value of 𝑡𝑤; 100 different values of 𝑡𝑤 spread uniformly between [0, 1]
are chosen. These 100 points along the average trajectory of each of the 6 tasks are also embedded together

with the 1830 checkpoints (i.e., 𝑚 = 2430 in eq. (4.9)). fig. 4.1a plots the top three dimensions obtained from

InPCA. To clarify, the explained stress of the top 2430 dimensions would be exactly 100%.

Result 2: Supervised learning on one task results in a surprising amount of progress on seemingly

dissimilar tasks. Progress on other tasks is larger if the training task has diverse classes. We studied

the progress 𝑡𝑤 eq. (4.4) made by models (fig. 4.2b) trained on tasks from Result 1. Training on the task

“Dogs” makes non-trivial progress on other tasks, even seemingly dissimilar ones like “Instruments” which

contains vehicles, devices and clothing. In fact, it makes a remarkable amount of progress on the entire
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Figure 4.3: (a) Trajectories of models trained on different phyla of Wordnet (inset). The model manifold is again effectively low-
dimensional (78.72% explained stress in 3 dimensions).
(b) We analyze the trajectories in fig. 4.3(a) and obtain a quantitative description of how trajectories of different tasks diverge from
each other during training; the procedure is explained in in remark 27. The plot depicts the Bhattacharyya distance between the mean
trajectories (over random initializations) on different tasks, and the mean trajectory of Conveyance. This distance is normalized by
the average of the tube radii (maximum distance of one of the 5 trajectories from the mean, computed at each progress) of the two
trajectories. Such quantities allow us to make precise statements about the differences between representations and show some very
surprising conclusions. Trajectories of tasks that are nearby in Wordnet are also nearby in terms of their learned representations.
Further, trajectories of ImageNet (pink) are closer to Conveyance (as expected), but those of Vertebrates (red) are equally far away
for more than 60% (𝑡𝑤 ≈ 0.25) of the progress. In other words, training on Vertebrates (reptiles, dog, bird) makes a remarkable
progress on Conveyance (cars, planes).

ImageNet, about 63.38% of the progress of a model trained directly on ImageNet. Progress is larger for

larger phyla of ImageNet (Vertebrates and Instruments). But what is surprising is that if we train on a random

subset of 333 classes (a third of ImageNet), then the progress on the entire ImageNet is very large (92%).

This points to a strong shared structure among classes even for large datasets such as ImageNet. Note that

this does not mean that tasks such as Vertebrates and Instruments are similar to each other. Even if training

trajectories are similar for a while, they do bifurcate eventually and the final models are indeed different

(see fig. 4.3b and remark 27 on how to interpret it).

In fig. 4.2a, we studied the projections of models trained on one task onto the geodesics of unseen classes

calculated using eq. (4.3) evaluated at the progress 𝑡𝑤 eq. (4.4)). We find that a model trained on the entire

ImageNet makes uneven progress on the various classes (but about 80% progress across them, progress is

highly correlated with test error of different classes). Models trained on the 6 individual tasks also make
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progress on other unseen classes. As before, training on Instruments, Vertebrates, Dogs makes smaller

progress on unseen classes compared to training on a random subset of 333 classes. This is geometric

evidence that the more diverse the training dataset, the better the generalization to unseen classes/tasks; this

phenomenon has been widely noticed and utilized to train models on multiple tasks, as we discuss further in

Result 4.

Result 3: The structure of the space of tasks indicated by our visualization technique is consistent

with parts of the Wordnet phylogenetic tree. To obtain a more fine-grained characterization of how the

geometry in the space of learnable tasks reflects the semantics of these tasks, we selected two particular phyla

of ImageNet (Animals, Artifacts) and created sub-tasks using classes that belong to these phyla (fig. 4.3a).

Trajectories of models trained on Instruments and Conveyance are closer together than those of Animals.

Within the Animals phylum, trajectories of Vertebrates (Dog, Reptile, Bird) are closer together than those of

Invertebrates (fig. 4.3b for quantitative metrics). Effectively, we can recover a part of the phylogenetic tree of

Wordnet using our training trajectories. We speculate that this may point to some shared structure between

visual features of images and natural language-based semantics of the corresponding categories which was

used to create Wordnet (Miller, 1995) of the corresponding categories. Such alignment with a natural notion

of relatedness also demonstrates the soundness and effectiveness of our technical machinery.

Remark 27 (Building a precise and quantitative characterization of trajectories of representations). The pre-

cise way to understand statements like those in Result 3 is using the quantitative analysis reported in fig. 4.3b.

To expand upon the caption, the X-axis of the plot is progress. For multiple models (5 random seeds) trained

on two tasks (say Conveyance and Dogs), we have calculated the mean (across random seeds) of the inter-

polated trajectories at different progress. At each specific progress, we have plotted the distance between

the mean model trained on Conveyance (say task 1) and Dogs (say task 2) divided by the average tube radii

(which is the maximum of the distance of the model corresponding to one seed from the mean):

2dB(𝜏1→𝑈
mean , 𝜏

2→𝑈
mean )/

∑
𝑘=1,2 max𝑎[dB(𝜏𝑘→𝑈

𝑎 , 𝜏𝑘→𝑈
mean )].

The is a measure of how far away the trajectories of these two models are. If it is less than 1, then the “tubes”

corresponding to models trained on tasks 1 and task 2 intersect.
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Let us emphasize that we have performed such analyses for all experiments; while the InPCA embedding

gives an easy-to-understand visual description of these results for high-dimensional probabilistic models, the

information geometric techniques developed enable us to make these descriptions precise and quantitative.

Supervised

Episodic 2-way

Episodic 5-way

P0

P*

2-way task
5-way task
7-way task
CIFAR10

P0

P*

(a) (b)

Figure 4.4: (a) Training trajectories for supervised learning (black), 2-way (pink) and 5-way episodic meta-learning (purple). Tra-
jectories of 5-way meta-learning are very similar to those of supervised learning and eventually reach very similar models and high
test accuracy. In contrast, 2-way meta-learning has a much longer trajectory (about 40× longer in Riemann length than black) and
does not reach a good test accuracy (on all 10 CIFAR-10 classes). Representations are similar during early parts of training even if
these are quite different learning mechanisms.
(b) Trajectories of 2-way (blue), 5-way (green), 7-way (yellow) tasks trained using cross-entropy loss compared to supervised learn-
ing (red). For large “way”, trajectories are similar to supervised learning but they quickly deviate from the red trajectories for small
ways.

Result 4: Episodic meta-learning algorithms traverse very different trajectories during training but

they fit a similar model eventually. Meta-learning methods build a representation which can be adapted

to a new task (Thrun and Pratt, 1998). We studied a common variant, the so-called episodic training meth-

ods (Bengio et al., 1992), in the context of few-shot learningmethods (Vinyals et al., 2016). In thesemethods,

each mini-batch consists of samples from 𝐶𝑤 out of 𝐶 classes (called “way”) split into two parts: a “support

set” 𝐷𝑠 of 𝑠 samples/class (called “shot”), and a “query set” 𝐷𝑞 of 𝑞 samples/class. Typical methods, say

prototypical networks of Snell et al. (2017), implement a clustering loss on features of the query samples

using averaged features of the support samples 𝜑𝑐 = 𝑠−1 ∑
{𝑥∈𝐷𝑠 ,𝑦∗(𝑥)=𝑐} 𝜑(𝑥;𝑤1) for all 𝑐 = 1, . . . , 𝐶𝑤 as
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the cluster centroids. If features 𝜑 lie on an ℓ2 ball of radius 1, then doing so is akin to maximizing the cosine

similarity between cluster centroids and features of query samples. The same clustering loss with the learned

backbone 𝑤1 is used to predict on unseen classes (using “few” support samples to compute centroids) at test

time.

To understand the representations learned by episodic meta-learning methods, we compared trajectories of

episodic meta-learning to the trajectory taken by supervised learning in fig. 4.4. Supervised learning uses

the cross-entropy loss over all the 𝐶 classes while episodic meta-learning optimizes a loss that considers

all k-way classification tasks (where 𝑘 is typically smaller than 𝐶), its objective differs from that used for

supervised learning. Since the two objectives are different, it comes as a surprise that both arrive at the same

solution; see fig. 4.4a,b for distances between trajectories. But the Riemann trajectory length of episodic

training is about 40× longer than that of supervised learning. It is worth noting that the explained stress is

only 40.96% in fig. 4.4a because of larger fluctuations for episodic learning in other directions. Therefore,

episodic meta-learning has a qualitatively different training trajectory in the prediction space than supervised

learning. The implications of this are consistent with recent literature which has noticed that the performance

of few-shot learning methods using supervised learning (followed by fine-tuning) is comparable to, or better

than, episodic meta-learning (Dhillon et al., 2020; Kolesnikov et al., 2020; Fakoor et al., 2020). Indeed, a

supervised learned representation also minimizes the clustering loss.

(a) (b)

Figure 4.5: (a) Average distance between two 𝑘-way meta-learning trajectories decreases with 𝑘, this is a geometric evidence of
the variance of predictions of learned representations. (b) Training with a small way leads to models that predict poorly on test data
(large distances from truth). These embeddings were calculated using the training dataset. The rationale being that we wanted to
show how different meta-learning and supervised learning are during training.
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In order to understand why few-shot accuracy of episodic training is better when 𝑘 is larger for 𝑘-way meta-

learning (Gidaris and Komodakis, 2018), we trained models on different 2-way 5-way and 7-way tasks using

the cross-entropy loss (fig. 4.4b). We find that the radius of the tube that encapsulates the models of 2-way

tasks around their mean trajectory is very large, almost as large as the total length of the trajectory, i.e.,

different models trained with a small way tasks traverse very different trajectories. Tube radius decreases as

the way increases (fig. 4.5a). Further, the distance of models from the truth 𝑃∗ (which is close to the end

point of the supervised learning model) is higher for a small way (fig. 4.5b). This is geometric evidence of

the widely used empirical practice of using a large way in episodic meta-learning. Observe in fig. 4.5b that

as the way increases, the trajectory becomes more and more similar to that of supervised learning.
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Figure 4.6: We consider 4 methods for training on CIFAR10: supervised learning, SimCLR (Chen et al., 2020a), Barlow-
twins (Zbontar et al., 2021) and Fixmatch (Sohn et al., 2020). Fixmatch has access to 2500 labeled samples and 47500 unlabeled
samples. SimCLR and Barlow-twins use 50,000 unlabeled samples for training.
(a) We plot the trajectories for supervised, semi-supervised and contrastive learning. The trajectory of semi-supervised learning
(Fixmatch) eventually resembles supervised learning in comparison to contrastive learning methods. All methods result in remark-
ably similar trajectories although some of these methods are trained using only unlabeled data.
(b) Normalized distance of trajectories corresponding to contrastive and semi-supervised learning to the trajectory of supervised
learning. Semi-supervised learning (Fixmatch) deviates considerably from the other methods at the beginning. We speculate that
this is because the trajectory of Fixmatch is influenced by the 2500 labeled samples. As, training progresses, Fixmatch becomes
increasingly similar to supervised learning as evidenced by the dip in the blue line for larger values of progress (𝑡𝑤).

Result 5: Contrastive and semi-supervised learning methods traverse trajectories similar to those of

supervised learning. Contrastive learning (Becker and Hinton, 1992) learns representations without using

ground-truth labels (Gutmann and Hyvärinen, 2010; Chen et al., 2020a). It has been extremely effective for

self-supervised learning (Doersch and Zisserman, 2017; Kolesnikov et al., 2019), e.g., prediction accuracy

109



with 1–10% labeled data is close to that of supervised learning using all data (Chen et al., 2020b). Semi-

supervised methods (Berthelot et al., 2019b; Sohn et al., 2020) learn representations when ground-truth la-

bels are available for only a small fraction of the data (0.1–1%). These methods achieve a prediction accuracy

within 5% of the accuracy achieved through supervised learning. We compared representations learned us-

ing contrastive and semi-supervised learning with those from supervised learning to understand why these

methods are so effective.

Consider a task 𝑃 and a set of augmentations 𝐺 such as cropping, random-resizing, blurring, color, contrast,

brightness distortion etc.). Given inputs images 𝑥 from 𝑃, contrastive learning forces the representation

𝜑(𝑔(𝑥);𝑤1) and 𝜑(𝑔′(𝑥);𝑤1) (shortened to 𝜑(𝑔(𝑥)) below) of the same input for two different augmen-

tations 𝑔, 𝑔′ to be similar. And forces it to be different from representations of other augmented inputs

𝑥′ (Zbontar et al., 2021; Bachman et al., 2019; Dosovitskiy et al., 2014). Semi-supervised learning methods

have access to both labeled inputs 𝑥𝑙 and unlabeled inputs 𝑥𝑢 . More recent methods are usually trained to

fit the labeled inputs using the cross-entropy loss while enforcing consistent predictions across all augmen-

tations (Tarvainen and Valpola, 2017; Berthelot et al., 2019b) for any unlabeled input.

We compare the representations of semi-supervised learning (Fixmatch (Sohn et al., 2020)), contrastive learn-

ing(SimCLR (Chen et al., 2020a), Barlow-twins (Zbontar et al., 2021)) and supervised learning in fig. 4.6.

All three trajectories are similar to the trajectory of supervised learning. We find that the trajectory of semi-

supervised learning deviates from the supervised learning trajectory initially, but the two are very similar for

larger values of progress (𝑡𝑤). This points to a remarkable ability of semi and self-supervised learning meth-

ods to learn representations that are similar to those of supervised learning; it is not just that the accuracy of

these methods is similar, they also learn similar probabilistic models.

Result 6: Fine-tuning a pre-trainedmodel on a sub-task does not change the representationmuch. To

understand how models train on multiple tasks, we selected two binary classification sub-tasks of CIFAR-10

(Airplane vs. Automobile, and Bird vs. Cat).

We selected models at different stages of standard supervised learning on CIFAR-10 (i.e., using 10-way

output and softmax cross-entropy loss) and fine-tuned each of these models on two sub-tasks (the entire
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network is fine-tuned without freezing the backbone). As fig. 4.7 shows, models that were fine-tuned from

earlier parts of the trajectory travel a large distance and move away from trajectories of the supervised learned

CIFAR-10 models. As we fine-tune later and later models, the distance traveled away from the trajectory is

smaller and smaller, i.e., changes in the representation are smaller. For a fully-trained CIFAR-10 model

which interpolates the training data, the distance traveled by fine-tuning is very small (the points are almost

indistinguishable in the picture); this is because both 𝑃1 and 𝑃2 are subsets of CIFAR-10.

Algorithms for transfer learning train on a source task before fine-tuning the model on the target task. If

two tasks share a large part of their training trajectory, then we may start the fine-tuning from many shared

intermediate points—there are many such points. If the chosen point is farther along in terms of progress then

the efficiency resulting from using the source task is higher because the trajectory required to fit the target

task is shorter; such trajectories were used in (Gao and Chaudhari, 2021) to define a distance between tasks.

As we saw in Result 2, trajectories of different tasks bifurcate after a shared part. The resultant deviation less

for related tasks and more for dissimilar tasks (fig. 4.7a, fig. 4.1a,c). Therefore it is difficult to know a priori

from which point one should start the fine-tuning from without knowing the manifold of the target task. In

particular, our geometric picture indicates that fine-tuning from a fully-trained model can be detrimental to

the accuracy on the target task. This has been noticed in a number of places in the transfer learning literature,

e.g., Li et al. (2020a), and has also been studied theor etically (Gao and Chaudhari, 2020).

Result 7: Contrastive learning methods trained on different datasets learn similar representations

We compared representations learned using contrastive learning with those from supervised learning to un-

derstand some aspects of why the former are so effective.

We used SimCLR (Chen et al., 2020a) to perform contrastive learning on images from four sets of classes

(airplane-automobile, bird-cat, ship-truck and all of CIFAR-10). We compared the learned representation to

that from supervised learning on two tasks (airplane-automobile and all of CIFAR-10) in fig. 4.8. Models

trained using contrastive learning on two-class datasets learn very different representations from models

trained on the same task but using supervised learning. Models trained using contrastive learning on different

datasets learning similar representations (trajectories of all three two-class datasets are very close to each

other). This is reasonable because contrastive learning does not use any information from the labels. It
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Figure 4.7: (a) Fine-tuning trajectories on Airplane vs. Automobile, and Bird vs. Cat sub-tasks of CIFAR-10 (warm and cold hues)
pre-trained from different points along the trajectory of supervised learning. If the pretrained model has progressed further towards
the truth 𝑃∗, then fine-tuning it on a sub-task does not change the representation much. The final trajectory (fine-tuning from epoch
100) is indistinguishable from 𝑃∗. (b)beginning and determines the efficiency of fine-tuning. Some curves here are not visible
because they are overlapping heavily.
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Supervised - Task 1
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Figure 4.8: (a) Trajectories of contrastive learning (SimCLR) on 3 datasets (two classes each) and entire CIFAR-10 compared to
those of supervised learning. SimCLR on entire CIFAR-10 learns a similar representation as that of the supervised learned model 𝑃∗
(which fits the training data perfectly). SimCLR trajectories are close to each other even if different datasets were used to train them.
It may seem from the embedding that SimCLR trajectories are similar to that supervised learning, which would be very surprising
because the former does not use any labels, but see below.
(b) Bhattacharyya distance between the mean trajectories of all models and the mean trajectory of SimCLR on all CIFAR-10. This
distance is normalized by the average of the tube radii (like fig. 4.7b). SimCLR trajectories of two-class datasets are indeed very
close to each other (mean distance is ∼ 5× more than their tube radii for about 45% of the way (𝑡𝑤 ≈ 0.2)). This plot indicates
that two-class SimCLR trajectory (light blue) is close to SimCLR on all of CIFAR-10. But two-class supervised learning trajectory
(darker blue) is much farther away from SimCLR on all of CIFAR-10.

is surprising however that the trajectory of models from contrastive learning on these two-class datasets is

similar to trajectories of models from contrastive learning on the entire CIFAR-10.
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Let us elaborate upon this a bit more. We have color-matched the lines in fig. 4.8b with those in fig. 4.8a. The

black curve is the trajectory of supervised learning on the entire CIFAR-10; red is the trajectory of SimCLR

trained on the entire CIFAR-10. fig. 4.8b compares the distances of trajectories in fig. 4.8a from the red one

“contrastive”; this is why there is no red trajectory in fig. 4.8b.

• The first thing to note here is that the black and red trajectories are quite close to each other; the black

line in fig. 4.8b is only about 20 times far away from red as compared to their corresponding tube radii.

• Next observe that the trajectory of SimCLR on Task 1 (light blue), SimCLR on Task 2 (green) and

SimCLR on Task 3 (yellow) are very similar to each other; this is seen in both fig. 4.8a and in fig. 4.8b.

• Third, they are closer to SimCLR on all of CIFAR-10 than any supervised learning trajectories (this is

seen in fig. 4.8b because their curves are below everyone else). Thus, contrastive learning on datasets

with different classes learns similar representations.

