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I work on understanding how the geometric structure in the space of learnable tasks enables artificial
neural networks to learn e�ciently,1–3 with recent breakthroughs.4–9 This is a cross-disciplinary e�ort
and spans techniques from statistical physics, information theory and di�erential geometry in addition to
statistical learning theory and optimization.

I believe that understanding should improve practice. I have developed state-of-the-art algorithms
for training deep networks that are faster and generalize better,1,10 few-shot learning,11 multi-task and
continual learning12 and reinforcement learning.13,14 Some of these algorithms have been deployed by
major companies.

I aim for broad societal impact. My work15 at NuTonomy16 (now Hyundai-Aptiv Motional) helped launch
the world’s first autonomous taxi service in 2016. I have demonstrated techniques to obtain unbiased
predictions using machine learning models for subjects in di�erent gender, age and racial groups, clinical
studies for neurological disorders.17–19

I will next describe my scientific accomplishments at Penn and articulate my future plans.

1 How does the structure of the task enable e�cient learning?

There are two stark paradoxes in deep learning today. Artificial neural networks have many more parameters
than the number of training data. They can therefore overfit, i.e., make inaccurate predictions outside the
training set. And yet, these networks predict remarkably accurately—defying accepted statistical wisdom.
Training the network involves solving a high-dimensional, large-scale and non-convex optimization problem
and should be prohibitively hard. And yet, training is tractable—even easy. I have made key advances in
resolving these paradoxes.

Typical tasks are “sloppy” I showed that the ability of neural
networks to avoid overfitting could be explained by a certain charac-
teristic structure called “sloppiness”.6 The signature of sloppiness
is a Fisher Information Matrix (FIM) with eigenvalues that are dis-
tributed uniformly on a logarithmic scale (see adjoining figure for a
residual network on CIFAR-10). This indicates a large degree of re-
dundancy in the learned parameters; there is one set of parameters
that is tightly constrained by the data, another which can vary twice
as much without a�ecting predictions, and so on. Sloppy models
with such a FIM exhibit a range of sensitivities, they are neither
insensitive to perturbations (di�cult to adapt, akin to a low-rank
FIM) nor exceedingly agile (sensitive to variability in the input, akin
to a flat spectrum).

I have obtained a non-vacuous analytical bound on the generalization error of deep networks using
this idea. This bound works for general models and does not rely on weight-compression or modeling
choices such as two-layer networks or infinitely-wide networks. I have also developed numerical methods
to optimize PAC-Bayes bounds using data-distribution dependent priors. I have shown how the peculiar
eigenspectrum of the FIM (or the Hessian, correlations of activations, Jacobians etc.) is a consequence of
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a similar “sloppy” eigenspectrum for the input correlation matrix of typical tasks (images, text and tabular
data). This theory therefore shows how the complexity of the functions learned by deep networks is strongly
determined by the structure of the task. Even if the network is a universal approximator, the structure of the
task ensures that less than 0.5% out of the millions of degrees of freedom in the learned network govern
predictions.

For typical tasks, deep networks explore a low-dimen-
sional manifold of functions during training The key hur-
dle in understanding deep networks comes from the com-
plexity of the map between the weights w and the probabilis-
tic model, i.e., pw(y | x) for input x and output y. I have
developed new techniques to study such maps. Given N
training samples {(xi, y⇤i )}Ni=1 and C classes, we can think
of the network as a joint probability distribution [0, 1]C⇥N 3
(pw(y = i | xj) 8i, j). This is a finite-dimensional slice of the
infinite-dimensional object pw(y | x).

We can compare any two networks using their finite-
dimensional vectors, irrespective of their architectures or training and regularization methodology. To
do so, I am using techniques to embed high-dimensional probabilistic models (typically NC ⇡ 108) iso-
metrically into lower-dimensional Minkowski spaces,20 have also developed new techniques to compute
geodesics and study trajectories in such spaces. Historically, it has been di�cult to use ideas from informa-
tion geometry to understand mainstream questions in learning because of its rather abstract ideas. My
computational approach to information geometry is an attempt to change this.

These analyses have revealed some surprises.7 In the adjoining figure, 3,000 networks were trained on
CIFAR-10 for di�erent numbers of epochs; each point is the embedding of one network (0.5M dimensions).
Dark blue indicates models at initialization, red indicates interpolating models at the end of training. There
are two architectures here but they both explore very low-dimensional (eigenvalues shown on the right) and
essentially indistinguishable manifolds during training (3 dimensions account for 77% variance). Larger
models (small red cloud) progress further than small ones (larger red cloud) but essentially along the same
trajectory. This result shows that models with very di�erent architectures (fully-connected, convolutional,
or self-attention-based networks), training regimen (SGD vs. Adam, large vs. small batch-sizes), and
regularization (w and w/o batch-normalization, weight-decay, augmentation) explore a very similar manifold
of functions during training. This suggests that di�erent model classes learn the same kinds of functions
for sloppy tasks.