• The learned representation of two-class SimCLRmodels is similar to the one obtained using data from

all classes (red) (in this experiment this occurs up to about 𝑡𝑤 = 0.4 progress) but they do not go all

the way to the truth (i.e., the end point of black line). This shows the benefit of having data from many

classes during contrastive learning.
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4.2 Many perception tasks are redundant functions of the input

Suppose we are given a dataset with inputs that are vectors in Euclidean space and outputs denoting each

input’s ground-truth category. The textbook procedure for modeling this data often begins with principal

component analysis (PCA (Hotelling, 1933)). PCA projects inputs onto the “principal” subspace where the

variance of the projection is maximal. PCA can be used to reduce the dimensionality, remove the effects

of noise, and, as every reader has done in the past, fit a model for predicting the labels using these salient

features. The larger the explained variance of PCA, the smaller (hopefully) the information about the labels

thrown away by the projection. The smaller the dimension of the principal subspace, the more robust the

model is to data variations in the discarded subspace. This is why any data science textbook teaches its

readers to identify the “elbow” in a scree plot as the size of the principal subspace (James et al., 2013).

This paper shows that for many perception tasks—from visual recognition, semantic segmentation, optical

flow, depth estimation to auditory discrimination—one can accurately predict the output using non-salient

features. The principal subspace is most predictive of these tasks. However, the predictive ability of any

other subspace is remarkably high. These perception tasks are, therefore, highly redundant functions of

their input data. We examine this phenomenon through different lenses, using ideas from signal processing,

information theory, and neuroscience. section 4.2.2 discusses our results, where we identify common themes

and important differences across these modalities.

4.2.1 Methods

Principal components analysis (PCA), Fourier transform and the wavelet transform. The input to all of

our image filters is a discretely-sampled image 𝑥 ∈ R𝑑1×𝑑2×𝑑3 with height 𝑑1, width 𝑑2 and 𝑑3 channels. For

PCA, we flatten the image and subtract the mean over all images to form 𝑋 ∈ R𝑑×𝑛 where 𝑛 is the number

of examples and 𝑑 = 𝑑1𝑑2𝑑3. We then form the sample covariance matrix given by Σ = 𝑋𝑋>/𝑛. PCA

computes the eigen-decomposition Σ = 𝑈Λ𝑈> where 𝑈 is a matrix of eigenvectors and Λ is a diagonal

matrix with eigenvalues 𝜆1 , . . . ,𝜆𝑛 along it. If the eigenvalues are sorted, the explained variance of the

subspace formed by the first 𝑖 eigenvectors is 1 − (∑𝑖
𝑗=1 𝜆 𝑗)/(

∑𝑛
𝑗=1 𝜆 𝑗).
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We also consider the Fourier basis which represents images using an orthonormal basis of complex sinu-

soids of different frequencies For natural images, pixel-pixel correlations are mostly only a function of the

distance between them, i.e., Σ𝑖 𝑗 only depends on
��𝑖 − 𝑗

��. Under this assumption, the eigenvectors of Σ are

sinusoids (Hyvärinen et al., 2009). The Fourier Transform is, hence, closely related to PCA. We use the

two-dimensional Discrete Fourier transform (Briggs et al., 1995; Oppenheim, 1999) to project each channel

of the image. The Discrete Fourier transform (DFT) of an image 𝑥 is

�̂�(𝜔1 , 𝜔2 , 𝑐) = 1
𝑑1𝑑2

𝑑1∑
𝑘=1

𝑑2∑
𝑙=1

𝑥(𝑘, 𝑙, 𝑐) exp
{
−2𝜋𝑖

(
𝜔1𝑘
𝑑1

+ 𝜔2𝑙
𝑑2

)}
,

where 𝜔1 , 𝜔2 are spatial frequencies. PCA and Fourier transform are a global statistic of the input image.

Wavelets can provide local statistics at different scales using a set of basis functions that have compact support

in both frequency and space (Mallat, 2008). We use the discrete 2D wavelet transform for all our experiments

with Daubechies 4 wavelets from the PyWavelet package.

Slow feature analysis (SFA) for sounds. We used a cochlear model with 42 gammatone spectral filters fol-

lowed by a temporal filter (Zhang et al., 2001; Lewicki, 2002; Tabibi et al., 2017) to approximate the structure

of audio inputs in our task to that of the auditory system. Slow Feature Analysis ((Wiskott and Sejnowski,

2002)) argues that higher-order information in a stimulus (e.g., identity) changes at a slower time scale than

other fluctuations (e.g., acoustic features). It has been shown to learn features similar to those in the V1

cortex (Berkes and Wiskott, 2005). If the auditory stimulus, e.g., output of the cochlear model, is 𝑥(𝑡), fea-
tures found by (linear) SFA are eigenvectors of the covariance matrix of the derivative ¤𝑥(𝑡), arranged from

the smallest eigenvalue to the largest, i.e., slowest to fastest. SFA is equivalent to a PCA of the temporal

derivative of a signal. section A.6.5.5 provides more details.

Shapley values (Shapley et al., 1953) calculate the improvement in the accuracy of a model with or without

including a feature, averaged over all sets of other features (Lundberg and Lee, 2017). This requires fitting

exponentially many models. But we can use an equivalent definition framed as a least squares problem with

a linear constraint (Covert and Lee, 2020) and optimize it using dataset sampling (Ribeiro et al., 2016) to

estimate the average improvement in accuracy by including a particular subspace, formed by different PCA
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components, frequencies or scales. The Shapley values sum up to the accuracy of the model when all features

are included.

Partial information decomposition (PID) (Williams and Beer, 2010) was introduced to understand how

the mutual information 𝐼(𝑋1 , 𝑋2;𝑌) of two random variables 𝑋1 , 𝑋2 with 𝑌 can be decomposed into the

redundant information 𝑅 (both 𝑋1 and 𝑋2 have), synergistic information 𝑆 (emerges only when both are

available), and the unique information with respect to𝑌 for both variables, denoted by𝑈1 and𝑈2 respectively.

By definition 𝐼(𝑋1 , 𝑋2;𝑌) = 𝑅 + 𝑆 +𝑈1 +𝑈2.10 We have

𝐼(𝑋1;𝑌) = 𝑅 +𝑈1 , and 𝐼(𝑋2;𝑌) = 𝑅 +𝑈2. (4.12)

PID is not uniquely defined using these constraints. But it turns out that defining redundant information is

enough. Williams and Beer (2010) provide a formula for 𝑅 but it is computationally intractable. However,

if (𝑋1 , 𝑋2 , 𝑌) are jointly Gaussian, Barrett (2015) showed that the definition reduces to

𝑅 = min {𝐼(𝑋1;𝑌), 𝐼(𝑋2;𝑌)} ,

which can be computed using the formula for the mutual information of Gaussian random variables. Using

redundancy 𝑅, we can calculate𝑈1 , 𝑈2 and 𝑆 as well using eq. (4.12).

Estimating mutual information. Calculating the mutual information 𝐼(𝑋;𝑌) = 𝐻(𝑌) − 𝐻(𝑌 | 𝑋) from
samples requires a numerical estimate of the entropies. The Kraskov estimator (Kraskov et al., 2004) uses a

𝑘-nearest neighbor based estimate of the entropy and we additionally exploit the identity 𝐼(𝑋;𝑌) = 𝐻(𝑋) +∑
𝑦 𝑃(𝑌 = 𝑦)𝐻(𝑋 | 𝑌 = 𝑦) for discrete 𝑌. Upon this, one can implement a local non-uniformity correction

(LNC) term (Gao et al., 2015), which is important when variables are strongly correlated. Belghazi et al.

(2018) developed an estimator called MINE that uses a neural network to optimize the Donsker-Varadhan

inequality. In general, estimating mutual information in high dimensions is difficult (Czyz et al., 2024). We

only estimate it for labels and 10-dimensional PCA subspaces, so we expect our estimates to be reliable.
10 Consider two bits 𝑋1 ∈ {0, 1} and 𝑋2 ∈ {0, 1}. If {0, 1} 3 𝑌 = 𝑋1 xor 𝑋2, then 𝑋1 and 𝑋2 contain no redundant or unique

information about 𝑌. But there is 1 bit of synergistic information. If 𝑋1 = 𝑋2 = 𝑌, then 𝑋1 and 𝑋2 contain 1 bit of redundant
information for 𝑌.
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4.2.2 Results

We next describe our findings using a broad range of evidence, analysis, and discussion. We use the CIFAR-

10 (Krizhevsky, 2009) and ImageNet (Deng et al., 2009) for classification; the Cityscapes (Cordts et al.,

2016) for semantic segmentation and depth estimation; the ADE20K for semantic segmentation (Zhou et al.,

2017); and an augmented version of the M3ED dataset (Chaney et al., 2023) for optical flow, depth estima-

tion and semantic segmentation. These tasks are diverse and complex, e.g., M3ED contains data from many

natural scenes, including cars driving in urban, forest, and daytime/nighttime conditions.

We study these tasks using the PCA, Fourier and wavelet bases and seek to understand which basis elements

are important for these tasks. We create different indices that order the elements of these bases. For PCA, we

sort by explained variance, lower indices have high explained variance. For the Fourier basis, lower indices

correspond to smaller radial frequencies. For the wavelet basis, lower indices correspond to the smallest

scales. See Section A.6.5.2 for more details on how the indices are constructed.

4.2.2.1 Both input data and the task are effectively low-dimensional. Elements of the Fourier and

wavelet bases have a large overlap with those of PCA.

(b)

(c)

(a)

Figure 4.9: (a) Eigenvalues of the pixel-wise covariance matrix for inputs and outputs of different tasks are spread across a large
range and decay quickly. (b) Variance or energy decays quickly with an increase in the index for PCA, Fourier and wavelet bases.
(c) Index of wavelet or Fourier basis element (y-axis) that has the highest amplitude for images projected onto a PCA eigenvector
of a particular index (x-axis). High Fourier and wavelet indices (large radial frequency and large scale, respectively) correspond to
PCA eigenvectors with higher indices (or smaller eigenvalues).
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Figure 4.10: Schematic of Principal Components Analysis,
Fourier and wavelet basis.

Figure 4.9 (a) shows that for all datasets and modali-

ties, inputs measured in different bases, namely pixel,

Fourier, and wavelet space, exhibit a characteristic low-

dimensionality. Eigenvalues are spread across a very

large range—more than 106—for many of these tasks.

When eigenvalues are sorted by their magnitude, there is

a sharp “elbow”, i.e., very few dimensions are necessary to capture most of the variance in the data, e.g., for

CIFAR-10 which consists of 32×32 RGB images, the subspace corresponding to the first 5 eigenvalues of

the pixel-wise covariance matrix has 90% explained variance and the remaining 3067 dimensions capture a

mere 10% of the variance. The eigenspectra of all these datasets contain a long tail of eigenvalues that are

spread linearly on a logarithmic scale. The numerical difficulty of any optimization algorithm, even linear

regression, is governed by the condition number of the input covariance matrix (Boyd and Vandenberghe,

2004). The optimization problem underlying perception tasks is, therefore, ill-conditioned. This can result

in long training times and under-fitting to the signal in the tail.

For some tasks, namely optical flow, depth estimation, and semantic segmentation, the ground-truth output

can also be considered an image to calculate its eigenspectrum. Again, the characteristic low-dimensional

pattern is evident in all bases. It is well known that amplitude spectra of natural images decay as ∼ 1/�� 𝑓 ��
with the frequency 𝑓 . We see a similar phenomenon for dense output tasks. The new observation here is that

the ground-truth labels of many tasks are also effectively low-dimensional.

PCA, Fourier, and wavelet are three different orthogonal bases. fig. 4.9 (b) shows that there is a large degree

of overlap between inputs and outputs projected onto different subspaces in these bases, i.e., coefficients

corresponding to the principal subspace of PCA are highly correlated with those of the Fourier basis at small

radial frequencies or wavelets of small scales. Even if the three bases are linear transformations of the original

pixel space, we would not have expected them to be aligned like this. Certainly, PCA is a dataset-dependent

basis, while Fourier and wavelet bases are universal.
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4.2.2.2 The principal subspace of the input data is most predictive of the task. However, the subspace

with the least explained variance is also remarkably predictive. Even a random subspace is

predictive of the task.

We trained deep networks on inputs projected onto different subspaces. We create these subspaces using

“bands” of basis elements formed by the PCA, Fourier, and wavelet bases. Each band contains a contiguous

block of basis elements sorted by their index. A low-band pass with an index 𝑖 consists of a subspace that

contains all eigenvectors/frequencies/scales with an index smaller than 𝑖. The principal subspace where the

explained variance/energy per dimension is the highest (see section 4.2.2.1 (b)) lies in a low-band pass with

a small index 𝑖. These bands are cumulative, so the principal subspace also lies in a low-band pass with a

large index 𝑖. The high-band pass at index 𝑖 is a subspace that consists of all eigenvectors/frequencies/scales

with an index bigger than 𝑖. A high-band pass with a large index 𝑖 contains the subspace with the smallest

explained variance per dimension; a high-band pass with a small index 𝑖 also contains this subspace. A band

pass of index 𝑖 corresponds to a subspace formed by a few sorted eigenvectors/frequencies/scales to the left

and right of 𝑖 with width specified for each experiment. An 𝑖-𝑗 band pass corresponds to a subspace formed

by eigenvectors/frequencies/scales with an index between 𝑖 and 𝑗. The subspace that corresponds to index 𝑖

does not have any overlap with that of index (𝑖 + 1)11.

Classification tasks. fig. 4.11 (a) and (c, green) show that different bands of the Fourier basis have remark-

ably high accuracy on ImageNet. In fig. 4.11 (a), the original image is unrecognizable to the human eye

when projected into higher frequency bands. But a deep network can be trained on such images, and it gets

65% test accuracy in the 30–45 radial frequency band pass. fig. 4.11 (b, green) shows that the test accuracy

on CIFAR-10 is largely the same for different bands for the Fourier (middle) and wavelet (right) bases, but it

drops for PCA (left).12 In short, the predictive ability of a band is correlated with its explained variance/power.

However, many of these bands are non-trivially predictive of the task. For CIFAR-10, the last band pass of

PCA has 20 % accuracy. fig. 4.11 (b, orange) shows that the test accuracy increases with the low pass index
11 A Butterworth (Butterworth, 1930) filter of order 5 is used to avoid ringing effects produced from a box filter; the cutoff

frequency is set at the 3 dB point. Due to this, there is a small overlap in our bands for the Fourier basis; there is no such overlap in
the PCA or wavelet bands.

12 This can be understood by looking at fig. A.17. As the index increases, the number of orthogonal components in the PCA
band pass is unchanged, so the explained variance of different bands decreases. But for Fourier and wavelet bases, the number
of frequencies/scales increases sharply with the index. This is because high radial frequencies span a large number of spatial
frequencies.
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Frequency 
(ωr = ω2

x + ω2
y ) 0 - 15 15 - 30 30 - 45 

Accuracy 0.73 0.69 0.65

 Fourier Transform (ℱ)

(b)

(c)

(a)

(d)

Figure 4.11: Panel (a) shows that the image, when projected on a high frequency band (30–45) cannot be recognized by the human
eye; and yet a network trained on such images can get more than 65% test accuracy. We show the test accuracy (for CIFAR10 (b)
and ImageNet (c)) of networks trained on images projected onto different subspaces. Remarkably, for ImageNet, all frequency bands
achieve more than 60% accuracy. Almost all PCA subspaces, radial frequencies and scales are useful for image classification on
CIFAR-10 and ImageNet; observe that low pass, band pass and low-index high pass regimes all obtain good test accuracy. However,
the head of the spectrum usually contains more discriminative information than the tail. (d) For dense perception tasks such as
semantic segmentation, optical flow and depth prediction, the results are consistent with classification, i.e., the information for the
task is also present redundantly across the spectrum. Many frequency bands result in remarkably low errors on these tasks. Error
barely improves with index for low pass filters, indicating diminishing returns on these tasks as higher frequencies are included in
the data.

𝑖 as the dimensionality of the subspace grows; this trend also holds for ImageNet in fig. 4.11 (c, orange).

Adding new basis elements, eigenvectors, frequencies, or scales has diminishing returns on accuracy. This
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Figure 4.12: Error on perception tasks is remarkably low even when networks are trained on images projected onto a random linear
subspace; see A.6.5.4 for the parameters of the randomly chosen center frequencies and widths for the band pass filter. This suggests
that information for the task is present throughout the spectrum. The “explained” power is less than 20% for all bands of randomly
chosen frequencies, for all three panels.

trend is exactly reversed for high pass—accuracy drops with the index 𝑖 as the explained variance/power of

these subspaces decreases. fig. 4.12 shows that band passes created from a random subset of the basis are

also predictive of the task.

Therefore, the principal subspace is usually the most predictive (green curves decrease with index, except for

the Fourier basis). The tail of the spectrum also has remarkable predictive ability. Essentially, any subspace

of the input data is predictive of these tasks.

The above trends also hold for optical flow estimation, depth estimation and semantic segmentation.

See fig. 4.11 (d).13 For optical flow estimation, the Average Endpoint Error (AEE) is smaller for low fre-

quency bands (orange) than high frequency bands (blue). Error decreases and then saturates with increas-

ing index for low pass filters (orange). AEE for high pass filters (blue) continues to increase, essentially

linearly, with the index. This might indicate that the low-frequency spectrum contains more predictive fea-

tures than the high frequency spectrum, where, we suspect, features are redundant for optical flow. This

is consistent with existing results that have argued that low-frequency information is important for motion

perception (Shi et al., 2020). Trends for semantic segmentation and depth estimation are similar. Similar to

flow, previous literature on depth has shown the importance of low-frequency content for depth estimation

(Kane et al., 2014). Error (1-Accuracy) quickly saturates for low pass filters (orange) and decreases roughly

linearly for high pass filters (green). Error of different bands (blue) increases slightly with frequency.
13 Also see fig. A.19 for experiments with a different neural architecture and different filters for some of the tasks.
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Figure 4.13: The amplitude of noise in images from the M3ED dataset is roughly constant across the spectrum and smaller than the
signal, even in the tail. Signal-to-noise ratio (SNR) is larger in the head than in the tail.

The signal is stronger than the noise, even in the tail. Statistical wisdom is to avoid using the tail of the

spectrum for making predictions due to noise (Pyatykh et al., 2013; Chen et al., 2015; Gavish and Donoho,

2014) either due to low signal coming from unobserved data (rare categories), or due to high noise of the

acquisition process (camera). Surprisingly, the tail of the spectrum is predictive for so many tasks. We

used the method of Rakhshanfar and Amer (2016), which estimates the level of additive white Gaussian

noise in the image by finding homogeneous patches in the image frame to estimate the variance of intensity

there. For one of our datasets, M3ED, the variance is 𝜎2 = 1.41. This is shown in fig. 4.13 along with the

original spectrum for comparison. As expected, the signal-to-noise ratio (SNR) is larger in the head. But

the noise magnitude is constant over different eigenvalues, and it is well below the magnitude of the smallest

eigenvalue.

We make a similar observation from the experiments for fig. 4.14. We use bootstrap sampling to create

multiple datasets with 𝑛 = 5000, 10000, 20000 samples drawn from CIFAR10. We create 50 datasets for

each dataset of size 𝑛. For each dataset we compute its eigenvectors, which are divided into 10 bands. Each

band of 𝑑 eigenvectors defines a 𝑑-dimensional subspace and the similarity between two bands of eigenvectors

𝑉1 and 𝑉2 is 1
𝑑 ||𝑉𝑇

1 𝑉2|| 𝐹; the similarity lies between 0 and 1 depending on the extent of overlap between the

two subspaces. In fig. 4.14, we compute the average similarity between every band of eigenvectors computed

using one dataset to that computed using another dataset. The bands of eigenvectors span similar subspaces

even if they are computed using different datasets.

Redundancy in vocalization discrimination tasks. Bregman (1990) showed that temporal regularity, i.e.,

patterns in frequency changes over time, plays a critical role in auditory perception. DiTullio et al. (2023)
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Figure 4.14: We plot the average similarity between bands of eigenvectors estimated from two different datasets. Both the head and
the tail are similar across different draws of the dataset, as indicated by the diagonal entries of the matrix. The head of the spectrum
is more stable than the tail. This plot suggests that the entire spectrum is stable and that the signal is stronger than the noise even in
the tail.

argued that this could be because of temporal regularities in vocalization; slowest frequencies can be used to

discriminate between rhesus macaque vocalizations.

Figure 4.15: Vocalizations can be discriminated well, using even fast SFA features. Accuracy across 200 pairs of vocalizations
(error bars are 95% confidence intervals). Left figure is for inter-class pairs, i.e., vocalizations from two different human speakers,
macaque speakers, or species of bird. Right figure is for intra-class pairs, i.e., different numerical digits from the same human
speaker, utterances from the same macaque, or songs from the same species of bird.

We are interested in understanding if faster temporal frequencies can also be used for this task. We studied

bird songs of four species (Zhao et al., 2017), macaque vocalizations (Fukushima et al., 2015), and human vo-

calizations of MNIST digits (Becker et al., 2024) using slow feature analysis (SFA) (Wiskott and Sejnowski,

2002). SFA features correspond to the eigenvectors corresponding to the smallest eigenvectors in the time

derivative of the auditory stimulus. fig. 4.15 shows that a multi-layer perceptron trained using faster features

can also discriminate between different vocalizations quite well. Performance decreases quite slowly as faster

features are used (the confidence intervals overlap), and it is well above chance. This observation is consistent

123



with visual perception tasks.

4.2.2.3 Different PCA subspaces have redundant and synergistic information about the classification

task with very little unique information.

We next use the classification task to see that the observation above, although surprising, may not be due to

any specific properties of deep networks. It seems to be inherent to the data.

Labels have high mutual information with every subspace of the input data. fig. 4.17 (a) shows the

mutual information 𝐼(𝑌;𝑃𝑖𝑋) of labels 𝑌 with input images 𝑋 from CIFAR-10, that are projected onto the

𝑖th eigenvector of the pixel-wise input covariance matrix; section 4.2.1 gives more details. The Kraskov

estimator (Kraskov et al., 2004) calculates the mutual information of the discrete labels with the (scalar)

projected images, using a 𝑘-nearest neighbor estimator of the entropy; LNC stands for local non-uniformity

correction of the entropy estimator (Gao et al., 2015). MINE (Belghazi et al., 2018) is a neural-network based

estimator of mutual information. Both these estimates of 𝐼(𝑌;𝑃𝑖𝑋) suggest that the principal subspace has

high mutual information with the labels.

250 750 1250 1750 2250 2750
Eigenvalue index (band pass)

0-4 4-8 8-12 12-16 16-20 20-24
Frequency index (pass band)

Figure 4.16: SHAP values of different PCA and frequency bands: The head of the spectrum is the most important, but the tail is
also necessary for classification on CIFAR-10. The horizontal black line corresponds to a SHAP value of 0.

The mutual information is also large for eigenvectors in all the other subspaces. The explained variance of

the high-index eigenvectors is very small, so one might expect 𝐼(𝑌;𝑃𝑖𝑋) to decay strongly for those. In short,

any subspace of the input data should be predictive of the ground-truth labels, fig. 4.11 provided experimental

evidence for this. This finding is corroborated by SHapley Additive exPlanations (SHAP) values in fig. 4.16;

also see section 4.2.1.
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(a) (b) (c) (d)

Figure 4.17: (a) Images projected onto different PCA subspaces (each consisting of 10 contiguous basis elements) have non-trivial
mutual information with the labels, across the spectrum. Kraskov and Kraskov-LNC are non-parametric estimators of mutual infor-
mation, MINE uses a neural network(Belghazi et al., 2018). While the principal subspace has the highest mutual information with
the labels, the tail also has non-trivial mutual information. For comparison, the mutual information with randomly permuted labels
is much smaller. Partial information decomposition for CIFAR-10 suggests that different bands have high amounts of redundant (b)
and synergistic information (c). Cell (𝑖 , 𝑗) corresponds to the PID decomposition for the task’s subspaces 𝑖 and 𝑗. Unique informa-
tion is much smaller (d) for anything other than the principal subspace. We note that (b,c,d) assume that inputs and labels are jointly
Gaussian, which could be a poor approximation. Fourier and wavelet basis trends are similar; see fig. A.13.

Partial information decomposition for identifying the redundant, unique and synergistic informa-

tion. Both the eigenspectrum’s head and tail have information pertinent to classification, but we do not

know if this is the same kind of information. We used the concept of partial information decomposition

(PID (Williams and Beer, 2010)) to investigate this. Given variables 𝑋1 and 𝑋2, PID decomposes the mu-

tual information 𝐼(𝑋1 , 𝑋2 , ;𝑌) into redundant (𝑅), synergistic (𝑆) and unique information (𝑈1 and𝑈2 corre-

sponding to 𝑋1 and 𝑋2 respectively). The total mutual information 𝐼(𝑋1 , 𝑋2;𝑌) = 𝑅 + 𝑆 +𝑈1 +𝑈2.14,15

Different PCA bands correspond to random variables 𝑋1 and 𝑋2 for us. The mutual information of each band

decomposes as 𝐼(𝑋1;𝑌) = 𝑅 + 𝑈1. The fact that 𝐼(𝑋1 , 𝑌) for different eigenvectors in fig. 4.17 (a) has a

comparable magnitude as that of any cell in fig. 4.17 (b) suggests that different PCA bands of CIFAR-10 have

a lot of redundant information with the labels. This is borne out by fig. 4.17 (d), which shows that low-index

PCA bands (high explained variance) have larger unique information than bands in the tail. Synergistic infor-

mation is usually harder to interpret. In this case, it is large for any two PCA bands. This analysis suggests

that the observations in fig. 4.11 are due to inherent properties of the input data and the ground-truth labels.
14 We discuss PID in section 4.2.1 further. Redundancy is the minimum information about 𝑌 provided by either variable; it is

independent of correlation between the variables. Synergy 𝑆 is the extra information contributed by the weaker source when, the
stronger source is known and can either increase or decrease with correlation between sources; typically jointly Gaussian random
variables are net synergistic (Barrett, 2015).

15 It is difficult to calculate PID, or its variants, using samples (Latham and Nirenberg, 2005). We approximated that 𝑋1 , 𝑋2, and
𝑌 are jointly Gaussian. Note that the ground-truth label 𝑌 is a categorical random-variable. But we nevertheless plough forward
with this approximation. It is reassuring that this analysis corroborates fig. 4.11, so this approximation is not entirely invalid.
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4.2.2.4 Despite redundant and synergistic information across the entire spectrum, a deep network

predominantly uses information in the head
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Figure 4.18: Trained networks predominantly use information present in the head of the spectrum. They largely ignore the tail.
Top: Accuracy on ImageNet drops to 0.1% if we exclude radial frequencies smaller than 30 at test time. Bottom: For regression
tasks, we show the difference between the error of a network trained on every band with a network trained on a particular band; the
error for both networks is computed using test images projected onto a particular band. Error differential increases with index for
band pass and high pass; the network, therefore, predominantly uses information in the head. Also, see fig. A.15 for a similar result
using features from different layers in a trained network.

The performance of low pass bands improves with the index in fig. 4.11, so there is some synergistic infor-

mation in the different subspaces (fig. 4.17 (c)). Therefore, the ideal learner would build features from all

subspaces, discarding redundant information and selecting the synergistic and unique parts. It is natural to

ask whether a deep network behaves like this. We trained networks using the original images but tested them

on images projected into different subspaces, e.g., low pass means that test images were projected into the

low pass subspace of that index, and similarly for band pass and high pass. Bands computed from PCA were

used for CIFAR-10 classification, and the Fourier basis was used for ImageNet and other tasks.

Classification accuracy drops to chance for both CIFAR-10 and ImageNet if the network does not have access

to lower bands; see fig. 4.18 (top). For regression tasks, we plotted things differently and compared the error
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of a network trained on all bands but tested on a particular band to the error of a network trained on a particular

band from fig. 4.11 (d). If the error differential is large for a band, then the network trained on all the bands

does not use information in that particular band. fig. 4.18 (bottom) shows that the error differential increases

for band pass and high pass curves, i.e., networks predominantly use information in the head of the spectrum.

Unsurprisingly, the condition number of the optimization problem underlying these tasks is extremely large

(fig. 4.9). A large number of weight updates are necessary to fit the small amount of signal in higher bands.
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4.3 Related Work

Understanding the space of learnable tasks A large body of work has sought to characterize relation-

ships between tasks, e.g., domain specific methods (Zamir et al., 2018; Cui et al., 2018; Pennington et al.,

2014), learning theoretic work (Baxter, 2000; Maurer, 2006; Ben-David et al., 2010; Tripuraneni et al.,

2020a; Hanneke and Kpotufe, 2020; Caruana, 1997), random matrix models (Wei et al., 2022a), neural tan-

gent kernel models (Malladi et al., 2022) and information-theoretic analyses (Jaakkola and Haussler, 1999;

Achille et al., 2019a,b). Broadly speaking, this work has focused on understanding the accuracy of a model

on a new task when it is trained upon a related task, e.g., relationships between tasks are characterized using

the excess risk of a hypothesis. Our methods also allow us to say things like “task 𝑃1 is far from 𝑃2 as

compared to 𝑃3”. But they can go further. We can glean a global picture of the geometric structure in the

space of tasks and quantify statements such as “the divergence between 𝑃1 and 𝑃2 eventually is more than

that of 𝑃1 and 𝑃3, but representations learned on these tasks are similar for 30% of the way”.

There is strong structure in typical inputs, e.g., recent work on understanding generalization (Yang et al.,

2022; Bartlett et al., 2020) as well as older work such as Simoncelli and Olshausen (2001); Field (1994);

Marr (2010) has argued that visual data is effectively low-dimensional. Our works suggests that tasks also

share a low-dimensional structure. Just like the effective low-dimensionality of inputs enables generalization

on one task, effective low-dimensionality of the manifold of models trained on different tasks could perhaps

explain generalization to new tasks.

Natural image statistics. Natural data is statistically redundant (Simoncelli and Olshausen, 2001). The

amplitude spectrum for both luminance (Atick and Redlich, 1992; Van der Schaaf and van van Hateren,

1996; Field, 1987) and color (Burton and Moorhead, 1987) falls off as ∼ 1/�� 𝑓 �� with frequency 𝑓 in natural

images; this pattern is consistent across scales. Spatio-temporal statistics follow similar trends (van Hateren,

1992; Dong and Atick, 1995; Olshausen, 2000). Edgust the inputs. Typical tasks are also redundant func-

tions of the input. The former is due to regularities in natural environments. While the latter is, perhaps,

a property of tasks that biological organisms and machines chose to do. Tasks that are ecologically and

economically useful.
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Removing redundancy in the stimuli is fundamental to how the brain works (Barlow et al., 1961; Attneave,

1954). There are circuits that implement whitening, low-pass filtering and compression (Laughlin, 1981;

Atick and Redlich, 1992; Barlow, 1989), sparse coding (Barlow, 1972; Olshausen and Field, 1997; Field,

1993; Chechik et al., 2001), slow feature analysis (Berkes and Wiskott, 2005; Wiskott and Sejnowski, 2002)

etc. But the efficient coding hypothesis could not be the complete story because there are three things

at play: the environment, metabolic and architectural constraints imposed by the neural circuitry, and

the task (Simoncelli and Olshausen, 2001; Field, 1994; Balasubramanian and Sterling, 2009). Although

we know some principles to explain how neural circuits adapt to the environment (Ratliff et al., 2010;

Balasubramanian, 2015), in spite of intense activity there is no clear understanding of task informs learned

representations (Ramesh and Chaudhari, 2022; Mao et al., 2024). Normative principles of representation

learning (Tishby et al., 1999; Achille and Soatto, 2018; Barlow, 2001; Yerxa et al., 2023; Yu et al., 2020)

are, as yet, inadequate.

We showed that evidence for the task is spread across different parts of the observation space. If this evidence

were not redundant, tasks would be difficult to learn—both due to the condition number of the input spectrum

and because of noise in the tail. But because the evidence of the task is redundant, an organism, or a machine,

need not be very careful as to which subspace it uses. Learning, ontogenetic or over evolution, will refine

neural circuitry and the representation, to improve performance. There is also a second reason why this

redundancy is useful. Without it, a specific set of features would have to be learned for each task. Changes

in the task would severely impair the organism until the requisite features were learned.

Implications for theoretical questions in deep learning. Consider logistic regression to fit labels 𝑦𝑖 =

sign 〈𝑤∗ , 𝑥𝑖〉 using a linear model �̂�𝑖 = sign 〈𝑤, 𝑥𝑖〉. Even if the problem is strongly convex, gradi-

ent descent requires O(𝜅 log(1/𝜖)) iterations to reach 𝜖-optimality where 𝜅 is the condition number of∑
𝑖 𝑥𝑖𝑥

>
𝑖 /𝑛 (Bottou et al., 2016). For all tasks in this paper, 𝜅 > 106. Therefore, gradient descent

evolves predominantly in the principal subspace of the input covariance matrix. Spectral bias has been

studied for linear models (Hacohen and Weinshall, 2022), kernel machines (Yao et al., 2007), neural net-

works (Rahaman et al., 2019; Tancik et al., 2020) or the neural tangent kernel (Cao et al., 2021). In short,

effectively low-dimensional inputs result in ill-conditioned optimization problems (Ma and Belkin, 2017).

129



Whitening risks amplifying noise, or spurious correlations from finite samples.

These works typically assume that the task needs all the features, or that it needs a few specific features. But

this does not explain why optimization problems underlying perception tasks can be solved so effectively in

practice in spite of the large condition number. If the task is redundant, say, 𝑦𝑖 = sign 〈𝑤∗ , 𝑃𝑥𝑖〉 for many

matrices 𝑃 which project data into different subspaces, then since 〈𝑤∗ , 𝑃𝑥𝑖〉 = 〈𝑃𝑤∗ , 𝑥𝑖〉, there are many

equivalent solutions and weight initializations with a large overlap with one of them. Our results indicate

that networks pick a particular projection 𝑃 that emphasizes the head of the input spectrum.

Alignment between the labels and the principal subspace of the inputs improves generalization for both ker-

nel methods (Amini et al., 2022) and two-layer networks (Arora et al., 2019). If input data are effectively

low-dimensional, then one can obtain analytical generalization bounds for deep networks (Yang et al., 2022;

Bartlett et al., 2020), as also generalize well in practice (Pope et al., 2021; Martin and Mahoney, 2021). This

also leads to some dramatic phenomena: networks of different architectures, training and regularizationmeth-

ods, evolve on extremely low-dimensional manifolds (Mao et al., 2024). Broadly, learning theoretic investi-

gations do not consider the redundancy in the task. Our observations suggest that this may be an important

direction to investigate.

Implications for practice. Reconstruction-based methods, e.g., masked auto-encoders (MAE), often take

longer to train, and fall short of the accuracy obtained by contrastive learning-based methods on downstream

tasks. Balestriero and LeCun (2024) explained this by (a) arguing that the tail of the spectrum is important

for classification, (b) training MAEs is slow due to the condition number of the reconstruction problem, and

(c) MAEs could not learn useful features for perception. Our numerical results are not at odds with theirs.

It is simply that for the explained variance of the tail to be as high as that of the head, one needs to use

a very large number of eigenvectors—essentially all of them. Our results paint a very different story. The

principal subspace is most important for the task. But even a random subspace can predict the task remarkably

well. Therefore, while training MAEs is slow, perhaps, due to the input data being low-dimensional, the

performance gap compared to contrastive learning may be for other reasons. Learning by reconstruction

does produce features that are informative for perception—masking performs decorrelation in the Fourier

basis.
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CHAPTER 5

CONCLUSION

This dissertation studies the principles of learning from multiple tasks using perspectives from learning the-

ory, information theory and signal processing. We make progress towards answering two questions: (i) How

do we optimally train representations using data from multiple tasks? (ii) What characterizes “typical” learn-

able tasks?

We use our theory of task competition and reference priors to develop Model Zoos for labeled and unlabeled

data — we train many small models that span the space of tasks as opposed to one model on all the data. Our

small-scale experiments suggest that most existing networks are not trained optimally, despite generalizing

incredibly well to many tasks. Our theory suggests that we can generalize better if we carefully curate which

data to train on or weigh the losses on individual samples.

In the second half of the dissertation, we attempt to characterize typical learnable tasks. We find that many

perception tasks are highly redundant functions of the input, i.e. many different and even disjoint subspaces

can be used to predict the label with remarkably high accuracy. We speculate that this redundancy enables

learning, i.e. any random subspace allows you to solve the task and signal for the task is not sparse. We

believe that a sensor that captures highly redundant inputs allows agents to tackle many tasks and build a

shared representation for them. We chose to tackle redundant tasks because those are the only tasks that

agents with bounded resources can readily solve and tasks that machines are made to solve.
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APPENDIX A

ADDITIONAL RESULTS

A.1 Theoretical results for Prospective learning

A.1.1 Bayes risk for a Markov chain

We would like to compute the prospective Bayes risk, when the evolution of the samples is governed by a

Markov transition matrix where 𝑃(𝑌𝑡+1 = 0 | 𝑌𝑡 = 0) = 𝜃0 and 𝑃(𝑌𝑡+1 = 1 | 𝑌𝑡 = 1) = 𝜃1, i.e., the transition

matrix is

Γ =


𝜃0 1 − 𝜃0

1 − 𝜃1 𝜃1

 .
The probability distribution at time 𝑡′ is given by Γ𝑡′−𝑡(𝑧𝑡 , 1− 𝑧𝑡)𝑇 . The eigenvalues of the transition matrix

Y0 Y1

θ0 1 − θ0
θ1

1 − θ1

Figure A.1: Markov chain describing the evolution of data

are 𝜆1 = 1 and 𝜆2 = 𝜃0 + 𝜃1 − 1 with the corresponding eigenvectors being (1, 1)> and (𝜃0 − 1, 1 − 𝜃1)>.
Diagonalizing Γ we get

Γ𝑡
′−𝑡 =


1 𝜃0 − 1

1 1 − 𝜃1



𝜆𝑡

′−𝑡
1 0

0 𝜆𝑡
′−𝑡

2



1 𝜃0 − 1

1 1 − 𝜃1


−1

=
1

(2 − 𝜃0 − 𝜃1)

1 − 𝜃1 + (1 − 𝜃0)𝜆𝑡′−𝑡2 (1 − 𝜃0) − 𝜆𝑛2

1 + 𝜃1 + (1 − 𝜃0)𝜆𝑡′−𝑡2 (1 − 𝜃0) + 𝜆𝑛2 .
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which implies that the probability distribution of the state at time 𝑡′ is

𝜋𝑡′ =
1

(2 − 𝜃0 − 𝜃1)

1 − 𝜃1

1 − 𝜃0

 +
𝜆𝑡

′−𝑡
2 ((1 − 𝜃0)(1 − 𝑧𝑡) − (1 − 𝜃1)𝑧𝑡)

(2 − 𝜃0 − 𝜃1)


1

−1

 .
Hence, the optimal sequence of hypotheses is ℎ∗≥𝑡+1 = (ℎ∗𝑡+1 , ℎ

∗
𝑡+2 , . . . ), where

ℎ∗𝑡′ = argmax
𝑖∈{0,1}

𝜋𝑡′(𝑖)

with Bayes risk equal to 𝑅∗
𝑡 = lim𝑇→∞ 1

𝑇

∑𝑇
𝑠=𝑡 min𝑖∈{0,1} 𝜋′

𝑡(𝑖). This reduces to

𝑅∗
𝑡 =

1
(2 − 𝜃0 − 𝜃1) min(1 − 𝜃0 , 1 − 𝜃1);

the second term in the expression of 𝜋𝑡′ vanishes as 𝑇 → ∞. If 𝜃0 = 0.9 and 𝜃1 = 0.5, then 𝑅∗
𝑡 = 1/6.