Funding NSF CAREER award ($549K; PI), ONR ($406K; PI), Amazon ($70K; PI), Intel Rising Star faculty
award ($50K; PI).

2 Characterizing the geometry in the space of learnable tasks

A deep network trained on one task can be adapted easily to new tasks. This is peculiar because training
does not explicitly encourage such flexibility. Burgeoning fields such as transfer, multi-task, meta, few-shot,
continual and self-supervised learning exploit this ability of deep networks. But key questions such as “when
are tasks similar to each other” or “how to best transfer a model” are unanswered today. I have characterized
the structure in the space of learnable tasks to understand the flexibility of neural representations. I have
also developed algorithms that harness this understanding to reduce the amount of data required to learn a
task, and to learn multiple tasks together.
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A thermodynamics of representation learning The Information Bottle-
neck (IB) Principle is a generalization of rate-distortion theory: given data x
and outputs y, the IB posits that good representations z are su�cient, e.g.,
the mutual information I(z; y) is maximized, but minimal, e.g., irrelevant infor-
mation in the input is discarded by say minimizing I(x; z). The IB has been
widely used both in neuroscience and deep learning.

I have argued how the IB cannot be a complete picture of representation
learning because it does not capture the flexibility of representations that we
see in practice.4 To wit, information discarded while learning one task is pre-
cisely what will be useful for a di�erent task. I have developed generalizations
of the IB to rectify this. The key idea is to use an auxiliary task, e.g., reconstruction of the input, to force
redundancy in the learned representation. What emerges is a thermodynamics where good representations
minimize a certain free energy F (�, �) that captures redundant information D, task-relevant information
C and minimality R (see adjoining figure). Principles that are analogous to the first and second laws of
thermodynamics, as well as statistical analogues of quantities like specific heat which capture how well an
architecture is suited for a dataset, arise from this theoretical framework.

Using these ideas, I have developed an “iso-classification transfer process” that can guarantee that the
accuracy of the network on the target task after transfer is as good as the accuracy on the source task
before transfer. Such guarantees have never been given before—transfer learning is the most widely used
technique in deep learning today and no other method can control the performance of the transferred model
on the target task.

A distance on the space of tasks It is widely accepted that if source and target tasks are “close” then
we can learn them together or transfer across them. But what we mean by “close” is not usually made
precise, beyond methods that are specific to certain architectures or domains.

I have characterized the “optimal” distance between learnable tasks. This distance is the shortest
trajectory (in terms of its Riemann length) that a model trained on the source task needs to take in order to
predict well on the target task. I show how simply fitting the model on the target task (as is typically done) is
sub-optimal; one must also modify the task gradually from the source to the target, e.g., using displacement
interpolation in optimal transport. This leads to some remarkable properties, e.g., distance between the
same pair of tasks is small if the model class is larger; tasks that were presumed to be far away are seen to
be actually close. This theory also leads to an algorithm that can optimally adapt a trained model to a new
task. The resultant algorithm are quite unusual because no existing transfer learning method interpolates
the task.

I have also built upon these ideas to develop algorithms that can learn e�ectively when the training
data consists of some tasks that aid each other when trained together (close-by ones) and dissimilar tasks
that compete for the learning capacity (far-away ones).12 These algorithms have significantly advanced the
empirical state-of-the-art in multi-task and continual learning. As a consequence, they have received wide
interest from the industry.

A picture of the space of typical learnable tasks I have characterized the geometry of the space
of learnable tasks using my techniques to study high-dimensional probabilistic models (Section 1) with
some surprising findings.8 The manifold of probabilistic models trained on di�erent tasks using di�erent
representation learning methods (e.g., supervised, transfer, multi-task, meta, or contrastive learning) is
e�ectively low-dimensional. And this dimensionality is very small—for Imagenet, 3 dimensions of the
embedding out of ~50M dimensions capture 80% of the variance. This suggests that there is a strong
shared structure among di�erent tasks.
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Supervised learning on one task (e.g., all Dogs in Ima-
genet) results in a representation that is similar to the one
obtained after ~63% of the way while training on the entire
Imagenet. If the training task is diverse (e.g., 333 random
classes), then this progress is much larger (~92%). In the
adjoining figure, models learned while fitting tasks like Con-
veyance and Instrumentality are closer to each other than
those of Animals. Within Animals, models learned while fitting
tasks like Reptiles, Dogs and Birds are similar to each other
than Invertebrates, etc. This is surprising because the phy-
logenetic tree of Wordnet (inset) was created using natural
language-based semantics, not visual features. The tools that
I have developed to study probabilistic models allow us to
precisely quantify the above statements.