If we restrict our attention to the case where 𝜃0 = 𝜃1, the discounted Bayes risk reduces to

(1 − 𝛾)
∞∑

𝑠=𝑡+1
𝛾𝑠−𝑡−1ℓ (ℎ∗𝑠) = (1 − 𝛾)

∞∑
𝑠=𝑡+1

(
𝛾𝑠−𝑡−1

2
− 𝛾𝑠−𝑡−1

��𝜆𝑠−𝑡2

��
2

)
= (1 − 𝛾)

(
1

2(1 − 𝛾) −
|𝜆2|

2(1 − |𝜆2|𝛾)
)

Substituting 𝜃0 = 𝜃1 = 0.1, the discount risk for 𝛾 = 0.9 is 0.357.

A.1.2 Proof of proposition 1

Let X = {−1, 1} and Y = {0, 1}. Consider two distributions 𝑃1 and 𝑃2 (fig. A.2):

𝑃1(𝑋 = 𝑥) = 𝑃2(𝑋 = 𝑥) = 1
2

∀𝑥,

𝑃1(𝑌 = 1 | 𝑋 = 𝑥) =

𝜃 if 𝑥 = 1

1 − 𝜃 if 𝑥 = −1,

𝑃2(𝑌 = 1 | 𝑋 = 𝑥) =


1 − 𝜃 if 𝑥 = 1

𝜃 if 𝑥 = −1,
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In other words, the inputs have the same marginals but the labels are flipped between 𝑃1 and 𝑃2. Consider a

stochastic process 𝑍 such that 𝑍2𝑡+1 ∼ 𝑃1 and 𝑍2𝑡 ∼ 𝑃2 where 𝑡 ∈ N.

Let G be any hypothesis class and let ℓ (𝑠, �̂�, 𝑦) = 1(�̂� ≠ 𝑦) be the time-invariant zero-one loss. The time-

agnostic learner uses a sequence of hypotheses ℎ ≡ (ℎ𝑡) where ℎ𝑡 = ℎ𝑡′ ∀ 𝑡 , 𝑡′ ∈ N to make predictions at

all times. The future loss is

ℓ̄𝑡(ℎ, 𝑍) = lim
𝜏→∞

1
2𝜏

𝑡+2𝜏∑
𝑠=𝑡+1

ℓ (𝑠, ℎ𝑠(𝑋𝑠), 𝑌𝑠) = 𝑅1(ℎ) + 𝑅2(ℎ) = 1
2
,

almost surely; here 𝑅1(ℎ) and 𝑅2(ℎ) are risks on data from distributions 𝑃1 and 𝑃2 at odd and even times,

respectively. The last equation follows from the fact that 𝑅1(ℎ) = 1 − 𝑅2(ℎ) because the labels are flipped.

Prospective Bayes risk is zero if the hypothesis classG contains the Bayes optimal hypotheses for each of the

two distributions. The future loss evaluates to 1/2 for all realizations and so does the prospective risk. The

prospective risk of a hypothesis sequence that makes random predictions (zero or one with equal probability

at each instant) is also 1/2. This stochastic process is not weakly prospective learnable.

−1 1 1−1

P1 P2

00

y = 0
y = 1

Figure A.3: A simple stochastic process that is weakly but not strongly prospectively learnable.

y = 0y = 1 y = 0 y = 1

−1 1 1−1

P1 P2

Figure A.2: A simple stochastic process that is not weakly prospectively learnable.
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Now consider the two distributions shown in fig. A.3,

𝑃1(𝑋 = 𝑥) = 𝑃2(𝑋 = 𝑥) = 1
3

∀𝑥,

𝑃1(𝑌 = 1 | 𝑋 = 𝑥) =

𝜃 if 𝑥 ≤ 0

1 − 𝜃 if 𝑥 = 1,

𝑃2(𝑌 = 1 | 𝑋 = 𝑥) =


1 − 𝜃 if 𝑥 ≥ 0

𝜃 if 𝑥 = −1.

Inputs are supported on the set {−1, 0, 1} this time. Again consider a stochastic process 𝑍 such that 𝑍2𝑡+1 ∼
𝑃1 and 𝑍2𝑡 ∼ 𝑃2 for 𝑡 ∈ N. For a time-agnostic learner, since its hypothesis ℎ at each time step has to predict

incorrectly at 𝑥 = 0, we have 𝑅1(ℎ) + 𝑅2(ℎ) ≥ 1
3 . The future loss is

ℓ̄𝑡(ℎ, 𝑍) = lim
𝜏→∞

1
2𝜏

𝑡+2𝜏∑
𝑠=𝑡+1

ℓ (𝑠, ℎ(𝑋𝑠), 𝑌𝑠) = 𝑅1(ℎ) + 𝑅2(ℎ) ≥ 1
3
.

almost surely. It follows that the prospective risk 𝑅𝑡(ℎ) ≥ 1
3 for any hypothesis. Prospective Bayes risk is

again zero and therefore this stochastic process is not strongly prospectively learnable. It is however weakly

learnable.

A hypothesis that predicts �̂� = ±1 with equal probability has 𝑅0
𝑡 = 0.5. If the data contains samples for

𝑥 ∈ {−1, 1}, ERMwill select a hypothesis that minimizes the empirical risk which necessitates that ℎ(1) = 0

and ℎ(−1) = 1. Therefore 𝑅1(ℎ) + 𝑅2(ℎ) ≤ 1
3 + 𝜖, since ℎ predicts correctly at 𝑥 = ±1, and incorrectly

at 𝑥 = 0 exactly one of the two distributions. The constant 𝜖 can be chosen to be ∝ 𝑡−1/2 after receiving

data from 𝑡 timesteps. The probability with which we do not get samples at 𝑥 = 1 or at 𝑥 = −1, is 2 × 3−𝑡 .

Therefore the probability that 𝑅1(ℎ) + 𝑅2(ℎ) ≤ 1
3 + 𝜖 is at least 1 − 3−𝑡+1 after 𝑡 time steps. This learner

is therefore better than the chance learner whose risk is 𝑅0
𝑡 and it is a weak prospective learner. This shows

that there exist stochastic processes that are weakly prospective learnable using time-agnostic ERM but not

strongly.
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A.2 Theoretical results for linear masked autoencoders

A.2.1 Linear MAEs: Characterizing critical points

We present some more details for theorem 21 below.

Consider the loss.

ℓ = ||𝑋 − (1 − 𝑚)𝑋𝐴𝐵|| 2 + 𝑚(1 − 𝑚)||𝐺𝐴𝐵|| 2 , (A.1)

We first set 𝜕ℓ/𝜕𝐴 to 0 to get

− 2(1 − 𝑚)𝑋>𝑋𝐵> + 2(1 − 𝑚)2𝑋>𝑋𝐴𝐵𝐵>+
2𝑚(1 − 𝑚)Blkdiag𝑝(𝑋>𝑋)𝐴𝐵𝐵> = 0. (A.2)

Any critical point must satisfy

𝐴∗ = 𝑉−1𝑋>𝑋𝐵>(𝐵𝐵>)−1 (A.3)

where 𝑉 = (1 − 𝑚)𝑋>𝑋 + 𝑚Blkdiag𝑝(𝑋>𝑋). Substituting this value of 𝐴∗ back into the loss, we get

ℓ =Tr
(
𝑋>𝑋

)−
(1 − 𝑚)Tr

[
𝐵(𝑋>𝑋𝑉−1𝑋>𝑋)𝐵>(𝐵𝐵>)−1]

Let 𝐶 = 𝑋>𝑋𝑉−1𝑋>𝑋 and 𝐷 = 𝐼. Note that 𝐶 and 𝐷 are both symmetric and 𝐷 is invertible. Using

lemma 3, the expression is minimized by the k largest eigenvalues of the generalized eigenvalue problem

defined on (𝐶, 𝐷). Furthermore, every critical point is a subset of 𝑘 eigenvectors (from Lemma 2).

A.2.2 Non-linear MAEs using linear approximations

Non-linear masked autoencoders under a Taylor series approximation. Consider a nonlinear autoen-

coder 𝑓 and the corresponding masked autoencder loss

ℓ𝑚 = E𝑅 ||𝑋 − 𝑓 (𝑅 � 𝑋)|| 2.
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Let 𝑋𝜇 = (1 − 𝑚)𝑋 and 𝑋𝑟 = 𝑅 � 𝑋. Under the Taylor series approximation around 0

𝑓 (𝑋𝑅) ≈ 𝑓 (0) + 𝑋𝑅∇ 𝑓 (0)> = 𝑋𝑅∇ 𝑓 (0)> ,

the MAE loss reduces to

ℓ𝑚 = ||𝑋 − (1 − 𝑚)𝑋∇ 𝑓 (0)>|| 2 + 𝑚(1 − 𝑚)||𝐺∇ 𝑓 (0)>|| 2

Note that this approximation holds for small perturbations to the input, and is less likely to hold for large

perturbations, i.e., the approximation is only valid for large masking ratio.

We will consider another approximation, but this time calculate the loss for a single sample. We consider a

first-order approximation of 𝑓 for a single sample.

𝑓 (𝑥𝑅) ≈ 𝑓 (𝑥𝜇) + ∇ 𝑓 (𝑥𝜇)(𝑥𝑅 − 𝑥𝜇),

which when substituted into the above loss gives us

ℓ𝑚(𝑥) =|| 𝑥 − 𝑓 (𝑥𝜇)|| 2

+ 𝑚(1 − 𝑚)Tr
(
𝐻𝑥Blkdiag(𝑥>𝑥))

Note that this is the loss for a single sample and 𝐹𝑥 is the Fisher information matrix for data point 𝑥.

Masked autoencoders: A function space perspective Let us assume that we have access to the true input

image signal 𝑥(𝑖, 𝑗), where 𝑖, 𝑗 ∈ [0, 1], as opposed to a discretized version of it. The masked autoencoder

objective can be posed as an optimization problem over functionals 𝑓 ∈ ℱ , i.e.,

ℓ𝑚 =
∫

|| 𝑓 (𝑟 � 𝑥) − 𝑥|| 2 d𝑟,
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where 𝑟 is a mask applied to the image. Assuming that 𝑓 is linear, then the above objective reduces to

ℓ𝑚 = || 𝑥 − 𝑓 (𝜇)|| 2 − || 𝑓 (𝜇)|| 2 +
∫

|| 𝑓 (𝑟 � 𝑥)|| 2 d𝑟,

where 𝜇 =
∫ (𝑟 � 𝑥) d𝑟. In the linear case, the MAE forces 𝑓 to reconstruct the mean masked image, while

minimizing the variance of the predictions made on the masked images.

A.2.3 Supporting lemmas

Lemma 1. The loss of the masked autoencoder is

ℓ𝑚 = ||𝑋 − (1 − 𝑚)𝑋𝐴𝐵|| 2 + 𝑚(1 − 𝑚)||𝐺𝐴𝐵|| 2

Proof. Expanding the term inside the expectation, we get

E𝑅 ||𝑋−(𝑅 � 𝑋)𝐴𝐵|| 2

= E𝑅Tr [𝑋>𝑋 − 2𝑋>(𝑅 � 𝑋)𝐴𝐵
+ 𝐵>𝐴>(𝑅 � 𝑋)>(𝑅 � 𝑋)𝐴𝐵].

We note that E[R � X] = (1 − 𝑚) and

E[(𝑅 � 𝑋)>(𝑅 � 𝑋)] =
(1 − 𝑚)𝑋>

𝑖 𝑋𝑗 𝑋𝑖 , 𝑋𝑗 in the same patch

(1 − 𝑚)2𝑋>
𝑖 𝑋𝑗 𝑋𝑖 , 𝑋𝑗 not in the same patch.

= (1 − 𝑚)2𝑋>𝑋 + 𝑚(1 − 𝑚)Blkdiag𝑝(𝑋>𝑋).
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Substituting back into the masked autoencoder loss, we get

E𝑅 ||𝑋 − (𝑅 � 𝑋)𝐴𝐵|| 2

= Tr [𝑋>𝑋 − 2(1 − 𝑚)𝑋>𝑋𝐴𝐵 + (1 − 𝑚)2𝑋>𝑋

+ 𝑚(1 − 𝑚)𝐵>𝐴>Blkdiag𝑝(𝑋>𝑋)𝐴𝐵]
= ||𝑋 − (1 − 𝑚)𝑋𝐴𝐵|| 2 + 𝑚(1 − 𝑚)||𝐺𝐴𝐵|| 2

where 𝐺>𝐺 = Blkdiag𝑝(𝑋>𝑋). □

Lemma 2. For matrices 𝐶 ∈ R𝑑×𝑑, 𝑋 ∈ R𝑑×𝑘 and an invertible matrix 𝐷 ∈ R𝑑×𝑑, every critical point of

𝐿(𝑋) = Tr
[(𝑋>𝐷𝑋)−1𝑋>𝐶𝑋

]
that is full-rank can be expressed as𝑈𝑄, where𝑄 is an invertible matrix and𝑈 is any subset of 𝑘 eigenvectors

of the generalized eigenvalue problem for (𝐶, 𝐷).

Proof. Taking the derivative of 𝐿(𝑋) with respect to 𝑋 and setting it to 0, we get

2𝐷𝑋(𝑋>𝐷𝑋)−1𝑋>𝐶𝑋 = 2𝐶𝑋.

Let (Λ𝐷 ,Φ𝐷) be the eigenvectors and eigenvalues of 𝐷. Let (Λ�̄� ,Φ�̄�), be the eigenvectors and eigenvalues

Λ−1/2
𝐷 Φ>

𝐷𝐶Φ𝐷Λ
−1/2
𝐷 . In addition, we define Φ = Φ�̄�Λ

−1/2
𝐷 Φ�̄� and �̃� = Φ𝑋. We choose this definition of
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Φ, since it diagonalizes both 𝐶 and 𝐷.

2𝐷𝑋(𝑋>𝐷𝑋)−1𝑋>𝐶𝑋 = 2𝐶𝑋

⇒𝐷Φ>�̃�(�̃�>Φ𝐷Φ>�̃�)−1�̃�>Φ𝐶Φ>�̃� = 𝐶Φ>�̃�

⇒𝐷Φ>�̃�(�̃�>�̃�)−1�̃�>Λ�̃� �̃� = 𝐶Φ>�̃�

⇒Φ𝐷Φ>�̃�(�̃�>�̃�)−1�̃�>Λ�̃� �̃� = Φ𝐶Φ>�̃�

⇒�̃�(�̃�>�̃�)−1�̃�>Λ�̃� �̃� = Λ�̃� �̃�

⇒𝑃�̃�Λ�̃� �̃� = Λ�̃�𝑃�̃� �̃�

where 𝑃�̃� is the projection operator. Note that 𝑃�̃� �̃� = �̃�. Since Λ�̄� is diagonal, 𝑃�̃� must also be diagonal

in order for the matrices to commute. Furthermore, 𝑃�̃� has exactly 𝑘 eigenvalues equal to 1 and the rest set

to 0, since 𝑋 has rank 𝑘. Hence, �̃� must be of the form 𝐼𝑆𝑘𝑄 where 𝑆𝑘 selects a subset of 𝑘 dimensions

and 𝑄 ∈ R𝑘×𝑘 is an invertible matrix. Hence 𝑋 = Φ𝑆𝑘𝑄 where Φ𝑆𝑘 is a subset of 𝑘 eigenvectors of the

generalized eigenvalue problem. □

Lemma 3. For matrices 𝐶 ∈ R𝑑×𝑑, 𝑋 ∈ R𝑑×𝑘 and an invertible matrix 𝐷 ∈ R𝑑×𝑑, the global maximum of

𝐿(𝑋) = Tr
[(𝑋>𝐷𝑋)−1𝑋>𝐶𝑋

]
is

∑𝑘
𝑖=1 Λ𝑘 where Λ are the eigenvalues of the generalized eigenvalue problem (𝐶, 𝐷).

Proof. From lemma 2, we know that any critical point is of the form Φ𝑆𝑘𝑄. Subtituting this into 𝐿(𝑋), we

get

𝐿(𝑋) = Tr
[(𝑋>𝐷𝑋)−1𝑋>𝐶𝑋

]
= Tr

[
(𝑄>𝑄)−1𝑄>Φ>

𝑆𝑘
𝐶Φ𝑆𝑘𝑄

]
= Tr

[
Φ>
𝑆𝑘
𝐶Φ𝑆𝑘

]
=

∑
𝑖∈𝑆𝑘

Λ𝑖 .

The loss is maximized by the largest 𝑘 eigenvalues and minimized by the smallest 𝑘 eigenvalues.
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□

Lemma 4. Under the Taylor series approximation of 𝑓 (𝑋𝑅) ≈ 𝑓 (0) + 𝑋𝑅∇ 𝑓 (0)> = 𝑋𝑅∇ 𝑓 (0)>, the MAE

loss for a non-linear function 𝑓 is

ℓ𝑚 = ||𝑋 − (1 − 𝑚)𝑋∇ 𝑓 (0)>|| 2 + 𝑚(1 − 𝑚)||𝐺∇ 𝑓 (0)>|| 2.

Proof.

ℓ𝑚 = ||𝑋 − 𝑋𝑅∇ 𝑓 (0)>|| 2

= ||𝑋 || 2 + E𝑅 ||𝑋𝑅∇ 𝑓 (0)>|| 2 − 2E𝑅 Tr
(
𝑋>𝑋𝑅∇ 𝑓 (0))

= Tr
(
𝑋>𝑋

) + (1 − 𝑚)2 Tr
(∇ 𝑓 (0)𝑋>𝑋∇ 𝑓 (0)>)

+ 𝑚(1 − 𝑚)Tr
(∇ 𝑓 (0)Blkdiag(𝑋>𝑋)∇ 𝑓 (0)>)

− 2(1 − 𝑚)E𝑅
[
𝑋>𝑋∇ 𝑓 (0)>]

= ||𝑋 − (1 − 𝑚)𝑋∇ 𝑓 (0)>|| 2 + 𝑚(1 − 𝑚)||𝐺∇ 𝑓 (0)>|| 2.

□

Lemma 5. Under the Taylor series approximation of 𝑓 (𝑥𝑅) ≈ 𝑓 (𝑥𝜇) + ∇ 𝑓 (𝑥𝜇)(𝑥𝑅 − 𝑥𝜇), the MAE loss,

reduces to

ℓ𝑚(𝑥) = || 𝑥 − 𝑓 (𝑥𝜇)|| 2 + 𝑚(1 − 𝑚)Tr
(
𝐻𝑥Blkdiag(𝑥>𝑥)) .
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Proof.

ℓ𝑚(𝑥) = || 𝑥 − 𝑓 (𝑥𝜇) − ∇ 𝑓 (𝑥𝜇)(𝑥𝑅 − 𝑥𝜇)|| 2

= || 𝑥 − 𝑓 (𝑥𝜇)|| 2 + E𝑅 ||∇ 𝑓 (𝑥𝜇)(𝑥𝑅 − 𝑥𝜇)|| 2

+ 2E𝑅(𝑥 − 𝑓 (𝑥𝜇))>(∇ 𝑓 (𝑥𝜇)(𝑥𝑅 − 𝑥𝜇))
= || 𝑥 − 𝑓 (𝑥𝜇)|| 2+

E𝑅(𝑥𝑅 − 𝑥𝜇)>∇ 𝑓 (𝑥𝜇)>∇ 𝑓 (𝑥𝜇)(𝑥𝑅 − 𝑥𝜇)
= || 𝑥 − 𝑓 (𝑥𝜇)|| 2+

E𝑅 Tr
(∇ 𝑓 (𝑥𝜇)>∇ 𝑓 (𝑥𝜇)(𝑥𝑅 − 𝑥𝜇)(𝑥𝑅 − 𝑥𝜇)>)

= || 𝑥 − 𝑓 (𝑥𝜇)|| 2 + 𝑚(1 − 𝑚)Tr
(
𝐹𝑥Blkdiag(𝑥>𝑥)) .

□

Lemma 6. The masked autoencoder loss, for a input image 𝑥 and linear functional 𝑓 is

ℓ𝑚 = || 𝑥 − 𝑓 (𝜇)|| 2 − || 𝑓 (𝜇)|| 2 +
∫

|| 𝑓 (𝑟 � 𝑥)|| 2 d𝑟,

where 𝜇 =
∫ (𝑟 � 𝑥) d𝑟

Proof.

ℓ𝑚 =
∫

|| 𝑥 − 𝑓 (𝑟 � 𝑥)|| 2 d𝑟

=
∫

|| 𝑥 − 𝑓 (𝜇) − ( 𝑓 (𝑟 � 𝑥) − 𝑓 (𝜇))|| 2 d𝑟

=
∫

|| 𝑓 (𝜇) − 𝑥|| 2 + || 𝑓 (𝑟 � 𝑥) − 𝑓 (𝜇)|| 2 d𝑟

−
∫

2〈𝑥 − 𝑓 (𝜇), 𝑓 (𝑟 � 𝑥) − 𝑓 (𝜇)〉d𝑟

=
∫

|| 𝑓 (𝜇) − 𝑥|| 2 + || 𝑓 (𝑟 � 𝑥) − 𝑓 (𝜇)|| 2 d𝑟

= || 𝑥 − 𝑓 (𝜇)|| 2 − || 𝑓 (𝜇)|| 2 +
∫

|| 𝑓 (𝑟 � 𝑥)|| 2 d𝑟.
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□

A.3 Additional experiments for Model Zoo

A.3.1 Understanding task competition

To understand which tasks aid each other’s learning and which compete for capacity and may thereby deterio-

rate performance, we investigated the Coarse-CIFAR100 dataset extensively. We first computed the pairwise

task competition by comparing the relative gain/drop in classification accuracy of each pair of tasks when

the row task is trained in isolated versus training the row and column tasks together using a simple multi-task

learner (Multi-Head). fig. A.4 discusses the results.

fig. A.5, is the extended version of fig. 2.1. It shows the validation accuracy of each task (along a single row)

as more tasks are added to Multi-Head. Each column is a single Multi-Head model trained on a subset of

tasks from scratch. As more tasks are added, the accuracy of most tasks increase However, the increase is not

monotonic with each added task, and if one follows a particular row, there are non-trivial patterns wherein

adding a particular task may deteriorate the performance on the row task and adding some other task later

may recover the lost accuracy. This is a direct demonstration of the tussle between the task competition term

(first) and the concentration term (third) in theorem 5. This indicates that training on the appropriate set of

tasks is crucial to learn from multiple tasks.

Next, we investigated such task competition on other continual learning datasets, namely, Permuted-MNIST,

Rot-MNIST, Split-CIFAR10, and Split-MNIST. It is clear from fig. A.6 that there is very little competition

in this case. Either the tasks are quite different from each other (like the case of Permuted-MNIST), or they

are synergistic (most cells are green), or they do not hurt each other’s performance, i.e., they may correspond

to our model of task relatedness.
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Figure A.4: Pairwise task competition matrix. Cells are colored by the gain(green)/loss(warm) of accuracy of pairwise Multi-
Head training as compared to training the row-task in isolation; this is a good proxy for the transfer coefficient 𝜌𝑖 𝑗 in eq. (2.3).
Although most pairs benefit each other (green), certain tasks, e.g., “Food Container” are best trained in isolation while others such
as “Aquatic Mammals” are typically detrimental to most other tasks. One can study this matrix and identify many more such
properties. In summary, whether tasks aid or hurt each other is quite nuanced even for CIFAR100.
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Figure A.5: In order to demonstrate how some tasks help and some tasks hurt each other, we train a number of multi-task learners
for a varying number of tasks (X-axis) and track the accuracy on each of the tasks from Coarse-CIFAR100 (100 samples/label for
each task). The order of tasks is the same for rows (top to bottom) and the columns (left to right). In other words, the first cell (the
diagonal) indicates the accuracy of the task trained by itself in isolation (Isolated). Cells are colored warm if accuracy is worse than
the median accuracy of that row. For instance, multi-task training with 11 tasks is beneficial for “Man-made Outdoor” but accuracy
drops drastically upon introducing task #12, it improves upon introducing #14, while task #17 again leads to a drop. One may
study the other rows to reach a similar conclusion: there is non-trivial competition between tasks, even in commonly used datasets.
Tackling this issue effectively is the key to obtaining good performance on multi-task learning problems
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Figure A.6: Each row is the relative increase/decrease (green/red) in accuracy of a two task multi-task learner compared to training
on the task corresponding to the particular row in isolation; all entries are computed using 100 samples/class. Cells are colored
green for accuracy gained, and warm for accuracy dropped; the entries in this matrix are a good proxy for the transfer coefficient
𝜌𝑖 𝑗 in eq. (2.3). A similar plot for Coarse-CIFAR100 tasks is shown in the right panel of fig. 2.1. Split-CIFAR10 and Split-MNIST
indicate that most tasks mutually benefit each other. This is also true, but to a lesser extent, for Rotated-MNIST. Permuted-MNIST
is a qualitatively different problem than these, perhaps because there is no obvious relationship between the tasks and there exist
some tasks that lead to a large deterioration of accuracy.
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A.3.2 Visualizing successive iterations of Model Zoo
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Figure A.7: The iterations of Model Zoo are visualized for the Split-miniImagenet dataset for 20 rounds, with 5 tasks selected
in every iteration of Model Zoo. Red elements are tasks that were selected by boosting in that particular round. We observe that
the accuracy of most tasks improves over the rounds, which indicates the utility of Model Zoo-like training scheme This plot also
indicates that Model Zoo can improve the per-task accuracy on nearly all tasks. The model is trained for only a single-epch per
boosting round.

In order to understand how the accuracy of Model Zoo evolves on all tasks as a function of the episodes, we

created fig. A.7. This is a very insightful picture and we can draw the following conclusions from it.

(i) The accuracy along the diagonal of most tasks increases along the row, i.e., across episodes. Only for a

few tasks like Food Container, the accuracy drops in later episodes. Note that we also see from fig. A.4

that Food Container is a task that is best trained in isolation because it leads to deterioration of accuracy
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when trained with essentially any other task.

(ii) There is strong backward transfer throughout the dataset, i.e., the accuracy of a task shown in earlier

rounds increases, as later synergistic tasks are shown to the learner.

(iii) We also see strong forward transfer. Roughly speaking, in the second half of the rows, the tasks already

have a good initial accuracy.

We advocate that such plots should be made for different continual learning algorithms to obtain a precise

picture of the amount of forward and backward transfer.

A.3.3 Single Epoch Metrics

We obtain metrics from publicly available implementations of a few different continual learning algorithms,

which are shown in tables A.1 and A.2. We see that Model Zoo and its variants uniformly have essentially no

forgetting and good forward transfer. The average per-task accuracy is also higher than existing methods on

these datasets. These tables show results for single-epoch training (to be consistent with the implementation

of these existing methods).

Method Avg. Accuracy Forgetting Forward

SGD 34.52 19.88 53.30
EWC 34.71 18.60 52.19
AGEM 37.23 16.96 52.72
ER 41.36 14.29 54.87
Stable-SGD 37.27 12.07 48.43
TAG 43.33 12.39 55.1

Isolated-small 58.719 0.0 58.71
Model Zoo-small 60.3 0.370 59.13
Isolated-large 41.28 0.0 41.28
Model Zoo-large 46.98 0.38 44.43

Table A.1: Single Epoch continual learning metrics on Coarse-CIFAR100

A.3.4 Tracking Individual Task Accuracies

We next study how the individual per-task accuracy evolves on different datasets. The following figures are

extended versions of the right panel of fig. 2.3. We see that the accuracy of all tasks increases with successive

episodes. This is quite uncommon for continual learning methods and indicates that Model Zoo essentially

does not suffer from catastrophic forgetting. We have also juxtaposed the corresponding curves of the single-

epoch setting with the multi-epoch training in Model Zoo; we would like to demonstrate the dramatic gap

148



Method Avg. Accuracy Forgetting Forward

SGD 46.69 16.653 62.35
EWC 47.93 14.26 61.34
AGEM 51.86 10.102 61.13
ER 55.41 9.52 64.03
Stable-SGD 49.28 9.76 57.79
TAG 58.38 5.15 63.00

Isolated-small 65.8 0.0 65.8
Model Zoo-small 81.049 1.278 66.57
Isolated-large 40.2 0.0 40.25
Model Zoo-large 64.12 0.27 48.34

Table A.2: Single Epoch continual learning metrics on Split-MinImagenet

in the accuracy of these problem settings. Even if single-epoch variant of Model Zoo also does not forget

(its accuracy is much better than existing continual learning methods), the multi-epoch variant has much

higher accuracy for every task. This indicates that continual learning algorithms should also focus on per-

task accuracy in addition to mitigating forgetting, if they are to be performant. The performance of Model

Zoo is evidence that we can build effective continual learning methods that do not forget.
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Figure A.8: Evolution of task accuracy on Coarse-CIFAR100 and Split-CIFAR100

A.3.5 Additional Continual Learning Experiments on 100 samples/label

We also performed continual learning experiments with 100 samples/class in table A.3. We find that Model

Zoo obtains an accuracy that lies in between those of Isolated and the approximate upper bound given by
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Multi-Head (multi-task learning). Doing so indicates strong ability of the learner for both forward and back-

ward transfer. In some cases, the continual learner even outperforms Multi-Head trained on all tasks together.

Dataset Isolated Multi-Head (multi-task) Model Zoo

Rotated-MNIST 98.17 ± 0.24 98.47 ± 0.18 98.44 ± 0.17
Split-MNIST 97.11 ± 1.21 99.47 ± 0.08 98.98 ± 0.51
Permuted-MNIST 84.59 ± 1.65 86.36 ± 1.15 86.04 ± 1.68

Split-CIFAR10 82.09 ± 0.76 85.73 ± 0.60 84.17 ± 0.60

Split-CIFAR100 80.04 ± 0.44 87.93 ± 0.50 86.27 ± 0.19
Coarse-CIFAR100 65.34 ± 0.41 69.05 ± 0.38 66.80 ± 6.27

Table A.3: Average per-task accuracy (%) at the end of all episodes using 100 samples/class, bootstrapped across 5 datasets (mean
± std. dev.). Model Zoo performs better than Isolated on all problems even if tasks are shown sequentially.

We next visualize the evolution of the per-task test accuracy for various datasets in fig. A.9. This is a qual-

itative way to investigate forward and backward transfer in the learner. Forward transfer is positive if the

accuracy of a newly introduced task in a particular episode is higher than what it would be if the task were

trained in isolation. Backward transfer is positive if successive episodes and tasks result in an increase in

the accuracy of tasks that were introduced earlier in continual learning. Both section A.3.4 and fig. A.9

consistently show non-trivial forward and backward transfer.

A.4 Additional experiments for redundancy in perception tasks

A.4.1 Projections of images onto different subspaces

We project an image of CIFAR-10 onto different bands of Eigenvectors, frequencies and wavelets. Surpris-

ingly, most of these bands have

0 - 500 500 - 1000 1000 - 1500 1500 - 2000 2000 - 2500 2500 - 3000

Figure A.10: Average CIFAR-10 image when projected into different PCA subspaces.
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Figure A.9: Per-task validation accuracy as a function of the number of episodes of continual learning for problems using variants
of CIFAR10 and MNIST datasets using Model Zoo. Each task has 100 samples/class. X-markers denote accuracy of Isolated on
the new task. We see both forward transfer (Model Zoo often starts with a higher accuracy than Isolated) and backward transfer
(accuracy of some past tasks improves in later episodes). For problems like Permuted-MNIST and Rotated-MNIST, there is little
forward or backward transfer.
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Figure A.11: Average CIFAR-10 image when projected into different radial frequency bands.
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Figure A.12: Average CIFAR-10 image when projected into different wavelet scale bands.

A.4.2 Partial Information Decomposition
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Figure A.13: Different bands have high amounts of redundant and synergistic information even with frequencies and wavelets for
CIFAR-10. This corroborates the result in fig. 4.17. It also suggests that our technique for calculating mutual information is reliable;
we see that redundant and synergistic information are large while unique information is small. Note that the numbers here are in
log-scale, while the ones in the main paper are in nats.

152



A.4.3 Decay in power or spectral density
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Figure A.14: The decay in coefficients of the Eigenvalues frequencies and wavelets. The spectra of all 3 linear bases decay expo-
nentially and have characteristic small head and a long tail.

A.4.4 Understanding redundancy in feature space
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Figure A.15: There is also redundancy in the learned features of a trained network. The experimental setup of this figure is identical
to that of fig. 4.18 (top) except that instead of creating subspaces using PCA, Fourier and wavelet bases computed from raw pixels, we
create these bands using the features from different intermediate layers of the trained network. In other words, there is redundancy
in the original input data because many subspaces are predictive of the task. But the network does not completely remove this
redundancy when it learns the features.
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A.4.5 Understanding bands of eigen-vectors, Fourier and Wavelet coefficients
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Figure A.16: Number of features in different bands of the input.
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Figure A.17: Sum of singular values, Fourier and wavelet coefficients in different bands.

A.4.6 Trained Network Frequency Sensitivity, Additional Experiments

Figure A.18: We showcase some additional experiments of taking a pretrained network and applying various filters for inference
to the network and observing network performance. We find a similar analysis to other experiments in the paper showcasing a bias
towards using components of the low frequency prediction.
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Figure A.19: In addition to the standard set of baselines shown we also created some additional results on the M3ED optical flow
results. 1) Normalize the input after filtering to range from -1-1. 2) Create a mask just on the phase distribution of the FFT(note
this mask was a hard 0-1, mask as opposed to Butterworth filter), 3) Sinc filter that nulls out bands according to sinc frequency. 4)
Efficient Former V2 (Li et al., 2023) was used for the standard high Pass, low pass and band pass in this work.

A.4.7 Additional Perception Filter Experiments

In addition to the band-pass, low-pass, and high-pass filtering experiments in the main work, we conducted

further experiments to investigate the impact of these factors on task performance.

The first experiment involved applying a sinc mask to the frequency distribution of the original input data.

This experiment was motivated by our observation that masked autoencoders manipulate the frequency do-

main in this way. Since the size of the mask influences the sinc frequency, we wanted to analyze the resulting

effects. We found that increasing the sinc frequency led to a consistent decrease in the average endpoint error

for optical flow estimation.

The next experiment examined the effect of normalizing the input distribution to a range of 0-1 across all our

experiments. We observed that the trends remained largely unchanged compared to using the unnormalized

input. This is likely due to the batch normalization layers employed in the U-Net architecture.

In another experiment, we investigated masking out the phase information of the original input image instead

of the amplitude in the frequency spectrum. This approach was inspired by research in psychophysics and

signal processing (Piotrowski and Campbell, 1982; Thomson et al., 2000; Wichmann et al., 2006), which

highlights the impact of phase statistics on image perception. The results of this experiment mirrored those

of the original M3ED experiments, showing that performance improves with a larger portion of the spec-

trum preserved and that low-frequency information leads to better performance compared to high-frequency

information.
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For our final set of experiments, we aimed to investigate changes in performance by replacing the U-Net

architecture with the EfficientFormer V2 model (Li et al., 2023). The overall trends in the results remained

consistent with those obtained using the U-Net model.

A.5 Additional experiments with masked autoencoders

Additional details aboutMAE pretraining We train MAEs using the architecture in He et al. (2021). We

divide the image into patches of size 𝑝 and randomly mask a fraction𝑚 of the patches before feeding it to the

MAE. The encoder projects the unmasked patches to a 𝑑-dimensional embedding using a linear layer. The

sequence of patches are then fed to a series of Transformer blocks. The decoder adds a learnable vector and

position encoding for every masked patch and reconstructs the masked patches.
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Figure A.20: We vary the number of encoder and decoder layers and record the reconstruction loss at the end of training and the
time required the train the MAEs. Note that MAEs are slow to train with training time growing faster the size of the decoder. The
reconstruction loss becomes smaller with increasing size of both the decoder and the encoder. However, we find that the training
loss is not a good proxy for downstream task performance.

Number of Encoder and decoder layers We train MAEs on CIFAR10 for different encoder and decoder

sizes. We find that the reconstruction loss decreases with increasing size of both the encoder and the decoder

(fig. A.20). However, the training time grows faster than the size of the decoder, making it computationally

expensive to train large decoders. We also find that training loss is not a good proxy for downstream task

performance. We evaluate the performance of the trained encoder using linear probing and find that the

accuracy improves as we increase the size of the encoder. However, the optimal decoder size is 2-4 layers

(fig. A.21).

If the model are trained only using the supervised loss, i.e., we do no MAE pretraining, then the accuracy on
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CIFAR plateaus around 83-84%. In fact the accuracy for a 20-layer network is worse than the accuracy for a

12-layer network which differs from the trend for masked autoencoders.
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Figure A.21: We vary the number of encoder and decoder layers (transformer blocks) and plot the linear probe accuracy (left) and
the accuracy after fine-tuning for 100 epochs. The accuracy of the trained encoder continues to improve as we increase its size.
Linear probe accuracies are usually indicative of performance after fine-tuning.
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Figure A.22: We vary the masking ratio and patch-size of the masked autoencoder. While larger masking ratio lead to smaller
training times, even smaller masking ratios work quite well. Smaller patch-sizes are a lot slower to train but usually perform better
than larger patch-sizes.