This work has interesting algorithmic implications. It shows that episodic meta-learning learns a similar
representation eventually as that of standard supervised learning but via a longer, less e�cient trajectory;
the representation learned by contrastive learning is very similar to that of standard supervised learning but
it does not progress towards the solution as much; techniques to resolve gradient conflicts in multi-task
learning do not change the representation that is eventually learned; one should not fit the source task
completely if the eventual goal is to fine-tune the representation on a target task, etc.

Funding NSF CISE Medium ($1.2M; PI), ONR ($406K; PI).

3 Exploiting the structure of the task to learn from small amounts of data

As deep learning permeates diverse spheres of our life, there are many problems where massive amounts
of data required to train these models are di�cult to obtain. Small data is the next frontier of machine
learning. I have made theoretical and empirical advances that enable us to benefit from the superior
modeling abilities of deep networks, but while working around the issues caused by their dimensionality
and small sample sizes.

How to make optimal use of data? Suppose we want to estimate the bias of a coin w 2 [0, 1]. Bayes’
rule tells us to pick a prior ⇡(w) and calculate the posterior—we can correctly estimate the bias if the number
of coin tosses N is large. If N is small then we should pick the prior di�erently. For example, if N = 1,
with one bit of information, we can distinguish at most two models and should pick a prior ⇡(w) = 1/2 for
w 2 {0, 1} and zero elsewhere.

I have shown how to calculate such “reference priors” for high-dimensional models such as deep
networks9—this is the first algorithmic instantiation after they were discovered in the late 70s. If N is small,
reference priors automatically select a small hypothesis class but this can have complex models and so we
do not lose any modeling power.9 Calculating reference priors involves maximizing the mutual information
between the weights and the data, and in this sense they are an optimal way to utilize data (unlabeled
data or labeled data from another task). I have argued how such priors are tractable only if the task is
sloppy—which typical tasks seem to be.

Semi/self-supervised learning algorithms implement a number of heuristics, e.g., enforcing similarity of
features across di�erent augmentations, minimizing the entropy of predictions, pseudo-labeling/disagreement-
based losses etc. Although these techniques work well, e.g., they can work with ~1000⇥ fewer data than su-
pervised learning, they are quite ad hoc. I have shown how these di�erent heuristics implement the reference
prior objective in parts. Reference priors are therefore a theoretical formalization of semi/self-supervised

4



learning. When implemented for image classification tasks, reference priors match the performance of the
best semi-supervised learning methods.

Figure 1: Solid violin plots denote a model trained on using structural,
demographic, clinical, etc. features from 5 di�erent clinical studies
while translucent ones denote a baseline deep network using the same
features with standard preprocessing. Bar plots denote the size of the
subgroup/study (%); in many cases, there is strong data imbalance.
The p-values indicate that we cannot reject the null hypothesis that the
accuracy for di�erent subgroups has the same mean (at significance
level < 0.01). This is not the case for the baseline deep network. Results
for schizophrenia and autism spectrum disorder classification are similar.

Applications to problems in clinical
neuroscience Clinical data is highly
heterogeneous, e.g., for Alzheimer’s dis-
ease, the heterogeneity stems from di-
verse anatomies, overlapping clinical
phenotypes, and genomic traits, but due
to social and operational aspects such
as demographic/racial groups and data
acquisition protocols of di�erent hospi-
tals. Heterogeneity manifests as a small
sample size for di�erent sub-groups. As
a consequence, machine learning mod-
els often do not predict accurately for the
entire population.

Specifically, the bias of machine
learning models, for subjects from dif-
ferent demographic, racial and clini-
cal study cohorts has received wide
attention.21 My work provides a positive datapoint to this debate. For Alzheimer’s disease, schizophrenia
and autism spectrum disorder, I have shown evidence that predictions need not be biased if some simple
safeguards such as adequate data pre-processing techniques, hyper-parameter tuning and rigorous model
selection are adopted.17 This work also demonstrates that somewhat old-fashioned features (e.g., brain
volumes in anatomical regions of interest) are more e�ective for these challenging heterogeneous problems
than directly using high-dimensional MRI data with deep networks.