Patch-size vs. Masking ratio The masking ratio and patchs-size control the basis learnt by the masked

autoencoder. We surprisingly find that many different parameters work surprisingly well for downstream

task accuracy. We also note that reconstruction loss is not indicative of downstream task performance.

Are long training times even necessary? MAEs are typically trained for a large number of epochs and the

reconstruction error continues to decrease over the course of training. However, the reconstruction error is not

157



0.2 0.4 0.6 0.8 0.9
Masking ratio

2
4

8
16

P
at

ch
 s

iz
e

56.01 63.77 71.61 79.65 78.84

68.02 75.66 80.06 78.79 72.72

72.96 75.94 75.51 71.39 44.40

57.64 58.09 49.99 18.28 18.11

Linear probe Accuracy (%)

0.2 0.4 0.6 0.8 0.9
Masking ratio

2
4

8
16

P
at

ch
 s

iz
e

92.64 93.35 94.67 95.08 94.61

91.91 92.81 93.64 93.07 91.67

88.21 88.35 88.55 86.72 82.13

74.09 73.40 70.77 62.11 58.74

Accuracy

[Training time as a function of masking-ratio and patch-size]

Figure A.23: We plot the (left) linear probe accuracy and the accuracy after fine-tuning (right) for different patch-size and masking
ratio.

predictive of both the linear-probe and fine-tuning accuracies. In fig. 3.12, we consider multiple checkpoints

over the course of pretraining and plot the number of pretraining epochs against the linear probe accuracy

of that checkpoint. We find that the linear probe accuracy continues to increase even after 1500 epochs

of training particularly for larger models, justifying the need to pretrain for a large number of epochs (see

fig. A.21).

Centered kernel alignment or CKA (Kornblith et al., 2019) measures the similarity between representa-

tions of two different networks. We use CKA to measure the similarity between the representations of MAEs

trained with different number of encoder layers and with 4 decoder layers. White indicates that the similarity

is high and black/red indicates that the similarity is low. We find that the larger networks are more to the

12-layer encoder while while the smaller networks are less similar to the 12-layer network, particularly at the

last layer.
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Figure A.24: We plot the linear probe accuracies of different masked autoencoders over the course of training. They accuracy
continue to increase even after 1000 epochs of training, justifying the need for long training times. Larger models tend to require
longer training times.

A.5.1 More experiments with the Ising model

Masked autoencoder: encoder matrix Masked autoencoder: encoder matrix

Masked autoencoder: weight matrix Masked autoencoder: weight matrix

Figure A.26: We plot the weight matrix 𝐴𝐵 and the encoder matrix 𝐴 for (left) patch-size 16 and masking ratio of 0.5 and (right)
patch-size 8 and masking ratio 0.5. Increasing the patch-size while keeping the masking ratio fixed biases the encoder towards
features that capture long-range correlations.
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Encoder layers 1, Encoder layers 12

Encoder layers 2, Encoder layers 12

Encoder layers 4, Encoder layers 12

Encoder layers 6, Encoder layers 12

Figure A.25: CKA between MAEs trained with different number of encoder layers. Each row and column corresponds to the
similarity between a 𝑘-layer encoder and the 12-layer encoder (hence 12 columns). The darker shades indicate that the representations
for those two layers are not similar.

160



Masked autoencoder: encoder matrix Masked autoencoder: encoder matrix

Masked autoencoder: weight matrix Masked autoencoder: weight matrix

Figure A.27: We plot the weight matrix 𝐴𝐵 and the encoder matrix 𝐴 for (left) patch-size 16 and masking ratio of 0.99 and (right)
patch-size 8 and masking ratio (0.01). Reducing the masking ratio biases the encoder towards features based on local correlations
while increasing the masking ratio prioritizes features that capture long range correlations.

A.6 Experiment details

A.6.1 Experimental details for Model Zoo

For all 3 networks, the final pooling layer is replaced with an adaptive pooling layer in order to handle input

images of different sizes. Convolutional layers are initialized using the Kaiming-Normal initialization. The

bias parameter in batch normalization is set to zero with the affine scaling term set to one. The bias of the

final classification layer is also set to zero; this helps keep the logits of the different tasks on a similar scale.

Optimization All models are trained in mixed-precision (32-bit weights, 16-bit gradients) using Stochas-

tic Gradient Descent (SGD) with Nesterov’s acceleration with momentum coefficient set to 0.9 and cosine

annealing of the learning rate schedule for 200 epochs. Training of any model with multiple tasks involves

mini-batches that contain samples from all tasks.

Hyper-parameter optimization We used Ray Tune (Liaw et al., 2018) for hyper-parameter optimization.

The Async Successive Halving Algorithm (ASHA) scheduler (Li et al., 2020b) was used to prune hyper-

parameter choices with the search space determined by Nevergrad (Rapin and Teytaud, 2018). The mini-

batch size was varied over [8, 16, 32, 64]; the logarithm (base 10) of the learning rate was sampled from a
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uniform distribution on [−4,−2]; dropout probability was sampled from a uniform distribution on [0.1, 0.5];
logarithm of the weight decay coefficient was sampled from [−6,−2]. We used a set of experiments for

continual learning on the Coarse-CIFAR100 dataset with different samples/class (100 and 500) to perform

hyper-parameter tuning.

The final values of training hyper-parameters that were chosen are, learning-rate of 0.01, mini-batch size

of 16, dropout probability of 0.2 and weight-decay of 10−5. Model Zoo uses b = min(𝑘, 5) at each round

of continual learning where 𝑛 is the number of tasks; for tasks with only 5 tasks (MNIST-variants) we use

b = 2. We did not tune these two hyper-parameters using Ray because it is quite cumbersome to do so. We

selected these values manually across a few experiments; changing them may result in improved accuracy

for Model Zoo.

The final values of training hyper-parameters. The chosen values are, learning-rate of 0.01, mini-batch

size of 16, dropout probability of 0.2 and weight-decay of 10−5.

Model Zoo uses b = min(𝑘, 5) at each round of continual learning where 𝑛 is the number of tasks; for

tasks with only 5 tasks (MNIST-variants) we use b = 2. We did not tune these two hyper-parameters using

Ray because it is quite cumbersome to do so. We selected these values manually across a few experiments;

changing them may result in improved accuracy for Model Zoo.

All hyper-parameters are kept fixed for all datasets, architectures, and experimental settings . We

are interested in characterizing the performance of Model Zoo and its variants across a broad spectrum

of problems and datasets. While we believe we can get even better numerical accuracy, by tuning hyper-

parameters specially for each problem, we do not so for the sake of simplicity. As themain paper discusses, we

outperform existing methods quite convincingly across the board in both multi-task and continual learning.

Data augmentation MNIST and CIFAR10/100 datasets use padding (4 pixels) with random cropping to

an image of size 28×28 or 32×32 respectively for data augmentation. CIFAR10/100 images additionally

have random left/right flips for data augmentation. Images are finally normalized to have mean 0.5 and

standard deviation 0.25. Split-miniImagenet uses the same augmentation as CIFAR-10 and CIFAR-100. We

use augmentations even in the single epoch setting, although it is not beneficial to do so.
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A.6.2 Experimental Details for non-monotonic trends in data

We consider two types of setups to study the impact of OOD data:

OOD data arising due to geometric intra-class nuisances We study the effect of intra-class nuisances

using a classification task as the target task and transformed versions of the same task as different OOD tasks.

In this regard, we consider the following experimental setups.

1. Rotated MNIST: unrotated-domain task as target and 𝜃◦- rotated-domain task as OOD: We

consider the 10-way classification of unrotated images as the target task and that of the 𝜃◦- rotated

images as the OOD samples. We can have different OOD tasks by selecting different values for 𝜃.

2. Rotated CIFAR-10: 𝑻2 as target and rotated 𝑻2 as OOD: We choose the bird vs. cat (𝑇2) task from

Split-CIFAR10 as the target task. We then rotate the images of 𝑇2 by an angle 𝜃◦ counter-clockwise

around their centers to form a new task denoted by 𝜃-𝑇2, which we consider as the OOD task. Different

OOD tasks can be obtained by selecting different values for 𝜃.

3. Blurred CIFAR-10: 𝑻4 as target and blurred 𝑻4 as OOD: We choose the Frog vs. Horse (𝑇4) task

from Split-CIFAR10 as the target task. We then add Gaussian blur with standard deviation 𝜎 to the

images of 𝑇4 to form a new task denoted by 𝜎-𝑇2, which we consider as the OOD task. By setting

distinct values for 𝜎, we can have different OOD tasks.

OOD data arising due to category shifts and concept drifts We study this aspect using two different

target and OOD classification problems as described below.

1. Split-CIFAR10: 𝑻𝒊 as Target and 𝑻𝒋 as OOD: We choose a pair of distinct tasks from the 5 binary

classification tasks of Split-CIFAR10 and consider one as the target task and the other as the OOD task.

We perform experiments for all pairs of tasks (20 in total) in Split-CIFAR10.

2. PACS (Li et al., 2017): Photo-domain task as target and X-domain task as OOD: Out of the four

3-way classification tasks from PACS, we select the photo-domain task as the target task and consider

one of the remaining 3 domain tasks (for instance, the sketch-domain task) as the OOD task.

163



3. DomainNet (Peng et al., 2019): Real-domain task as target and X-domain task as OOD: Out of

the six binary classification tasks from DomainNet we consider the real-domain task as the target task

and select one of the remaining 5 domain tasks (for instance, the painting-domain task) as the OOD

task.

4. CINIC-10: CIFAR task as target and ImageNet task as OOD: Here we simply select the 10-way

classification of CIFAR images as the target task and that of ImageNet as the OOD task.

A.6.3 Experimental details for prospective learning

A.6.3.1 Training and evaluation

Training setup. Each learner receives a 𝑡-length sequence of samples 𝑧≤𝑡 drawn from the stochastic pro-

cess, as the training data. Upon training, the learner is expected to make predictions on future samples that

correspond to times 𝑡′ > 𝑡 up to a fixed horizon 𝑇. At each future time 𝑡′, we do not train (modify the

weights) using samples after time 𝑡 (because we do not have them, but we will make predictions on these

samples). Given samples 𝑧≤𝑡 , a time-aware hypothesis class minimizes the empirical prospective risk

ℓ̂𝑡(ℎ, 𝑍) = 1
𝑡

𝑡∑
𝑠=1

ℓ (𝑠, ℎ𝑠(𝑥𝑠), 𝑦𝑠);

For an MLP or CNN, ℎ𝑠 corresponds to a network that takes time 𝑠 as input.

Hyper-parameters All the networks are trained using stochastic gradient descent (SGD) with Nesterov’s

momentum and cosine-annealed learning rate. The networks are trained at a learning rate of 0.1 for the

synthetic tasks, and learning rate of 0.01 for MNIST and CIFAR. The weight-decay is set to 1 × 10−5. The

images from MNIST and CIFAR-10 are normalized to have mean 0.5 and standard deviation 0.25. The

models were trained for 100 epochs, which is many epochs after achieving a training accuracy of 1.

Evaluation We estimate the prospective risk of each learner using a Monte Carlo estimate. For a given

training dataset 𝑧≤𝑡 , we estimate a sequence predictors ℎ ≡ (ℎ𝑡) which we use to make predictions on

future samples. We wish to approximate the prospective risk (Equation (2.9)) for the estimated sequence of
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predictors. We do so, for a single future realization 𝑧>𝑡 of this process, which yields the estimate

�̂�𝑡(ℎ) = 1
(𝑇 − 𝑡)

𝑇∑
𝑠=𝑡+1

ℓ
(
𝑠, ℎ𝑠(𝑥 𝑗𝑠), 𝑦 𝑗𝑠)

)
.

In our experiments, 𝑇 = 50,000 for CIFAR-10 and MNIST while 𝑇 = 10,000 for the synthetic data exper-

iments. For a single learning algorithm, we compute the empirical prospective risk at 15-40 different time

steps which results in a significant number of GPU hours in order to plot the learning curves. For every time

step, we compute the mean and standard deviation of the empirical prospective risk using 5 random seeds.

A.6.3.2 Architectural Details
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Figure A.28: Schematic illustration prospective-MLP and prospective-CNN.

We considered the following architecture choices for the time-agnostic restropective algorithms like ERM

that ignore time and the ordering associated with the samples in 𝑧≤𝑡 .

Retrospective-MLP/CNN. A multi-layer perceptron (MLP) with two hidden layers with 256 units is used

for the synthetic tasks and the MNIST task. For CIFAR-10, we use a a small convolutional network with

0.12M parameters. It comprises of 3 convolution layers (kernel size 3 and 80 filters) interleaved with max-

pooling, ReLU, batch-norm layers, with a fully-connected classifier layer.
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Prospective ERM with MLP and CNNs. In order to incorporate time into the hypothesis class, we con-

sider an embedding function 𝜑 : R → R𝑑 that takes raw time as an input and returns a 𝑑-dimensional vector

denoted as the time-embedding. In our experiments, we define 𝜑 : R → R𝑑 as a function that maps

𝑡 ↦→ (sin(𝜔1𝑡), . . . , sin(𝜔𝑑/2𝑡), cos(𝜔1𝑡), . . . , cos(𝜔𝑑/2𝑡)),

where, 𝜔𝑖 = 𝜋/𝑖 , 𝑖 = 1, . . . , 𝑑/2 to the be the collection of angular frequencies. We briefly discuss the

rationale for this choice in Figure A.30. In our experiments, we use 𝑑 = 50.

We make our classifiers a function of time by including time 𝑡 as an input the neural network. This allows

the network to vary its hypothesis over time. For MLPs, we concatenate the input with its corresponding

time-embedding 𝜑(𝑡) which is fed as input. For the CNN (see Figure A.28), we add the time-embedding to

the output of the convolutional layers instead of concatenating it to the inputs. We also tried concatenating

the time-encoding to the inputs of the CNN but found that it performed poorly in both scenarios 2 and 3

(see Figure A.29).
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Figure A.29: Prospective risk of the CNN architecture on CIFAR-10 for scenarios 2 and 3. The performance of the CNN architecture
is significantly worse when the time-embedding is concatenated to the input (variant 2).

Frequencies for embedding time In the original Transformer architecture, Vaswani et al. (2017) use a

position-embedding using the frequencies 𝜔𝑖 = 1/100002𝑖/𝑑 𝑖 = 1, . . . , 𝑑/2. There are two key differences:

(1) We use the absolute time 𝑡 instead of the relative position, (2) We use the angular frequencies 2𝜋/𝑖.
In Figure A.30 (right), we illustrate the time-embeddings when we use the two different choices for angular

frequencies. For 𝑑 = 128, we find that the frequencies from Vaswani et al. (2017) result in slowly changing
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features which makes it less suitable for our task, i.e., many of the dimensions are constant over time which

makes many of the dimensions uniformative for the task. In our experiments, we found out that MLPs and

CNNs that use the frequencies from Vaswani et al. (2017) perform poorly on the MNIST task for scenarios

2 and 3.
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Figure A.30: The time-embeddings computed using (1) frequencies from Vaswani et al. (2017) (left), and (2) the frequencies from
proposed in our work (right).

A.6.3.3 Prompts for testing prospective learning in LLMs

We use the following 3 prompts to generate a sequence of predictions using in LLama-7B and Gemma-7B.

We found that the LLMs always generated a sequence of 0s and 1s and we did not need to post-process

the response or change how the tokens were sampled. We generate 20 samples using greedy decoding; the

language models are executed with the weights in 16-bit precision. We tried a few different variants for

providing prompts to the LLM, e.g., by adding spaces between the 1s and 0s, the results are qualitatively

similar.

Scenario 1

Consider the following sequence of outcomes generated from a single Bernoulli distribution.

11110101111110111111111111

The next 20 most likely outcomes are:

167



Scenario 2

Consider the following sequence of outcomes generated by two Bernoulli distributions, where all

even outcomes are generated by a Bernoulli distribution with parameter ’p’ and odd outcomes are

generated from a Bernoulli distribution with parameter ’1-p’.

10101010101010101010101000101010101010101

The next 20 most likely sequence of outcomes are:

Scenario 3

Consider the following sequence of states generated by a Markov process with 2 states (0, 1):

10101101010100101010

The next 20 most likely outcomes are:

Tomake the LLM generate a sequence of Bernoulli trials with probability 0.75, we used the following prompt.

Bernoulli trials

Generate outcomes of 10 Bernoulli trials where 0 is generated with probability 0.25 and 1 with prob-

ability 0.75

A.6.4 Experimental details for showing that trajectories of representations are low-dimensional

Data. We performed experiments using two datasets.

1. CIFAR10 has 10 classes (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck) with RGB

images of size 32×32, and
2. ImageNet has 1000 classes each with about 1000 RGB images of size 224×224.

ImageNet classes are derived from the leaves of the Wordnet hierarchy (Miller, 1995). We use this hierarchy

to create tasks using different subsets of ImageNet; We use all classes under a node to create a task. The tasks

that we consider are: Dogs, Vertebrates, Invertebrates, Instrumentality, Reptile and Birds. We also consider

a task with 333 randomly selected classes and unlike other tasks, it spans many different phyla of ImageNet.

168



Architectures. We use a Wide-Resnet (Zagoruyko and Komodakis, 2016) architecture for experiments on

supervised learning on CIFAR-10 (depth 16 and widening factor 4) and a Resnet-18 (He et al., 2016) to train

a model using SimCLR. All experiments on ImageNet use the Resnet-50 architecture.

All convolutional layers are initialized using the Kaiming-Normal initialization. For the Wide-Resnet, the

final pooling layer is replaced with an adaptive pooling layer in order to handle input images of different

sizes.

We make three modifications to these architectures.

1. We remove the bias from the final classification layer; this helps keep the logits of the different tasks

on a similar scale.

2. In the experiments for Result 3 (episodic meta-learning) and Result 6 (fine-tuning), we replace batch

normalization with layer norm in the Wide-Resnet. This is because we found in preliminary exper-

iments that batch-normalization parameters make training meta-learning models very sensitive to

choices of hyper-parameters (e.g., the support or query shot), and that the learned representations

of new tasks were quite different in terms of their predictions (and thereby the Bhattacharyya distance)

but all the difference was coming from modifications to the BN parameters.

3. In the Resnet-50, we replace the pooling layers with BlurPool (Zhang, 2019). The bias parameter in

batch normalization is set to zero with the affine scaling term set to one.

Training procedure All models are trained in mixed-precision (32-bit weights, 16-bit gradients) using

stochastic gradient descent (SGD) with Nesterov’s acceleration with momentum coefficient set to 0.9 and

cosine annealing of the learning rate schedule. Batch-normalization parameters are excluded from weight

decay.

CIFAR10 datasets use padding (4 pixels) with random cropping to an image of size 28×28 or 32×32 respec-

tively for data augmentation. CIFAR10 images additionally have random left/right flips for data augmentation.

Images are finally normalized to have mean 0.5 and standard deviation 0.25.
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Supervised learning models (including fine-tuning) for CIFAR10 are trained for 100 epochs with a batch-size

of 64 and weight decay of 10−5 using the Wide-Resnet.

Episodic meta-learners are trained using a Wide-Resnet and with the prototypical loss (Snell et al., 2017).