When the degree of heterogeneity is large, I have argued how a single model that predicts well on average
does not predict accurately for any sub-group.12,18 In such cases, one must embrace the heterogeneity
and adapt the model. I have built upon my work on few-shot learning11 to adapt a trained model to di�erent
sub-groups using small amounts of data. This gives the best of both worlds: the pretrained model discovers
salient features across the entire population which are then refined for the specific sub-group. I have shown
significantly better performance compared to existing methods using such adaptation. Typical domain
adaptation techniques need labeled data from the target sub-group, but I have shown how auxiliary tasks
(e.g., labels for age/gender are easily available) can also be used to adapt e�ectively.

Funding NSF CAREER award ($549K; PI), NIH R01 (~$145K; Senior Investigator; PI Rahim Rizi Radiol-
ogy), Amazon ($45K; PI).

4 Future research directions

I will next discuss some new research directions in my group and their relationship to my existing work.

4.1 Principles of learning that cut across artificial and biological systems

An astonishing variety of systems in physics and biology are sloppy.22 The fact that deep networks are too
may therefore hint towards an underlying structure in the learnable task. Some evidence of this structure is
seen in classic work in neuroscience23,24 which suggests that typical inputs (images, language etc.) lie on
low-dimensional manifolds. But the nature of semantics upon these inputs (object categories, phonemes,
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etc.) is less studied. In ongoing work, I am investigating the hypothesis that such semantics are highly
redundant functions of inputs and therefore a network can predict accurately using essentially any low-
dimensional statistic of the input. I hope to make advances on long-standing questions of representation
learning where the prevalent conundrum has been that such su�cient statistics must be di�cult to find in
high-dimensional data with lots of irrelevant, nuisance variables.25–27

Biological systems also exhibit a huge diversity of functional blocks that work in highly redundant
ways,28 e.g., there are ~60 types of neurons in the mammalian retina. Why would biology create such
redundancy? I am investigating the hypothesis that it is a manifestation of adaptation. If a system, e.g., the
retina, contains many unconstrained degrees of freedom, e.g., over the course of evolution, then it can
preserve its essential function learned using few constrained degrees of freedom (sti� subspace of the
FIM) and use the sloppy subspace to adapt to the changes in the environment. As a first step towards
understanding such commonalities between artificial and biological learning systems, I hope to obtain
normative principles that govern the design of neural circuits. My larger goal is to emulate these principles
into artificial systems that match the e�ciency of biological learning.

Funding NSF CISE Medium ($1.2M; PI), Intel Rising Star faculty award ($50K; PI).

4.2 Neural networks on optical computing devices

During my doctoral studies, I showed that stochastic gradient descent, when it generalizes well for deep
networks, converges to “wide regions” in the energy landscape.1 I devised a modified objective called Local
Entropy motivated from statistical physics that biases optimization towards such regions that enables 2-4◊
faster training while improving generalization.10 Local Entropy-like objectives are closely related to survey
propagation-based techniques for solving combinatorial optimization problems (SAT, LDPC decoding, or a
neural network with binary weights) and have powerful connections to quantum annealing. I am working
on using these methods to decompose large combinatorial optimization problems into smaller ones which
will be solved on an Ising machine built using optical solitons.

Funding DARPA Quantum Inspired Classical Computing (~$735K; co-PI; PI Firooz Aflatooni ESE).

4.3 Active semantic scene understanding

In robotics, the notion of a task is less clear and may change depending upon the context, e.g., object
localization, scene understanding, motion planning, etc. Consider a problem where multiple unmanned
aerial vehicles (UAVs) explore an unknown and unstructured region such as a forest. The task here can
range from estimating the volume of timber in a given region, estimating the amount of biomass/carbon
captured, building a catalog of biodiversity, to estimating models of tree growth across seasons. These
tasks require complex decision making (e.g., should the UAV estimate the diameter of this tree trunk
accurately, or move on to the next tree). There is also a large variability in the data (the same tree looks
very di�erent across seasons). The key feature of these problems that is absent in machine learning is
that the UAVs can move to investigate their surroundings and gather new kinds of data to improve the
representation. I am adapting ideas from the Information Bottleneck principle and active perception to
formalize representation learning for such problems. My goal is to build semantic representations of the
scene to answer questions such as “how should the multi-UAV team move to make progress on a task?”
and instantiate these principles on actual hardware.

Funding NSF National Robotics Initiative ($1M; PI).
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