For the 2-way meta-learner, each episode contains 20 query samples and 10 support samples. For the 5-way

meta-learner, each episode contains 50 query samples and 10 support samples. We found (Result 4) to hold

across different choices of these hyper-parameters in small-scale experiments. Models are trained for around

750 epochs and the episodic learner is about 5 times slower to train with respect to wall-clock time.

We train models using SimCLR on CIFAR10 and on tasks created from CIFAR10. For the augmentations,

we use random horizontal flips, random grayscale, random resized crop and color jitter. Models are trained

for 200 epochs for 2-way classification problems and for 500 epochs when trained on the entirety of CIFAR10

with the Adam optimizer and an initial learning rate of 0.001.

A.6.4.1 Experiments on ImageNet

We make use of FFCV (Leclerc et al., 2023). which is a data-loading library that replaces the pytorch Dat-

aloader. FFCV reduces the training time on ImageNet to a few hours, which allows us to train 100s of

models on ImageNet, or on tasks created from it. Our implementation of ImageNet training builds on the

FFCV repository. ImageNet models are trained for 40 epochs with progressive resizing – the image size is

increased from 160 to 224 between the epochs 29 and 34. Models are trained on 4 GPUs with a batch-size

of 512. The training uses two types of augmentations – random-resized crop and random horizontal flips.

Additionally, we use label smoothing with the smoothing parameter set to 0.1.

A.6.4.2 Implementing InPCA in very high dimensions

We calculate an InPCA embedding of models along multiple trajectories, e.g., a typical experiment has

about 25 trajectories (multiple random seeds, tasks, or representation learning methods) and about 50 models

(checkpoints) along each trajectory. Each model is a very high-dimensional object (with dimensionality 𝑁𝐶

where 𝑁 ∼ 105 and 𝐶 ∼ 10-103). Even if the matrix 𝐷 in eq. (4.9) is relatively manageable with 𝑛 ∼ 1250,

each entry of𝐷 is dB(𝑃𝑢 , 𝑃𝑣) and therefore requires∼ 108 operations to compute. Implementing InPCA—or

even PCA—for such large matrices requires a large amount of RAM. We reduced the severity of this issue
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to an extent using Numpy’s memmap functionality. Also note that calculating only the top few eigenvectors

of eq. (4.9) suffices to visualize the models, we do not need to calculate all.

The formula eq. (4.2) is an effective summary of the discrepancies between how the predictions made by two

probabilistic models differ; even small differences in two models, e.g., even if both 𝑃𝑢 and 𝑃𝑣 make mistakes

on exactly the same input samples, if 𝑝𝑛𝑢 (𝑐) is slightly different than 𝑝𝑛𝑣 (𝑐) for even one of 𝑛 or 𝑐, the diver-

gence is non-zero. InPCA is capable of capturing the differences between two such models eq. (4.9). How-

ever, when the number of classes is extremely large, the number of terms in the summation is prohibitively

large and analyzing the discrepancies or calculating the embedding becomes rather difficult.

We also developed a method to work around this issue. We can use a random stochastic matrix (whose

columns sum up to 1) to project the outputs for each sample {𝑝𝑛𝑢 (𝑐)}𝑐=1,...,𝐶 into a smaller space before

calculating eq. (4.2). This amounts to pretending as if the model predicts not the actual classes but a random

linear combination of the classes (even if the model is trained on the actual classes). This is a practical trick

that is necessary only when we are embedding a very large number of very high-dimensional probabilistic

models. We checked in our Imagenet experiments that using this trick gives the same embeddings.

In this paper, we did not need to use this projection trick. However, we found that this tricks makes it com-

putationally faster to compute the embeddings and we have seen it to work well in practice. We have shared

the code for this procedure, since it allows other people to reproduce the results using fewer computational

resources.

A.6.5 Experimental details for showing redundancy in perception tasks

A.6.5.1 Datasets

We examine various complex perception tasks, including classification, semantic segmentation, optical flow,

and depth/disparity prediction. In this work, we use CIFAR-10 for classification, ImageNet for classification,

the Cityscapes dataset for semantic segmentation and disparity prediction(Cordts et al., 2016), the ADE20K

for semantic segmentation(Zhou et al., 2017) and an augmented version of the M3ED dataset(Chaney et al.,

2023). We feature complex real scenes beyond just classification datasets. For example, the M3ED dataset

has many natural scenes, including cars driving in urban, forest, and daytime and nighttime conditions.
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A.6.5.2 Projecting data onto different subspaces

A key operation in this work is projecting input data onto different subspaces using PCA, Fourier and wavelet

bases.

Indices for the bases. For each basis, we define an index that determines the ordering of the basis elements.

The indices are defined as follows:

(1) For PCA, we order the basis elements by the descending order of the eigenvalues. The basis element

with index 5 is the eigenvector corresponding to the 5th largest eigenvalue.

(2) For the Fourier basis, the basis elements are ordered by the increasing radial frequency. The basis

elements with index 𝑖, contains all spatial frequencies (𝜔1 , 𝜔2) such that

𝑖 ≤
√
𝜔2

1 + 𝜔2
2 < 𝑖 + 1.

(3) For wavelets, the basis elements are ordered by increasing scales. The small scales capture low-

frequency information, while the larger scales capture high frequency information. For example, a

2-level wavelet decomposition of an image contains 7 coefficients. The approximation coefficient

(cA) represents the smallest scale. Each level has 3 detail coefficients (cH, cV, cD) representing the

horizontal, vertical, and diagonal details, respectively. The ordering of the wavelet coefficients by

scale(small-large) is (cA2, cH2, cV2, cD2, cH1, cV1, cD1). Hence the basis elements with index 5

correspond to the coefficients cH1.

Bands. We use the ordering of the basis elements to define different ”bands” of the basis. Low pass and

high pass filters consider basis elements that are lesser than or greater than a certain index. Band pass filters

consider basis elements between two indices. We train networks after projecting the input data onto different

subspaces defined by the low pass, high pass, and band pass filters. After projecting onto these subspaces,

we transform the input back to pixel space and train the network.

We perform experiments with PCA, Fourier and Wavelet bases for CIFAR-10. However, computing PCA on

datasets as large as ImageNet is computationally difficult, so we study the larger datasets using the Fourier or

wavelet bases. In fig. 4.9, we find a strong correspondence between the two, which suggests that one should
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get similar results using the PCA, Fourier and wavelet bases.

A.6.5.3 Neural network architectures and training procedure

Dataset 𝑒𝑡𝑜𝑡 𝜆 𝜆𝑚𝑎𝑥 Batch Size Channels # Samples
In Out Base Train Test

CS Depth 50 0.0001 0.005 128 6 1 64 22972 500
M3ED Depth 40 0.001 0.01 128 6 1 64 34255 15020
M3ED Flow 40 0.001 0.01 128 6 2 32 34255 15020
M3ED Sem 60 0.005 0.0001 128 3 20 64 54793 13822
Cityscapes Sem 40 0.0005 0.01 128 3 20 64 22973 500
ADE20k Sem 60 0.0001 0.01 128 3 150 64 20210 2000

Table A.4: Hyperparameters and dataset sizes for different datasets used to test redundancy

In our experiments, we apply various low-pass/high-pass/band-pass filters and train networks based on the

results of these filters. We then measure the test error (1-Accuracy, for classification and segmentation), the

mean average error (for depth estimation), or the average endpoint error (optical flow). The different filters

can tell us which subspaces of the input have information relevant for classification–for example, if a high-

pass filter results in chance accuracy on a classification task, then this suggests that there is little information

for the task present in the tail of the spectrum. However, our results suggest otherwise, the entire spectrum

performs well on our tasks.

Classification. For CIFAR-10, we use a Wide-Resnet (Zagoruyko and Komodakis, 2016) with 16 layers

and 4 blocks of sizes 16, 64, 128 and 256. We normalize the images by the mean and standard deviation

but do not apply any augmentations during training. The models are trained for 100 epochs using stochastic

gradient descent with Nesterov momentum (of 0.9) and use a learning rate of 0.05 with a batch size of 64

and weight decay of 5 × 10−5. The networks are trained to optimize the cross-entropy loss.

The ImageNet models are trained using the Resnet-50 (He et al., 2016) architecture with the pooling layers

replaced with BlurPool (Zhang, 2019). To speedup training, we use FFCV (Leclerc et al., 2023), which is

a data-loading library optimized to load and perform augmentations on the training data quickly. We train

the models for 40 epochs with progressive resizing – the image size is increased from 160 to 224 between
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the epochs 29 and 34. The projection operation (band pass, low pass, or high pass) is applied to an image

of size 256 regardless of the stage of training in progressive resizing. Models are trained on 4 GPUs with a

batch-size of 512. We use random-resized crop and random horizontal flips as the two augmentations and

label smoothing parameter set to 0.1. We use stochastic gradient descent as the optimizer with the learning

rate schedule that is annealed linearly. We use a weight decay of 0.0001 but do not apply it to the batch norm

parameters.

Semantic segmentation, Optical Flow and Depth prediction. All images down-sampled to 200×200,
except for M3ED semantic segmentation which is 180 × 200. We apply filters starting from 10- half the

minimum resolution for the various low-pass and high-pass filters. As for band-pass filters, we again apply

them using the same interval with a width of 10 for all dense perception experiments. For each experiment,

one of these filters is applied to the input image spectra and used as input for the model of our task. We

tested most of our models on a U-Net (Ronneberger et al., 2015) architecture with 3 layers with a 2x down-

sampling and channel multiplier. These backbones contain downsampling/upsampling operations; therefore,

to ensure a valid sized output, we pad our input evenly and crop the output for loss calculation. We train all

models using supervised training with backpropagation using AdamW (Loshchilov and Hutter, 2017) with

OneCycleLR (Smith and Topin, 2017) policy with an initial learning rate of 𝜆 and a maximum learning rate

of 𝜆𝑚𝑎𝑥 with a batch size of 128 for 𝑒𝑡𝑜𝑡 epochs and fp16/bf16 weights.

Now, we will review the respective input and training loss used for each task. The task of optical flow

takes in two sequential in time RGB images(6 × 𝑀 × 𝑁) and regresses optical flow(2 × 𝑀 × 𝑁) with 2

channels corresponding to the flow in the x and y directions. The loss function for optical flow is the robust

(Charbonnier et al., 1994) comparing the ground truth and estimated optical flow along with a second-order

smoothness loss weighted with a penalty of 𝛽 = 0.5. In both cases, our depth prediction takes in two frames,

for M3ED this corresponds to two sequential frames and for Cityscapes this corresponds to a left and right

camera(in this case we predict disparity). We again use the robust (Charbonnier et al., 1994) comparing the

ground truth and estimated depth. Finally, our semantic segmentation task takes as input one RGB image

(3×𝑀×𝑁) and regresses a distribution of semantic classes(𝐾×𝑀×𝑁), for classes K. The loss function for

semantic segmentation was the cross entropy loss between the predicted class distribution and actual class
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distribution per pixel. These tasks are masked based on whether ground truth labels are available for this

output pixel.

A.6.5.4 Random bands used in experiments

Center Frequency Width

Depth 5, 30, 50, 80 2
10, 50, 80 5
5, 45, 75 5

5, 40, 60, 80 2
15, 45, 85 5

Semantic Segmentation 5, 30, 50, 80 2
10, 50, 80 5
5, 45, 75 5

5, 40, 60, 80 2
15, 45, 85 5

Optical Flow 25, 40, 60, 80 [16, 8, 4, 2]
5, 40, 60, 80 2
30, 55, 70, 90 2

5, 10, 30, 50, 70, 90 2
30, 60, 80, 93 [16, 8, 4, 2]
17, 50, 70, 90 [16, 8, 4, 2]

10, 30, 50, 70, 90 6
5, 30, 50, 80 2
17, 50, 70, 90 5

Table A.5: Random bands used in fig. 4.12. For each of the experiments, we list the center frequency used and the corresponding
width of that pass band. For experiments with multiple widths, each width is used for the corresponding sequentially ordered center
frequency.

A.6.5.5 Experimental setup for audition tasks

We used a cochlear model with two stages of filters: 42 gammatone spectral filters followed by a temporal

filter (Zhang et al., 2001; Lewicki, 2002; Tabibi et al., 2017) to approximate the structure of audio inputs

in our task to that of the auditory system. These gammatone filters had center frequencies between 22.9

Hz to 20208 Hz, which covered the frequency range of all vocalizations studied. The temporal filter was

implemented as a difference of two kernels of the form:

𝑔(𝑛) = 𝑎𝑛𝑚𝑒−𝑏𝑛 ,

175



in which 𝑛 is in units of samples and 𝑎, 𝑏, and 𝑚 are filter parameters. The temporal filter was created by

taking the difference between 𝑔1 and 𝑔2 with the following parameters: 𝑔1: 𝑎 = 1.5, 𝑏 = 0.04, and 𝑚 = 2;

and 𝑔2: 𝑎 = 1, 𝑏 = 0.036, and𝑚 = 2. This parameter set accounts for some key aspects of cochlear temporal

processing (Lyon et al., 2010; Tabibi et al., 2017). Each filter output was normalized to have zero mean and

unit standard deviation.

The conceptual underpinning of Slow Feature Analysis (SFA) is the “slowness principle”. This principle

hypothesizes that higher-order information in a stimulus (e.g., stimulus identity) changes at a slower time

scale than other lower-order fluctuations (e.g., acoustic features). SFA learns the slow features in a stimulus

through unsupervised learning. The formulation for linear SFA is described in the following equations:

R𝑚 3 𝑦(𝑡) = �̂�>𝑥(𝑡)
�̂� = argmin

𝑤∈R𝑑×𝑚

〈𝑦(𝑡) − 𝑦(𝑡 − 1)2
2

〉
;

where 𝑥(𝑡) ∈ R𝑑 is the auditory stimulus (output of the cochlear model), 𝑤 ∈ R𝑑×𝑚 is the set of slow features

and 𝑦(𝑡) is the projection of the stimulus into the feature space. The notation 〈〉 denotes an expectation over

time. Slowness is realized by finding 𝑚 features that minimize the average squared temporal difference of

𝑦(𝑡). This effectively assigns weights to the original stimulus features to generate an output signal 𝑦(𝑡) that
changes most slowly across time. To obtain non-trivial solutions, one imposes the constraint that the SFA

features 𝑦(𝑡) have zero-mean and unit variance across time, and are uncorrelated with each other. Features

found by SFA are the eigenvectors of the covariance matrix of the derivative of the auditory stimulus 𝑥(𝑡),
arranged from the smallest eigenvalue to the largest, i.e., slowest to fastest.

We use a multi-layer perceptron (MLP) to discriminate between vocalization pairs. The input layer has

dimensionality equal to the number of SFA features, the hidden layer with ReLU nonlinearities has 5 neurons

and a single output neuron to discriminate between two categories. Adam is used to fit this MLP with a 50-50

stratified split of the train and test data; we used bootstrap (5 runs) to report test errors.
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APPENDIX B

BACKGROUND

B.1 Fisher’s linear discriminant

B.1.1 OOD-Agnostic Fisher’s Linear Discriminant

In this section, we derive FLDwhenwe have samples from a single task –which is also applicable to theOOD-

agnostic (when the identity of the OOD samples are not known) setting. Consider a binary classification

problem with 𝐷𝑡 = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 ∼ 𝑃𝑡 where 𝑥𝑖 ∈ 𝑋 ⊆ R𝑑 and 𝑦𝑖 ∈ 𝑌 = {0, 1}.

Let 𝑓𝑘 and 𝜋𝑘 be the conditional density and prior probability of class 𝑘 (𝑘 ∈ {0, 1}) respectively. The

probability that 𝑥 belongs to class 𝑘 is

𝑝(𝑦 = 𝑘 | 𝑥) = 𝜋𝑘 𝑓𝑘(𝑥)
𝜋0 𝑓0(𝑥) + 𝜋1 𝑓1(𝑥) ,

and the maximum a posteriori estimate of the class label is

ℎ(𝑥) = argmax
𝑘∈{0,1}

𝑝(𝑦 = 𝑘 | 𝑥) = argmax
𝑘∈{0,1}

log
(
𝜋𝑘 𝑓𝑘(𝑥)

)
. (B.1)

Fisher’s linear discriminant (FLD) assumes that each 𝑓𝑘 is a multivariate Gaussian distribution with the same

covariance matrix Σ, i.e,

𝑓𝑘(𝑥) = 1
(2𝜋)𝑑/2|Σ|1/2

exp
(
− 1

2
(𝑥 − 𝜇𝑘)>Σ−1(𝑥 − 𝜇𝑘)

)
.

Under this assumption, the joint-density 𝑓 of (𝑥, 𝑦) becomes,

𝑓 (𝑥, 𝑦) ∝
1∏
𝑘=0

[
𝜋𝑘

|Σ|1/2
exp

(
− 1

2
(𝑥 − 𝜇𝑘)>Σ−1(𝑥 − 𝜇𝑘)

)]1[𝑦=𝑘]
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Therefore, the log-likelihood 𝑙(𝜇0 , 𝜇1 ,Σ,𝜋0 ,𝜋1) over 𝐷𝑡 is given by,

ℓ (𝜇0 , 𝜇1 ,Σ,𝜋0 ,𝜋1) =
1∑
𝑘=0

∑
(𝑥,𝑦)∈𝐷𝑡 ,𝑘

[
log𝜋𝑘 − 1

2
log |Σ| − 1

2
(𝑥 − 𝜇𝑘)>Σ−1(𝑥 − 𝜇𝑘)

]
+ const.

where 𝐷𝑡 ,𝑘 is the set of samples of 𝐷𝑡 that belongs to class 𝑘. Based on the likelihood function above, we

can obtain the maximum likelihood estimates �̂�𝑘 , Σ̂, �̂�𝑘 . The expression for the estimate �̂�𝑘 is

�̂�𝑘 =
1

|𝐷𝑡 ,𝑘 |
∑

(𝑥,𝑦)∈𝐷𝑡 ,𝑘
𝑥. (B.2)

Plugging these estimates into eq. (B.1), we get,

ℎ̂(𝑥) = argmax
𝑘∈{0,1}

[
log �̂�𝑘 − 1

2
log |Σ̂| − 1

2
(𝑥 − �̂�𝑘)>Σ̂−1(𝑥 − �̂�𝑘)

]
= argmax

𝑘∈{0,1}

[
log �̂�𝑘 − 1

2
log |Σ̂| + 𝑥>Σ̂−1�̂�𝑘 − 1

2
�̂�>
𝑘 Σ̂

−1𝜇𝑘

]
Therefore, ℎ̂(𝑥) = 1 iff,

𝑥>Σ̂−1�̂�1 − 1
2
�̂�>

1 Σ̂
−1𝜇1 + log �̂�1 > 𝑥>Σ̂−1�̂�0 − 1

2
�̂�>

0 Σ̂
−1𝜇0 + log �̂�0

𝑥>Σ̂−1�̂�1 − 𝑥>Σ̂−1�̂�0 >
1
2
�̂�>

1 Σ̂
−1𝜇1 − 1

2
�̂�>

0 Σ̂
−1𝜇0 + log �̂�0 − log �̂�1

(Σ̂−1(�̂�1 − �̂�0))>𝑥 > (Σ̂−1(�̂�1 − �̂�0))>
(
�̂�0 + �̂�1

2

)
+ log

�̂�0

�̂�1

Hence the FLD decision rule ℎ̂(𝑥) is
ℎ̂(𝑥) = 1

(
𝜔>𝑥 > 𝑐

)
(B.3)

where 𝜔 = Σ̂−1(�̂�1 − �̂�0) is a projection vector and 𝑐 = 𝜔> ( �̂�0+�̂�1
2

) + log �̂�0
�̂�1

is a threshold. When 𝑑 = 1 and

𝜋0 = 𝜋1, the decision rule reduces to

ℎ̂(𝑥) = 1
(
𝑥 >

�̂�0 + �̂�1

2

)
(B.4)
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B.1.2 Deriving the Generalization Error of the Target Task for Synthetic Tasks with FLD

Wewould like to derive an expression for the average generalization error of the target task, when we consider

the synthetic tasks. For simplicity, we set the variance 𝜎2 of the class conditional densities of the synthetic

tasks to 1.

In the OOD-agnostic setting, the learning algorithm sees a single dataset 𝐷 = 𝐷𝑡 ∪𝐷𝑜 of size 𝑛 +𝑚 which

is a combination of both target and OOD samples. We can estimate 𝜇𝑘 using eq. (B.2) to obtain

�̂�𝑘 =
1

|𝐷𝑘 |
∑

(𝑥,𝑦)∈𝐷𝑘

𝑥 =

∑
(𝑥,𝑦)∈𝐷𝑡 ,𝑘 𝑥 +

∑
(𝑥,𝑦)∈𝐷𝑜,𝑘 𝑥

𝑛𝑘 + 𝑚𝑘

=
𝑛𝑘 �̄�𝑡 ,𝑘 + 𝑚𝑘 �̄�𝑜,𝑘

𝑛𝑘 + 𝑚𝑘

=
𝑛�̄�𝑡 ,𝑘 + 𝑚�̄�𝑜,𝑘

𝑛 + 𝑚 .

(B.5)

where 𝐷𝑘 is the set of samples of 𝐷 that belongs to class 𝑘, 𝑛𝑘 = |𝐷𝑡 ,𝑘 | and 𝑚𝑘 = |𝐷𝑜,𝑘 | for 𝑘 ∈ {0, 1}.
�̄�𝑡 ,𝑘 and �̄�𝑜,𝑘 denote the sample means of class 𝑘 in target and OOD datasets respectively. We assume that

𝜋 = 1
2 from which it follows that 𝑛𝑘 = 𝑛𝜋𝑘 = 𝑛

2 and 𝑚𝑘 = 𝑚𝜋𝑘 = 𝑚
2 . We cannot explicitly compute �̄�𝑡 ,𝑘

and �̄�𝑜,𝑘 when the OOD samples are not explicitly known, because we cannot separate target samples from

OOD samples in 𝐷.

Since the samples are drawn from Gaussians, their averages also follow Gaussian distributions. Hence, the

threshold 𝑐 = �̂�0+�̂�1
2 of the hypothesis ℎ̂, estimated using FLD, is a random variable with a Gaussian distri-

bution i.e., 𝑐 ∼ N(𝜇ℎ , 𝜎2
ℎ) where

𝜇ℎ = E[𝑐] = 𝑚Δ
𝑛 + 𝑚 ,

𝜎2
ℎ = Var[𝑐] = 1

𝑛 + 𝑚 .
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The target error of a hypothesis ℎ̂ is

𝑝(ℎ̂(𝑥) ≠ 𝑦 | 𝑥, 𝑐) = 1
2
𝑝𝑥∼ 𝑓𝑡 ,1[𝑥 < 𝑐] + 1

2
𝑝𝑥∼ 𝑓𝑡 ,0[𝑥 > 𝑐]

=
1
2
+ 1

2
𝑝𝑥∼ 𝑓𝑡 ,1[𝑥 < 𝑐] − 1

2
𝑝𝑥∼ 𝑓𝑡 ,0[𝑥 < 𝑐]

=
1
2
[
1 +Φ(𝑐 − 𝜇) −Φ(𝑐 + 𝜇)] (B.6)

Using eq. (B.6), the expected error on the target task 𝑒𝑡(ℎ̂) = E𝑐∼N(𝜇ℎ ,𝜎2
ℎ)[𝑝(ℎ̂(𝑥) ≠ 𝑦 | 𝑥, 𝑐)] is given by,

𝑒𝑡(ℎ̂) =
∫ ∞

−∞
1
2
[
1 +Φ(𝑐 − 𝜇) −Φ(𝑐 + 𝜇)] 1

𝜎ℎ
𝜙

(
𝑐 − 𝜇ℎ
𝜎ℎ

)
𝑑𝑐

=
∫ ∞

−∞
1
2
[
1 +Φ(𝑦𝜎ℎ + 𝜇ℎ − 𝜇) −Φ(𝑦𝜎ℎ + 𝜇ℎ + 𝜇)]𝜙(𝑦)𝑑𝑦

=
1
2

[
Φ

(
𝜇ℎ − 𝜇√
1 + 𝜎2

ℎ

)
+Φ

(−𝜇ℎ − 𝜇√
1 + 𝜎2

ℎ

)]

In the last equality, we make use of the identity
∫ ∞
−∞Φ(𝑐𝑥 + 𝑑)𝜙(𝑥)𝑑𝑥 = Φ

( 𝑑√
1+𝑐2

)
where 𝜙 and Φ are the

PDF and CDF of the standard normal. Substituting the expressions for 𝜇ℎ , 𝜎2
ℎ into the above equation, we

get

𝑒𝑡(ℎ̂) = 1
2

[
Φ

(
𝑚Δ − (𝑛 + 𝑚)𝜇√(𝑛 + 𝑚)(𝑛 + 𝑚 + 1)

)
+Φ

( −𝑚Δ − (𝑛 + 𝑚)𝜇√(𝑛 + 𝑚)(𝑛 + 𝑚 + 1)

)]
(B.7)

For synthetic tasks with 𝜎2 ≠ 1, the target generalization error can be obtained by simply replacing 𝜇 and Δ

with 𝜇
𝜎 and Δ

𝜎 respectively in eq. (B.7).

B.1.3 OOD-Aware Weighted Fisher’s Linear Discriminant

We consider a target dataset 𝐷𝑡 = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 and an OOD dataset 𝐷𝑜 = {(𝑥𝑖 , 𝑦𝑖)}𝑚𝑖=1, which are samples

from the mixture-of-gaussians synthetic task. This setting differs from section B.1.2 since we know whether

each sample from𝐷 = 𝐷𝑡∪𝐷𝑜 is OOD or not. This difference allows us to consider a log-likelihood function
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that weights the target and OOD samples differently, i.e. we consider

ℓ (𝜇0 , 𝜇1 , 𝜎2
0 , 𝜎

2
1) =

1∑
𝑘=0

(
𝛼

∑
(𝑥,𝑦)∈𝐷𝑡 ,𝑘

[
− log 𝜎𝑘 − (𝑥 − 𝜇𝑘)2

2𝜎2
𝑘

]
+

(1 − 𝛼)
∑

(𝑥,𝑦)∈𝐷𝑜,𝑘

[
− log 𝜎𝑘 − (𝑥 − 𝜇𝑘)2

2𝜎2
𝑘

] )
+ const. .

𝛼 is a weight that controls the contribution of the OOD samples in the log-likelihood function. Under the

above log-likelihood, the maximum likelihood estimate for 𝜇𝑘 is

�̂�𝑘 =
𝛼
∑

(𝑥,𝑦)∈𝐷𝑡 ,𝑘 𝑥 + (1 − 𝛼)∑(𝑥,𝑦)∈𝐷𝑜,𝑘 𝑥
𝛼|𝐷𝑡 ,𝑘 | + (1 − 𝛼)|𝐷𝑜,𝑘 | . (B.8)

We can make use of the above �̂�𝑘 to get a weighted FLD decision rule using eq. (B.4).

B.1.4 Deriving the Generalization Error of the Target Task for Synthetic Tasks with Weighted

FLD

We consider the synthetic mixture-of-gaussians task with 𝜎2 = 1. We re-write �̂�𝑘 from eq. (B.8) using

notation from section B.1.2:

�̂�𝑘 =
𝑛𝛼�̄�𝑡 ,𝑘 + 𝑚(1 − 𝛼)�̄�𝑜,𝑘

𝑛𝛼 + 𝑚(1 − 𝛼) .

We can explicitly compute �̄�𝑡 ,𝑘 and �̄�𝑜,𝑘 in the OOD-aware setting since we can separate target samples from

OOD samples. For the synthetic dataset, the threshold 𝑐𝛼 = �̂�0+�̂�1
2 of the hypothesis ℎ̂𝛼 follows a normal

distribution N(𝜇ℎ𝛼 , 𝜎2
ℎ𝛼) where

𝜇ℎ𝛼 = E[𝑐𝛼] = 𝑚(1 − 𝛼)Δ
𝑛𝛼 + 𝑚(1 − 𝛼)

𝜎2
ℎ𝛼 = Var[𝑐𝛼] = 𝛼2𝑛 + (1 − 𝛼)2𝑚

(𝛼𝑛 + (1 − 𝛼)𝑚)2

Similar to the section B.1.2, we derive an analytical expression for the expected target risk of the weighted

FLD, which is

𝑒𝑡(ℎ̂𝛼) = 1
2

[
Φ

(
𝜇ℎ𝛼 − 𝜇√
1 + 𝜎2

ℎ𝛼

)
+Φ

(−𝜇ℎ𝛼 − 𝜇√
1 + 𝜎2

ℎ𝛼

)]
(B.9)
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B.2 Tools for visualizing trajectories of representations

B.2.1 Bhattacharyya Distance

We provide additional details regarding eq. (4.2). Let �̄� = (𝑦1 , · · · 𝑦𝑁 ), denote the labels assigned to each of

the 𝑁 samples. Since there are 𝐶 classes in total, ®𝑦 can take a total of 𝐶𝑁 different values denoted by the

set 𝑌𝑁 . Given, two models 𝑃𝑢 and 𝑃𝑣 , the Bhattacharyya distance averaged over the samples is

dB(𝑃𝑢 ,𝑃𝑣) := −𝑁−1 log©«
∑
®𝑦∈𝑌𝑁

√
𝑃𝑢(�̄�)𝑃𝑣(�̄�)ª®¬

= −𝑁−1 log©«
∑
®𝑦∈𝑌𝑁

𝑁∏
𝑛=1

√
𝑝𝑢(𝑦𝑛) 𝑝𝑣(𝑦𝑛)ª®¬

= −𝑁−1 log ©«
𝐶∑

𝑦1=1

𝐶∑
𝑦2=1

· · ·
𝐶∑

𝑦𝑁=1

(
𝑁∏
𝑛=1

√
𝑝𝑢(𝑦𝑛) 𝑝𝑣(𝑦𝑛)

)ª®¬
= −𝑁−1 log ©«

𝑁∏
𝑖=1

©«
𝐶∑
𝑦𝑖=1

√
𝑝𝑢(𝑦𝑖) 𝑝𝑣(𝑦𝑖)ª®¬ª®¬

= −𝑁−1
𝑁∑
𝑖=1

log ©«
𝐶∑
𝑦𝑖=1

√
𝑝𝑢(𝑦𝑖) 𝑝𝑣(𝑦𝑖)ª®¬ .

Uncovering the structure of high-dimensional probabilisticmodels is difficult becausemost distances between

probability distributions saturate with the dimensionality, e.g., the Hellinger distance which is a metric, is

essentially equal to 2 in high-dimensions. Quinn et al. (2019b, Figure 1) illustrates how a high-dimensional

model benefits from using the Bhattacharyya distance compared to using the Hellinger distance in uncovering

the intrinsic structure of the manifold. We believe that the logarithm in the Bhattacharyya distance keeps it

well-behaved. We actually know of one other distance that gives meaningful results and that is the symmetric

KL-divergence (Teoh et al., 2020), for the same reason: due to the logarithm. All analysis in our paper can

therefore be done with the symmetric-KL divergence (which is also not a metric) and the results do look

similar.

There are a couple more reasons that motivated us to use the Bhattacharyya distance. First, the Bhattacharyya
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distance to the truth 𝑃∗ is equal to one half of the cross-entropy loss. Second, it is reassuring that both

the Bhattacharyya distance locally gives the Fisher Information Matrix, which is positive semi-definite and

therefore induces a local metric.

Bhattacharyya distance violates the triangle inequality and we speculate that this is necessary in order to

uncover the low-dimensional structure in high-dimensional data. Understanding why it is important to violate

the triangle inequality is a deep question and we do not know how to answer it yet. We do not use the

Bhattacharyya distance itself to say things like “task A is close to task B” and as a result, the conclusions

do not suffer from the violation of the triangle inequality. We only say things like “training on task A is

equivalent to training for 80% progress on task B, or ”training using contrastive learning is equivalent to

training using supervised learning for 25% of the progress“.

B.2.2 Imprinting as an alternative to training the final layer

Consider a total of 𝐶 classes. We would like to find weights {𝑤𝑐}𝐶𝑐=1 that maximize the log-probability of

the samples, under the constraint that for all 𝑐 ∈ 𝐶, the norm of the weights ||𝑤𝑐 || is 1. Let 𝜑(𝑥) denote a

internal representation of sample 𝑥. The log-probability

∑
𝑥:𝑦𝑥=𝑐

log 𝑝(𝑦 = 𝑐 | 𝑥) =
∑
𝑥:𝑦𝑥=𝑐

𝑤𝑐 · 𝜑(𝑥) −
∑
𝑥:𝑦𝑥=𝑐

log ©«
𝐶∑
𝑗=𝑐

exp
(
𝑤𝑐 · 𝜑(𝑥))ª®¬ , (B.10)

is proportional to the inner-product 𝑤𝑐 ·∑𝑥:𝑦𝑥=𝑐 𝜑(𝑥). Maximizing just this term under the norm constraint,

we get the imprinted weights
∑
𝑖 𝜙(𝑥𝑐𝑖 )/||

∑
𝑖 𝜙(𝑥𝑐𝑖 )|| as the solution. Deriving an analytical expression for

the optimal value of {𝑤𝑐}𝑛𝑐𝑖=1 is difficult and hence we use the imprinted weights as an approximate solution.

In our experiments, we found that the imprinted weights achieve an accuracy close to the optimal weights

while being significantly easier to compute.

B.2.3 Invariant transformations of the internal representation

The internal representations are invariant to orthogonal transformations provided that we use imprinting to

define a probabilistic model. This is because the internal representations define the same probabilistic model

ever after an orthogonal transformation. Consider two internal representation 𝜙 and 𝑈 · 𝜙 where 𝑈 is an
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orthogonal matrix. We note that the probabilistic model for𝑈 · 𝜙 after imprinting is

log 𝑝2(𝑦 = 𝑐 | 𝑥𝑖) =
𝑈 · ∑𝑦𝑥=𝑐 𝜙(𝑥)

||𝑈 · ∑𝑦𝑥=𝑐 𝜙(𝑥)||
· (𝑈 · 𝜙(𝑥𝑖)) − log

(
𝐶∑
𝑐=1

exp
( 𝑈 · ∑𝑦𝑥=𝑐 𝜙(𝑥)
||𝑈 · ∑𝑦𝑥=𝑐 𝜙(𝑥)||

· (𝑈 · 𝜙(𝑥𝑖))
))

=

∑
𝑦𝑥=𝑐 𝜙(𝑥)

|| ∑𝑦𝑥=𝑐 𝜙(𝑥)||
· 𝜙(𝑥𝑖) − log

(
𝐶∑
𝑐=1

exp
( ∑

𝑦𝑥=𝑐 𝜙(𝑥)
|| ∑𝑦𝑥=𝑐 𝜙(𝑥)||

· 𝜙(𝑥𝑖)
))
.

The probabilistic model for the representation𝑈 · 𝜙 is identical to the probabilistic model for representation

𝜙 since norms and angles are preserved under orthogonal transformations. Hence the Bhattacharyya distance

between 𝜙 and𝑈 · 𝜙 is zero.

The imprinting procedure can be thought of as removing information from the representation that is not

relevant to prediction on a task. While this is true for all datasets in general, there could exist some additional

structure in the data that results inmore invariances (e.g., more than invariances to orthogonal transformations

𝑂(𝑛)).

B.2.4 Measuring goodness-of-fit of an InPCA embedding using explained stress

We would like to measure if a 𝑘-dimensional sub-space accurately preserves the true distances. For this

purpose, we define a quantity called the “explained stress” that estimates the fraction of pairwise distances

in the original space that are preserved in the 𝑘-dimensional embedding. This is analogous to the explained

variance in principal component analysis (PCA); but explained variance is a measure of the how well the

original points are preserved in the embedding whereas explained stress approximates how well pairwise

Bhattacharyya distances are preserved. If we consider the embedding to be given by first 𝑘 eigen-vectors,

then the explained stress (𝜒𝑘) is

𝜒𝑘 = 1 −

𝑊 −∑𝑘
𝑖=1 Σ𝑖𝑖 𝑈𝑖𝑈>

𝑖


F

‖𝑊‖F = 1 −
√∑𝑚

𝑖=𝑘+1 Σ
2
𝑖𝑖∑𝑚

𝑖=1 Σ
2
𝑖𝑖

. (B.11)

Note that InPCA finds an embedding that exactly maximizes 𝜒𝑘 .
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B.2.5 Calculating mean trajectories

We defined the distance between two trajectories to be dtraj(𝜏1→U
𝑢 , 𝜏2→U

𝑣 ), i.e., the integral of the Bhat-

tacharyya distance between the trajectories after mapping them to the same task and re-indexing them using

the geodesic. Say we wish to compare a model trained on two tasks from CIFAR-10: Cats vs. Dogs and

Airplane vs. Truck. We initialize multiple models for each of these two supervised learning problems (and

we do so for every experiment in this paper) and train these 10 models. We can now calculate the mean

trajectory of models on a task

argmin
𝜏1
𝜇

1
𝐾

𝐾∑
𝑘=1

dtraj(𝜏1
𝑢𝑘 , 𝜏

1
𝜇).

This optimization problem is very challenging because the variable is a trajectory of probabilistic models in a

high-dimensional space. Even if we were to split this minimization and do it independently across time, this

is still difficult because the solution is the so-called Bhattacharyya centroid on the product manifold defined

in eq. (4.1) and cannot be computed in closed form. See (Nielsen and Boltz, 2011) for an iterative formula.

We therefore simply take the arithmetic mean of the probability distributions, i.e., 𝑃𝜇(𝑡) = 1
𝐾

∑𝐾
𝑘=1 𝑃𝑤𝑖(𝑡).

This is similar to ensembling. We use the radius of the tube around the mean trajectory, i.e.,

𝑟𝑢 = max
𝑘

dtraj(𝜏1
𝑢𝑘 , 𝜏

1
𝜇)

to normalize distances (more precisely, we normalize using the average of the radii of the two trajectories

being compared). Note that this radius depends upon time (and is computed after mapping and reindexing

the trajectories). If the distance between the means of two sets of trajectories is smaller than their individual

average radii, then the tubes around the means intersect each other. In such cases, one can say that the

representations learned (at that time point) are not distinguishable. We next show all distances between

reindexed points along the trajectories discussed in figs. 4.1, 4.7 and 4.8. Note that each curve gives the

integrands in eq. (4.5), not the integral.
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